人工智能技术的背景范文
时间:2024-04-03 11:06:58
导语:如何才能写好一篇人工智能技术的背景,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:人工智能技术背景;市场营销;措施中图分类号:TU文献标识码:A文章编号:(2020)-03-173
引言
人工智能技术正快速改变着传统行业。文章利用人工智能技术中大数据、机器学习、深度学习等技术,对市场营销体系中市场调研、市场战略、营销策略、营销活动等环节进行改造和构建。使用人工智能可以帮助企业更全面了解顾客需求,更快速寻找市场机会,更准确建立经营目标,实现真正意义上的智慧营销和精准营销。人工智能技术也给企业发展带来了新的挑战,文章分析了市场营销体系中存在的数据风险、支付风险、伦理风险和决策风险,并提出了解决方案。
1项目管理和市场营销概述
随着我国商品市场的迅速发展,市场环境和市场经营方式日新月异。就目前的企业管理和市场发展趋势来看,各色企业在营销的同时,更加注重运用项目管理为企业提供系统化、专业化的市场营销指导。我国部分企业已经引入了相关的理论知识,并在实际管理中运用这一理论给企业带来生机和活力。
1.1市场营销
企业想要取得长足发展,市场营销的作用不可忽视。市场营销是指企业基于对市场消费者的消费需求以及喜好的调研进行商品生产,是企业经营活动中的重要组成部分。它通过一定手段组建起顾客和企业之间的联系,在这种价值传递的经济活动过程中创造收益,从而实现商品的销售以及企业利润的提升。
1.2项目管理
项目管理是指借助专业化知识、手段以及技术来实现项目效果的提升,从而达到超过预期的活动。与以往传统的管理方式相比,项目管理的方式更加科学,它可以对顾客的评价进行收集和分析,并在后续的经营过程中作出一定的反馈,打破了传统营销过程的局限性,在一定程度上体现企业管理的特色化和人性化,解决了市场营销过程中的许多问题,让企业更好地适应市场经济的发展和需求。
2人工智能技术背景下的市场营销策略
2.1精准筛选推送
市场营销传播的方式有很多,但手机客户端中精选内容的推送,公众号推文末尾的旗帜广告都是在这个信息化时代特有的产物,而这正是源于人工智能的加入。人工智能可以对大数据进行智能分析,通过对每个用户行为的记录,并以此为基础,挖掘这些行为数据背后潜在的行为活动,我们常用的淘宝的运营模式就是一个很典型的例子,它会根据你搜索的关键词、历史消费记录对你的淘宝首页商品做出针对性的推送,这也就是为什么我们进入淘宝界面时会发现每个用户的界面是不同的,例如,李华在网上购买了一个篮球,其购物行为就会被人工智能捕捉,记录于数据库之中,之后将为李华推送足球鞋、球衣等篮球周边,实现精准化营销。这样的智慧销售能在满足用户需求的同时增加了部分店铺的曝光率。
2.2SEM搜索引擎推广
所谓SEM搜索引擎推广,就是指利用人们对搜获引擎的依赖性和生活习惯,在搜索信息时就将信息有针对性地传递给客户。这样的营销模式之所以能被普及运用,其原因是每一个用户所在的地区、文化水平、生活方式、关注点不同,使用搜索引擎时的关键词肯定会有所差异,此时如果还是依靠传统营销模式的策划,不管将热门词构想的多么完美,都难免有覆盖人群的死角,无法满足不同消费者个性化的需求,丧失很多潜在的客户。但是在人工智能对用户进行分析后,无需再像传统“撒大网”式的广告推送,而是利用大量数据的分析,帮助企业将广告放置到有相关需求的客户搜索引擎中,这样“投其所好”的内容能在增加点击率的同时,使得用户潜移默化地融入品牌所创造的氛围之中,给用户带来更良好的体验。
2.3客户跟进管理
客户是企业最重要的资源,运用好客户自主权可以帮助企业提高核心竞争力,最终大幅度提高公司的利润率。在以前,企业为了提高客户忠诚度,会设立专门的部门对客户进行跟进式管理。而1999年,Inc公司提出了CRM概念(CustomerRelationshipManagement)。CRM的目标就是通过全方面地提升企业的业务流程管理来降低企业的成本,若引进人工智能的元素,必将以提供更快更专业的服务的优势在保留旧客户的情况下吸引更多新顾客,这样新型的客户跟进管理机制,极大地改善了客户与企业之间的关系,实现客户价值的持续贡献,从而全面提升企业盈利能力。
篇2
【关键词】人工智能 科学技术 智能网络
近些年来,随着科学技术的飞速发展,人工智能技术这种新兴的科技产物也正在逐渐走入到人们的生活之中。但是尽管科技的发展已经非常迅速了,人们对于人工智能技术的应用依然停留在十分浅显的层面上。本文中,笔者将对人工智能技术的优缺点和应用方向等方面进行浅要的分析与研究,希望能够对人工智能开发者和各行各业的研究者们对于人工智能的应用方向获得更多的灵感。
1 人工智能的概念和应用现状
现如今,人们的生活水平已经得到了非常大的提高,我国的工业水平,科技水平等等都在不断的提高。在这样的背景之下,人工智能技术也开始受到越来越多的人的重视。尽管人工智能技术现在发展的还不完善,但还是有很多先行者,再将人工智能技术付诸于应用化的方向上踏出了关键性的一步。
1.1 人工智能的概念
说起人工智能,很多人第一印象都是影视大片之中的智能机器人,什么终结者之类的往往能给人们留下很深的印象。其实人工智能本身也可以被称作机器智能,它是人们对于人工机器赋予的拟人形态的思维和运动方式。在某种意义上来说,所谓的人工智能,就是沿用人类的方法和技术手段,将人类原本的智慧和思维模式作为原型,最终实现机器的智能化发展。可以说,人工智能技术是人类科技发展的必然产物,也是未来科技发展的必经之路。在未来的发展道路上,人工智能技术必然成为一门起源于计算机技术,并最终超脱于计算机技术的高等学科。
1.2 人工智能技术的核心
笔者认为,人工智能技术的核心,实际上就是机器的自主学习与思考能力。在现在的网络技术之中,这种观念正在被逐渐的突出,并被更多的人注意到。譬如很多网络应用于服务之中,大家都能够感到越来越知心,互联网会根据使用者过去的行为以及正在进行的新的行为与事件,不断的更改现有的服务策略。使用者浏览网页的内容,浏览时长,下载内容等等数据,将成为这些软件自主学习的资料和教科书,被互联网自动进行收录与分析,并在今后的服务之中将这些分析结果付诸应用。这种感觉就好像互联网已经逐渐变成了一个真真正正能够自主思考的智能机器人,他知道你想找什么,知道你需要什么,而这正是人工智能技术的核心追求。
2 人工智能技术的应用方向
未来的人工智能技术必然有更加广阔的应用天地,就目前针对人工智能技术的应用来看,在很多领域,已经取得了颇为不俗的成绩。虽然受限于目前尚不成熟的人工智能技术,但是这些技术已经足够人们取长补短,在各自的学科和领域取得非凡的成绩了。
2.1 人工智能技术在智能建筑领域中的应用
人们正在尝试着通过人工智能的手段,构建智能化的建筑,不断的拓展建筑现有功能,以期为人们提供更好的服务。在现有的智能建筑中,专家系统技术已经越来越多的崭露头角。近些年,知识库专家系统凭借着它在人工智能领域无与伦比的优势,实现了非常大的发展,并且逐渐呈现出商品化趋势。这种专家系统实际上是将系统的运行和构造建立在控制对象与控制规律的基础上,以庞大的知识库体系作为支撑,最终形成完整的系统功能与构架。应用这种系统,就相当于在某个专业领域拥有了一名专家,可以从容的解决该专业领域内的相关问题。这种系统的存在,针对不同的专业领域,建立了详实完善的数据库,将多位专家的意见进行了有机的整合与分析,大大的提升了建筑智能化水平,实现了人们生活的智能化。
