化学工程与工艺精细化工方向范文

时间:2024-04-02 18:04:49

导语:如何才能写好一篇化学工程与工艺精细化工方向,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

化学工程与工艺精细化工方向

篇1

关键词:工程认证;精细化工;教学改革;实践能力;教学理念

一、我国工程教育认证的发展历程

为了提高我国高等工程教育质量,构建我国高等工程教育质量保障体系,进一步深化高等工程教育改革,建立高校工程专业与社会企业所需人才培养的双赢机制,规范与注册工程师制度相衔接的高等工程教育专业认证体系,促进工程教育国际化,实现国际互认,提升我国高等工程教育国际竞争力,教育部于2006年正式启动高等工程教育专业认证试点工作。10年来,我国工程教育专业认证工作逐渐在全国相关高校中得到了重视和积极开展。2013年6月,国际工程联盟大会在韩国召开,大会表决通过中国为《华盛顿协议》预备会员,成为该协议组织第21个成员。《华盛顿协议》是世界上最具影响力的国际本科工程学位互认协议,1989年由美国、英国、加拿大、爱尔兰、澳大利亚、新西兰6个国家的工程专业团体发起成立,旨在建立共同认可的工程教育认证体系。该协议提出的工程专业教育标准和工程师职业能力标准,是国际工程界对工科毕业生和工程师职业能力公认的权威要求。截至2013年8月,中国工程教育专业认证协会已对我国高校的373个专业点开展了认证工作,之后经过3年的不懈努力,我国工程教育专业认证协会分别受理了137个专业的2014年认证申请(其中105个专业通过认证)、156个专业的2015年认证申请和200个专业的2016年认证申请,我国工程教育水平得到了长足而显著的提高,其质量获得国际社会的一致认可。可喜的是,2016年6月,《华盛顿协议》全票通过中国科协代表我国由《华盛顿协议》预备会员转正,成为该协议第18个正式成员,表明我国工程教育专业认证与国际实质等效,标志着我国工程教育质量实现了国际化互认。

二、工程教育认证背景下我校精细化工工艺课程教学改革的必要性

华侨大学地处海峡西岸经济区的心脏地带,为了更好地服务于地方区域经济的发展,为企业人才市场输送合格的工程类专业人才,工程教育专业认证已列为我校提高办学质量的主要举措之一,校领导高度重视。与此同时,随着福建省沿海四大石化基地和重大项目的加速推进,带动了合成材料、有机化工和精细化工等配套开发,石化产业集群效应显现,化工类专业人才需求增大[1]。为了培养合格的化工工程师,我校化工学院积极申请化学工程工艺专业的工程教育专业认证。2016年2月,中国工程教育认证协会正式受理了我校化工学院化学工程与工艺专业工程教育认证的申请,这是我校第一个被受理的工科专业,得到了校、院两级领导的高度重视和全系教师及其他相关院系的大力支持和配合。中国工程教育认证标准是基于产出的教育评价,满足华盛顿协议互认要求。基于学习产出的教育模式(OBE)最早出现于美国和澳大利亚的基础教育改革,是以预期学习产出为中心来组织、实施和评价教育的结构模式[2,3]。国内部分高校实施基于OBE教育理念的人才培养模式的综合改革,规范教学活动,树立教学标准意识,建立教学质量标准,最终取得了显著的效果,并顺利通过我国工程教育认证。众所周知,《精细化工工艺》是化学工程与工艺(精细化工方向)专业的主干专业课之一,该课程具有工程性、应用性和综合性等特点。在我校化学工程与工艺专业开展工程教育认证的背景下,基于“以学生为本,以学生学习产出为导向”的教育理念和思路开展精细化工工艺课程教学改革势在必行。

三、工程教育认证背景下精细化工工艺课程教学改革的几点思考

CDIO工程教育模式是近年来国际工程教育改革的最新成果,它以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。CDIO培养大纲将工科专业毕业生的能力分为工程基础知识、个人能力、认识团队能力和工程系统能力四个层面,大纲要求以综合的培养方式使学生在这四个层面达到预定目标[4,5]。为了使学生在学习精细化工工艺课程过程中达成这个目标,必须同时从教学的两个主体———学生和教师入手,转变教育理念,改革教学方式方法,以符合我国工程教育认证标准。

(一)学生工程实践能力的培养

精细化工工艺是一门实践和理论并重的课程,在培养高素质的精细化工工程技术人才过程中,精细化学品开发、设计及合成的实验与实践起着重要作用。对于学生而言,借鉴CDIO成功的教育经验,在工程教育认证背景下精细化工工艺课程教学改革过程,一定要特别注重和加强学生工程实践能力的培养。

1.加强校企合作。根据《中国工程教育质量报告》的调查,工业界认为高校培养工程专业人才过程中存在通用能力评价高,工程能力培养不足;传统优势明显,紧跟时代需求不足;工业界参与深度和规范化不足等问题。因此,在精细化工工艺课堂教学过程中积极邀请精细化工相关企业高级工程师走入课堂参与教学,有利于学生深入了解所学知识在将来所要从事的精细化工行业中的实践应用。

2.搭建校内精细化工实践平台。实践平台是大学生进行实践活动的阵地,校内可以通过设立实验示范中心、学科重点实验室、科研成果转化平台以及本科生课外科创活动平台等举措,不断提高学生的精细化学工程实践能力和创造力。

3.设立精细化学品制作工坊。根据精细化工工艺课程需求开设特色实验室,对课程中所学主要精细化学品种类及其典型产品的制备工艺开展实验,比如手工肥皂、洗涤剂和胶黏剂等常规精细化学品的制作。与此同时,增加综合型、设计型实验的比例和深度,充分调动学生对精细化工工艺的学习积极性。比如在手工肥皂制作过程中设计透明多彩的新型多功能肥皂,培养学生的创新意识、动手操作能力和团队合作精神,提高学生的工程实践能力和创造力,让学生以主动的、实践的、课程之间有机联系的方式学习精细化工工艺这门专业主干课程。另外,精细化工工艺特色实验室在全校范围内也可以共享实验资源和设备,这不仅可以增加学校对实验室的经费投入,而且可以显著提高精细化工专业的知名度,大大增加学生对本专业的认可度和归属感。

4.建立多元化考核标准。传统工科教学的突出问题是理论知识学习比重远大于工程能力培养比重,这是单一笔试考核模式导致的必然结果。基于工程教育认证中所要求的学习产出的教育模式,将学生在精细化工工艺课程学习过程中参加课外精细化工实践平台和精细化学品制作工坊等活动的表现形成可量化的考核标准,与传统考核标准进行有机结合,建立以加强学生工程实践能力培养为目标的多元化课程考核标准。

(二)教师课程教学理念的转变

基于OBE工程教育模式,工程教育认证将推动工科教学由“经验型”转向“科学型”、由“内容为本型”转向“学生为本型”。这就要求高校教师彻底摈弃传统的“教无定法”的教学理念,而是基于学习结果的教育模式,形成一种规范、团队、持续改进的教学方式,实现教学行为及活动的标准化与规范化,从而达到工程教育认证标准,持续为工业界输送合格的化工工程师人才。

1.建立课程目标与毕业要求的对应关系,规范和细化教学大纲及内容。《精细化工工艺》是一门介绍精细化工产品生产原理与工艺的专业课程,其课程知识体系非常零散且庞大,规范地组织教学内容和选择教学方法对于有效实现预期学习结果至关重要。精细化工工艺课程的教学目标:一是让学生能够根据市场需求的不断变化,设计新型精细化工产品;二是让学生运用精细有机合成化学及工艺学理论,根据精细化学品的功能特点及研究目的,选择适宜的研究路线,设计可行的有机合成单元反应实验方案;三是让学生熟悉与精细化工行业相关的产品技术标准、知识产权、法律法规、产业政策及发展现状和趋势,能识别、分析精细化工新产品、新技术、新工艺的开发和应用对社会、健康、安全、法律以及文化的潜在影响,深刻理解精细化工在国民经济中的重要地位和作用。以上课程目标分别对应于我国工程教育认证标准中化学工程与工艺专业学生应达到的十二条毕业要求中“设计/开发解决方案”、“研究”和“工程与社会”等方面的能力要求。在对学生学习结果有了清晰的认识后,教师通过细化教学大纲来规范教学内容和控制教学进度,从而保证课程目标的达成。

2.整合教学资源,避免课程间教学内容的低水平重复。对于化学工程与工艺专业(精细化工方向)的学生而言,在开设《精细化工工艺》课程的同时,还开设了《精细化学品》和《高分子化工工艺》等相关课程。过去,这些课程在教学内容上存在部分重复,比如有机合成反应基础知识的介绍,学生对此也提出了意见和看法。OBE工程教育模式客观上要求整合各类教学资源,明确不同课程对达成毕业要求指标点(预期学习结果)的贡献及程度。这就需要各专业教师之间进行有效地交流与合作,协调相关课程的教学大纲及内容,避免教学资源的浪费。

3.建立课程教学质量跟踪调查及反馈机制,形成持续改进的教学理念。工程教育认证要求建立毕业生质量跟踪调查机制,形成科学有效的毕业生评价体系,为学校更好地培养工程人才提供重要依据。显而易见,毕业生质量与课程教学质量紧密相关,只有建立后者的跟踪调查及反馈机制,才能保障前者的水平。除了校院两级对精细化工工艺课程教学主要环节进行质量监控外,教师一方面于课程教学结束后在所授班级召开座谈会,听取学生对所学课程内容及授课方式、进度等方面的看法和意见,教师对所提问题与学生进行交流并提供合理化建议;另一方面,针对从事精细化工行业的毕业生进行跟踪调查,灵活运用现代通讯及联络工具、调查问卷等多种形式,开展关于学生在校期间所学精细化工工艺课程对其职业发展的影响以及其对该门课程设置、教学内容及方法等方面的建议和意见的调查,另外还可以展开毕业生所在单位对所需精细化工工程人才知识架构要求的调研。授课教师对以上信息收集整理后进行归纳总结,形成反馈整改意见,并在下一次的课程教学过程中有效体现,形成良性互动循环,促进精细化工工艺课程教学质量的持续改进。

作者:甘林火 单位:华侨大学

参考文献:

[1]甘林火.精细化工工艺课程教学的探索[J].广州化工,2015,43(5):220-221.

