神经网络量化方法范文
时间:2024-04-02 18:03:58
导语:如何才能写好一篇神经网络量化方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
为降低神经网络的冗余连接及不必要的计算代价,将量子免疫克隆算法应用于神经网络的优化过程,通过产生具有稀疏度的权值来优化神经网络结构。算法能够有效删除神经网络中的冗余连接和隐层节点,并同时提高神经网络的学习效率、函数逼近精度和泛化能力。该算法已应用于秦始皇帝陵博物院野外文物安防系统。经实际检验,算法提高了目标分类概率,降低了误报率。
关键词:神经网络;量子免疫克隆算法;目标分类;冗余连接;网络优化
中图分类号: TP273
文献标志码:A
Quantum-inspired clonal algorithm based method for optimizing neural networks
Abstract:
In order to reduce the redundant connections and unnecessary computing cost, quantum-inspired clonal algorithm was applied to optimize neural networks. By generating neural network weights which have certain sparse ratio, the algorithm not only effectively removed redundant neural network connections and hidden layer nodes, but also improved the learning efficiency of neural network, the approximation of function accuracy and generalization ability. This method had been applied to wild relics security system of Emperor Qinshihuangs mausoleum site museum, and the results show that the method can raise the probability of target classification and reduce the false alarm rate.
Key words:
neural network; quantum-inspired clonal algorithm; target classification; redundant connection; network optimization
0 引言
神经网络已经被广泛地应用于模式分类、函数逼近、信号预测等各种领域,是近年来的研究热点之一[1-2]。在应用过程中,研究人员发现,当神经网络的规模过大会产生连接数量冗余大、计算代价过高的问题,降低了大规模神经网络的实用性。针对此问题,研究人员提出了多种方法在保持神经网络的前提下优化神经网络的结构和参数权值。Leung等[3-4]改进了传统的遗传算法(Genetic Algorithm, GA)并将其应用于神经网络的结构和权值优化过程,利用遗传算法的快速收敛性来提高神经网络的学习速度,其缺点在于当目标函数维数过大时容易陷入局部最优。Xiao等[5]使用混合优点(Hybrid Good Point, HGP)优化前向神经网络的参数和结构,避免权值陷入局部最优,但其对网络结构的优化没有达到最优。Shu等[6]提出正交模拟褪火(Orthogonal Simulated Annealing, OSA)算法, 使用褪火算法和正交算法的优点来同时优化神经网络结构和参数,其算法收敛速度快、鲁棒性好,缺点则在于计算代价较大。杜文莉等[7]提出了使用量子差分进化(Cooperative Quantum Differential Evolution, CQGADE)算法来优化神经网络权值,使用量子遗传算法优化网络结构和隐层节点数,算法综合了量子遗传算法和量子差分算法的优点,收敛速度快,但其缺点在于需要同时协同两种算法的优化结果,算法复杂度较高,且容易陷入局部最优。Tsai等[8]提出混合田口遗传算法(Hybrid Taguchi Genetic Algorithm, HTGA),将传统的GA与Taguchi方法结合起来,使得算法具有鲁棒性好、收敛性快等优点,但其缺点在于获得最优解的计算代价较大。
量子免疫克隆算法[9-12](Quantum-inspired Immune Clonal Algorithm, QICA)也称为量子遗传算法(Quantum Genetic Algorithm, QGA),其将量子搜索机制和免疫算法克隆选择原理相结合,利用量子编码的叠加性和随机性构造抗体,利用遗传算法的克隆操作产生原始种群和克隆子群实现种群扩张,使搜索空间扩大,提高了局部搜索能力;同时借助全干扰交叉操作避免陷入局部最优。QICA采用了多状态量子比特编码方式和通用的量子旋转门操作, 引入动态调整旋转角机制和量子交叉[11]。QICA在组合优化问题中具有良好的表现。
针对上述问题,提出了使用量子克隆免疫算法对神经网络的结构和连接权值同时进行优化,通过产生具有一定稀疏度的连接权值对网络隐层数量和连接权值进行优化,提高了算法的效率和收敛速度,避免了算法陷入局部最优。
1 带开关权值的神经网络模型
在经典的神经网络理论中,网络结构在初始化后便不再变动,仅通过权值的变化来计算产生结果,这种算法增加了神经网络的结构复杂性,在实际应用中增加了计算结果的代价。Leung等[3-4]提出了带开关权值的神经网络,通过调整开关的通断就能调整神经网络的结构和连接数量,从而减少计算代价。带开关权值的神经网络模型如图1所示[7]。
2.2 权值计算及优化方法
根据量子克隆免疫理论,将神经网络权值计算及优化过程分为以下四个过程。
2.2.1 权值抗体初始化
量子克隆免疫算法是基于量子计算和遗传算法组成的,其抗体的编码方式采用量子比特编码。一个抗体中的量子位的状态是不确定的,可以为0或1,其状态表示为式(5):
3.1 算法复杂度分析
量子克隆免疫算法的实质是通过量子理论的随机特性提供丰富的种群数量,并通过使用遗传算法对种群进行淘汰和进化,因此其算法的复杂度等于种群生成算法的复杂度:假设神经网络有x个输入,其隐层节点数量为N,输出为y,则网络中的输入与隐层节点间的连接权值ω的数量为:x*N,隐层节点与输出层的连接权值v的数量为:N*y。种群生成需要对所有节点进行权值初始化,并将随机位置的n(nN)个节点的权值设置为0, 其算法复杂度为O(n2)。而克隆免疫算法在种群克隆及抗体选择过程中使用遗传算法,因此其算法的复杂度与传统遗传算法相同,其算法复杂度也为O(n2)。因此,使用量子免疫克隆的神经网络优化算法的复杂度为O(n2)。
3.2 非线性函数逼近
选取复杂交互非线性函数(Complicated Interaction Function,CIF):
其中0
选取样本700组,其中500组用于训练,其余200组用于检测性能。神经网络的初始隐层神经元设置为20个,初始网络结构为:2-20-1,初始连接权值为随机值。在此条件下验证不同稀疏度条件下对CIF的二维逼近效果如图3所示。
图3显示随着稀疏度的不断降低,神经网络的逼近能力有所减弱,逼近误差则逐渐增大。这主要是因为神经网络中的连接权值数量降低,造成神经网络的适应性差。具体逼近效果见表2。
从表2中可以看出,隐层节点数量直接影响着神经网络的性能。高稀疏度条件下的计算量大,但逼近精度高;低稀疏度条件下的计算量小,但逼近精度较差。实验表明当稀疏度大于0.6时,算法的逼近精度高于90%,优化后的网络具有较好的非线性逼近能力。当神经网络隐层节点数量低于12时逼近精度大幅下降,说明此时神经网络处理信息的能力也随之大幅减弱,隐层节点的最合适的数量为12~14个,这也符合文献[14]的实验结果。
图4为不同稀疏度下,算法适应度的收敛情况。可以看出量子克隆免疫算法具有很好的收敛特性,算法收敛速度很快,能够在很短的进化次数内收敛至极值,且稀疏度越低,神经网络的连接权值数量越少,算法收敛速度越低,最优适应度越差。
表3为相同条件下,不同算法的最优计算结果,包括目标分类的准确度、隐藏层节点数量等。可以看出,当稀疏度高于0.8时,本文算法收敛性和适应度均优于混沌粒子群(Chaotic Particle Swarm Optimization,CPSO)[15]、粒子群优化算法(Particle Swarm Optimization,PSO)[16]、混合田口遗传算法[Hybrid Taguchi-Genetic Algorithm,HTGA][8]等其他算法,说明算法具有很好的收敛速度、寻优精度和鲁棒性。
3.3 微地震信号目标分类
实验场地选择在秦始皇兵马俑博物馆内K9901号坑旁。所有传感器节点沿公路一侧直线部署,距离公路1m左右。可能产生地震波的活动物体包括人员行走、机动车和挖掘活动。将采集到的微地震信号进行滤波、分帧、特征提取等处理后输入至神经网络进行模式识别。
系统对传感器采集到的数据进行分帧,并使用功率谱二次分析[17]算法对其进行处理,最后将经过预处理的数据输入至神经网络对其进行分类。根据其活动特点,将输出目标分为三类:人员活动、挖掘活动以及机动车辆活动。传感器采集到的三类活动的经典波形如图5所示。
表6中给出了算法的最优计算结果,包括不同稀疏度条件下神经网络的隐藏层节点数量、最优适应度以及分类准确率等。可以看出,算法能够有效减少冗余的隐藏层节点数量,并降低节点连接数量。算法的稀疏度越高,其适应度越好,其分类的准确性越好,但稀疏度高带来的则是计算代价增大、计算复杂度增加。当稀疏度低于0.7时,算法的适应度变差,目标的识别率为90%,在实际应用过程中带来了误判率较高的问题,降低了实用性。因此在秦始皇帝陵博物院野外文物安防系统中使用了稀疏度为0.7的算法对模式识别的神经网络进行优化。
4 结语
本文提出了基于量子免疫克隆算法的神经网络优化算法,该算法在训练神经网络优化权值的同时删除了冗余连接和多余的隐层节点,实现了神经网络结构和网络权值的优化。通过经典非线性函数逼近和目标识别检验,算法能够有效地优化神经网络,提高神经网络的优化效率,减少计算复杂度。使用优化后的神经网络已经用于秦始皇帝陵博物院野外文物安防系统中。
参考文献:
[1] QIAO H, ZHOU Y,SHAO N, et al. Software reliability prediction based on learning vector quantization neutral network[J]. Journal of Computer Applications, 2012,32(05):1436-1438.)(乔辉,周雁舟,邵楠,等.基于学习向量量化神经网络的软件可靠性预测[J].计算机应用,2012,32(5):1436-1438.)