2.2 人工智能技术在电气工程自动化控制技术中的应用
以火力发电技术为例,人工智能技术起到了非常大的作用,不但能够被用来计算电力系统所需要的产品规格,提高工作效率,缩短设计周期。还能够用来进行火力发电各系统之间的有机监控,利用人工智能计算出火力发电中各个系统的运行功率,各系统所需的燃料,蒸汽系统的水温变化,还有发电成效等等,将所有涉及到的子系统有机的调控起来,从而保证整个发电厂的经济运行。
2.3 人工智能系统在机械设备的控制中的应用
现代化的生产方式正在逐渐朝向着高科技生产,高密度生产,高集成化生产的方向发展,工业核心已经逐渐从劳动力密集型产业发展为了技术密集型产业。越来越多的企业开始使用由计算机操控的各种机械装置,代替原本的人工控制,尽可能的将劳动人员从繁重重复的劳动之中解放出来。这其中人工智能技术功不可没,而这一点也是未来人工智能技术的重要发展方向之一,那就是让机器自己学会生产。
3 结束语
随着我国科技水平的不断提高,人工智能技术正在经历飞速发展的过程,并逐渐走向成熟,被广泛的应用于各种领域之中。在市场化的经济之中,人工智能技术必然会被更多的人认知与熟识,真正感受到人工智能带来的便利。我们有理由期待着人工智能真正成熟起来,并走入每一个人生活之中的那一天。
参考文献
[1]刘波.人工智能在电气工程自动化控制技术中的应用[J].山东工业技术,2014(11).
[2]铁生.当机器学会了学习人类该怎么玩[J].计算机与网络,2014(16).
作者简介
洪保(1983-),男,陕西省蓝田县人。硕士学位。现供职于凯里学院。
篇3
关键词:大数据时代;人工智能;计算机网络技术;应用价值
21世纪以来,世界都已经进入大数据发展时代,人工智能的应用与居民生活息息相关。人工智能就是模仿人类的行为方式和思维模式进行工作处理,它比计算机技术更加具有实用价值。所以,为了迅速提高我国大数据时代人工智能在计算机网络技术中的应用,论文基于此展开详细分析探讨,深入研究人工智能在计算机网络技术中的应用价值。以下主要针对于人工智能计算机的基本内容展开简单分析与探讨:
一、人工智能计算机的概况
利用计算机技术来模仿人类的行为方式和思维模式就叫做人工智能。人工智能,技术的涵盖内容广泛,且创新性高、挑战力度大,它的发展与各学科知识包括信息与计算科学、语言学、数学、心理学等都有关联。人工智能的发展目标是通过计算机技术让本该由人工操作的危险或复杂的工作由人工智能机器代替,从而额实现节约劳动力、减少事故危害发生的情况,进而提高工作效率和工作质量。人工智能的发展形式多样。第一,人工智能可以帮助完善某些较为复杂的问题或是当前还无法解决的问题,若是发生由计算机运算都还无法获得正确模型的情况,此时就可利用人工智能来对该项问题进行有效解决,针对模糊的问题和内容,利用人工智能模式来不断提高网络使用质量。第二,人工智能可以将简单的东西或知识复杂化,得到人们想要的高级程序和数据,从而节约实现,提高工作效率。
二、大数据时代人工智能在计算机网络技术中的应用
(一)数据挖掘技术在计算机网络技术中的应用数据挖掘技术在近几年来越来越受到人们的重视,因为数据挖掘技术是大数据时展的关键技术。利用人工智能技术可研究外界不安全因素的入侵频率,并在网络安全运行的前提下结合网络存贮状态,将研究结果记录保存。之后的工作中,若计算机处于运行情况时发生安全问题,系统会立即给予警告提示,并及时拦截入侵对象。数据挖掘技术其实从根本上来看,就是由人工智能技术和大数据技术的综合发展而来,模仿人类处理数据信息的特征和方式,让计算机实现对数据的批量处理。此外,数据挖掘技术还可与各种传感器融合工作,从而实现技术功效的最大潜力,不断增强计算机系统的功效和实用价值。
(二)入侵检测技术在计算机网络技术中的应用现展迅速,网络科技已成为人们日常生活中至关重要的组成成分,给人们的生活工作带来极大便利,但是其中也潜存很多不稳定因素。所以,网络安全技术的发展是保证网络使用正常工作的重要前提。当前,已经有很多网络机制被运用到保护网络安全的工作中,但是在对网络安全管理时发现仍旧有很多不稳定因素的存在,尤其是现在网络技术的发展迅速,很多手机支付等网络支付方式中会存在支付密码泄露的情况。基于此,在网络计算机安全使用过程中起到良好作用的是入侵检测技术。该技术被使用时,可以对网络中潜存的安全隐患信息及时侦查处理,对其数据信息进行检测,最后将检测结果的分析报告反馈给用户,实现有效检测。入侵检测技术的不断发展和完善,让计算机网络的安全运行得到极大保障,在对计算机网络进行安全检测的条件下,防止网络受到外界环境的干扰。人工智能技术中还可结合人工神经系统高和专家系统网络,实现对实时变化信息的即时监控,切实保障计算机网络技术的安全发展。
(三)防火墙技术在计算机网络技术中的应用计算机的硬件与软件相结合才能让防火墙技术发挥功效,为计算机的安全运行构建一个完整的保护盔甲。防火墙技术的应用是针对整个计算机网络的使用安全,极大的降低了由于外界非法入侵带来的不稳定因素,让计算机的安全得到保障。尤其是在现在大数据时代的发展背景下,防火墙技术的优点更加明显,防止计算机被非法入侵是防火墙技术的最重要功效。当前,人们每天都会收到很多封垃圾邮件和短信,部分邮件和短信还携带有危害性质的病毒,一旦点开这些垃圾信息和短信就会造成病毒入侵,让计算机中原本的私人信息遭到泄露。因此,需要人工智能技术来帮助人们进行信息识别,扫描邮件中是否有不安全因素的存在,找出后还可立即进行排除,防止安全事故的发生。根据以上内容的分析得出,在当前的计算机网络系统应用过程中,人工智能技术已成为主导技术之一,它能够结合其他任何智能技术实现创新发展和进步,以促进计算机网络系统的安全使用,让计算机网络系统高效、安全的发展,这也让人们的生活、工作水平进一步提高。
篇4
关键词:人工智能;本科高年级教学;教学改革
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。
由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。
本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。
2 本科高年级的教学特点
中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。
3 人工智能课程的学科特点
与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。
4 人工智能教学的三点思考及对策
4.1 注重应用性和介绍性
在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。
4.2 注重科研引导性
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。
4.3 教学内容与毕业设计相结合