[2]顾佩华,胡文龙,林鹏,等.基于“学习产出”(OBE)的工程教育模式——汕头大学的实践与探索[J].高等工程教育研究,2015,(1):27-37.

[3]赵卫红,王彦斌.基于“OBE”理念的精细化工专业实验课程建设[J].亚太教育,2015,(7):85.

篇2

就其中的催化科学与工程而言,已经成为当今国际上最活跃的科技领域之一。据统计,与催化有关的产值约占国民生产总值的25%;催化剂是目前更新换代最快、经济产出比最大的技术产品之一。尤其是近年来,材料物理、表面科学、计算机模拟技术、绿色化学、生物化学和纳米技术的进步给催化科学与工程的发展带来新的活力,使之成为解决资源、环境、生命和材料等领域中科技问题的支柱科学技术。

培养目标:使毕业生适应国家经济与科技发展的需求,成为具备宽厚的理论基础知识,通晓化工生产技术的专业原理、专业技能与研究方法,能够从事过程工业领域的产品研制与开发、装置设计、生产过程的控制以及企业经营管理等方面工作的高素质科技人才。

主干学科:有机化学、物理化学、化工原理、化学反应工程、化工机械、精细有机合成原理等。

主要课程:无机化学、分析化学、大学物理、有机化学、物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 另外辅修化工经济技术分析、电工电子等。

主要专业实验:有机化学实验、无机化学实验、化工热力学、化工传递过程、化学反应工程、化工过程系统工程、工业催化和应用化学等。

主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)(计算机应用要求较高)等。

专业发展方向:化学工程、化学工艺、精细化工。

1.华东理工大学 2.天津大学 3.北京化工大学 4.南京工业大学 5.大连理工大学

6.浙江大学 7.中国石油大学 8.华南理工大学 9.太原理工大学 10.四川大学

11.郑州大学 12.湖南大学 13.哈尔滨工业大学 14.西安交通大学 15.上海交通大学

16.江南大学 17.中南大学 18.南京理工大学 19.中国矿业大学 20.湘潭大学

大连理工大学化工系创办于1949年,1952年高等学校院系调整时,一批著名化学家汇集大工,形成了具有雄厚实力的化工学科。改革开放后,化工各学科发展很快,师资队伍和招生规模不断扩大,1984年发展为化工学院,学院设有化学、化学工程、生物工程、材料化工、化学工艺、工业催化、精细化工、高分子材料和化工机械等9个系,24个教研室。现有本科生2410人,硕士生494人,博士生241人,博士后科研人员7人。教职工370人,其中中国工程院院士1人,双聘院士3人,“长江学者奖励计划”特聘教授2人,博士生导师37人,教授53人,副教授80人,高级工程师17人。

化工学院现有化学工程与技术一级学科博士学位授予权,覆盖了其全部五个二级学科――化学工程、化学工艺、应用化学、工业催化和生物化工,并设有化学工程与技术博士后科研流动站。此外还有高分子材料、无机非金属材料及化工过程机械博士点和3个理科化学硕士点。生物化工、应用化学、环境学科设有“长江学者奖励计划”特聘教授岗位。学院拥有应用化学国家重点学科,化学工程、工业催化和生物化工三个辽宁省重点学科,精细化工国家重点实验室,分析中心及15个研究所,拥有400兆核磁共振,气/液质谱、飞行时间质谱、X射线衍射仪等大型分析仪器40余台,成为我国培养化工高层次人才和科学研究的基地。

化工学院作为大连理工大学的重要学院,50年来为国家培养了2万名毕业生,其中许多人成为国家各部委和省市领导,中科院院士,国家有突出贡献的专家以及大专院校、科研院所和厂矿企业的厂长、经理、总工及业务骨干,为适应社会需求培养了复合型、外向型高技术人才。

化工学院广泛开展国际学术交流和技术合作,已经与日本、韩国、美国、加拿大、澳大利亚、德国、奥地利、英国等国家的大学、研究机构或公司建立科技合作和学术交流。

化工学院办学宗旨是以人才为本、创新为先,办学思路是以贡献求支持,以改革促发展。重视面向社会经济建设的重大关键技术的基础研究和应用基础研究,每年都承担一批国家、省市级科学基金和“973”“863”及“九五”重点攻关项目,同时与企业建立产、学、研三结合紧密型协作关系,解决技术难题及高新技术和新产品的开发工作,化工学院每年科学研究经费达3000万元以上,近两年科技成果显著,获国家科技进步奖二等奖一项,省部级科技进步奖一等奖三项、二等奖三项。

问题1:化学工程与工艺专业的学生应掌握怎样的知识和能力?

1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识;

2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法;

3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力;

4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规;

5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态;

6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。

问题2:化学工程与工艺专业的学生就业方向?

本专业毕业生知识面宽,可到工业部门从事化工类产品的设计、施工、生产管理、技术开发、应用研究以及贸易等方面的工作,也可到科研、商贸、行政等部门从事与化学工程相关的工作。

也可在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面的工作。

还可以到化学工厂、大学、政府社团、保健服务、中学、医院、工业实验室、图书馆、医药公司、私人企业、实验研究所等从事相关的工作。

问题3:化学工程与工艺专业方向的不同有差异么?

化学工艺包括能源化工、材料化工、有机化工、环境化工、高分子化工、无机化工等众多领域,覆盖面广。它不仅涵盖了传统的基础领域,同时与材料、能源、生物、医药、环境等学科渗透融合,不断地培植出新的生长点。它既是一个历史悠久、曾作出重大贡献的学科,又是一个新世纪不可缺少的充满了生机与活力的学科。

化学工程是以化学工业及相关生产过程中所进行的化学、物理过程为研究对象,探究其所用设备的设计原理与操作方法以及最终实现过程优化所应遵循的共性规律。本专业方向学生主要学习化工流体流动与传热、化工传质与分离过程、化工热力学、化学反应工程、化工传递过程基础、化工数学、化工分离过程、化工工艺学、化工过程分析与合成、化工设计等课程。为拓宽专业面,增加适应性,还开设生化基础、石油炼制工程、环境化工、化工机械基础、ChemCAD等课程。

问题4:与化学工程与工艺专业相近的专业是什么?

制药工程(主要是化学制药)。

问题5:化学工程与工艺专业中的催化科学与工程具体是什么样的学科?

它是催化化学、材料物理及化学工程之间的交叉学科,具有理工结合的特点。

培养德、智、体全面发展的具有开拓能力的高级工程技术人才,业务培养目标为:培养具有催化科学技术基础和掌握化学反应工程理论,具备扎实的材料科学理论和技术知识,熟悉现代化学物理研究方法和技能,了解现代科技现状与发展前景,能胜任化工、能源、材料、医药、食品、环保等领域中相关的新工艺、新材料、新产品的研究、开发、设计和工业化的复合高等工程技术人才。

篇3

    1课程性质与定位

    精细化工门类众多,品种繁杂,技术进步迅速,产品更新频繁,是一门典型的工程技术科学.精细化工课程是以市场需求为导向,以专业技术应用能力培养为主线,以适应培养应用型精细化学品生产技术人才的需求而设置的专业核心课程,内容主要包括无机精细化学品、表面活性剂、食品添加剂、胶粘剂、功能高分子、电子信息材料、涂料等典型精细化学品的制备技术及相关知识.本课程以典型精细化学品的生产方法为主线,综合应用精细有机合成单元反应、化工原理等相关知识及能力,理论密切联系实际,突出典型精细化学品的合成与复配.课程教学按制备原理与工艺应用机理产品介绍研究进展四大知识模块顺序进行.课程讲授中注重产品开发思路的引导,通过本课程的学习,可使学生受到创新精神的熏陶,对培养学生的创新意识和能力以及将来的就业、工作能力有着重要的积极作用.课程的教学环节除了包括课堂讲授,还应有学生自学、习题课讨论、实验、答疑、课堂测试和期末考试.通过上述基本教学步骤,要求学生掌握和了解精细化工发展的重点及本学科的主要研究方向和内容,能打下精细化工工艺学的深厚基础,使学生受到良好的基本功训练,拓宽学生的知识面和增强其独立思考问题的能力.

    2教学内容与学习兴趣

    在教学内容的选取上,基于课程开设的对象并考虑到教学内容要具有科学性、知识性和趣味性,以增强学生的学习兴趣,在具体的教学内容中,应按制备原理与工艺、应用机理、产品介绍及研究进展四大板块进行,即以典型精细化学品的生产方法为主线,综合应用精细有机合成单元反应、化工原理等相关知识及能力,理论密切联系实际,突出典型精细化学品的合成与复配.(表略)是本课程的主要教学内容.在具体的教学过程中,教学内容还应紧随时代脉搏,不断充实与更新,体现其先进性,并以贴近生活的实例进行化学知识的导引.在介绍表面活性剂时,应多介绍表面活性剂的用途,比如当用作药物制剂的辅料时,它可以作为载体、乳化剂、润湿剂或渗透剂、增溶剂及助溶剂等,赋予药剂以必要的物理、化学、药理和生物学性质,有的还可以直接作为药物.在介绍食品添加剂时,除了一些重要的应用,还要着重介绍对食品添加剂的认识误区,即人们往往认为天然的食品添加剂比人工化学合成的安全,实际许多天然产品的毒性因目前的检测手段、检测的内容所限,尚不能做出准确的判断,而且,与已检测出的结果比较,天然食品添加剂并不比合成的毒性小.让学生正确看待食品添加剂的必要性、安全用量以及有毒的添加剂的危害.再如讲到合成材料时向学生介绍现在人们已合成具有光、电、磁等特殊功能的合成材料、隐身复合材料等,如在讲到农药和化肥时,要讲清农药和化肥的使用,对农业的高产起到重要的作用,又要强调农药和化肥的大量使用会导致土壤退化及水、大气和环境污染等问题.以社会生活实例为背景介绍相关的精细化学品及其应用,有助于提高学生的学习兴趣,同时还能够达到理想的教学效果.