[2] PAN Y, DENG Y, ZHANG Q, et al. Deterministic prediction of wavelet neural network model and its application[J]. Journal of Computer Applications,2013, 33(4):1001-1005.(潘玉民,邓永红,张全柱,等.小波神经网络模型的确定性预测及应用[J].计算机应用,2013,33(4):1001-1005.)
[3] LEUNG H F,LAM H F, LING S F, et al. Tuning of the structure and parameters of neural network using an improved genetic algorithm[C]// Proceedings of the 27th Annual Conference of IEEE Industrial Electronics Society. Piscataway: IEEE,2001:25-30.
[4] LEUNG H F, LAM H F, LING S H, et al. Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J]. IEEE Transactions on Neural Network,2003,14(1):79-88.
[5] XIAO C, CAI Z, WANG Y, et al. Tuning of the structure and parameters of a neural network using a good points set evolutionary strategy[C]// Proceedings of the 9th International Conference for Young Computer Scientists. Piscataway: IEEE, 2008:1749-1754.
[6] SHU L, HO S Y, HO S J. Tuning the structure and parameters of a neural network using an orthogonal simulated annealing algorithm[C]// Proceedings of the 2009 Joint Conferences on Pervasive Computing. Piscataway: IEEE,2009:789-792.
[7] DU W, ZHOU R, ZHOU L, et al. Cooperative quantum differential evolution algorithm based method for optimizing neural networks[J].Journal of Tsinghua University: Science and Technology, 2012,52(3):331-335.(杜文莉,周仁,赵亮,等. 基于量子差分进化算法的神经网络优化方法[J].清华大学学报:自然科学版,2012,52(3):331-335.)
[8] TSAI J, CHOU J, LIU T. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm[J]. IEEE Transactions on Neural Network, 2006,17(1):69-80.
[9] LI Y, JIAO L. Quantum-inspired immune clonal algorithm and its application[C]// Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems. Piscataway: IEEE, 2007:670-673.
[10] JIAO L, LI Y, GONG M,et al. Quantum-inspired immune clonal algorithm for global optimization[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2008,38(5):1234-1253.
[11] ZHOU C, QIAN F. Improvement of quantum genetic algorithm and its application[J]. Journal of Computer Applications, 2008,28(2):286-288.(周传华,钱峰.改进量子遗传算法及其应用[J].计算机应用, 2008,28(2):286-288)
[12] ZHOU Q, JIANG S, ZHAO X, et al. Improved quantum genetic algorithm and its application in test data generation[J]. Journal of Computer Applications,2012,32(2):557-560.(周绮,姜淑娟,赵雪峰,等.改进的量子遗传算法及其在测试数据生成中的应用[J].计算机应用,2012,32(2):557-560.)
[13] QIAO J,LEE Y G, SCOTT D S, et al. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems[J]. IEEE Transactions on Neural Networks,2008,19(3):460-474.
[14] HAN H, QIAO J, BO Y, et al. On structure design for RBF neural network based on information strength[J]. Acta Automatica Sinica, 2012,38(7):1083-1090.(韩红桂,乔俊飞,薄迎春,等.基于信息强度的RBF神经网络结构设计研究[J].自动化学报, 2012,38(7):1083-1090.)
[15] ZHAO L. Fuzzy identification and neural networks learning based on cooperative PSO algorithm[D]. Shanghai: Shanghai Jiao Tong University,2008.(赵亮.基于协同PSO算法的模糊辨识与神经网络学习[D].上海:上海交通大学,2008.)
篇2
关键词:员工绩效;BP神经网络;模糊综合评判
中图分类号:TP393文献标识码:A文章编号:1672-3198(2008)04-0025-01
1 建立评价指标体系的层次结构模型
对员工绩效进行评估分析,指标选择与指标系统的构建非常重要,直接关系到研究结论的科学性、客观性、准确性与可靠性,关系到能否为决策部门提供一个量化的、具有可操作性的依据。为科学、客观、公正、全面地反映企业员工绩效水平,选取和构建评估指标系统时应遵循以下原则:
(1)全面性。企业的员工绩效系统是由多因素构成的多层次的组织系统,受到系统内外众多因素的影响和制约。其指标体系范围广、信息量大,这就要求我们在选择指标时必须尽量全面地选择各级各类指标,以免遗漏某些重要的信息,造成片面性,从而导致评估结果的非科学性。
(2)简洁性。选择指标系统要遵循全面性的原则,但同时也要考虑指标的典型性和代表性,尽量使含义相同或相近的指标不被选入,做到指标尽可能少,而信息量尽可能大,把全面性和简洁性有机地结合起来,以避免重复、繁琐而造成评估时的多重共线或序列相关。
(3)系统性。企业的员工绩效系统是一个由具有一定结构和功能的要素构成的有机整体,其指标系统并不是静止的、绝对的,而是一个相对的、不断发展变化的系统。因此,应使指标系统具有整体性、动态性和系统性,以保证指标系统能够适应动态发展变化的需要而进行相应的适当调整。
2 指标的模糊处理
多目标决策问题涉及到许多指标,各指标的量纲不同,难以直接进行比较。为使各指标之间具有可比性,需要对指标进行标准化处理。因此在综合评价前,应先将评价指标属性值统一变换到[0,1]范围内,即对各指标的属性进行模糊处理。
2.1 定量指标的模糊处理
一般而言,定量指标主要包括以下几种类型:①效益型:指标的属性值越大越优;②成本型:指标的属性值越小越优;③定值型:指标的属性值为某一定值时最优;④区间型:指标的属性值在某一固定区间内为优。
设指标ui的论域为di=[mi,Mi],其中mi和Mi分别表示ui的最小值和最大值,其中点为M(di)。并定义决策者对评价指标Ui的属性值Xpi的满意度为rpi=μdi(xpi),i=1,2,…,n,其中,rpi∈[0,1],μdi(・)是定义在论域di上的指标ui的属性值无量纲化的隶属函数。
各种类型指标的隶属函数分别为:
2.2 定性指标的模糊处理
对于那些只能进行定性判定的指标,则采用选择评价等级隶属度的方法确定,从而将定性的描述有效地转化为定量的判定。这样,任一评价指标属性值xp=(xp1,xp2,…xpn)经上述方法标准化后均可形成评价向量(隶属度向量)rp=(rp1,rp2,…rpn)。本文采用评价等级(优、良、中、较差、差)隶属度的方法确定,其方法为:
设评价指标Ui相对于指标评价等级A=(优、良、中、较差、差)的隶属度向量为ri=(ri1,ri2,…ri5),设B=(B1,B2,…B5)T,Bj表示第j级评价相对应的尺度,通过尺度集可将模糊变量的隶属度向量综合为一个标量,实际上,V=riB即为定性评价指标在给定尺度B下的量化值。
本文在用神经网络综合评价时,作为各学习样本的期望输出变量,量化时采用的标准尺度为:B=(0.9,0.7,0.5,0.3,0.1)T。
3 基于BP神经网络的员工绩效评价模型
3.1 员工绩效评价中神经网络的基本结构及其学习算法
神经网络是由大量的神经元广泛互联而成的网络,它反映了人脑功能的许多基本特性,具有大量大规模并行、分布、存储、处理、自适应、自组织、自学习能力,因此而积累知识和经验,从而不断修正自己的知识,尤其适用于处理同时涉及到众多因素和条件的模糊信息问题。BP网络是单向传播的多层网络,它是一个由输入层,中间隐含层和输出层三个网络层次组成的模型,各层次的神经元间形成全互连连接,同层次内的神经元没有连接。根据本文对员工绩效的定义及对其评价指标的描述,采用BP神经网络结构建立评价模型。
该模型的学习算法原理:输入值先向前传播到隐单元,经作用函数运算后,再把隐单元的输出信息传播到输出单元,最后得到输出值。运算时把各个评价指标的最终量化处理结果作为网络的输入值,对网络进行训练。w1,w2,wm是网络隐含层的输出值,网络只有一个输出值Op,输入单元i到隐单元j的权重是wij,而隐单元j到输出单元的权重是wj,另外用 和 分别表示输出单元和隐单元的阈值。各个单元的输入和输出值可以用下面的公式计算:
在运用此模型进行评价的过程中,输入值和输出值的确定是关键:①确定输入值:根据评价指标体系及各指标的评价值,依据本文提出的模糊量化方法得出评价指标的量化值,作为神经网络的输入值;②确定输出值:运用层次分析法确定各个层次指标的权重,结合二阶模糊综合评价方法分别计算出各个神经网络训练的输出值。
3.2 员工绩效评价神经网络模型的实现
利用神经网络方法对员工绩效评价的步骤如下:
①按照评价的实际需要建立起评价指标体系,构成神经网络的输入区域。
②将各指标的评价值进行模糊处理后,作为神经网络的训练样本集。
③启动神经网络进行学习,经过反复迭代直到收敛到相应的精度条件,储存学习好的神经网络综合评价模型。
④将标准化的评价矩阵输入设计好的神经网络模型,即可得出评价结果。
4 结论
本文将基于三层神经元的模糊评价模型运用于员工绩效的评价之中,弱化了评价过程中的随机性和评价人员确定指标权重的主观性,保证了评价结果的客观性和科学性,且该网络一旦训练完善后就可以用于解决同类问题,具有较强的广泛适用性。
参考文献
篇3
关键词:BP神经网络,房地产价格评估,研究方向
一、BP神经网络定义
1.概念:BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
二、BP神经网络研究方向
1.人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统。如完成模式识别或者某种信号处理的功能,制成机器人和构建专家系统等。
2.网络模型与算法研究。这也可以叫做技术模型研究,包括网络学习算法研究。基于理论模型研究构作神经网络模型,以实现准备制作硬件或者计算机模拟目的,
3.生物原型研究。从生物科学如病理学、心理学、生理学和脑科学等方面研究神经网络、神将细胞和系统的生物原型结构及其功能机理。
4.建立理论模型。在生物原型研究的基础之上,建立神经网络和神经元理论模型,主要包括只是模型、数学模型、物理化学模型和概念模型等。
三、BP神经网络结构与算法
1.结构:BP神经网络模型拓扑结构包括输入层、隐层和输出层,信息的录入从输入层开始,通过隐层再到输出层。其中,输入层及输出层的神经元个数分别为输入信号和输出信号的维数,隐层及其神经元个数要根据具体的实际情况来确定。每一个神经元的激活函数都是双曲正切函数或可微的Sigmoid 函数的一种。
2.算法:BP神经网络算法是一种有教师的学习算法,属于A学习规则,即通过实际输出Yp1与Tp1 的误差来不断修正连接权和阐值,直至达到最大训练次数或者满足一定的允许误差。(1)信号正向传播:即输入信号依次通过输入层、隐层和输出层,并在终端产生输出信号。网络权值在信号传递过程当中是不变的。加入最终在输出层没有得到预期的输出结果,则会自动转入误差信号反向传播。(2)误差信号反向传播:误差信号即是实际输出和期望输出之间的差值,它的反向传播即信号自输出端依次往回传播,在此过程中,误差反馈调节网络权值变动,通过对权值的不断修正使网络实际输出与期望输出值更加接近。当达到最大训练次数或者满足允许误差时训练结束,相反则转入信号正向传播。
四、神经网络的房地产估价模型
针对住宅、商铺、别墅等不同类型的房地产,因为影响其价格的各种因素大不相同,所以应该分别构建不同的模型来进行估价,但是每一种模型所采用的神经网络模型却是可以一样的。房地产估价的神经网络模型主要由输入模块、测试模块、输出模块、数据库模块、评估模块和学习模块组成。
1.输入模块。主要负责当地产特征描述、交易情况、坐落位置和交易日期等影响其价格的资料信息,这些数据本身是固定不变得,但其影响因素是不确定的,对模型和整个评价结果起着重要的作用。在实际的应用过程中,一定要仔细分析房地产的具体情况和其价格影响因素,为模型的成功创建和数据的准确性打好基础。一般情况下,为了提高网络收敛速度,适应神经网络数据处理要求,尽量获得较为准备的数据值,要对输入和输出向量进行归一化预处理。
2.测试模块。在实际运用评估模型之前,一般都要对模型的泛化能力进行测试。泛化能力即经训练后的网络对未在训练中集中出现的样本做出正确反应的能力。一般来说,正确训练的网络即使对训练样本存有一点误差,但依然能够对没有出现过的输入做出正确的反应。如果用训练样本以外具有典型意义的数据构成测试样本集测试网络得出的结果是符合预期的,那么可以表明该估价模型是比较成功的,具有很强的推广应用能力。
3.输出模块。包括神经网络的输出数据,即神经网络计算值输出,并将其转化成实际估价结果,供用户参考使用。
4. 数据库模块。这部分模块主要是对已交易的房地产案例信息,如交易情况、交易时间、特征描述、影响因素和评估价格等信息的存储与处理。此模块要具有基本的数据信息转换功能,能够将一些定性描述通过相应的处理转换成定量描述,并赋予相应的分值。待估房地产也可以通过此模块的转换功能进行相应的数据转换。
5.学习模块。神经网络学习是利用某种算法对网络权值与闭值进行不断的调整,目的是通过对有限案例的归纳总结找某种隐藏的客观规律。BP神经网络的学习既可以通过Visual Basic, C 语言等来实现,也可以通过MATLAB 提供的神经网络工具箱实现。
6.评估模块。在输入模块输入待估项目基本特征因素,然后利用通过测试的学习模块运行结果,采用某种计算方法得出待估房地产估价。
五、BP神经网络模型的房地产估价流程
神经网络地房地产价格评估的过程主要包括数据准备、神经网络设计、学习样本输入、网络学习和评估计算等部分,具体分析如下:
1.数据信息准备。分析总结影响房地产价格的各种因素,然后收集整理各种房地产交易信息,找出能够量化的直接影响因素并进行具体的量化。
2.神经网络设计。这部分设计主要包括网络参数的设定和网络拓扑结构的设计。网络学习与结构参数主要包括网络层数、网络权值、网络输入输出层参数、隐层单元个数、网络最大期望误差等等。其中,输入和输出层参数包括神经元维数和每个神经元所代表的具体物理量。
3.学习样本输入。学习样本的各数据资料信息都要转化成量化值,并使其标准化成系统识别的具体数值。学西样本可以采用收集整理到的市场交易案例或者已有的历史数据信息。
4.网络训练。也叫网络学习,就是对网络权值和闭值进行不断调整的过程。利用已经输入的学习样本信息进行训练,在网络最大训练次数和最大期望误差范围以内,检查误差是否达到精度要求,如果达标则保存训练结果即权值闽值矩阵,不达标则继续调整学习参数与网络结构。
5.估价计算。输入各种影响待估房地产价格因素的量化值,运用已经设定好的网络模型和学习结果,进行评估以得到相应价格。
结语 BP神经网络估价使用范围非常广泛,只要在房地产市场上能够找出类似的交易案例,就可以使用此方法。基于BP神经网络的房地产几个评估模型,可以利用神经网络自身极强的学习能力,从已有交易案例中找出房地产成交价格与其影响因素之间的客观规律,从而提高评估工作效率,为房经营、发展和管理提供更好的服务。
参考文献:
[1]韩力群.人工神经网络理论、设计及应用〔M].北京:化学工业出版社,2002.
[2]王洪元,史国栋.人工神经网络技术及其应用[MJ.北京:中国石化出版,2005.