本科毕业设计是对本科生用所学知识来解决实际问题和进行专业研究能力的检验,是本科高年级学生将要面临的一项重要任务。由于人工智能学科具有应用性和科研性的特点,人脸识别、网页检索、经济预测、基因数据处理等应用领域都离不开人工智能技术,所以人工智能方向为学生提供了丰富的毕业设计选题。针对这一特点,在本科高年级的人工智能教学中,可以适当穿插介绍有关毕业设计的内容。告诉学生哪些应用领域是目前人工智能研究的热点方向,哪些人工智能技术可以用来解决这些问题。通过向学生介绍具有一定应用价值和研究意义的题目,然后引导他们查找阅读相关技术文献,分析问题,解决问题,最后编写代码和撰写论文。比如笔者给学生提供的选题包括:(1)基于支持向量机的上市公司信用评价;(2)正则化回归在股票预测中的应用;(3)基于肤色的人脸检测;(4)基于内容的网页图像检索等。这些题目应用性强,具有一定科研深度但是难度又不至于太大,学生选择这些题目的积极性很高。通过将教学内容与毕业设计相结合,不但加深了学生对课程的理解,又使其找到了合适的毕业设计题目,可谓一举两得。
篇5
关键词:人工智能;教育变革;智慧教育
近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:
(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。
(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。
(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。
1人工智能时代下教育变革的背景
1.1人工智能的内涵及具备的强大能力
人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。
1.2人工智能时代的机遇和挑战
人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。
2人工智能与教育变革
2.1人工智能与教育目的的变革
人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。
2.2人工智能与学习方式的变革
第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。
2.3人工智能与学习环境的变革
首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。
3人工智能在教育领域的应用
人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。
篇6
[关键词]人工智能;网络安全;计算机
当前大部分机械化工厂中依旧存在许多员工,这些员工是来辅助自动化机器完成生产的,这不是说自动化机械无法做到流水线式的生产,而是在生产过程中,会出现各种各样的问题,而自动化机器在出现问题后依旧会按照设定的程序进行生产,这样就会导致生产出许多废品,大大损害了工厂的利益。这样的问题同样出现在网络安全方面,不管是国家还是企业,每年在网络安全方面都投入了大量的人力与资金,即使是这样,依旧面临着黑客攻击或者计算机病毒等一系列问题。在大数据时代背景下,由于病毒的种类和入侵方式呈现出多元化发展趋势,传统的网络安全措施如:防火墙,可能对某些新型病毒无法进行有效识别而导致计算机受到危害。所以网络安全一直是很多国家及企业所头痛的问题。而人工智能的技术是未来的发展方向,被越来越多的人所重视,并且在网络安全领域也得到了充分发展,使网络安全的防御更加智能,在网络安全方面是一项重大突破。
一、人工智能在网络安全中所发挥的重要性
2019年12月12日,国家工业信息安全发展研究中心《人工智能中国专利技术分析报告》。据图1显示,我国人工智能领域专利申请呈快速增长,在2010年后增长速度明显加快,2018年专利申请量为94539件,达到2010年申请量的10倍。总体上,国内的人工智能相关专利申请量呈逐年上升趋势,并且从2015年往后增长的速度明显加快,这代表我国对人工智能的重视力度提上了一个崭新的台阶。当今社会中,多数市民不允许自己孩子多玩手机,在逐渐减少他们的上网时间,出现这种现状的原因,一方面是怕耽误孩子的学习,另一方面是因为家长觉得现在的网络环境较差,网络安全管理还存在较多的问题,怕自家孩子受网络影响,学习到一些不好的思想,使他们的人生走上歧路。通过调查显示,广大市民提到计算机网络问题时,总是避免不了三点:1、如何对自己的电脑进行加密,使电脑信息不外泄;2、如何屏蔽掉当前网络上的不良行为及信息;3、如何保证自身的个人电话、身份证等信息不外泄。要想解决这些问题,就要从根本上入手,那就是解决网络安全方面的问题,而引入人工智能,不仅可以有效加强计算机网络技术方面的功能,还能使计算机最大限度地阻止各种不良信息的入侵,从而使计算机更加流畅且更智能的维护我们的上网环境[1]。
二、人工智能在网络安全中的应用特点
当网络中固有的安全防护措施,如:防火墙,当遇到人为操作的入侵后,就会稍显无力。因为人为操控的入侵,会根据已有防火墙的特点,找出存在的薄弱点,从而达到入侵的目的。而在网络安全中引入人工智能,能使网络安全中已有的防护措施变得更加灵活,在拦截人为入侵及病毒检测方面具有无与伦比的优势。此外,人工智能还有较强的学习能力,这个能力在处理信息方面具有显著效果,在网络安全方面运用人工智能能大大提高网络信息的处理效率。对比传统的网络安全技术,人工智能在能源消耗方面也有明显优势,不仅能减少有关部门对其的资源投入,还实现了绿色环保节能[2]。
(一)信息处理工作过程的准确性
随着人工智能引入到网络安全中,计算机设备中的不良信息明显有所减少,这大大提高了不法分子对网络的攻击难度。在传统的网络安全技术中,都会配备许多人力来进行二十四小时监管,这样的防护措施一是为了能在受到外来入侵时及时发现,并针对性解决。另一方面是为了随时随地拦截外界所传输进来的无用信息。而在引入人工智能后,就可以减少人员的投入,因为人工智能对外界信息的传输具有一定的甄别能力,使有关部门对信息的处理压力得到减轻,从而为企业节省成本,提高工作效率[3]。
(二)具备较强的学习与处理技能
随着民众对互联网使用力度的不断提高,网络中的信息也越来越多,这就导致网络信息太多,一些有效信息企业无法及时处理,从而错失“商机”或对企业造成损失。而较之传统的网络安全防护措施来讲,人工智能的特点是它具备一定的学习能力,这个能力在处理网络信息中,有着明显优势。人工智能技术快速学习这一特点,使得其本身具有很强的信息识别能力,能帮助企业及时从众多信息中筛选出有效信息。此外,人工智能自主学习这一优势,也使网络安全技术防护变得更加灵活,它改变了固化的安全防护措施,虽说人工智能技术的发展还不是很健全,但足以应对一些小规模外来入侵,大大减少了有关部门在网络安全方面的人力、物力投入。
(三)使用能源的消耗量相对较低
通过对有关数据的收集及对比,我们可以发现传统的网络安全技术中,能源消耗异常的快速,而人工智能的能源消耗却特别低,究其根本原因在于,人工智能采用了新的算法,那就是控制算法。这种算法不仅可以一次性完成计算任务,提高效率,还有效减少了能源消耗,优化网络资源配置,为有关部门节省了大量成本。