    3教学方法与手段

    本着“服务是宗旨,就业是导向,倡导做中学,走产学结合的路子”的教育教学新理念,充分体现“理论与实践相结合,重视学生的技能培养”的精神;在教学过程中依据以教师为主导,学生为主体的原则,教师适时讲授,引导学生积极思维,组织学生活动、讨论;运用多媒体教学,做到理论联系实际.依据课程要求,在吃透教学资源基础上,教师应熟悉本课程教学的教学重点、难点.本课程的重点是典型精细化学品的作用原理以及主要用途.通过合理设计教学内容和环节,平时评价考核与集中评价考核相结合,教师评价与学生评价相结合突出重点.难点是培养学生理论联系实际的能力、创新能力、配方分析能力、查阅手册资料并运用其数据资料的能力.通过教师精讲、应用观摩、学生实验突破难点.课堂教学应废除灌输式,采用启发式和讨论式教学,不断把学科最新成果引入教学,精讲多练,循序渐进,用提问、启迪、讲授、探讨、总结的方式教学,最好采用举例法,引导同学们与实际联系起来,做到理论联系实际,达到教师与学生双向互动,激发学生主动学习的热情.运用板书教学及多媒体辅助教学相结合的手段,使难于理解的反应机制通过图像、图片、数据及动画结合融为一体,直观地表现出来,激发学生的学习兴趣,让学生学习更轻松愉快.同时,应用多媒体教学要体现以教师为主导、学生为主体的教学思想,提高多媒体教学水平,合理使用多媒体课件进行课程教学,提高教学效果.

    4培养目标与考核方式

    根据人才培养目标要求和当今社会以及学生个人发展的需要,结合我国精细化工课程的现状和发展趋势,制定本课程的教学目标如下.

    4.1通用能力目标(1)培养学生刻苦、严谨、求实、创新的科学作风,树立正确的科学观和方法论,用科学的态度观察和分析问题;(2)培养和提高学生的综合能力和综合素质,使之能理论联系实际,具有创新意识;(3)培养工作严谨、有序、珍惜仪器设备的良好实验习惯;(4)培养学生良好的敬业精神和团队意识,使之具有优良的职业素养.

篇4

今年来,由于生物技术的快速发展,使得我国生物学工程的发展也在不断向前,并已有一定的基础。调查显示,当前生物化工的产品已经涉及到保健、医药、农药以及食品等各个领域与方面。①在医药方面,抗生素得到迅猛发展,并且在临床中的使用最普遍,相关数据表明,目前我国抗生素的产量达到世界首位,此数据还在不断增长;②在农药方面,生物化工的农药品种也层出不穷,主要包括井霉素、赤霉素以及苏云金杆菌等,该技术不断进步,并且逐步满足了我国农业生产的需要;③在食品与饲料方面,氨基酸、柠檬酸等的产量不断加大,并呈现数倍增产的趋势,该产品已经不只为了满足于本国市场,还出口到世界各国。

2、我国生物化学工程发展中所存在的问题

经过深入调查分析可知,由于各种因素的限制,使得我国生物化学工程在发展过程中也存在着许多问题与不足,也将面临着新的挑战,本文主要从以下几方面的问题着手分析:

(1)我国生物化学工程的产品结构布置不够科学,许多企业往往存在品种单一、低档次等问题,不能满足当今市场的需求。对于档次较高的医药生化产品例如激素类、干扰素、药用多肽等,在我国的生产技术还不完善,不能满足本土市场需求,每年还需花费大量资金从国外进口。

(2)当前我国的生物化工产业主要局限于轻工、医药、食品业等。所以,许多企业对生物化工产品尤其是精细化工产品这一领域的了解不足,不利于扩大生产,更不用说通过这些技术引领企业走向世界。此外因生物化学发展速度较快,我国相关部门对该行业的研究及规范还不成体系,导致生产过程中的能源消耗大,环境污染严重,技术在低水平徘徊。

(3)在生产技术上存在许多不足,生产设备与工艺配套不完善,上下游技术不配套,产物的收得率低,生产成本高企业效益低。相关数据表明,虽然目前我国的产品如柠檬酸、乳酸等的发酵水平较高,但其他绝大多数产品的技术明显低于国外。从而,某些企业为了引进新技术提高生产效率,只能每年都要投入大量资金从外国进口细胞破碎机、生物反应器、计算机监控设备以及生物传感器等,不利于企业的长期生产目标。

(4)我国生物化学工程的发展历史较短,基础研究的投入较薄弱,还没有形成一个完整的科研体系,技术创新能力不强,同时,相关企业的技术开发、技术吸收能力差。调查显示,当前该行业的生产发展多数依靠传统的粗放型扩大投资的增长模式,从而生产效益低下、市场竞争力不强,不利于企业的发展。

3、我国生物化学工程发展问题的解决建议

本文经过深入探究分析我国生物化学工程发展过程中所存在的问题,并借鉴国外先进技术,主要从以下几方面来解决当前的问题:

(1)合理调整产业化结构,扩大并发展高档次的产品。例如加大对医药生化产品、功能性食品及添加剂等高档产品的研发与生产。此外,使生物化学工程的发展呈现多元化,着重生产如生物色素、微生物多糖、工业酶制剂以及表面活性剂等多种精细化工产品以及采用传统技术无法生产的产品,从而提高企业的经济效益与市场竞争力。

(2)不断扩大生物化工的生产规模,提高竞争力。因此,我国相关部门应该出台更多有效措施来鼓励建设大型的生物化工企业,使之能够将研发、生产、销售融于一体,从而节省生产成本。尤其要加大力度去培育一批科技创新型企业,此外,还要鼓励那些具有发展生物化工产业的企业加入该技术发展行列,向着创新型生化公司的方向发展,并淘汰那些生产技术落后,市场竞争力低下的企业,从而提高我国整体生物化工行业的竞争力,并有利于扩大我国生物化工的产业规模。

篇5

    武汉科技大学化学工程与工艺专业始建于1958年,原名为“炼焦化学专业”,1985年改为“煤化工专业”。1992年,按“煤化工”“、城市燃气”和“炭素材料”三个专业分别招收新生。1996年,随着教育部大学本科专业目录的调整,“煤化工”“、城市燃气”和“炭素材料”三个专业归并为“化学工程与工艺”专业。尽管名称几经变化,但始终坚持煤化工培养方向和煤焦化的特色。其原因主要是由于武汉科技大学的前身“武汉钢铁学院”和“武汉冶金科技大学”原来隶属于冶金工业部,毕业生主要面向钢铁冶金系统;培养目标针对性、学生的工程意识和实践能力较强,受到钢铁冶金行业焦化企业、科研院所的认可。目前,武汉科技大学化学工程与工艺专业为国家级特色专业,拥有化学工程与技术一级博士点和化学工程与技术博士后科研流动站。经过几代人的辛勤努力,学校化学工程与工艺专业的教学和科学研究规模及水平均有了显着的提高。在化工专业“宽口径”培养模式下,坚持煤化工方向特色有着重要的现实意义。首先,中国是以煤为主要能源的国家,在一次能源中,煤炭占70%左右,在较长的时期内这一能源结构不会改变[4]。大力发展煤化工产业,推广洁净煤技术,保证国家的能源安全,是中国的一项基本能源政策。其次,煤焦化是煤化工中技术最成熟、应用最广泛的一种煤炭综合利用方法。至少在50年内,采用高炉,利用焦炭作为炼铁的主要燃料、还原剂和料柱支撑体的技术仍将是钢铁冶金的主流技术。再次,“节能减排”是中国的重要战略任务,也是全世界面对的主要挑战。面对以煤烟型污染为主和焦化行业普遍污染严重的现实,从煤炭利用源头减少污染是实现“节能减排”的必由之路。最后,煤化工(包括焦化)行业涉及到中国能源供应和安全、钢铁行业的生存和发展以及节能减排的实现,当前以致今后相当长的时期仍是中国国民经济的主战场。因此,武汉科技大学的“化学工程与工艺”专业坚持煤化工方向特色是非常必要的;理顺两者的关系,既具有理论意义,也具有实际价值。

    二、特色专业建设的基本原则

    进行具有煤化工特色的化学工程与工艺专业建设,是优化专业学科结构,推进教学改革,加强内涵建设,提高人才培养质量,提升专业竞争力的重要举措。这不但有利于促进学校教学基本建设,进一步改善办学条件,巩固办学特色,而且有利于提高办学实力,更好地适应以煤化工为主的经济社会发展的需要[5-6]。

    (一)市场导向

    目前,中国大学生就业已完全走向市场,学生和用人单位之间进行“双向选择”,大学毕业生的一次就业率已经成为评价一所大学教学质量和综合竞争力的主要指标之一。要提高就业率,就必须瞄准市场对人才的需求,特色专业建设也必须以市场为导向,培养市场需要的专业人才。

    (二)自主创新

    特色专业建设是中国高等教育教学改革的一项新内容,本身具有探索性、创新性,加之各校各专业都要根据内外部条件形成自己的特色,更无先例可循。因此,特色专业建设要在教育观念、人才培养目标、人才培养模式、课程体系改革和评价标准等方面坚持创新。

    (三)错位发展

    特色专业建设要在市场导向的基础上,根据现有的办学条件、科研成果和发展潜能,集中力量,凸现特色;坚持有所为有所不为,采取“人无我有,人有我优,人优我新”的差异化策略,实现“错位发展”,避免正面竞争。

    (四)相对稳定

    特色专业建设是一项系统工程,是一个不断建设、不断积累、不断完善的过程,其特色的形成应该具有相对的稳定性。同时,要适应内外部环境的变化,具有一定的前瞻性,能够体现现代科学技术发展的趋势和未来社会和市场的需求变化。

    三、主要措施

    (一)更新教育观念

    办学理念和专业建设观念是特色专业建设的指导思想,决定着特色专业建设的方向、进程和绩效。特色专业建设是一项涉及专业建设多方面创新和变革的教学改革活动,必须首先在专业建设和教学理念上实现突破,更新传统的教学观念以适应时代和社会发展的需要。为此,化学工程与技术学院针对“宽口径”的教育观念进行了多次研讨,并邀请、走访用人单位,进行深入地调研,逐步树立了化学工程与工艺专业在“宽口径”培养模式下坚持煤化工特色教学的观念。