篇4
关键词:品牌竞争力;BP神经网络;评估指标
一、前言
竞争是市场经济的本质,企业作为市场经济的主体也处在各种竞争中。当市场经历单一的产品竞争、质量竞争、价格竞争、广告竞争等等之后,以品牌为核心的竞争模式将会成为引领市场的主要形式。企业如果成功塑造了市场领导者品牌,就会形成持续有效的、创造无限价值的竞争力。
品牌竞争力是企业在市场决战中最重要的能力,用通俗的话说,如果你的产品比其他牌子的同类产品卖得好、卖得快、卖得贵、卖得久,就说明你的品牌竞争力强;反之,就说明你的品牌竞争力弱。因此,评估企业自身品牌的竞争实力成为摆在企业前的一个迫切议题。国内外的一些学者已从不同角度提出科学定量评估品牌竞争力的许多方法:市场表现评估法主要从品牌竞争力的表象方面进行评估;品牌综合管理能力指标评估法、品牌竞争力基础工作评估法都只单方面考虑从企业因素来衡量竞争力的强弱,未考虑品牌的顾客因素;与之相对应的基于顾客价值的品牌竞争力评估则没有考虑品牌对企业的价值体现。因此,本文基于品牌的顾客价值和企业价值的双重角度,从四个维度建立品牌竞争力评估的指标体系,并运用BP神经网络模型预测目标品牌的竞争力。
二、品牌竞争力的评估指标体系
由于前述评估方法的片面性,其指标体系必然体现着不完善性。品牌竞争力的评估体系应综合体现品牌的顾客价值和品牌所反映企业的各方面能力的综合,基于顾客价值我们建立准则层——顾客的忠诚度,基于企业的品牌竞争力我们建立三个准则层——品牌市场能力、品牌管理能力和品牌基础能力。对于各个子准则层体现的具体因素内容如表1所示。
三、基于BP神经网络的品牌竞争力评估模型
近年来,众多学者量化评估品牌竞争力的方法主要有层次分析法、线性回归分析法、第二代回归分析方法、模糊综合评判法等。神经网络的出现给多指标的系统评价提供了新思路,特别是BP神经网络强大的自学自适应能力,在很多行业得到不同程度的成功应用,非常适用于对矛盾复杂的、近似的、不确定的知识环境做决策,能成功解决相关因素人为权重设计的主观性及相关系数的复杂计算。
(一)BP人工神经网络基本原理
BP网络是一种反向传递并能修正误差的多层反馈型网络,其结构一般由输入层、输出层和隐含层构成,层与层之间的神经元通过相应的网络权系数完全互连;同层内的神经元则无关联。神经网络在外界输入样本的刺激下不断改变网络的连接权值,将网络输出值和期望输出值的误差由输出层、隐含层、输入层的反向传递,以使网络的输出不断地接近实际的输出。
(二)基于BP神经网络的品牌竞争力评估模型
1.人工神经网络模型结构的确定。根据自变量一般为BP神经网络模型的输入层,因变量一般为输出层的原则,品牌竞争力的BP神经网络模型中,指标体系中目标层品牌竞争力的大小为输出层,设强、中、弱三个判定层次;子准则层作为品牌竞争力的影响因子,其14个指标为输入层,分别为X(C1)-X(C14)。
为达到BP神经网络容量大小和网络训练时间的良好效果,本模型中训练层的节点数取29个为最佳(隐含层的节点数=2倍输入节点数+1)。
2.样本选择与组织。在样本的选择中,应选择有显著代表性且分布均匀的、足够数量的样本。为评估目标品牌竞争力大小,可先选取一些本企业已开发的品牌或可获取的其他品牌产品的实际经营数据作为训练、测试样本。
3.输入层的确定。在表1提出的14个指标中,由于不同指标是从不同的角度反映品牌竞争力,指标之间又由于量纲不同,所以无法进行比较。因此,从最终评价值的确定和神经网络训练的收敛性考虑,需要对指标先进行无量纲化处理。
(1)定性指标:这些指标的评价值采用专家打分法进行评价,取值为0.0-1.0之间。
(2)定量指标:定量指标又分为正向指标,逆向指标和适度指标。
正向指标一般采用下面的线性递增函数进行描述:
yi=0 x(c)≤x(c) x(c)≤x(c)≤x(c)1
x(c)≥x(c)
逆向指标一般采用下面的无量纲化标准函数:
yi=0 x(c)≤x(c) x(c)≤x(c)≤x(c)1
x(c)≥x(c)
适度指标一般采用下面的函数进行无量纲化处理:
yi=
其中,q为该指标的最适合值。
4.训练函数的选择。由于输入层变量和输出层变量不成线性关系,所以隐含层一般选择Sigmoid函数为激励函数,即f(x)=,实现输入层和输出层的非线性映射。
5.BP神经网络的训练和终止。在该模型中,我们引入动量批梯度下降函数,即一种批处理的前馈神经网络训练方法,不但提高了收敛速度,而且引入了一个动量项,有效避免了局部最小问题在网络训练中的出现。我们先将85%-90%的训练样本的指标值输入网络,按照公式一层一层的计算隐含层神经元和输出层神经元的输入和输出,当神经网络的输出值和实际输出值的均方误差超过某一阈值,则将误差函数沿输出层、隐含层、输入层反向传递,调整神经网络各个神经元的阈值和各层连接权值,使误差函数不断减小。在训练网络的过程中,训练一定次数后就停下来,用保留的15%-10%的测试样本检验此时网络的测试误差,当测试误差下降到目标误差精度以下时,则停止训练,此时则为最佳训练次数,模型输出值和实际输出值实现最优拟合。
6.目标品牌竞争力大小的评估。将要预测的品牌的指标值输入训练好的BP神经网络,该模型就能相对客观地对该品牌的竞争力进行评估,输出层的输出值就是该品牌竞争力的判定值,通过判定值可知品牌竞争力的强弱(整个流程见图1)。
四、结束语
品牌的研究在中国还将走得更远,本文在现有研究的基础上提出将品牌竞争力的量化评估与人工智能进行简单结合,克服评估工作过程中人为因素的主观性及相关权数计算的复杂性,提高品牌竞争力评估的可信性与客观性,使评价结果更客观反映企业品牌建设的真实状况,为企业诊断品牌经营问题,打造核心竞争力经营决策提供更可靠的信息支持。
参考文献:
1.蒋亚奇,张亚萍.基于层次分析法的企业品牌竞争力评价与测度研究[J].经济研究导刊,2011(8).
2.王文川等.品牌竞争力模糊灰色综合评价方法研究[J].统计与决策,2010(6).
3.周玫.基于顾客忠诚的品牌竞争力评价分析[J].当代财经,2005(9).
4.范秀成.品牌权益及其测评体系分析[J].南开管理评论,2000(1).
5.李煜华等.基于BP神经网络的老工业基地企业核心竞争力的综合评价[J].商业研究,2006(5).
6.许晓泓.品牌竞争力开放度评估方法的建构[J].绿色财会,2006(8).
7.陈宝忠.我国企业品牌竞争力研究[D].南昌大学,2005(6).
8.卢泰宏.品牌资产评估的模型与方法[J].中山大学学报(社会科学版),2002(3).
9.张启胜等.品牌竞争力的评价指标体系、模型及应用[J].企业家天地?理论版,2006(4).
篇5
关键词:车门;抗凹刚度;下垂刚度;径向基函数神经网络;轻量化
中图分类号:U463.83文献标文献标识码:A文献标DOI:10.3969/j.issn.2095-1469.2015.02.08
Abstract:To realize the lightweight car door of a truck obtained by using a reverse design method, an approximate neural network model was established based on radial basis functions, taking as input the thickness of key components acquired by parameter identification and taking as output the stiffness and the quality of the door. On the basis of the approximate model and ASA algorithm, a lightweight door was achieved by regarding thickness of the components as design variables, satisfying the dent resistance stiffness and sagging stiffness as constraint conditions and setting target on the minimum weight. It was possible to reduce 0.81kg without decreasing the dent resistance stiffness and sagging stiffness. The application of the RBF neural network shortened the time of the lightweight design.
Key words:truck door; dent resistance stiffness; sinkage stiffness; radial basis function neural network; lightweight
在汽车设计过程中,逆向工程发挥着重要作用。逆向工程技术的出现克服了传统设计过程中样件制作和试验耗费时间过长的问题[1]。但是,仅仅通过逆向设计得到的产品往往不能满足实际的设计要求,需要在其基础上进行深入的性能分析和优化设计,以完善设计方案。本文研究的车门由逆向工程设计得到,共包含27个钣金件,各钣金件的厚度值基本与标杆车相同。本文力图通过分析各钣金件厚度对车门性能的影响情况,重新合理地布置各钣金件的厚度分配,最终实现车门的轻量化设计。
常用的车门钣金件厚度的优化方法主要包括灵敏度优化和最优化方法。灵敏度优化主要是辨识输入变量对输出响应的影响程度,根据灵敏度分析结果,合理地调整零部件的厚度,改善车门性能,实现车门轻量化[2]。但是,灵敏度优化得到的方案往往只是一个改善的解,而不是一个全局最优解。最优化方法则是采用优化算法,在设计变量的可行性设计空间中搜寻最优解,优化方案较灵敏度优化方案往往更好。但是,优化工作如果使用优化算法直接驱动仿真程序进行寻优,通常需要较长的仿真优化时间,对于复杂的模型往往不太现实[3]。
为了克服最优化方法的这一缺点,本文引入基于RBF的神经网络近似模型来代替有限元仿真计算模型进行优化分析,这种方法在以往的车门轻量化研究中应用较少。首先,在有限元模型的基础上,通过试验设计(Design of Experiments,DOE)分析得到了各钣金件厚度对车门性能的影响,筛选出对于优化工作较为重要的板件厚度值,作为优化工作的对象,缩减优化规模。其次,在设计空间内,通过DOE采样,建立了可信度较高的基于RBF的神经网络近似模型,以近似模型代替高强度的仿真计算,在其基础上进行车门轻量化设计,大大缩短了优化设计工作的时间。本文车门轻量化设计研究流程如图1所示。