三、当前网络安全建设中存在的问题隐患
在当前社会中,我们会接到许多各种各样的推销广告,犹如“轰炸”般将我们的心情整垮。这种情况下,我们会思考自己的信息是从哪里泄露的,大部分有可能造成信息泄露的诱因,就是出现在网络中。此外,我们的手机及电脑等电子设备中,也会偶尔出现广告弹窗等问题,这使我们的心情变得糟糕。甚至保存众多信息的电脑,会出现病毒入侵,这对我们的生活及工作造成了严重的不利影响。
(一)重要信息被盗取
新闻中,我们经常会看到许多信息泄露事件的发生,这些事件都对信息泄露者本人造成了极大的负面影响。然而,身处互联网时代,电脑是很多企业正常运营的必备设施,不论是普通文件,还是重要文件都会保存到电脑或云端,只是加密手段会有所增多而已。但企业却忽略了信息泄露而造成的后果,或者说企业对安全防护措施有足够的重视,却在网络安全攻防战中,不敌非法入侵者,从而导致企业信息泄露,公司财产损失严重。对于市民本身来讲,自身的手机及电脑会保存着许多个人的隐私照片及重要信息,这些信息的加密手段较为薄弱,一些不法分子利用网络漏洞会对市民的手机及电脑进行入侵,从而达到盗窃信息及获取钱财的目的,这对市民的生活造成了严重影响,还威胁到了市民的生命安全。
(二)众多病毒的入侵
2021年1月15日,瑞星安全团队了《2020年中国网络安全报告》,报告中2020年瑞星“云安全”系统共截获病毒样本总量1.48亿个,病毒感染次数3.52亿次,病毒总体数量比2019年同期上涨43.71%。由此可知我国的网络安全形势依然很严峻,病毒入侵严重威胁着我国的网络安全。市民甚至到了谈“毒”色变的地步,因为市民的电子设备被病毒入侵,就代表着他的通讯录、个人信息等隐私面临着泄露的可能,甚至会影响到市民的正常生活。随着网络安全逐渐被市民及有关部门所重视,网络安全技术得到了很大的提升。黑客们也改进了病毒入侵的方法,他们不再只是利用系统漏洞进行病毒入侵,还通过U盘及一些移动存储硬盘来实现病毒入侵的目的,这使得受病毒入侵的群体越来越多。
(三)垃圾信息的影响
现今社会,部分不良企业为了达到宣传作用,制作了一些垃圾信息,通过垃圾信息来入侵居民电脑,以达到宣传目的。这些垃圾信息中携带了许多不良信息以及对电子设备有害的病毒,对居民电脑造成了严重损害,影响了电子设备的正常使用。而随着网络普及,青少年接触电子设备的时间越来越多,这些不良信息和广告弹窗对他们的身心健康造成了极大影响,对青少年的健康成长极为不利。此外,随着垃圾信息的不断增多,居民从网络中找寻有用信息也愈发困难,其中部分信息还存在诱导支付的选项,大大增加了居民的支付风险,导致居民钱财损失的事情常有发生。
四、人工智能技术在网络安全方面的运用
中国人工智能产业将迎来新一轮的增长点,新技术的引入让更多的创新应用成为可能,预计到2022年,中国人工智能产业规模达到2621.5亿元。在传统网络“世界”,多数企业对办公系统会进行密码识别,只有员工输入正确密码,才能登录办公系统及浏览相关文件。但这种极易因密码泄露而造成公司财产损失。传统保卫网络安全的防火墙,其重点防御病毒的倾向各有不同,它能有效防止木马病毒,就对其他病毒的入侵稍显无力。而随着人工智能技术在网络安全方面的应用,居民的个人身份信息得到了有效的保护,还使网络防火墙更显灵活,一些垃圾邮件也会被人工智能技术排除。
(一)强化个人身份的识别系统
在当前网络安全还不是很健全的背景下,国民使用网络时,都在担心自身的个人身份信息是否会泄露。传统的网络中,密码验证以及图案是验证身份信息的主流安全防护措施,然而随着网络的飞速发展,这些方法极易被不法分子所窃取,从而导致居民的个人信息出现泄露。而使用人工智能技术中的生物识别系统,能很好地弥补传统信息验证出现的不足,如:人脸识别、指纹输入等方法。
(二)有效提升智能防火墙系统
网络防火墙是当前网络安全系统使用较多的一种安全保护措施,每台电脑及电子设备都配备了相应的防火墙,如果电子设备不配置防火墙,广告不断、出现乱码等现象就成为电子设备的“常客”。防火墙是我们使用电子设备的一大保障,然而传统防火墙是多种多样的,其侧重的防御类型也各不相同,如果碰到涉及盲区的病毒入侵,那很可能使不法分子得逞,导致我们的信息泄露,也威胁着我们的个人财产。为了改善这一现状,人工智能防火墙技术逐渐被国家及企业所重视,因为人工智能可以通过数据分析、录入信息等多种渠道去加强防火墙类型,智能防火墙技术不同于传统防火墙技术,能通过智能化技术达到访问控制的目的,使计算机网络系统对病毒的抵御能力更强,从而起到更好地网络安全保护效果。
(三)增强垃圾邮件的防御系统
家庭电脑在长时间不使用与更新的情况下,再次启用后,我们经常会收到许多垃圾信息及文件的骚扰,这是病毒入侵的表现,传统的杀毒软件还无法根除这种现象。出现这种现状的原因在于,网络的发展速度极为快速,长时间不对电脑安全防护问题进行更新,就会出现病毒发展超过已有网络安全防护的现状,从而导致垃圾信息一直“骚扰”我们。当出现这种情况后,多数人都知道该“杀毒”了,但是因为工作忙碌,以及其他原因,一直没有对电脑进行安全防护升级,导致使用电脑的体验很不理想。伴随着人工智能技术引入网络安全防护后,我们可以最大限度避免这种情况的发生。因为人工智能技术采用了智能反垃圾邮件的识别方式,它能对邮件进行识别与判断,并在系统分析后给予我们一个安全防护提醒,为电子设备提供了一个更智能、安全的网络保护系统。
(四)不断丰富计算机网络功效
要想使网络的功能更加完善,不仅仅是单纯运用人工智能就能完成的,还需要强化丰富电脑的网络功能,让人工智能技术与其建立良好的网络模式,不断使用网络代码来促进智能化工程的发展。在人工智能的基础上,计算机网络技术能够更快更好地提升计算机系统的应用效果与质量,为计算机网络技术在人工智能化发展道路上提供有力保障。因此,相关技术人员应该努力进行计算机网络安全创新,使计算机网络趋于多样化,从而让计算机功能得到快速且稳定的发展。
(五)智能异常行为的检测技术
当前网络上常见的两种病毒入侵大致可以分为两种:一是外部入侵,也就是通过一系列网络手段对计算机发动入侵,如常见的病毒入侵、陌生链接等方式。另一种则是内部入侵,这种手段就是通过U盘或文件的形式,盗取数据信息并发送到外部数据库中。而这两种方法无论是哪一种都会对计算机本身造成损害,还会给相关企业造成经济损失。而智能异常行为检测技术可以依附计算机操作系统进行运行,它能在计算机出现异常的情况下,快速进行检测,有效检测出有害信息及违法的操作手段,并及时进行拦截处理上报给计算机用户,进一步提高网络的安全性。因此,在网络安全防护问题上,我们可以引入智能异常行为检测技术,以此来为我们建立一个良好的网络安全环境。
结语
综上所述,人工智能在网络安全方面具有很大的运用空间,且能发挥出的作用是无与伦比的。随着我国综合国力的提升以及经济的快速发展,网络安全问题一直是当下的一个热点话题。将人工智能技术应用到计算机网络安全防护中,既能利用大数据识别网络中存在的隐患,还能感知到外部威胁,将不利信息和病毒进行排除。因此,在网络安全建设中,相关技术人员应加大对人工智能技术的运用,并开发出人工智能在网络安全防护中所能发挥出的更多作用,使其发光发热。
参考文献:
[1]杨淳清.浅谈人工智能技术在网络安全防护中的应用[J].电脑迷,2018(020):31.