    (二)加强师资队伍建设

    师资队伍建设是特色专业建设的根本保证。特色专业需要配备有学科特色的师资队伍,其教学和科研方向专长必须和专业特色的培育相匹配。化学工程与工艺专业的专业课教师多数既是理论知识的传播者和研究者,又是专业工程的实践者。他们多数在武汉科技大学设计研究院从事煤焦化设计研究工作,有着丰富的实践经验。近年来,随着学校跨越式发展,新引进了一批优秀的青年教师。这些青年教师多数没有煤焦化专业的知识背景,为此,安排新教师随班学习煤焦化方面的课程,而后安排到焦化厂进行3个月现场学习,并在学校设计院教师指导下完成焦化的工程设计,经教研室组织考核合格后方可上岗。

    (三)创新课程体系

    特色专业建设必须目标明确,在保持专业目标的基础上突出体现特色目标;在人才培养规格上要有明显特色,同时制定科学合理的人才培养方案。课程体系是高等院校实现人才培养目标和基本规格要求的总体设计蓝图,设置合理、科学、超前、前后呼应的课程体系是特色专业建设的基础和关键。应广泛吸收国内外先进的教育理念和教学经验,整合教学改革成果,优化课程教学内容,不断丰富课程内涵,努力构建适应经济社会发展需要、反映时代特征、具有学校特色的化学工程与工艺本科专业课程体系。依据学校的学科特点,在培养“通才”的基础上,构建了“焦化特色模块”、“精细化工模块”等专业方向课程。同时,将煤化学课程列入专业基础必修课,从而保证学生具备煤化工的知识背景。新的课程体系充分体现了“提升内涵、强化特色”的教学指导思想。

    (四)改革实践教学环节

    特色专业建设过程中,要高度重视校内外实习、实验、实训基地建设,为培养学生创新能力、实践能力提供良好的实践教学条件。近年来,化学工程与工艺专业建立了一批相对稳定的教学实习基地。考虑到专业培养方向的要求,实习基地以武汉平煤武钢联合焦化有限公司为主体。该公司在国内具有技术力量雄厚,生产工艺先进的特点,并具有较高的管理水平。同时,该公司可以说是焦化的一部“百科全书”,建有4.3m、6m、7.63m焦炉,所采用的配套工艺也有多种,是一个相当理想的本科专业特色教学实习基地[7]。在实验教学方面,依托湖北省煤转化与新型炭材料重点实验室,通过开设本科生创新性实验与创新性研究等课外实践活动,为培养学生的动手能力、创新能力、提高人才培养质量和专业特色教学提供了保障。

    (五)强化课程、教材建设

    课程建设是专业培养目标实现的基本途径,专业特色必定要在课程建设中得以体现。在进行课程体系改革的同时,学校十分重视课程内涵建设,重新整理了传统课程的教学内容,加强不同学科之间的交叉和融合。如在煤化学课程的基础上,将其它一些主要能源也引进来,从而形成了能源化学课程。在化工设备及材料中融入了力学、材料等知识;化工设计基础与技术经济分析课程在原来技术经济分析的基础上,增加了化工设计内容,以加强学生动手能力的培训;根据企业用人需求,增设了化工CAD绘图与识图。教材的质量体现高等教育和科学研究的发展水平,也直接影响本科教学的质量。为提高教学效果,主要专业课程都选用省部级以上优秀教材、“面向21世纪课程教材”、“十五”、“十一五”国家重点教材和教学指导委员会推荐的教材。同时,鼓励教学经验丰富、学术水平较高的教师编写与出版具有学校化学工程与工艺专业特色的教材,以进一步优化教学内容和深化课程体系改革。目前,本专业自编公开出版的教材主要有:《煤化学》《燃气工程》《化工技术经济学》《化工设计概论》《化学工程与工艺专业实验》以及《环境工程导论》等,其中《煤化学》为国家“十一五”规划教材。

    (六)建立健全质量保障和监控机制

    建立健全质量保障和监控机制是创建特色、保持特色的关键。只有特色鲜明,才能优势突出;只有集中力量重点建设,才能使学校加强对某一专业重点投入,创造良好的教学、科研条件,取得预计的成果。特色专业更强调精干高效,它是学校具有标志性作用的专业。要做到这一点离不开质量监控。为进一步保证教学质量,实行课程、专业带头人负责制,并建立了科学、合理的教学质量监控体系,包括学生评教制,干部同行评议制,教学检查员听课指导制,教学信息员信息反馈制,监督电话、信箱信息收集制,等。此外,还加大了对青年教师的培养力度,为青年教师配备指导教师,制定青年教师“过教学关”计划。上述措施有力地保障了教学质量的稳步提升,为培养高质量的煤焦化特色化工专业人才提供了制度保障。

篇6

【关键词】助剂化学;互联网;PBL法

Application of PBL Teaching Method in Additive Chemistry under the background of Internet

MENG Xiang-jun

(Department of Environmental and Chemical Engineering, Tangshan University,Tangshan Hebei 063000,China)

【Abstract】Additive Chemistry was a professional restrictive course for the students majoring in chemical engineering specialty, which covered wide content and involved broad knowledge,the application of PBL teaching method under the background of Internet, that to cultivate applied creative talents of theory with practice as the goal ,the teaching content,model of instruction and examination methods of Additive Chemistry course were explored and discussed in orderto improve the teaching quality.

【Key words】Additive Chemistry; Internet; PBL teaching method

助剂化学课程是为我校化学工程与技术专业的学生开设的专业限选课,是一门与高分子材料、精细化工等学科相互交叉的应用型课程,以无机化学、有机化学、分析化学以及化工工艺学等课程为基础,包括增塑剂、抗氧剂、热稳定剂、阻燃剂等常用助剂。涉及到的知识点,主要包括助剂的概念、作用机理及工艺流程、应用范围及发展趋势,各部分内容独立成章,知识系统性较差,内容繁杂,虽然难度一般,但是教师为了在有限的学时内安排教学内容,整个教学过程中往往是采取“一言堂”的教学方式,教师作为绝对教学中心,学生被动地接受知识,导致其课堂上兴趣不高而产生厌倦情绪,参与度很低。这样的教学方法严重压抑学生的思维,影响教学效果。

随着化工行业的发展、加工技术的不断进步和产品用途的日益扩大,助剂行业的更新速度也在与日俱增,相反教材中的知识更新速度跟不上行I的发展速度,拓展知识的容量不足。这样造成学生知识面的狭窄,还会在一定程度上限制学生未来的就业发展方向。

助剂化学课程的开设对于已经有有机化学、精细化学品等知识基础的大四学生来说,更多地不应该是局限于的理论教学,应该与实践有机的结合起来,培养学生的创新思维和实践能力,更好与未来的就业单位对接。

因此改变学生的学习态度和掌握学习的方法,变“填鸭式教学”为“自主式学习”,培养出适应社会的较高综合素质和创新能力的人才,是一项很有意义的课题,笔者结合本课程的特点以及教学体会,对该课程的教学进行了改革和分析,在当前互联网的大背景下,构建了助剂化学PBL式的教学体系。

1 “互联网+”背景下的PBL教学模式

“互联网+”作为一项国家战略,必将成为未来我国经济社会创新发展的重要驱动力量。同社会许多其他行业一样,教育受到了互联网巨大的影响,如何利用互联网的优质资源,探索“互联网+教育”的科学模式,促进教育公共服务水平和教育质量的提升,既是深化教育领域综合改革不可回避的问题,也是摆在广大教育工作者面前的现实课题。

PBL(Problem Based Learning)教学是以学生为主体,以教师为主导,以问题为中心,是一种建构知识的过程,通过引导学生解决实际问题,注重培养学生发现问题、解决问题的能力。这种教学方法是1969年由美国的神经病学教授Barrows在加拿大的麦克马斯特大学首创,目前已成为国际上较流行的一种教学方法。此法有利于调动学生的学习积极性和主动性,在培养应用型、复合型和创新型人才过程中有着传统教学法无可比拟的优点。

在“互联网+”这个大背景下应用PBL教学模式,对于我们改进助剂化学课程的教学,培养理论联系实际的应用型、创新型人才,减缓当今大学生就业与社会需求之间日益加剧的矛盾具有重要的意义。

2 教学内容的优化

助剂化学课程虽然较其他专业课更贴近生活,但是助剂的内容多且散,规律性不强,需要记忆的理论偏多,不利于学生学习及应用,为了确保教学内容的实用性、先进性和新颖性,教材的选用则显得至关重要。笔者团队根据本专业学生的特点将教学内容在原有的理论知识基础上进行了重新的梳理:将学生毕业后涉及比较多的高分子材料用助剂作为重点进行讲解;将原本每章独立知识点尽量串联起来,比如在讲抗氧剂、热稳定剂、光稳定剂的机理时进行对比讲解,使学生方便记忆。随着科研的发展,合成材料助剂也在不断地发展,教学内容应紧跟科研和工业实践,不断更新内容,与时俱进,才能保持前沿性和先进性。

篇7

关键词:化学产品工程 分子产品 配方产品

所谓化学工业,主要是通过化学反应或物理操作将自然资源转变为人类所需要的产品的工业类型,在上世纪迅速发展,至今为人类提供了丰富的产品。随着人类对自然资源的逐渐深入利用,化学工业也发生了巨大的变化,个性化、多品种、小批量的专用化学品成为发展的主要方向。随着传统化学工业的饱和,化学工程转向产品,研究向微观层次深入,也专注于专用化学品的研究。

一、化学产品工程的理论体系

1.化学产品工程

随着市场的发展,专用化学品也面临着新的挑战,如产品的设计、功能、投入市场时间、通用设备选择等等。传统的单元操作也转向配方产品生产相关的操作。也足以看出化学产品工程的理论正在朝着以产品导向为开发的方向,寻找适合的方法继续拧产品设计及生产,为其提供理论与技术支持。化学产品工程主要回答的是生产何种产品,或者是该产品如何满足市场、环境及性能等方面内的要求。化学产品工程研究的核心内容是产品的性质与结构之间的关系,要从微观上定量和模拟分析。对产品的质量要进行设计与控制,化学工程师所面临的问题已经远远超出了化学工程领域的挑战。