1 车门性能分析
根据企业的车门系统设计技术规范,为了保证车门性能的要求,分别设计了车门的抗凹工况、下垂工况的刚度试验与有限元仿真分析,分析车门初始方案的性能。
1.1 车门抗凹工况
1.1.1 抗凹刚度试验
为了分析逆向设计得到的车门初始方案的性能,同时为有限元模型的建立提供依据,搭建了车门抗凹刚度试验台,如图2所示。试验中,在门锁和车门铰链安装位置处,将车门固定在试验台上。沿车门窗折边下沿斜线,绘制10 cm间隔网格线,作为车门外表面备选测点(图2)。通过观察,根据经验及通过手压法辨识出8个变形较大的位置点,作为试验时的测点。在每个测点处,分别逐级施加载荷,载荷的最大值根据实际测量过程的加载变形状况调整,通过DH3816应变测试系统采集该测点处水平方向位移数据,每个测点进行3次试验,取3次试验的平均值作为最后的试验结果,试验结果见表1。
1.1.2 抗凹刚度仿真分析
将车门的CAD几何模型导入到Hypermesh中,通过模型简化后,建立了车门的有限元模型。如图3所示,有限元模型单元总数为15 227,车门总质量为23.68 kg。
在抗凹工况仿真中,有限元模型的约束方式与试验条件相同,分别约束车门铰链安装位置和门锁处6个方向的自由度。在对应的8个测点处分别施加相应的载荷(取抗凹试验时相应加载点载荷的最大值),测量加载点水平方向的最大位移,计算得到8个点的抗凹刚度。抗凹刚度的计算如式(1)所示。
。
式中,Ki为第i个测点的抗凹刚度,N/mm;Fi为第i个点的加载载荷,N;yi为第i个点的最大变形量,mm;
表1给出了试验分析和仿真分析中,各测点的最大加载载荷、最大变形量、抗凹刚度的对比。
1.2 车门下垂工况
1.2.1 下垂刚度试验
试验中,在车门铰链安装位置处,将车门通过铰链固定在下垂刚度试验台上,车门开度为0,如图4所示。在门锁位置,逐级施加载荷,载荷的最大值根据实际测量过程的加载变形状况调整,通过DH3816应变测试系统采集车门下边缘处垂向位移数据,进行3次试验,取3次试验的平均值作为最后的试验结果,试验结果见表2。
1.2.2 下垂刚度仿真分析
在下垂刚度仿真中,有限元模型的约束方式与试验条件相同,约束车门铰链安装位置6个方向的自由度,在门锁处施加垂向载荷,载荷大小为966 N(取下垂试验时门锁加载载荷的最大值)。测量车门下边缘处10个点的Z向位移,取10个测点位移的最大值作为下垂工况车门的变形量,用于计算车门下垂刚度。下垂刚度的计算如式(2)所示。表2给出了下垂工况仿真与试验的数据对比。
。
式中,KZ为车门的下垂刚度,N/mm;FZ为下垂工况的垂向载荷,N;Zi为车门下沿第i点的变形量,mm。
由表1分析可知,仿真计算得到的车门抗凹刚度性能与试验情况基本一致。由表2分析可知,仿真计算得到的车门下垂刚度与试验存在稍许的误差,这是由下垂试验与仿真中测点选择不完全一致引起的。试验过程中,测点选择下沿某点,但是在实际的测量过程中,该点会产生相对滑动;仿真过程中,考虑到试验测点位置的滑动,下垂位移选取的是下沿8个测点位移的最大值,计算得到的刚度值会小于试验值,但刚度值更可信。这表明所建立的有限元模型可信度较高,能够用于后期的优化工作。
2 关键参数辨识
本文研究的车门是由逆向设计得到的,车门各钣金件的初始厚度值基本与标杆车相同。为了探究车门各零部件厚度对车门性能的影响,辨识关键因子,缩减优化设计的规模,为后期的结构改型提供依据,首先安排了试验设计探究各零部件厚度对车门性能的影响情况。
通过优化拉丁超立方采样技术,以所有的零部件板厚作为输入变量,以车门的抗凹刚度、下垂刚度以及质量作为响应。通过仿真计算,得到100组样本点,通过贡献率分析,得到了各零部件板厚对于车门性能的影响情况[4],如图5所示(以板厚对8号测点抗凹刚度的影响情况)。
由图5可知,车门外板对8号测点的抗凹刚度性能的影响最为重要。某些零部件板厚对抗凹刚度的贡献率很小,几乎可以忽略不计。综合考虑27个零部件厚度对车门下垂刚度、抗凹刚度以及质量的影响,最终选择其中的22个零部件厚度作为下一步优化分析工作的设计变量。
3 RBF神经网络
近似模型方法是通过数学模型逼近一组输入变量与输出变量的方法。基于近似模型进行优化设计工作的优势在于:减少耗时的仿真程序的调用,提高优化效率,通常可将实际求解时间缩短几个数量级;建立经验公式,获得输入、输出变量之间的量化关系;降低仿真分析的噪声,更快地收敛到全局最优解。常用的近似模型主要包括响应面法、切比雪夫正交多项式、克里格模型、神经网络模型等[5]。其中,神经网络模型具有很强的逼近复杂非线性函数的能力,且具有较强的容错功能,即使样本中含有“噪声”输入,也不影响模型的整体性能。
3.1 RBF神经网络模型
1943年,McCulloch和Pitts建立了第1个人工神经网络模型[6]。1947年,Weissinger第1次将径向基函数应用到求解羽翼周围的流场问题[7]。1988年,Broomhead和Lowe将径向基函数模型技术命名为“神经网络”,随后神经网络近似模型技术广泛地应用到各个方面[8]。从20世纪90年代开始,Kansa对于径向基函数做了大量的研究工作与应用[9]。
在径向基函数神经网络模型中,假设为一组已知的输入向量(即分析任务中定义的设计变量),为对应的已知的输出值(即分析任务中目标性能值)。用于近似估计未知点的基于径向基函数的差值模型表述为式(3)所示:
式中,为神经网络近似模型建立过程中根据样本点数据求解得到的径向基函数差值模型系数。通过求解式(4)和式(5)定义的N+1个线性方程,即可求得N+1个未知的系数 。
函数;为待测点与样本点的欧几里得距离;
c为样条形状参数,c的取值直接影响到近似模型的可信度,通常0.2
3.2 车门性能的神经网络模型
在近似模型的建立过程中,样本点往往是通过试验设计采样的方法获得的。试验设计采样方法包括正交试验、部分因子试验、拉丁超立方试验、优化拉丁超立方试验等。其中,优化拉丁超立方设计可以使样本点尽量均匀地分布在设计空间,具有非常好的空间填充性和均衡性。
本文近似模型的输入为参数辨识分析中得到的22个关键零厚度,输出为车门的目标性能,包括下垂刚度和8个测点的抗凹刚度。采用优化拉丁超立方抽样技术,共安排400次仿真试验,在OptiStruct中计算得到400组样本点。
在Isight中建立了基于径向基函数的神经网络近似模型,以8号点抗凹刚度性能的近似模型为例,如图6所示,x坐标为上横梁内板的厚度值,y坐标为门锁挂钩板的厚度值,z坐标为8号点的抗凹刚度。
3.3 神经网络模型的精度验证
近似模型可以代替耗时的仿真程序,提高优化效率。但是,近似模型只有在保证具有足够高的预测精度和可信度的前提下,才可以代替实际的仿真程序。在进行近似模型精度分析时,往往是将样本点的输出与近似模型计算得到的输出进行统计分析,评价指标主要包括平均误差、最大误差等。
为了验证所建立的车门性能神经网络模型的精度,选取了所有400个样本点作为误差分析点,将目标性能的实际值与近似模型计算值进行对比分析,计算得到各性能指标近似模型的平均误差均小于0.045,可信度较高。以减重质量近似模型的预测值与实际值的对比为例,如图7所示。
图7中,横坐标为减重质量的近似模型预测值,纵坐标为相同板厚设计方案下减重质量的真实值。由图可知,近似模型的预测值基本等于实际值,近似模型可信度较高。综上所述,该近似模型可以有效地代替仿真计算。
4 基于近似模型的车门轻量化
4.1 优化问题定义
优化是在约束条件下寻找最优解,典型的优化问题数学模型可以定义为
目标函数:。
约束条件: 。
设计变量: 。
根据实际经验,在板件厚度的优化过程中,当板件的初始厚度小于1.5 mm时,板件厚度增厚与减薄的最大尺寸分别不超过0.2 mm和0.1 mm。当板件的初始厚度大于1.5 mm时,板件厚度增厚与减薄的最大尺寸分别不超过0.2 mm。22个设计变量的初始值及取值范围见表3。
在车门轻量化设计过程中,必须保证车门的性能不能违反设计要求。因此,车门优化设计方案的下垂刚度与8个测点处的抗凹刚度不能小于初始刚度。约束条件的具体设置见表4。
4.2 车门轻量化实例
以车门板件的厚度为设计变量,以车门性能为约束条件,以车门减重质量最大为目标,用精确度较高的径向基函数神经网络模型代替耗时的仿真计算,进行车门轻量化设计。优化算法选择的是模拟退火算法,其思想是由Metropolis提出的[11]。在优化设计中,最大迭代次数为50 000次,每5步检查一次收敛性,温度参数下降的相对比率为1,温度损失函数下降的相对比率为1,损失函数淬火相对速率为1。
经优化迭代,对比优化方案,最终选择第45 294次优化方案。设计变量的初始值、优化值对比如表5所示。
为了验证近似模型优化方案的精确度,将最终的设计变量厚度值代入有限元模型中,通过仿真计算得到车门的各项性能值。将近似模型计算结果与仿真分析结果进行对比见表6。
通过仿真验证,基于近似模型计算得到的优化方案性能较为可信。将优化方案性能与初始方案性能对比分析可知,优化方案的性能没有下降,反而有所提高。由表5和表6可知,通过合理地重新布置车门各板件厚度,在保证车身各性能不降低的前提下,实现减重0.813 kg。因此,通过合理地重新分配车门各钣金件的厚度值,能够使各钣金件发挥最大作用,实现车门性能的提高与轻量化设计。
4.3 优化工作时间统计
基于RBF神经网络近似模型的车门轻量化设计耗时量与优化算法直接驱动仿真程序计算的耗时量对比见表7。由表7可知,基于近似模型的优化设计可以有效地缩短优化设计所需要的时间,加快产品的研发进程。
5 结论
(1)基于近似模型进行车门的轻量化设计工作,可以有效地减少求解计算时间,节省的时间达到了几个数量级。
(2)基于RBF的神经网络近似模型具有很强的逼近复杂函数的能力,具有较强的容错能力,能够有效地减少样本“噪声”的影响,具有很高的可信度。
(3)在车门的逆向设计产品过程中,通过合理地优化设计,探究各零部件厚度对于车门性能的影响,重新合理地分配各零部件的厚度,能够使车门具有更好的性能指标,同时也可以实现车门的轻量化设计。本文基于实际的试验工况,仅考虑了抗凹刚度与下垂刚度仿真进行车门轻量化设计。同时,如若增加车门的模态工况、疲劳耐久性分析、NVH分析等,对于车门性能开发更加有利。
参考文献(References):
陆佳平,薛克敏,汪昌盛. 逆向工程在汽车覆盖件设计中的应用[J]. 合肥工业大学学报(自然科学版), 2006,29(3):278-280.