[2]钟庆鸿.浅谈人工智能技术在网络空间安全防御中的应用[J].电脑迷,2017(025):150.
篇7
关键词:人工智能;数据挖掘;发展前景
当今社会已经进入了人工智能时代,人工智能的应用,大大改善了我们的生活。大数据时代已经来临,不论是从数据的使用,挖掘,处理等方面,都为人工智能的应用起到了基础和保障。
1人工智能
1.1人工智能的定义。人工智能(ArtificialIntelligence),简称AI。属于计算机学科下的分支,顾名思义,它是一门专门研究类人化的智能机器学科,即利用现阶段科学的研究方法和技术,研制出具有模仿、延伸和扩展人类智能的机器或智能系统,从而实现利用机器模仿人类智能的一切行为。1.2人工智能的研究背景。在1956年的达特矛斯会议上,“人工智能”这一术语正式由麦卡锡提议并采用了,随后人工智能的研究取得了许多引人注目的成就。在这之后,科研人员进行了许多的研究和开发,人工智能这个话题也取得了飞速的发展。人工智能是一门极具挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学理念。人工智能的研究包涵广泛的科学知识,以及其他领域的知识,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标是使机器能够做一些通常需要人工智能完成复杂工作的机器。1.3人工智能的研发历程。早期研究领域:人工智能专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动编程,机器人,游戏,人工神经网络等,现在涉及以下研究领域:数据挖掘,智能决策系统,知识工程,分布式人工智能等。数据挖掘的出现使得人工智能的研究在应用领域得到广泛的发展。以下简要介绍其中的几个重要部分:(1)专家系统。所谓专家系统就是控制计算的智能化程序系统,通过研发人员总结归纳了专业学科知识和日常经验,能够知道计算机完成某个领域内的专业性活动或者解决某些专业级别的问题。人工智能技术可以合理利用已知的经验体系在复杂环境中,解决和处理复杂问题。(2)机器系统。机器系统简单说就是机器人通过人造神经系统,借助于网络或者存储系统汲取系统的知识进行开发研究。(3)感知仿生。感知仿生系统通过模拟人类的感官,感知生物学特征,通过人工智能机器的感部件对外界外部环境进行感知,识别,判断,分析的能力。能够更好的适应环境,做出判断。(4)数据重组和发掘。是指通过人工智能系统,结合当前先进的理念,对大数据的总结归纳,识别存储,调取等应用。通过数据的加工处理,能够主动做出判断和分析。(5)人工智能模式。分布式人工智能是模式之一,该系统利用系统有效的规避和克服系统资源在某段时间内的局限性,并能有效地改善因资源造成的时间和空间不均衡问题。它具备,模式自动转换,并行处理,开放启发方式,冗余且容错纠错的能力。
2数据挖掘
2.1数据挖掘的定义。数据挖掘(DataMining,DM)是揭示数据中存在的模式和数据关系的学科,强调处理大型可观察数据库。数据挖掘的出现使得人工智能的研究在应用领域得到了广泛的发展。这里包括数据挖掘和智能信息提取过程,前者从大量复杂的现实世界数据中挖掘出未知和有价值的模式或规则,后者是知识的比较,选择和总结出来的原则和规则,形成一个智能系统。2.2数据挖掘的研究现状。当前数据挖掘应用主要集中在电信、零售、农业、网络日志、银行、电力、生物、天体、化工、医药等方面。看似广泛,实际应用还远没有普及。而据Gartner的报告也指出,数据挖掘会成为未来10年内重要的技术之一。而数据挖掘,也已经开始成为一门独立的专业学科。2.3数据挖掘的研究发展。具体发展趋势和应用方向主要有:性能方面:数据挖掘设计的数据量会更大,处理的效率会更高,结果也会更精确。工具方面:挖掘工具越来越强大,算法收敛越来越多,预测算法将吸收新颖性算法(支持向量机(SVM),粗糙集,云模型,遗传算法等),并实现自动化的实现算法,选择和自动调谐参数。应用:数据挖掘的应用除了应用于大型专门问题外,还将走向嵌入式,更加智能化。例如进一步研究知识发现方法,对贝叶斯定理和Boosting方法的研究和改进,以及对商业工具软件不断的生成和改进,着重建立整体系统来解决问题,如Weka等软件。在先进理论的指导下,按照国内形态发展,至少需要20年的时间,才能改进数据挖掘的发展。
3数据挖掘与人工智能技术的联系
数据挖掘属于人工智能中独立系统。它于人工智能的存在关系属于,并存联系,且独立运行,互不从属。此设计体系一方面可以有效促进人工智能提升学习能力,增进分析能力,另一方面还对分析,统计,OLSP,以及决策支持系统模块等起到推动作用。在收挖掘应用领域,处理可以对WEB挖掘,还能够有效进行文本,数据库,知识库,不同领域不同学科的信息进行序列矩阵模式挖掘。基于数据本身的分类,辨识,关联规则,聚类算法更加博大精深。因此,独立于人工智能的数据挖掘,更加便于科研团体或者领域对数据的使用和分析。数据挖掘是人工智能领域的一部分。首先,高智能是数据挖掘和人工智能的最终目标,正是由于这个目标,人工智能和数据挖掘有很多关联。其次,数据挖掘和人工智能是各种技术的整合。数据挖掘和人工智能是许多学科的跨学科学科。最后,数据挖掘的出现逐渐发展壮大,加强了人工智能,因此可以说,它们两者是不可分割的。
4人工智能和数据挖掘技术的发展前景
在当前环境下,人工智能和数据挖掘技术具有以下发展前景:(1)在大数据互联网中的应用。将人工智能的技术应用于互联网中将会使网络技术带上智能的特性,可以为人们的生活提供智能化的帮助,给人们的生活带来便利。还可以提高网络运行效率、增加网络安全性等。(2)智能化服务的研究。人工智能和数据挖掘都很注重对智能化服务的研究,例如很多智能机器人便应运而生,它们已经能胜任许多简单的工作,可以为人们提供人性化的服务。高度的智能化是数据挖掘和人工智能研究最终追求的目标,也是二者最终合而为一的标志。(3)使知识产生经济化。在现阶段的知识经济时代,人工智能和数据挖掘势必受到经济的影响,这决定了人工智能和数据挖掘将具有经济特征。人工智能和数据挖掘技术作为无形资产可以直接带来经济效益,通过交流,教育,生产和创新的无形资产将成为知识经济时代的主要资本。可以预期未来的人工智能和数据挖掘技术将更加经济实用。(4)交叉学科的技术融合。各行各业的理论和方法都已经开始融入了人工智能和数据挖掘之中。未来的人工智能和数据挖掘技术必将是一个融合众多领的复合学科。当今,我们已经在逐渐使用人工智能与数据挖掘技术,去攻克更多难题,解决更多问题,造福人类,改善生活,近在眼前。
作者:喻正夫 单位:汉江师范学院
参考文献:
[1]万璞,王丽莎.数据挖掘与人工智能技术研究[J].无线互联科技,2016(10):113-114.