2.产品设计特征

传统的过程设计主要是根据产品的数量、开发成本、利润及效率等方面进行考虑,实现经济效益这一基本目标,同时兼顾环境、安全等因素。在设计过程中,对分离与反映过程的不同方案进行对比,最终通过对公用工程、设备、材料及产品进行评估,进行经济性评价,过程设计综合了传递过程、热力学及单元操作等技术。与之不同的是,产品工程不但注重过程与单元的效率,更以用户需求作为产品功能的实现目标,注重小规模生产,新产品要快速进入市场,对市场的反应也比较敏捷。引起规模比较小,消耗的资源也比较少。

二、化学产品工程中的关键技术

1.分子产品工程

根据产品的分子机构、性能及加工行为间的规律,设计出市场需要的化学品,是现代化学产品工程的发展趋势。试验固然重要,但是作为产品工程人员要具备分子结构对产品性能产生何种影响的预测能力,从而设计出满足其性质需求的化学产品。在分子产品工程中,对分子结构与性能的关系研究非常重要,分析其关系主要通过计算化学领域的理论与方法以及半经验的分析方法来完成。采用计算机辅助分子设计方法,能够有效的降低产品的开发周期以及能源的消耗,计算机辅助分子设计的目的是为了满足特殊性质要求的分子及分子混合物,是基于大量候选分子中,通过合理的时间筛选出最符合要求的产品,通常通过正反两个方面来完成,首先,建立关系模型,反映出分子节后及分子交互作用和性质间的关系;其次,在关系模型建立的基础上,对分子结构进行优化,使之满足性质要求,这是一个数学规划寻优的问题。在分子产品工程中,分子模拟技术是一项关键的技术,产生于上世纪八十年代,是将模拟计算工具与计算机图形处理技术相结合,对现实世界的化学与物理过程进行分子模拟进行描述,目前该技术已经成为产品设计中的主要方法。该技术通过对分子力学、量子力学、数据库技术、分子动力学、数值算法及三维结构匹配等领域内的研究成果进行综合运用,实现对化合物宏观性能的解释。采用该技术能够直观的了解分子静态结构,还能给出分子宏观性能与结构间的定量结果。尤其是对试验手段很难观察到的物理过程及现象,能够通过分子模拟进行再现。目前,分子模拟研究的领域主要涉及到传递性质、流体流动、化学反应机理、高分子结构、复杂流体、相平衡、临界现象、晶体构造、膜及界面现象等。

2.配方产品工程

目前,化学产品工程更倾向于消费者所需求的产品性能的开发,如颜色、光泽、悬浮液的稳定性、催化剂的性能等方面,化学品市场对具有特殊工艺性质的复合配方的需求越来越多。如化妆品、表面活性剂、药物、洗涤剂、农用化学品等等。为满足其性能,这些产品被设计成结构颗粒固液分散体系、结构化固体、凝胶、溶胶、水溶性聚合体、泡沫纸品等,和基础化学品对比,此类产品的结构非常复杂,性质与质量与分离操作中的纯度和浓度有直接的关系。在配方产品中,分子聚集成的微相区介于宏观和微观之间,称为介观体系。该体系将宏观与微观联系起来,在合成与加工中,介观分离的时间非常短,如果仅仅从试验上进行把握,几乎是不可能的。因此介观模拟技术出现,该技术能够对真实的试验条件进行模拟胶体溶液及聚合物的微观形貌、化学形态、流动性等,对于高分子科学、化学工程及配方化学中涉及到的复杂问题能够很好的进行解决。基于介观尺度,计算机模拟有了飞快的发展,成为现阶段计算化学研究的前沿,目前,相对成熟的模拟方法主要有耗散颗粒动力学及介观动力学,这两种方法都是基于平均场密度泛函理论而存在。在实际应用中,已经成功的用于共聚物相分离、高分子混合增溶剂、逆变胶束、油-水-表面活性剂体系及乳胶种子形成等领域。

化学工业是国民经济重要的支柱产业和基础产业,资源、资金、技术密集,产业关联度高,经济总量大,产品应用范围广,在国民经济中占有十分重要的地位。“十二五”是国民经济发展的重要战略机遇期,也是化学工业发展的关键时期。为适应国内外形势新变化,深入贯彻落实科学发展观,加快转变发展方式,促进石化和化学工业转型升级,提高行业整体质量和效益,增强国际竞争力和可持续发展能力,特编制本规划。规划期为2011-2015年。本规划内容包括石油化工、天然气化工、煤化工、盐化工和生物化工等。

三、结束语

化学产品工程所研究的方向来源于化学工业的新挑战与需求,通过新的理论体系的构建,强力的推动化学工程的发展。其研究主要是以产品为导向来发展的,包含产品的设计、专业技术及知识等,其目的是为了降低产品的开发周期,提高设计水平,提升产品的质量。在研究中,化学产品工程需要解决两个实际问题:产品的物理参数与期望性能指标间的关系;如何将该关系转化为生产技术。也因此,对于优秀的化学工程师来说,化学界的需求非常大,与以往的过程工程师不同,化学工程师需要具备更为丰富的知识背景,此外,市场人员、科学院及工程师之间的配合也非常重要。由此可见,化学产品工程结合了不同领域的研究成果,并以产品为导向发展的知识体系,必然成为化学工程的重要研究方向。

参考文献

[1]李伯耿,罗英武.产品工程学--化学反应工程的新拓展[J].化工进展,2009(4).

[2]付启敏,刘伟,姚亚萍.化工企业平台化学品的选择[J].统计与决策,2008(4).

篇8

关键词:混合碳五 加氢 TAME MTO

Discussion on Comprehensive Utilization of C5 Fraction from Coal to Olefins Process

Guorong He

(Shenhua Baotou Coal Chemical Co. Ltd, Baotou 014010, China)

Abstract: Coal-to-olefins, as a potential method instead of conventional oil route, has received wide attention in the past years. Mixed C5 fractions produced in methanol-to-olefins(MTO) process were commented in this paper that provided utilization means for mixed C5 fractions, and comprehensive utilization for C5 fration will bring the best economics for MTO plant by increasing the value of C5 byproducts.

Key words: MTO TAME C5 fration hydrogenation

神华包头煤制烯烃项目是以煤为原料,通过煤气化制甲醇、甲醇转化制烯烃、烯烃聚合工艺路线生产聚烯烃的世界首套、全球最大、国家级煤制烯烃示范工程。该项目总投资170多亿元,主要包括180万吨/年甲醇装置、60万吨/年具有自主知识产权由中科院大连化物所开发的DMTO工艺技术甲醇制烯烃装置,2007年9月开工建设,2010年5月全面建成,8月打通全流程,投料试车一次成功。神华包头煤制烯烃项目的成功投产,实现了煤化工和石油化工有机衔接,是能源化工技术领域中重大突破,对于优化能源结构、保障能源安全具有重要意义。

可以预见,随着煤制烯烃技术的成功应用,煤制烯烃产业规模将不断扩大,其副产混合碳五馏分也将随之增加;60万吨/年规模的煤制烯烃装置每年副产混合碳五3.5-4.5万吨,由于技术路线不同,煤制烯烃副产碳五馏分与传统石油化工副产碳五馏分也有差异,煤制烯烃领域对于副产混合碳五的利用处于刚刚起步的阶段,如何利用好这部分物料关系到煤制烯烃产业的综合技术水平和整体经济效益;本文主要就煤制烯烃副产碳五馏分的分离和深加工技术进行探讨。

一、煤制烯烃副产混合碳五的组成

煤基甲醇制烯烃过程副产的混合碳五馏分组成十分复杂,以碳五为主,另有C6-C10等烃类,含有各类不饱和烃、环烷烃、链烷烃以及它们的碳架异构体、顺反异构体、双键和三键异构体等总计140多种组分,其主要成分见表1。相对于石油化工乙烯装置的副产碳五馏分,煤基甲醇制烯烃过程副产的混合碳五馏分中二烯烃含量较低,其烯烃含量大约84%,C5成分大约65%,煤制烯烃副产混合碳五中含有很多有价值的宝贵资源,可广泛应用于橡胶、香料、维生素片等精细化工产业,如何从中分离和生产出具有高附加值的产品及其中间产品是实现混合碳五资源高效利用的重要课题。

二、混合碳五的利用

1.燃料

煤基甲醇制烯烃过程副产的混合碳五馏分组成十分复杂,总计140多种组分,有些组分沸点接近,且易形成二元甚至多元共沸体系,进行提纯分离相当困难,目前副产混合碳五主要作为燃料利用。

2.石油树脂应用领域

混合碳五可以生产碳五石油树脂和C5-C9共聚石油树脂,碳五石油树脂广泛用于橡胶、路标漆、热熔胶、胶粘带、油墨、塑料以及纸张填料等方面[1]。世界发达国家石油树脂正朝规模化、品牌化、产品多样化的方向发展。我国的石油树脂产业起步较晚,由于混合碳五馏分生产技术相对落后以及缺乏必要的分离精制手段,目前,我国石油树脂生产分散、规模小、质量不高、产品单一,我国目前对石油树脂的需求很大,尤其是高档产品[2]。

三、混合碳五的深加工

煤基甲醇制烯烃副产混合碳五馏分中含有高附加值组分,用来作为燃料,造成极大的资源浪费,所以将这些物质进行进一步的分离和深加工是非常有必要的;借鉴石油化工乙烯装置副产碳五馏分的综合利用技术,同时针对煤基甲醇制烯烃副产混合碳五馏分的特点,甲醇制烯烃副产混合碳五馏分可以从以下几个方面进行深加工综合利用。

表1 煤制烯烃副产混合碳五主要成分组成

1.混合碳五的加氢分离工艺

煤基甲醇制烯烃副产碳五馏分中含有大量烯炔烃、炔烃、链烯烃、环烯烃、二烯烃,依据不同的需要,可通过全加氢或选择加氢将其转化为饱和烷烃或烯烃,再加以分离利用,碳五馏分加氢分离后正戊烷、环戊烷和少量的烯烃产品,用于作为氯氟烃的替代物,可有效地减少温室效应;异戊烷纯品是发性泡聚苯乙烯(EPS)发泡剂的主要原料,还可与环戊烷混合为在电气领域广泛应用的环异戊烷;同时正戊烷、环戊烷和环戊烷等可作为裂解原料,增产低碳烯烃[3]。裂解方程如下:

CH3(CH2)3CH3C2H4+C3H6+H2 (1)

CH3CH(CH3)CH3C2H4+C3H6+ CH4+ C4H8+H2 (2)

北京东方石化公司东方化工厂在原有的乙烯裂解和汽油加氢装置的基础上,于1998年新建了一套加氢后混合碳五的分离装置,主要从加氢碳五馏分分离出较高附加值的正戊烷、环戊烷和环戊烷等产品;如图1a所示,混合碳五加氢后的原料首先进行预热,接着进入脱氢单元,在脱氢单元在分离出较轻的C3、C4组分和塔釜料异戊烷、正戊烷、环戊烷、C6及C6+,塔釜料再进入正异戊烷分离单元,分离出异戊烷、正戊烷和环戊烷、C6及C6+,异戊烷、正戊烷进入异戊烷分离单元分离出异戊烷,异戊烷进入异戊烷中间罐分析合格后,即可送入异戊烷罐用于进一步加工或外卖;而环戊烷、C6及C6+重组分进入环戊烷分离单元,环戊烷分离出来,进入环戊烷中间罐分析合格后,即可送入环戊烷罐用于进一步加工或外卖;脱氢单元馏出物、异戊烷分离单元和环戊烷分离单元塔釜料送入返回罐,可用于裂解增产乙烯丙烯。当要生产正戊烷时,可调整脱轻单元的工艺参数,使C3、C4、异戊烷轻组分与正戊烷、环戊烷进行分离,馏出异戊烷、碳三、碳四轻组分,送人返回罐。正戊烷与环戊烷送到正/异戊烷分离单元和正戊烷分离单元进行分离出正戊烷[4]。该工艺可根据市场情况灵活调整产品结构,获得较好的经济效益,乙烯裂解副产碳五馏分加氢后的组成和煤制烯烃副产碳五加氢后馏分组分有相似之处,该工艺对于煤制烯烃副产混合碳五的加氢分离利用有较好的参照价值。

图1a加氢后混合碳五的分离流程示意图 图1bTAME合成示意图

吴长江等[5]也开发了碳五烷烃分离工艺对由裂解汽油加氢装置得到的混合碳五烷烃进行分离。该工艺也由加氢和烷烃分离两部分组成,可同时得到正戊烷、异戊烷和环戊烷。该工艺操作费用少、能耗低、成本不高、且可灵活调整产品方案,可为煤制烯烃副产混合碳五分离工艺借鉴。

2.增产制乙烯丙烯[6-10]

在甲醇制烯烃工艺中,会有大量副产混合碳四、碳五的产生。胡浩等研究把丁烯和C5以上副产品转化成丙烯和乙烯。UOP/Hydro MTO技术的主要副产品为以丁烯为主的混合碳四和混合碳五以上物流,一般地,每生成l吨乙烯约产生0.34吨混合碳四碳五以上副产品,为了能够将这些副产品较好的利用起来,UOP/Hydro MTO工艺对原有工艺也进行了改进,Kuechiler将这些副产品循环回反应器参加对SAPO-34分子筛催化剂的流化,同时催化裂化为丙烯和乙烯。Fung等设计了催化剂预处理区,将碳四和混合碳五副产品送至催化剂预处理单元对SAPO-34分子筛催化剂进行预处理。Gregor等提出,可以将MTO工艺与烯烃裂解工艺(OC)结合起来,即把混合碳四碳五副产品送入OC装置部分进一步裂解,这样乙烯和丙烯产率大为提升。

3.醚化制TAME及生产高纯异戊烯

3.1粗异戊烯醚化制TAME

近年来,部分石化企业利用乙烯装置副产碳五馏分经过分离二烯烃后得到的抽余碳五进行醚化生产高辛烷值汽油调和剂甲基叔戊基醚(TAME),相对于叔丁醇、乙醇、甲醇、甲基叔丁基醚(MTBE)和乙基叔丁基醚(ETBE),TAME具有沸点高、雷德蒸汽压低、能量密度高、水掺混性能好以及环保性能优良等优点[11];乙烯装置副产碳五馏分经过分离二烯烃后得到的抽余碳五,和煤制烯烃副产混合碳五的组分相近,利用煤制烯烃副产混合碳五制备TAME可作为其综合利用的有效途径之一。

3.1.1 醚化原理[11-17]

混合碳五中的异戊烯与甲醇在催化剂表面发生醚化加成反应,首先异戊烯在酸性催化剂的作用下质子化形成媒介物叔丁基正碳离子,然后与甲醇的CH3O-进行亲核加成生成TAME,同时会发生一些副反应,生成叔戊醇、二聚异戊烯和二甲醚等。主要反应如图1b。

3.1.2 齐鲁石化的催化蒸馏工艺[11,17]

在进入醚化装置合成TAME之前,一般需要先出去原料中的腈、阳离子(如钠离子)和二烯烃等杂质,因为腈在醚化催化剂作用形成的铵和特胺会中和催化剂的酸性中心使催化剂失去活性,阳离子则会置换出酸性催化剂中的氢离子使得催化剂失效,而二烯烃易形成的胶质会堵塞催化剂的孔隙,大大地降低催化剂的催化活性和使用寿命。如图2a所示为上海石化公司化工所采用了齐鲁石化的催化精馏工艺,其醚化装置流程示意图,经过除杂之后的甲醇和混合碳五按照一定比例送入醚化反应塔,其反应温度可由外循环的物料温度来调节,塔釜物料送入圆柱塔,圆柱塔塔釜分离出TAME产品,圆柱塔塔顶蒸汽送入催化蒸馏塔下塔,催化蒸馏塔具有催化合成和蒸馏分离双作用,使得生产的TAME立即被分离出去,打破了原有化学平衡,有助于提高异戊烯转化率;圆柱塔塔顶蒸汽馏分向上进入催化蒸馏塔上塔继续合成TAME,TAME流下与上升的圆柱塔塔顶蒸汽馏分对流传质后,送回圆柱塔进一步分离,催化蒸馏塔塔顶物料进入下游回收利用,异戊烯的转化率可达90%以上

图2aTAME合成流程示意图 图2b异戊烯合成流程示意图

3.1.3 其他醚化工艺

Snamprogetti公司的DET工艺[18],以碳五为主要原料,由骨架异构化反应单元、TAME合成单元和烷烃分离单元组成,其工艺特点是采用烯烃骨架异构化技术将低活性的戊烯异构化为较高活性类型的戊烯,再进一步醚化。CDTECH公司在MTBE生产中开发了催化精馏工艺,该工艺被应用于TAME的制备,催化精馏工艺集催化过程和精馏过程为一体,前面介绍的齐鲁石化的醚化工艺就是采用了催化精馏技术,CDTECH公司的CDEthers醚化工艺[19-21]将烯烃骨架异构化技术和催化精馏技术组合起来,使得烯烃得到深度转化。近年,抚顺石化公司和抚顺石油学院联合开发了膨胀床合成TAME的生产工艺以及临氢醚化工艺,秦技强等[22]利用骨架异构化技术将直链戊烯异构化为异戊烯,使得TAME产量大幅提高。此外,金陵石化、石油化工科学研究院、洛阳石化工程公司也在从事TAME相关的研发工作[25]。

3.2 生产高纯异戊烯[26]

高纯度的异戊烯是一种非常重要的精细化工原料,可用于生产频哪酮、叔戊醇、聚合共聚单体等,异戊烯的制备最早是采用硫酸萃取法,近年来,采用TAME分解异戊烯成为了制备异戊烯的主要方法,产品异戊烯纯度可达99%以上。如图2b所示,首先混合碳五经过水洗、加氢等预处理,通过醚化和催化蒸馏后获得TAME,TAME经过分离精制后送入醚解单元,分解成为戊烯,水洗后送入异构化装置,将其他种类的戊烯异构化成为异戊烯,再经由异戊烯精制单元获得高纯的异戊烯。中国石化上海石油化工股份有限公司采用该工艺已于2001年建成年产1000吨异戊烯的生产装置。

4.生产2,3-二甲基2-丁烯

2,3-二甲基2-丁烯是一种重要的香料中间体和农药中间体,有很高的市场价值,是一种高附加值产品,工业上一般采用丙烯双聚获得。煤制烯烃副产混合碳五中含有26%的碳六馏分,其中碳六烯烃馏分近20%,吴冶华等[27-28]利用混合碳六采用双键异构化工艺和骨架异构化工艺生产2,3-二甲基2-丁烯,并开发出了应用了碳六烯烃异构化制备2,3—二甲基—2—丁烯的高效催化剂ZSM-35和SAP-11催化剂,为副产混合碳五中的碳六馏分的综合利用开辟了一条新的途径。

5.其他应用[29-31]

混合碳五除了可用于生产石油树脂、TAME、异戊烯等产品外,还可利用芳构化技术生产二甲苯、甲苯和苯等芳烃产品,江苏丹化集团公司研发出新型的芳构化催化剂,目前,其碳五合成芳烃规模已达100kt/a,有较好的经济效益;兰州化学物理研究所研制出了一种可将碳五馏分羰基化为以己醇为主的混合醇钴膦催化剂。戊醇是一种重要的有机合成原料,是精细化工和医药工业重要的中间体,方玲等研究了以混合碳五为原料用硫酸加成水解的方法制备出戊醇,获得了较好的收率。

四、结论与展望

1.我国的煤制烯烃产业处于刚刚起步的阶段, 建议做好煤制烯烃产业规划工作,应避免分散无序建设,鼓励大规模集中建设,这样有利于集中整合混合碳五资源,有利于混合碳五利用的工业化,有利于形成规模优势和提高整体效益,建议煤制烯烃项目最好达到200万吨烯烃/年规模,有利于其副产碳四碳五的工业化综合利用。

2.煤制烯烃副产混合碳五和石油化工副产混合碳五既有相似之处也存在差异,石油化工副产混合碳五富含二烯烃,而煤制烯烃副产混合碳五则是以单烯烃为主,所以煤制烯烃副产混合碳五综合利用的关键是其单烯烃组分的综合利用;所以在充分借鉴石油化工副产混合碳五综合利用技术的同时,积极推进煤制烯烃副产混合碳五深加工利用技术研发,加快实现煤制烯烃副产混合碳五综合利用的工业化,有利于优化煤制烯烃项目产品结构和提高整体效益。

3.根据煤制烯烃副产混合碳五的实际情况,对混合碳五馏分进行高效分离,拓展馏分不同组分的应用和市场,坚持大型化、专业化、精细化、品种多样化方向,进一步提高综合利用效率和产品附加值。

4.充分利用煤制烯烃现有各种条件,提高混合碳五的综合利用效率,比如丰富的氢气资源,可考虑其加氢方面的应用。

参考文献

[1] 崔小明. 裂解C5馏分的利用现状及发展对策[J]. 化工科技市场, 2008, 31(4): 1-5.