篇6
论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究
课题来源:单位自拟课题或省政府下达的研究课题
选题依据:
技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。
二、本课题国内外研究现状及发展趋势
现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。
(1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-B·t)])及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:Y=L·exp(-B·t))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。
(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。
(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。
趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。
目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究
之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。
这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础,BP神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。
据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。
三、论文预期成果的理论意义和应用价值
本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。
本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于BP神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。
四、课题研究的主要内容
研究目标:
以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。
研究内容:
1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。
2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。
3、基于BP神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以BP神经网络为基础,构建基于多因素的技术创新预测和评估模型。
4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。
5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于BP神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。
6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于BP神经网络的技术创新预测和评估技术进行实证研究。
创新点:
1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。
2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。
五、课题研究的基本方法、技术路线的
可行性论证
1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。
2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。
3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。
4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。
六、开展研究已具备的条件、可能遇到的困难与问题及解决措施
本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。
七、论文研究的进展计划
2003.07-2003.09:完成论文开题。
2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。
2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。
2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。
2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。
2004.04-2004.06:完成论文写作、修改定稿,准备答辩。
主要参考文献:
[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998
[02]吴贵生.技术创新管理.北京:清华大学出版社2000
[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997
[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.2000/2.
[05]王亚民、朱荣林.风险投资项目ECV评估指标与决策模型研究.风险投资.2002/6
[06]赵中奇、王浣尘、潘德惠.随机控制的极大值原理及其在投资决策中的应用.控制与决策.2002/6
[07]夏清泉、凌婕.风险投资理论和政策研究.国际商务研究.2002/5
[08]陈劲、龚焱等.技术创新信息源新探.中国软科学.2001/1.pp86-88
[09]严太华、张龙.风险投资评估决策方法初探.经济问题.2002/1
[10]苏永江、李湛.风险投资决策问题的系统分析.学术研究.2001/4
<11>孙冰.企业产品开发的评价模型及方法研究.中国管理科学.2002/4
[12]诸克军、杨久西、匡益军.基于人工神经网络的石油勘探有利性综合评价.系统工程理论与实践.2002/4
[13]杨力.基干BP神经网络的城市房屋租赁估价系统设计.中国管理科学.2002/4
[14]杨国栋、贾成前.高速公路复垦土地适宜性评价的BP神经网络模型.统工程理论与实践.2002/4
[15]楼文高.基于人工神经网络的三江平原土壤质量综合评价与预测模型.中国管理科学.2002/1
[16]胥悦红、顾培亮.基于BP神经网络的产品成本预测.管理工程学报.2000/4
[17]陈新辉、乔忠.基于TSA-BP神经网络的企业产品市场占有率预测模型.中国农业大学学报.2000/5
[18]刘育新.技术预测的过程与常用方法.中国软科学.1998/3
[19]温小霓、赵玮.市场需求与统计预测.西安电子科技大学学报.2000/5
[20]朱振中.模糊理论在新产品开发中的应用.科学管理研究.2000/6
[21]KimB.Clark&TakahiroFuj
imoto.ProductDevelopmentPerformance–Strategy、OrganizationandManagementinIndustry.HarvardBusinessSchoolPress.Boson1993
[22]GobeliDH,BrownDJ.Improvingtheprocessofproductinnovation.Research,TechnologyManagement,1993.36(2):46-49
[23]SimonJ.Towner.Fourwaystoacceleratenewproductdevelopment.LongRangPlanning1994.27(2):57-65
[24]AbdulAli,etal.Productinnovationandentrystrategy.JournalofProductInnovationManagement1995.12(12):54-69
[25]EricVinHippel.ThesourcesofInnovation.OxfordUniversityPress.1988
[26]ShtubA,ZimermanY.Aneural-network-basedapproachforestimatingthecostofassembly.InternationalJournalofProductionEconomics,1993.32:189-207
[27]Wee-LiangTan,DattarreyaG.Allampalli,InvestmentCriteriaofSingaporeCapitalists,1997InternationalCouncilforSmallBusiness,SanFrancisco,California,June1997
[28]MichaelHenos,TheRoadtoVentureFinancing:GuidelinesforEntrepreneuts,R&DStraregistMagazine,Summer1991
[29]ChowGC,TheLargrangeMethodofoptimizationwithapplicationstoportfoliandinvestmentdecisions.JofEconomicDymamicsandControl1996
[30]Jensen,R..InformationCostandInnovationAdoptionPolicies,ManagementScience.Vol.34,No.2,Feb,1988
[31]R.K.Zutshi,T.W.Liang,D.G.Allampulli,SingaporeVentureCapitalistsInvestmentEvaluationCriteria:AReexamination.SmallBusinessEconomics13:9-26(1999)
篇7
Abstract: Tourist quantity prediction has an important role in development of tourist industry, so it is benefit to make development planning and policy of tourist site. Aiming at the defects of BP artificial neural network, combined with Differential Evolution Algorithm, the paper proposes a tourist quantity prediction model based on DE-BP neural network. We analyse and forecast the data change trend of China's inbound tourists, and get satisfactory results.
关键词:差异演化算法;神经网络;入境游客;预测
Key words: Differential Evolution(DE);neural network;inbound tourist;prediction
中图分类号:F59 文献标识码:A文章编号:1006-4311(2010)34-0155-01
0引言
在现代旅游管理的研究中,随着旅游经济量化水平的不断提高,使得众多学者开始利用数学模型对旅游行业的发展趋势进行预测,客源预测就是其中一个重要的方面。本文在BP神经网络预测模型[1]中引入差异演化算法[2,3],构造出基于DE-BP神经网络的旅游客源预测模型,为旅游客源预测提供一种新的求解途径。
1BP神经网络模型和DE算法
BP算法,也称为反向传播算法。它是一种具有三层或者三层以上的阶层型前向神经网络(输入层、中间层、输出层),其主要思想是从后向前(反向)逐层传播输出层的误差,以间接算出隐层误差。算法分为两个阶段:第一阶段(正向过程)输入信息从输入层经隐层逐层计算各单元的输出值;第二阶段(反向传播过程)输出误差逐层向前算出隐层各单元的误差,并用此误差修正前层权值,本文采用三层结构网络。
DE算法是基于实数编码的演化算法,它的整体结构类似于遗传算法(GA),与遗传算法的主要区别在于变异操作上,DE的变异操作是基于染色体的差异向量讲行的,其余操作和遗传算法类似,也包括生成初始种群、变异操作、交叉操作和选择操作。运用DE对神经网络权值讲行优化,较GA能有效地跳出局部最优值,克服GA的早熟现象。
2DE-BP神经网络模型及其应用
将DE和BP神经网络相结合,主要思想是运用DE操作保证搜索是在整个解空间进行的,同时寻优讨程不依赖于种群初始值的选择,将权值和阈值精确到一个很小的范围,然后用BP操作保证得到精确的网络权值。
针对我国入境游人数进行预测,采用1995年-2004年的数据[4]作为BP神经网络的训练样本。首先对样本数据进行学习,预测2005年的入境游人数,然后将训练样本向前推进一个,用1996年-2005年的数据进行学习,对2006年的数据进行预测;依次直至预测到2012年为止。
DE-BP神经网络参数取值为:神经网络输入结点数8;中间层结点数6;输出层结点1;种群大小50;交叉概率0.7;变异概率0.02;最大进化代数100。
采用DE-BP神经网络的预测结果与BP神经网络、一元多项式回归法预测结果对比,如表1所示。
同时,我们采用平均绝对误差(MAE)、平方差(SSE)、均方差(MSE)和预测精度(PA)等四个指标对不同方法得到的预测数据进行评价,如表2所示。
3结论
在BP人工神经网络和差异演化算法的基础上,构造了DE-BP神经网络预测模型,并采用该算法对旅游客源讲行预测,并将预测结果与BP神经网络以及一元多项式回归模型预测结果讲行对比,表明该算法在预测精度上较其他两种算法有明显的提高。本文所提出的DE-BP神经网络预测模型不仅可以预测旅游客源,还可以对旅游业中其它指标进行预测,同时对于其它行业类似问题也有一定的借鉴意义。
参考文献:
[1]孙燕平,张琳,吕仁义.旅游客源预测的神经网络方法[J].人文地理,2002,17(6):50-52.