[2]王翔.试论如何利用大数据挖掘技术推动人工智能继续发展[J/OL].科技创新报,2017,14(01).
[3]秦益文.微博数据挖掘中人工智能推理引擎的应用[J].中小企业管理与科技(中旬刊),2017(02).
[4]蒲东齐.数据挖掘在人工智能上的应用[J].信息与电脑(理论版),2016(19).
[5]李丹丹.数据挖掘技术及其发展趋势[J].电脑应用技术,2007(02):38-40.
篇8
关键词:人工智能;科技情报;自动感知
中图分类号:TP18文献标志码:A文章编号:2095-2945(2020)32-0057-02
Abstract:Fromtheperspectiveofartificialintelligence,peoplerequireasignificantimprovementintheaccuracyofscientificandtechnologicalinformationservices,sothatitsvaluecontinuestorise,bringingchallengesandopportunitiesforintelligencework.Bysummarizingthecontentsofartificialintelligenceandscientificandtechnologicalinformation,combinedwithartificialintelligencetechnology,thispaperstudiestheautomaticperceptionofscientificandtechnologicalinformationneedsconcerningthekeypoints,contentperceptionandotheraspects,highlightingthewisdom,intelligenceandefficiencyofscientificandtechnologicalinformationwork,andoptimizingtheautomaticperceptionscheme.
Keywords:artificialintelligence;scientificandtechnologicalinformation;automaticperception
前言
当前科技情报服务对象不仅局限于特定的行业和领域,已经逐渐渗透至某一技术和个人,情报机构只有提升情报分析和反应能力才可以满足新需求。因此,机构有必要加强对用户需求的感知度,依托人工智能技术构建科技情报的感知框架,提升感知工作的合理性和高效性,进而挖掘科技情报感知领域的价值。
1人工智能及科技情报感知概述
1.1人工智能分析
人工智能又称AI,伴随着计算速度、核心算法的优化,该技术已经在神经网络、自然语言、机器学习等方面趋于成熟。当前人工智能技术可以定制个性化任务,结合不同的环境响应个体需求,制定解决方案[1]。因此,人工智能技术能够快速处理海量数据,若人类智力水平已无法满足严苛工作要求,可以借助人工智能技术处理复杂工作。同时,科技情报感知模块属于综合预测过程,因此有必要结合人工智能技术制定科技情报感知方案,实现情报工作向智慧化、个性化、精准化方向发展。
1.2情报感知分析
科技情报感知主要是工作人员针对采集到的数据完成处理、分析,进而满足受众对于情报的需求,并对今后其发展过程进行预测。学者刘记曾指出,依托科技情报感知工作可以为实现国家治理体系和治理能力现代化提供支持,加快情报刻画、情报感知以及情报响应能力的建设进程。其中,情境感知的研究具有一定复杂度,G.Chen通过调查情境信息、情境类型、情境传播等模型和系统,分析情境感知的应用程序,得出情境感知是领域普适学习的关键。例如,借助情境感知可以为用户提供体温、运动路径、温度等方面的服务。
因此,科技情报感知工作对于我国情报治理、预先感知等方面影响较大,结合人工智能技术创新科技情报感知模块已是大势所趋。当前大数据时代科技情报已经不仅停留于文献领域,正逐渐向多种数据源模式发展,要求科技情报软硬件不断升级优化,数据存储和处理水平逐渐升级,进而满足社会对情报数据的需求。
2人工智能视域下科技情报需求自动感知研究
2.1融合关键点
(1)创新驱动。当前科技情报需求逐渐向科技创新领域发展,依托我国创新驱动的发展战略,基于科学技术完成升级和发展。将科学技术和科技情报相结合后,情报工作的创新性较强,具有数字化和智慧化优势,并突出情报工作的个性化和精准性。因此,依托人工智能技术完成科技情报的自动感知十分关键,是当前科技发展的必经之路。
(2)前瞻性定位。新时期资源的网络化和数字化发展为科技情报研究工作提供大数据支持,可以在海量数据的收集、分析、处理方面发挥优势。传统的数据研究方式很难在大量数据的基础上提升情报研究质量,同时会增加研究人员的任务量。且每位工作人员自身的专业知识、情报敏感度、知识状态存在差异性,导致最终得出的情报结果不同甚至差异化较大。应用人工智能技术完成科技情报的自动感知十分重要,可以突出工作的准确性、高效性和稳定性。因此,将新兴人工智能技术和传统情报服务工作相融合是现代情报领域的关键,如自动获取和加工情报、高速处理文本信息、人工智能决策平台、依托語义内容的科研成果评价等[2]。
2.2内容感知
(1)感知系统分析。大数据背景下,科技情报预测和传播功能受到重视和应用,属于科技领域的研究热点,可以对竞争、合作、研究方面进行正确的价值判断。科技情报感知主要依托可靠、丰富的数据,借助“互联网+大数据”模式获取信息,在多种资料中得到关键的信息和数据,进而完成科技情报的感知工作。同时,数据源具有冗余度高、形式多样、存储量大的优势,因此能够落实科技情报感知工作,筛选数据源、除去冗余数据、分析剩余有效信息。借助数据集模式与知识储备库、感知数据库一同为感知过程提供信息支持。内容感知系统内的数据源并非固定不变,且信息的更新速度较快、技术淘汰时间较短,因此内容感知是实时更新、持续变化的数据系统。基于相关辅助项目,帮助用户了解工作内容。例如,借助“科技情报产品报告”为感知系统研究和应用提供支持,该报告可以帮助用户了解系统,提前评估系统实际能力,便于用户针对性提出情报需求。