[2] 李涛. 国内外碳五石油树脂的生产及应用[J]. 精细石油化工进展, 2004, 5(3): 39-43.

[3] 李东风, 马立国. 裂解碳五馏分分离技术的研究进展[J]. 石油化工, 2007, 36(8): 755-762.

[4] 贾建军. 乙烯装置混合碳五的综合利用[J]. 乙烯工业, 2006, 18(3): 25-27.

[5] 吴长江, 张建新. 碳五加氢工业装置的设计及流程模拟与优化. 石油化工设计, 2006, 23(1): 1~4.

[6] 王庚, 唐煜, 薛振欣. 甲醇制烯烃技术最新进展[J]. 辽宁化工. 2011.

[7] 胡浩, 叶丽萍, 应卫勇, 房鼎业. 国外甲醇制烯烃生产工艺与反应器开发现状[J].现代化工. 2008, 28(l): 82-86.

[8] Kueehiler K H. Catalyst fluidizationin oxygenate to olefin reaetion systems[J]. PCT Int APPl. WO 2005061418,2005.

[9] Fung S C. Method for improving light olefin seleetivity in an oxygenate conversion reaction[J]. Ger Often, DE 60013254, 2005.

[10] Gregor J, Vermeiren W. Proeeedings of the fifth EMEA Petrochemicals technology conferenee[R]. Paris, 2003, 6:25-26.

[11] Kerry Rock. TAME的工艺优点[J]. 石化译文. 1993. (1): 5-7.

[12] 黄星亮, 宋月芹, 沈师孔. 甲醇对树脂催化剂性能的影响[J]. 石油学报(石油加工), 2003, 19(2): 88-93.

[13] Carsten Oost, Kai Sundmacher, Ulrich Hoffmann. Synthesis of tertiary amyl methyl ether(TAME): Equilibrium of the Multiple Reactions[J]. Chem. Eng. Technol., 1995, (18): 110-117.

[14] Rihko L K, Krause A O I. Kinetics of heterogeneously catalyzed tert-amyl methyl ether in the liquid phase[J]. Ind. Eng. Chem. Res., 1995, (34): 1172-1180.

[15] Oost C. Hoffmann U. The synthesis of tertiary amyl methyl ether(TAME): micokinetics of the reaction[J]. Chem. Eng. Sci., 1996, 51(3): 329-340.

[16] Nuray Oktar, kiali MurtezaoGUlu, Timur GOGU, et al. Dynamic Analysis of Adsoption Equilibrium and Rate Parameter of Reactants and Products in MTBE, ETBE, TAME Production[J]. The Canadian Journal of Chemical Engineering, 1999, 77(4): 406-412.

[17] 范存良, 张蕊. 异戊烯装置催化蒸馏塔的工艺优化[J]. 化学工程师, 2009, 165(6): 62-64.

[18] Pescarollo P, Trotta P, Sarathy P R. Etherify Light Gasolines. Hydrocarbon Process, 1993, 72(2): 53-60.

[19] Harmsen G J. Reactive Distillation: The Front-Runner of Industrial Process Intensification A Full Review of Commercial Applications, Research, Scale-Up, Design and Operation. Chem. Eng. Process, 2007, 46(9): 774-780.

[20] 王婧, 李东风. 催化蒸馏技术的应用进展[J]. 化工时刊, 2005, 19(8): 50-55.

[21] 李琰, 李东风. 催化裂化轻汽油醚化工艺的技术进展[J]. 石油化工, 2008, 37(5): 528-533.

[22] 秦技强, 傅建松, 谢家明. 正戊烯骨架异构化为异戊烯的研究进展[J]. 精细石油化工, 2006, 23(3): 63-66.

[25] 靳海波, 肖芳荣, 焦玉海等. 碳五烯烃醚化合成甲基叔戊基醚的现状与展望[J]. 化学工业与工程, 2002, 19(2): 201-205.

[26] 熊廷祁. 碳五生产异戊烯工业化的可行性分析[J]. 甘肃科技, 2005, 21(4): 88-89.

[27] 吴冶华, 王清遐, 徐龙伢等. 一种由混合碳六烯烃生产2,3-二甲基2-丁烯的工艺[P]. 中国专利, 01109432.X. 2002.

[28] 吴冶华, 王清遐, 徐龙伢等. 碳六烯烃异构化制备2,3—二甲基—2—丁烯[J]. 精细化工, 2002, 19(11): 664-666.

[29] 赵岚. 我国乙烯装置副产碳五馏分的综合利用[J]. 石油化工,2005, 34: 153-155.

篇9

关键词:《化工原理》;必要性;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)08-0107-03

《化工原理》课是学习化学工程与工世专业的基础。它几乎覆盖了化学工业的各个专业,例如:化学工程、化工工艺、高分子化工、精细化工、工业分析、电化学工程和工业催化等。作为一门基础专业课,《化工原理》是学校开设的核心课程,为了更好地发展这门课程,在教学方法和教学手段上要相对做出调整。

一、兴趣是激发学生学习的源泉

兴趣是人类在需求的基础上,逐渐的在日常活动中发生、发展的。人类需求的对象往往是兴趣对象,由于人们对不同事物产生的需要不尽相同,所以能够培养多样的兴趣对象。正如瑞士心理学家皮亚杰所指出的:“兴趣,实际上就是需要的延伸,它表现出对象与需要之间的关系,因为我们之所以对于一个对象发生兴趣,是由于它能满足我们的需要。”[1]兴趣帮助人类认知事物和从事各项活动,促进人们不断的去探索并发现新事物。兴趣对人类起到一定的推动作用,如在人的学习生活中,它指引人类对事物表示关注,对于感兴趣的,能够主动的带着愉悦的心情去探究。孔子说:“知之者不如好知者,好知者不如乐知者。”孔子的这句话说的也就是兴趣对于学习的重要性。所谓学生对学习感兴趣,也就是说,学生带着高涨的、激情的情绪从事学习和思考,对面前展示的真理感到惊奇甚至惊讶;学生在学习过程中能够意识和感觉到自己的智慧和力量,体验到创造的欢乐,为人类的智慧而感到骄傲。真正要使学生对学习感兴趣,真正使你的课堂活跃起来,就使学生有对知识的渴望和有知识的愿望。[2]《化工原理》原理专业课依据自身的特点,将操作原理、规律作为核心,对以后的操作设备在选型以及设计上起到一定的辅助作用。而传统教学模式仍保留着保守灌输式。学生的思维方式仍然是记笔记和强化记忆,得到的效果可想而知。而理论联系实际可以充分调动学生学习的热情与兴趣,加深印象,极大地提高了学习的质量。

二、加强理论课与实验课的有机衔接,使学生充分消化吸收理论知识

《化工原理》实验是与理论课同步进行的实践教学环节,是《化工原理》教学的一个重要环节。作为一门独立的基础课,《化工原理》实验在《化工原理》课程教学中举足轻重,对加深和巩固课堂教学的基本内容,培养学生的实践能力、创新能力具有很大的作用。实验室设备的提高也能培养学生实验创新的能力。但目前《化工原理》在实验教学方法、测试手段和技术上仍有许多问题。由于采用两套师资队伍,学生层次不同,理论课教材不同,难免使理论课与实验课脱钩,[3]实验教师要认真组织好实验教学,实验课采取课前预习、写出预习报告、现场抽题笔试和口试相结合、实验操作、编写实验报告、期末书面考试的教学方式。在理论授课中,与实验相关的章节,教师有意识的讲解所要验证的理论,使理论和实践相结合,这样便达到了理论与实践的统一。

三、改进教学方法与手段,提高教学效率

传统的黑板加粉笔的教学模式,教学方式呆板、抽象,不仅使学生觉得枯燥无味,不能理解教师所讲授的内容,而且也不能带动教师的教授热情。化学工程课程的实践性比较强,传统教学模式不能取得理想效果。教师难讲,学生难学,因此,教学手段的改革应是教学改革的重点。[4]

1.多媒体教学。实践证明,由于多媒体教学能够把抽象的概念或过程形象地展示,将设备结构、操作原理、工艺流程中物料的流动情况等动态地展现,使原本难讲难学的教学内容更直观、生动、形象,降低了教学难度,学习效果显著提高。

2.教学模型与实物教学。要收集一些化工单元操作设备的实物,购买相关教学模型供课堂教学及学生在实验室参观使用,增强学生的直观感受。

3.课堂时间增加讨论课。在实践中我们认识到,讨论是重要的教学环节之一,是课堂教学的必要补充,为学生相互学习和提高能力提供了机会。为此,我们将10%的教学课时安排为讨论课。将理论课程和课程研究项目教学过程存在的相关技术问题和理论问题溶于讨论,以学生讨论为教学形式,深入研究探讨各个阶段所涉及到的知识点,提高学生综合运用本专业知识,分析、理解和解决本专业及相关行业的理论和实践问题的能力。由于学生是主动投入,思维没有受到任何禁锢,他们更容易全身心地投入到其中,其活动效能明显高于传统模式下的课堂教学。课堂上那种平淡而沉闷的气氛一扫而空,学生能很快进入角色。[5]教师要充分发挥指导作用,始终把注意力集中在启发引导学生上,保证讨论不偏离方向,适时地点出结论,做好总结。