[2]张文修.遗传算法的数学基础[M].西安:西安交通大学出版社,2003.
篇8
关键词:小波变换 神经网络 负荷预测 数据预处理
中图分类号:TM715 文献标识码:A 文章编号:1007-9416(2012)07-0073-02
1、引言
电力负荷预测是电力管理系统调度及用电等部门的一项非常重要的工作,电力负荷的预测准确度对电网运行的安全性和经济性等因素有着直接而重要的影响[1]。长期以来,国内外大量学者对这一课题进行了广泛的研究,传统的基于特定线性数学模型的方法在电力负荷预测方面有一定的缺陷[2]。神经网络具有很好的非线性处理能力,该模型通过对训练样本集的学习,得到历史数据间的规律,建立起从输入数据到输出数据的映射关系,在此模型上可以较好地得到预测结果。
电力负荷预测的精确度还与历史电力负荷值有很大的关系,所以应对历史电力负荷值进行必要的预处理,避免因部分历史数据的随机性和跳跃性而影响到电力负荷预测的精度[3]。小波变换在信号去噪方面有优良性能,本文对历史电力负荷数据进行小波去噪预处理,然后用神经网络模型对负荷数据进行建模预测,实验结果表明文中的算法能够有效提高电力负荷的预测精度。
2、小波阈值去噪
不同日期同一时间点的电力负荷值具有较强的相关性及连续性,而在电力负荷值的采集过程中,必然存在一定的噪声因素,所以对不同日期同一时间点组成的一维电力负荷值进行小波去噪处理,更有利于电力负荷预测。
2.1 小波阈值去噪基本原理
设含有噪声的信号为[4]
其中,f (t )为原始信号,n (t )为方差的Gaussian白噪声,服从,对一维信号S (t )进行离散采样,得到N点的离散信号S (n)(n=0,1,…,N-1)。
1992年,Donoho和Johnostne提出了小波阈值去噪方法, 信号消噪的过程可分为三个步骤进行:
(1)一维信号的小波分解。选择一个小波并确定小波分解的层次K,然后对信号S (n) (n=0,1,…,N-1)进行K层小波分解,得到一组小波系数(ca[1],cd[1],ca[2],cd[2],ca[3],cd[3]…ca[k],cd[k]),ca[k],cd[k]是小波k层分解后的低频系数和高频系数。
(2)对小波分解后的高频系数的阀值量化,从第1层到第K层的高频系数选择一个阀值进行阀值量化处理,其中阈值的选择是关键。
(3)一维小波的重构。根据小波分解的第K层的低频系数和经过量化处理后的第1层到第K层的高频系数,进行一维信号的小波重构。
2.2 阈值及阈值函数的选择
含噪信号的小波阈值去噪过程中,阈值选取是否适当决定了去噪效果的优劣。固定阈值准则因其阈值选择相对简单,并且效果较好,得到了普遍的应用,本文采用VisuShrink提出的全局阈值去噪方法来确定阈值门限T,计算公式如下:
其中为噪声标准,N为信号的长度。
可以通过分解后的小波高频系数的绝对值中值来确定,计算方法如下:
cd是cd [i ]绝对值的中值,i ={1、2、3…k},k为小波分解层数。
传统的阈值函数总体分为硬阈值函数和软阈值函数,硬阈值函数和软阈值函数在去噪处理时均有一定的缺陷,有学者将软阈值和硬阈值结合提出了一种改进的半软阈值函数,效果较好,其数学表达式如下:
文中用半软阈值函数进行实验仿真。
3、BP神经网络结构及算法
BP网络是一种单向传播的多层前向网络,它由输入层、隐层和输出层组成,隐层可以为单层或多层,同层节点中没有任何耦合,BP神经网络是一种有监督的学习。BP网络采用有导师的训练,其学习过程有四部分[5]:
(1)正向传播,输入信号从输入层节点依次经过隐层节点,然后传到输出节点,每层节点的输出只影响下一层节点的输出。
(2)反向传播算法,通过计算各层的实际输出与目标的差值,把误差信号反响传回,进而修正各层神经元的权值,使误差最小话。
(3)“正向传播”和“反向传播”交替进行网络“记忆训练”过程。
(4)网络趋向收敛,即网络的全局误差趋向极小值的学习收敛过程。
神经网络通过不断调整神经元的权值,实现误差最小化,理论证明,当隐层的神经元数目足够多时,可以任意精度的逼近任何一个具有有限间断点的非线性函数。
4、基于小波去噪和BP神经网络的电力负荷预测流程
综上所述,将小波阈值去噪用于电力负荷的预处理,并用BP神经网络对电力负荷进行预测的基本步骤如下:
步骤1:对不同时期同一时间点组成的一维电力负荷值进行小波去噪处理,选择去噪效果较好的db4小波基进行处理。
步骤2:对去噪后的电力负荷值进行BP神经网络训练。
步骤3:利用训练好的神经网络对目标日期的电力负荷值进行预测。
5、实验及结果分析
5.1 电力负荷原始数据
本文采用文献[6]中哈尔滨市1995年到2008年的电力负荷值作为实验数据,数据已经归一化处理,单位为万千瓦时。
5.2 实验研究
(1)对1995-2007年每个月的电力负荷值进行小波去噪处理。
(2)利用1995-2006年12个月的数据作为BP神经网络的输入,1996-2007年12个月的数据作为神经网络的训练输出,即神经网络的输入层共有12个神经元, 输出层为12个月的电力负荷值,输出层也为12个神经元,经过实验,选择训练效果较好的神经元个数为25的隐层,对神经网络进行训练。
(3)将2007年12个月的电力负荷值输入已经训练好的神经网络,进行2008年12个月电力负荷值的预测。
5.3 实验结果分析
由于平均绝对误差(MAE)、均方误差平方根(RMSE)和平均绝对百分比误差(MAPE)这三个指标可以有效反应预测模型的预测精度,实验中计算了不同预测模型与实际值的MAE、RMSE及MAPE指标值,结果表1所示。从表中可反映出,本文算法在三个指标上均优于对照模型,是一种有效的电力负荷预测方法。
6、结语
本文提出了一种基于小波去噪和BP神经网络的电力负荷预测方法,先对不同时期同一时间点的历史电力负荷数据进行小波去噪处理,然后对去噪后的数据进行BP神经网络训练,最后利用历史数据对电力负荷值作出预测,实验结果表明,本文方法得到的预测值与实际数据拟合程度高,起伏度小,是一种较好的电力负荷预测方法。
参考文献
[1]CHEN JIyi,LI Wenyuan,LAU Adriel, etal. Automated load curve data cleansing in power systems[J].IEEE Trans on Amart Grids,2010,1(2):213-221.
[2]李永斌.短期电力负荷预测模型的建立与应用[J].计算机仿真,2011,28(10):316-319.
[3]童述林,文福拴,陈亮.电力负荷数据预处理的二维小波阈值去噪方法[J].电力系统自动化,2012,36(2):101-105.
[4]张莲,秦华峰,余成波.基于小波阈值去噪算法的研究[J].计算机工程与应用,2008,44(9):172-173.
[5]李眉眉,丁晶,覃光华.基于混沌分析的BP神经网络模型及其在负荷预测中的应用[J].四川大学学报(工程科学版),2004, 36(4):15-18.
[6]张涛.基于小波神经网络的电力系统负荷预测[D].哈尔滨:哈尔滨理工大学,2009.3.