(2)系统实现模式。a.数据源存储。若想发挥科技情报的自动感知作用,系统内需要具备大容量数据集合,进而为感知产品提供分析支持。同时,数据处理过程中对于信息查询、存储挑战较大。因此,本课题结合Neo4j数据库、互联网技术提升数据处理和存储效率,提高系统适应水平,保证其良好的查询效率。Neo4j数据库主要划分为两类应用模式:服务器模式、内嵌模式。本课题利用内嵌模式,借助Java-API,将Neo4j数据库和图模型相互整合。由于API的特点是数据结构灵活,因此可以通过直接编码的模式和图数据库完成交互操作。b.数据源分类。若想对数据源完成自动分类,建议识别数据源的结构功能。例如,利用机器学习、词汇特征等方式划分数据源的功能及结构。依托数据源要素、类型词汇特点、词汇分布特征等方面,依托神经网络内分类器训练模式,围绕领域技术、专题、情报报告、组织数据库等方面对数据源进行分类[3]。c.构建任务抽取模型。结合用户需求抽取目标任务可以充分发挥科技情报的自动感知优势,优化RNN模块。在研究阶段利用Bi-LSTM-CRF、卷积网络模型抽取数据源,并借助长短时双向记忆模型化解RNN梯度爆炸、消失情况。抽取模型内的输入数据是卷积,包含知识元素、句子、词等特征向量,而输出数据则依托(Conditionalrandomfield)条件随机得到结果完成预测。此模型借助多元组的方式展示数据源抽取结果,围绕数据源性质、事项、主体、依据、对象等要素进行连接。
2.3情境感知
(1)情境感知系统。情境感知系统内部因素种类较多,且科技情报感知阶段需要依据情境完成,并对感知结果造成影响。因此,在开展科技情报感知工作时,建议对特定用户完成重新评估。同时,情境感知在情报感知工作中十分关键,若忽视结果会对外部情境产生较大影响,使预测工作丧失精准度。因此,应基于外部情境条件定位事物发展方向,得到精准感知结果,发挥情报前瞻性优势。其中在获取情境数据时应关注“小数据”,即初始结构化数据,此类资源虽数量较小,但是内部包含价值信息,可以获取历史情境信息。此外,问题情境应围绕横向和纵向两个层面分析,横向维度是梳理本层实际情况,针对性选择研究方法和处理方式;纵向维度则依托时间节点理清情境信息。
(2)系统执行方案。情境感知系统建设主要内容是借助科技手段获取某一情境内的数据并完成融合。因此,情境感知技术实际上是借助人工智能中传感器等技术,依托计算机感知当前情境,完成感知应用、智能识别、决策支持,具有无干扰的优势。情境感知包含情境获取、处理、应用三个阶段。其中,情境获取主要依靠传感器终端获取设备关联、用户关联、资源关联、环境关联情境,并将上述情境信息转变为数字信号,利用嵌入系统完成判断和处理;情境处理过程则借助建模的方式控制情境信息,构建信息数据库。整合情境感知信息并协调对应的组合,控制资源分布并将其嵌入至感知数据库内;服务应用阶段相当于人工智能处理模块,可以结合用户需求提供合理服务。
2.4需求-反馈机制
(1)工作过程。需求-反馈机制实际上可以体现用户和人工智能间的关联性,属于科技情报感知的关键环节,包含自动感知信息、数据、产品模块。依托人工智能技术,通过AI方式减轻工作人员任务量。其中,AI能够智能化处理多领域工作,如医疗、教育、驾驶、金融、安防等。在科技情报感知领域引入人工智能技术可以准确、高效、及时地开展情报工作,提升工作效率、减少决策偶然性、加快数据分析处理速度。同时,科技情报感知工作的主体是用户,首先需要将其对产品的需求发送至AI处,其次借助人工智能模块分析、整合内外感知数据库信息,最后向用户反馈情报产品和相关结果。
(2)情报感知产品。情报感知产品主要结合用户产品需求,依据感知数据库内的条件因素预测今后用户对于情报产品的需求,进而在后续工作中有针对性地向用户推送产品信息,为科技情报工作的可持续发展提供支持。因此,人工智能和科技情报感知工作相结合可以充分发挥自动感知优势,降低对工作人员决策的依赖性。专业人员依据多种数据源进行分析与评估,最终得出精准的感知结果。同时,人工智能技术的应用可以自动形成情报感知产品,并向用户推送反馈数据,由主动感知向自动感知发展,契合新时期情报3.0的发展趋势,加快国家科技决策和科技创新发展进程。
篇9
[关键词]人工智能技术;会计信息系统;财务会计信息管理系统
随着人类社会科学技术的发展,公司在买方市场中面临着复杂多样的个人需求。到目前为止,传统的会计信息系统在手工或计算机计算的基础上输出的一般会计信息已不能满足个人会计信息的需求。为了满足买方市场的个人需求,满足企业决策者的信息需求,有必要在物质经济阶段设计规范的会计信息系统,以定制和完善人类经济中的会计信息系统,将使用会计信息作为向量的传统会计报告表格转换为自定义会计报告表格。因此,在“互联网+”背景下,笔者考虑了人工智能如何参与构建买方市场中用户需求各个阶段的人类经济发展会计信息系统,从而带来了新的思路。
1.人工智能对会计的影响
人工智能对会计业务的影响不仅取决于会计业务的阶段和人工智能的发展,还取决于不同国家和地区的社会和经济发展。迄今为止,国内外会计学者已就人工智能对会计工作的影响达成共识。大范围、高频率、标准化和清晰规则的会计任务将被AI取代,具有价值和专业判断力的会计任务将与AI共存。“互联网+”和第四次工业革命中的去中心化与区块链的瓦解以及信用损失导致共享经济的诞生。在去中心化信任结构下追求共享价值成为共享经济的新顶峰,并采用系统的整体方法为会计去中心化信任结构下的利益相关者或组织提供有价值的会计信息。因此,作为未来研究的核心,利用人工智能将是会计师能力的延伸,并将在分散的信任结构下使用系统理论的整体方法来完成和实现智能会计功能。
2.人工智能的发展
人工智能扩展了计算机功能,它通过认知表达、机器学习、知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动编程等为机器人提供智能模拟,从而实现人类智能。这个定义清楚表明,人工智能与思维科学之间的关系就是实践与理论之间的关系。自1956年在达特茅斯会议上首次提出,人工智能的定义经历了三个阶段的发展,并塑造了自然科学、社会科学和技术科学的交汇处。它也是技术创新和社会发展的产物。它从人类思维的角度处理逻辑思维、形式思维和鼓舞性思维。基于这三个思想,人类构建了AI符号,联想和行为智能,AI标准逻辑、模糊逻辑和符号逻辑。我们在标准逻辑和基于模糊逻辑和符号逻辑的强大人工智能的前提下开发了弱人工智能导致生产力要素和结构发生破坏性变化,使人们从就业中解放出来。以创新的人工智能作为其开创性技术的第三次工业革命意味着人类社会已进入基于信息不匹配的以人为中心的经济阶段。鉴于马斯洛对自由竞争的理论编码顺序要求,默认要求值具有信用币总数的特征,而高要求值具有非信用币总数的特征。人类社会已经进入了信息对称、以人为本的经济发展阶段。买方的销售市场工作经验要求利用价值来对第三方数据进行定量分析。为了更好地突出公司财务信息的作用,有必要根据所需使用值的总数对具有不同理论和逻辑的人工智能技术进行预处理,并将其应用于公司财务信息管理系统,基于人们使用价值的定制企业财务信息取代了基于类型使用价值的标准化财务会计信息管理系统。本文明确指出,当今收费的关键缺陷在于当前的收费信息内容简单,与客户关系不密切。对于客户而言,决策供应是必需的。顾客将不再购买公司制造的物品,而只会购买公司制造的自己必需的物品。这进一步提高了资源分配率,降低了企业成本,有利于创造最大化利润使用价值。财务会计改革与创新的基本方向是,根据信息时代的客户经验,以及对财务会计和监督目标的新认识和定义,在特定的两个层次上使企业的使用价值最大化。