四、建立仿真实验实践教学模式

仿真技术是计算机编程软件与现代化过程控制相结合的产物,应用多媒体技术对化工操作系统进行有效的模拟,使人们可以脱离现场及实际生产的限制,就能进行仿真的化工操作,有效地避免了实际操作的危险性,提高了操作水平。将仿真实训引入教学中,可大大提高学生对化工操作的感性认识,缩短了下厂适应期,学生通过所学的知识来判断和纠正错误,掌握正确的操作方法,增强了学生判断问题和解决问题的能力,并且增加了教学效果,该系统已在实践教学中占有十分重要的地位。化工仿真教学系统的出现将传统的理论课、实验课教学与化工仿真教学有机的结合起来,丰富了《化工原理》课程的教学手段,在实际应用中,化工传统教学与化工仿真教学优势互补,更加提高了教学效果。

五、完成课程设计

课程设计是《化工原理》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程问题复杂性的初次尝试。课程设计就是对于课程的各个方面作出规划和安排。课程设计是培养学生综合运用所学知识,发现、分析、提出和解决实际问题,锻炼实践能力的重要环节,通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。是对学生实际工作能力的具体训练和考察过程。通过《化工原理》课程设计,要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真的工作作风。[6]归纳起来,可以培养学生以下几个方面的能力:洞察力、抽象能力、创新能力、使用计算机的能力、撰写论文的能力、相互交流与协作的能力。

《化工原理》是所有化工类及相关专业人才必须掌握的一门课程,如何通过该课程的学习以培养学生的思维能力、自学能力、理解能力和创造能力,增强学生的工程意识,在国家提出的质量工程改革与实践中对化工专业及相近专业显得尤为重要。以《化工原理》课程的教学现状来看,它不仅要科学安排课程结构,还要考虑到课程目标、课程实施、课程评价等一系列外部环节之间的联系,但课程改革不是一蹴而就的,它是动态的、持续的、永恒的。我们应立足现在的条件,不断探索,不断实践,争取实现我校《化工原理》教学改革新的突破,为培养21世纪工程人才提供更好的平台。

参考文献:

[1]蔡莉.《化工原理》课程改革初探[J].长春理工大学学报.2005,(12).

[2]钟理,黄少烈,伍钦.《化工原理》课程改革当议[J].化工高等教育,1999(4).

[3]李卫星.《化工原理》课程改革探讨.内蒙古石油化工[J].2011,(24).

[4]李志洲,刘军海.“化工原理”课程教学改革与探索[J].陕西理工学院化学与环境科学学院.2010,(11).

篇10

关键词:高职;化工人才;订单式人才培养模式

订单式教学培训模式是我国特有的校企合作模式,是根据我国国情,结合欧洲国家职业教育的经验建立的新的职业教育模式,目前在煤炭、有色和电力等行业已运作了将近10年,效果较为理想。随着国家大力发展职业教育的政策和措施不断深化,我国高等职业教育正在以提高质量为核心,实现与社会行业企业的对接。随着我国经济转型,企业对高职人才的需求呈现多元化的发展。在新的形势下,企业也在转型。通过对连云港100多家化工企业问卷调查和实际走访,以及结合连云港师范高等专科学校毕业生工作情况的调查,发现企业已不满足培养“适销对路”的高技能人才,为了增加企业在国内、国外的竞争力,企业对“订单式”培养的人才提出了更高的要求。由于“订单式”培养的学生,“稳定性”相对较高,通过数年的学习对企业产品的生产条件、工艺流程、产品的发展方向及市场动态熟悉,企业更渴望他们成为设备改进、工艺改造、产品研发和升级换代的主力军。因此,以连云港化工人才“订单式”创新人才培养模式和运行机制为切入点进行研究,对化工人才培养乃至整个高职教育都具有重要的指导意义。

一、目前化工“订单式”人才培养模式存在的问题

“订单式”人才培养模式存在的主要问题是学生学习的基础知识不够扎实,理论水平不高,对企业工艺和产品存在的问题缺乏洞察力。其原因主要是对“订单式”培养理解缺乏深度,认为“订单式”培养就是为企业培养高级技工,不需要扎实的理论基础和创造力。所以,在整个教学过程中的指导思想就是理论够用,强化技能,使得整个教学过程基础和理论课尽量压缩,有的课程甚至不上。由于学生的基础知识不扎实,理论水平不高[1],在从事化工生产的过程中,即使发现工艺的不足或有一些好的想法,由于受到理论水平的限制而无法完成,这对企业、学生、学校以及社会都是非常巨大的损失。

二、化工人才“订单式”创新培养模式的构建

1.提高教师生产一线的工作能力和科研能力。具有丰富的工程实践经验和对科学问题敏锐的洞察力的教师,是培养创新人才的保证。要提高高职“订单式”学生的创新能力,专任教师必然对相应的企业工艺流程、产品发展方向非常熟悉,但高校教师由于承担的教学、科研任务繁重,造成教师与企业的合作深度不够,教师在生产实践中发现问题、解决实际问题的能力相对较弱。因此,高职院校要制定政策和措施,促使专业教师深入企业第一线,及时了解和掌握企业高新技术的发展和应用状况,及时了解和掌握企业对所需人才规格的要求,及时了解企业中存在的问题,将掌握的理论知识与实践更好地结合起来,提高自身工程实践素质。要解决上述问题,专任教师必须每年至少有三个月的企业工程实践经历,教师在企业工程实践中,可以找到自己的研究课题。课题确立后,将“订单式”学生纳入课题组。“订单式”学生通过课题研究,可以迅速提高其研发能力。通过这种方式,学生提高了科研能力,教师找到了研究课题,学校提升了办学层次,企业解决了工程和研发问题、储备了研发队伍,这种合作将会使各方共赢。

2.学校与“订单式”人才培养单位共同制定人才培养计划。创新型人才培养,既要重视理论知识传授,更要注重理论知识对化学过程、化学工程及化工操作过程的指导,课程要以提高实际应用能力、发现问题和解决问题来整合和构建化工核心课程。课程设计既要考虑企业当前的实际需求,未来的发展,也要考虑学生未来发展、企业长远的发展和学生对职业选择的宽泛性。因此,理论课、技能课和创新课程的构建必须统筹兼顾。根据双方签订的“订单式”人才培养协议和企业对人才的知识、能力、素质的要求,学校与企业共同制定人才培养方案,双方共同参与人才培养全过程的管理。

通过对连云港化工企业需求的长期跟踪和四年的学生培养情况看,化学化工系应用化工技术专业课程构建已日趋成熟。专业课程设计如下:

专业基础课程:有机化学、无机化学、物理化学、化工原理、无机化学及分析。专业课程:化学反应工程与设备、化工制图、有机及无机化工生产技术、高分子化学和精细化工产品合成。专业技能课:化工厂设计、化工仪表及自动化、化工新产品开发和化工厂顶岗实习。专业创新课程:新产品研究方法、化工数据统计及分析、化工综合设计。

化工基本技能培养方案原则:“注重实效、实用、实践、实际、提升学生创新能力”的工作原则。学生通过专业技能训练后,应取得化工总控工、高级化学检验工、化工操作工和化工类AutoCAD初级四证中的三证。

3.校企双方互聘教师。根据双方签订的“订单式”人才培养协议,校企双方互聘教师。学校聘企业的高层管理人员、高级专业技术人员担任实践教学课程主讲教师或指导学生实习实训。企业聘学校的教授讲学,举办职工培训。青年教师可以带学生到企业去实习或参加生产实践锻炼,这样促进了学校教师“双师”素质的提高。相关教师和企业技术人员定期交流顶岗。一方面组织专业教师到企业顶岗,另一方面聘请企业的技术骨干担任相关专业课程的教学和实验教学。对于“订单式”培养的学生实行双导师制,即企业和学校各指派一名实践丰富,理论功底扎实,具有创新精神的指导教师对学生进行二对一的指导,这样既能提高学生的理论功底,又能切实可行地提高学生工作能力。

4.制定有效的奖励和运行措施。制定有效的奖励措施,促进高职创新型人才的培养[2]。对于自己设计或企业提供的课题,能够按时结题,学校和企业给予一定经费资助和奖励,并可以获得一定的学分。

将创新纳入“订单式”学生、导师的评价体系。“订单式”学生在毕业前,必须结合企业的工艺、产品的某一部分提出创新的设计或改进,其毕业论文在此基础上完成。“对学生创新能力培养”也将纳入对教师的考评体系中。

5.设计“订单式”创新人才培养方案。化工生产已经表现为高度的行业特殊性和知识技术密集性特征。要求化工技术人员,不仅要熟练驾驭和掌控化工生产流程和工艺操作,而且要能根据现有工艺流程和产品进行工艺改进和产品的研发。但高职化工人才“订单式”创新人才培养不同于本科生和研究生,其主要任务是在生产中发现问题和提出解决问题的方案。

企业要做强、做大,可持续发展,离不开技术改造、现有产品的升级换代和新产品的开发。因此,学校必须加强学生创新能力的培养。创新能力培养设计三部分,第一部分,根据企业生产,设计创新性实验。旨在探索并建立以问题和课题为核心,倡导以高职学生为主体的创新性实验改革,激发学生的创新思维和创新意识,提高其创新实践的能力。按照以解决实际问题为主线、学生为主体、教师为辅导的思路,充分发挥学生的主观能动性和创造性,通过自主设计实验方案、自己动手完成方案的实施,锻炼学生创新能力;第二部分,洞察问题能力的培养。许多科学家、研究学者之所以能够在他们的研究领域内有所成就,很多时候并不因为他们比他人更聪明,而在于他们更善于发现问题、探究问题,在于他们非同寻常的观察力,在于他们对身边看似寻常事物的超越一般人的的敏锐洞悉。科学洞察力的养成,是创新人才培养方案的重要组成部分。在课程设计中增加科研和化工生产过程生产案例,老师和学生共同探讨研究,发现问题,提出解决问题的方案,激励学生创新的潜能;第三部分,在生产实际中吸取创造、技术革新源泉[3]。

参考文献:

[1] 谭琦耀.订单式人才培养模式的利与弊分析研究[J].中国经贸导刊,2010,(8):102.

[2] 王正祥,宋爱平,李强,等.产学研结合与人才培养模式创新的研究与实践[J].英才高职论坛,2008,(3):3.