3.会计信息系统开发
在当代科学技术进步的背景下,财务会计信息管理系统与计算机信息管理系统相同。后者使用电子计算机作为关键的专用工具来收集、存储和解析用于财务会计的各种财务会计数据信息,并提供会计审计、分析和服务项目。与管理决策相关的财务信息的实质是将财务会计数据转换为财务信息,这是公司信息管理系统的关键子系统。财务会计信息管理系统在我国的应用可以追溯到1980年代。它最初是由公司建立的,随后出现了用友、金蝶等会计软件,极大地推动了财务会计的发展趋势和进步。在1990年代中期至后期,传统财务会计计算的缺点逐渐显现出来。业务不再满足单一会计功能,不仅限于诸如簿记和报告输出之类的基本要求,而且对相关的业务收益、成本等具有更大的影响。随着对信息需求的增加,原始财务软件正逐渐过渡到高度集成软件,例如ERP,因此,全国各地的财务软件供应商也已转变为ERP供应商。随着信息技术的发展,ERP财务会计信息管理系统也进入“互联网+”时代,我国的财务会计信息管理系统逐渐发展成为财务管理信息系统。在大数据背景下,许多文献从各个角度对财务会计信息管理系统进行了新的探索,并明确提出了新的规定。商业管理财务信息是当代信息技术在公司财务中的应用,提出企业会计信息系统应由业务架构、数据架构等五部分组成。会计信息系统必须合法化,其主要途径是建立专业的会计法令和制度,加强会计法制建设。
4.基于人工智能技术构建人本经济阶段企业
4.1会计信息系统
为了在第四次工业革命时代促进人类经济的发展和现代基础信息技术的传播,从信息不对称和信息的角度讨论在人类经济阶段建立企业会计信息系统的问题。信息内容非对称理论是经济发展中的“企业财务信息管理系统人工智能技术”。高新技术的自主创新和发展趋势不仅促进了人类社会的发展,而且信息的不对称也促进了以人为本的经济发展。信息的不对称已经取代了基于化学物质的经济发展。社会经济的发展促进了以人为本,这意味着基于人力资源使用价值的财务会计基础理论和定制的财务会计信息管理系统已经长期取代了基于使用价值类型的财务会计基础理论和标准化的财务会计信息管理系统。在以人为本的信息经济发展不对称的环节中,以客户为中心的企业关联方合同的特点决定了以人为本的企业财务会计信息管理系统的基本理论。
4.2集中的以人为中心的经济实体
构成了集中的以人为中心的企业会计实体的假设。以人为本的经济实体存在的连续性形成了以人为中心的企业会计可持续经营的假说。马斯洛的买方市场订单的需求价值度量属性确定了以人为中心的企业会计的全货币假设。人类经济发展的规律性决定了人类经济发展的周期,而循环又决定了基于人的企业的固定会计期间的假设。由于会计的性质决定会计目标,因此,以人为本的公司会计信息系统的理论确定了有关以人为本的公司会计目标决策的有用观点。会计职能由会计目标确定,以人为本的决策和公司会计目标从有用的角度确定了积极反映和控制的以人为本的公司会计职能。根据会计功能设计的会计程序和方法,将质量序列需求值与买方市场的信息不对称性结合起来,具有跨货币量化的特征,由此可以推断出适当的会计准则。顺序作为买方的市场质量,形成需求值,会计组织程序和方法标准化。因此,本文将以人为中心的会计要素划分为专门的分工,形成的会计等式为“基于人的价值资产=基于人权的权利”。低水平(基本)的需求价格适应编程的会计功能,生成结构化的会计数据,而人工智能完全取代了会计工作。高需求值的特点是非本国货币价值量化,适应非过程会计功能,生成非结构化会计数据,并且人工智能不能完全取代会计师的工作。在基础层中,计算模块添加计费计算子模块,数据库模块添加计费数据库子模块,存储模块添加计费存储子模块。平台层添加了三个子模块:经济业务识别、会计语言处理和会计业务处理。在服务层中,会计工具和技术服务增加了三个人工智能验证工具,用于会计计量和标准逻辑,模糊逻辑和符号逻辑,并增加了会计结构数据库和会计非会计信息,可以反映会计信息的作用。
4.3信息对称的人本经济阶段的“人工智能+企业会计信息系统”
科技革命促进了当代技术实力的发展,从而完成了以共享经济模型代替不对称理论的经济发展。我们可以通过区块链技术构建去中心化结构下的以人为本的财务会计基础理论和财务会计理论创新的财务会计信息管理系统。数据共享平台的建立改变了原有的传统方式,在共享经济模型中,智能参与者将以客户为主导,从而创建一个超越合同的实质性财务会计信息管理系统。区块链技术共享经济模型的主题将规定新的区块链技术公司的会计主题的假设,新的区块链技术共享经济模型的参与者可能具有长期运营标准,或者可能会发生变化。
5.结语
本文分析了根据以人为本的经济阶段信息不对称和信息对称环境下的管理会计理论,创造性地构建了第三、第四代人工智能相结合的会计信息系统。工业革命在信息不对称的以人为中心的经济中,以“企业+区块链”为基础构建“企业会计信息系统+人工智能”;在以人为中心的经济阶段,以“本地区块链+企业”为基础围绕“对称信息”建设“人工智能+企业智能会计信息系统”。本研究为探索人工智能与会计工作方法的创新整合以及会计领域的改革提供了理论依据和经验参考。
【参考文献】
[1]丁胜红,胡俊.人工智能技术下会计信息系统的构建[J].财会月刊,2021(08):98-102.
[2]戈闯.会计信息化对财会教育的影响[J].中国科教创新导刊,2013(31):67.
[3]成瑗.采购业务核算的智能化信息处理研究[D].天津商业大学,2010.
[4]李萌.会计信息处理智能化研究[D].天津商业大学,2007.
[5]唐杰,李华丽.基于政府会计制度的高校会计信息系统调整方案设计[J].财会通讯,2020(01):163-166.
篇10
关键词:大学计算机基础;教学改革;人工智能;智慧课堂
云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2020年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。
1传统教学的缺陷
⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。
2新人工智能环境下对计算机基础课程改革的具体方案
2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。
3结束语