篇9
论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究
课题来源:单位自拟课题或省政府下达的研究课题
选题依据:
技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。
二、本课题国内外研究现状及发展趋势
现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。
(1)趋势外推法。指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势和规律将继续的前提下, 将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家Raymond Pearl提出的Pearl曲线(数学模型为: Y=L∕[1+A?exp(-B·t)] )及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为: Y=L·exp(-B·t))皆属于生长曲线, 其预测值Y为技术性能指标, t为时间自变量, L、A、B皆为常数。Ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的人数成正比, 主要适用于新技术、新产品的扩散预测。
(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果关系模型, 预测技术的发展变化。相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。
(3)专家预测法。以专家意见作为信息来源, 通过系统的调查、征询专家的意见, 分析和整理出预测结果。专家预测法主要有: 专家个人判断法、专家会议法、头脑风暴法及德尔菲法等, 其中, 德尔菲法吸收了前几种专家预测法的长处, 避免了其缺点, 被认为是技术预测中最有效的专家预测法。
趋势外推法的预测数据只能为纵向数据, 在进行产品技术创新预测时, 只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势, 并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中, 对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推, 而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测, 但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式, 而所得到的回归预测模型往往只能考虑少数几种主要影响因素, 略去了许多未考虑的因素, 所以, 所建模型对实际问题的表达能力也不够准确, 预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验, 往往带有主观性, 难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献, 为企业技术创新的预测提供了科学的方法论, 但在新的经济和市场环境下, 技术创新预测的方法和技术应有新的丰富和发展, 以克服自身的不足, 更进一步适应时展的需要, 为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。
目前,在我国企业技术创新评估中, 一般只考虑如下四个方面的因素: (1) 技术的先进性、可行性、连续性; (2) 经济效果; (3) 社会效果; (4) 风险性, 在对此四方面内容逐个分析后, 再作综合评估。在综合评估中所用的方法主要有: Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等, 但技术创新的评估是一个非常复杂的系统, 其中存在着广泛的非线性、时变性和不确定性, 同时, 还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法, 难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究, 在我国的历史还不长, 无论是指标体系还是评估方法, 均处于研究之中, 我们认为目前在企业技术创新评估方面应做的工作是: (1) 建立一套符合我国实际情况的技术创新评估指标体系; (2) 建立一种适应于多因素、非线性和不确定性的综合评估方法。
这种情况下, 神经网络技术就有其特有的优势, 以其并行分布、自组织、自适应、自学习和容错性等优良性能, 可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题, 它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础, BP神经网络由输入层、隐含层和输出层构成, 各层的神经元数目不同, 由正向传播和反向传播组成, 在进行产品技术创新预测和评估时, 从输入层输入影响产品技术创新预测值和评估值的n个因素信息, 经隐含层处理后传入输出层, 其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置, 考虑了概括性和动态性, 力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素, 尽管是黑匣子式的预测和评估, 但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合, 输出一个经非线性变换后较为精确的预测值和评估值。
据文献查阅, 虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等, 但尚未发现将神经网络应用于技术创新预测与评估方面的研究, 在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下, 以神经网络为基础来建立产品技术创新预测与评估模型, 是对技术创新定量预测和评估方法的有益补充和完善。
三、论文预期成果的理论意义和应用价值
本项目研究的理论意义表现在: (1) 探索新的技术创新预测和评估技术, 丰富和完善技术创新预测和评估方法体系; (2) 将神经网络技术引入技术创新的预测和评估, 有利于推动技术创新预测和评估方法的发展。
本项目研究的应用价值体现在: (1) 提供一种基于多因素的技术创新定量预测技术, 有利于提高预测的正确性; (2)提供一种基于BP神经网络的综合评估方法, 有利于提高评估的科学性; (3) 为企业的技术创新预测和评估工作提供新的方法论和实用技术。
四、课题研究的主要内容
研究目标:
以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型, 并建立科学的预测和评估指标体系及设计相应的模型计算方法, 结合企业的具体实际, 对指标和模型体系进行实证分析, 使研究具有一定的理论水平和实用价值。
研究内容:
1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手, 密切结合电子商务和知识经济对企业技术创新的影响, 系统综合地分析影响产品技术创新的各相关因素, 建立科学的企业技术创新预测和评估指标体系, 并研究其量化和规范化的原则及方法。
2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时, 需要一组决定其相对重要性的初始权重, 权重的确定需要基本的原则作支持。
3、基于BP神经网络的技术创新预测和评估模型研究。 根据技术创新预测的特点, 以BP神经网络为基础, 构建基于多因素的技术创新预测和评估模型。
4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点, 设计其相应的计算方法。
5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料, 构建基于BP神经网络的技术创新预测和评估模型的学习样本, 对预测和评估模型进行自学习和训练, 使模型适合实际情况。
6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景, 对基于BP神经网络的技术创新预测和评估技术进行实证研究。
创新点:
1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面, 一种是采用传统的指标体系, 另一种是采用国外先进国家的指标体系, 如何结合我国实际当前经济形势, 参考国外先进发达国家的研究工作, 建立一套适合于我国企业技术创新预测和评估指标体系, 此为本研究要做的首要工作, 这是一项创新。
2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能, 能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题, 本项目首次将神经网络技术引入企业的技术创新预测和评估, 这也是一项创新。
五、课题研究的基本方法、技术路线的可行性论证
1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素, 并研究影响因素间的内在联系, 确定其相互之间的重要度, 探讨其量化和规范化的方法, 将国外先进国家的研究成果与我国具体实际相结合, 建立我国企业技术创新预测和评估的指标体系。
2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中, 发现问题、分析问题, 归纳和总结出具有共性的东西, 探索技术创新预测与宏观因素与微观因素之间的内在关系。
3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究, 先从某一行业出发, 定义模型的基本输入因素, 然后, 逐步扩展, 逐步增加模型的复杂度。
4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合, 进行实证研究, 在实践中丰富和完善, 研究出具有科学性和实用性的成果。
六、开展研究已具备的条件、可能遇到的困难与问题及解决措施
本人长期从事市场营销和技术创新方面的研究工作, 编写出版了《现代市场营销学》和《现代企业管理学》等有关著作, 发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文, 对企业技术创新的预测和评估有一定的理论基础, 也从事过企业产品技术创新方面的策划和研究工作, 具有一定的实践经验, 与许多企业有密切的合作关系, 同时, 对神经网络技术也进行过专门的学习和研究, 所以, 本项目研究的理论基础、技术基础及实验场所已基本具备, 能顺利完成本课题的研究, 取得预期的研究成果。
七、论文研究的进展计划
2003.07-2003.09:完成论文开题。
2003.09-2003.11:影响企业技术创新发展的指标体系研究及其量化和规范化。
2003.11-2004.01:基于BP神经网络的技术创新预测和评估模型的构建。
2004.01-2004.03:基于BP神经网络的技术创新预测和评估模型计算方法研究。
2004.03-2004.04:基于BP神经网络的技术创新预测和评估模型体系的实证研究。
2004.04-2004.06:完成论文写作、修改定稿,准备答辩。
主要参考文献
[01] 傅家骥、仝允桓等. 技术创新学. 北京: 清华大学出版社 1998
[02] 吴贵生. 技术创新管理. 北京: 清华大学出版社 2000
[03] 柳卸林. 企业技术创新管理. 北京: 科学技术出版社 1997
[04] 赵志、陈邦设等. 产品创新过程管理模式的基本问题研究. 管理科学学报. 2000/2.
[05] 王亚民、朱荣林. 风险投资项目ECV评估指标与决策模型研究. 风险投资. 2002/6
[06] 赵中奇、王浣尘、潘德惠. 随机控制的极大值原理及其在投资决策中的应用. 控制与决策. 2002/6
[07] 夏清泉、凌婕. 风险投资理论和政策研究. 国际商务研究. 2002/5
[08] 陈劲、龚焱等. 技术创新信息源新探. 中国软科学. 2001/1. pp86-88
[09] 严太华、张龙. 风险投资评估决策方法初探. 经济问题. 2002/1
[10] 苏永江、李湛. 风险投资决策问题的系统分析. 学术研究. 2001/4
孙冰. 企业产品开发的评价模型及方法研究. 中国管理科学. 2002/4
篇10
关键词:模糊神经网络;蔬菜;病害;诊断
中图分类号:TP182;S435 文献标识码:A 文章编号:0439-8114(2013)17-4224-04
Research on vegetables Disease Diagnosis Model Based on Fuzzy Neural Network
WEI Qing-feng,LUO Chang-shou,CAO Cheng-zhong,GUO Qiang
(Institute of Agriculture Science and Technology Information, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097)
Abstract: To explore the effective method for the diagnosis of vegetables diseases, through reasonable division of symptoms, using input vector construction method which contained characteristics of symptoms and membership grade, a vegetables disease diagnosis of fuzzy neural network model was constructed. The experimental results showed that the input vector construction method had effectively expressed the disease diagnosis rule, the model had strong fault tolerant ability, and the average diagnostic accuracy was 85.5%.
Key words: fuzzy neural network; vegetable; disease; diagnosis
收稿日期:2013-01-30
基金项目:国家现代农业科技城综合信息“三农”服务平台建设项目(PT01);北京市自然科学基金项目(9093019);北京农业科学院信息所
创新基金项目(SJJ201203)
作者简介:魏清凤(1983-),女,湖北武汉人,助理研究员,硕士,主要从事农业信息技术的研究工作,(电话)13439026360(电子信箱)
;通讯作者,罗长寿,副研究员,(电话)010-51503387(电子信箱)。
病害是影响蔬菜优质生产的重要制约因素之一。我国农村基层还相对缺乏有经验的病害诊断专家,对蔬菜病害不能正确判断,不但延误了防治最佳时机,还严重降低了蔬菜品质。
当前农业病害诊断技术方法主要有图像分析诊断[1-4]、专家系统诊断[5-7]以及人工神经网络诊断[8]等。基于图像分析的病害诊断方法其图像的获取受环境光照的影响较大,且需要专业人员在室内进行数据分析和识别,时效性差,无法实时满足具体生产实践的要求。基于专家系统的诊断方法,采用 IF-THEN产生式推理,存在诊断知识获取有瓶颈、推理规则更新难、容错能力差、串行搜索运行效率低等不足。近年基于人工神经网络的方法无需建立推理规则,具有自学习及并行处理能力,较引人注目,但存在对病害症状的典型性、非典型性模糊特点无法区分度量,样本诊断规律学习不充分等问题。模糊神经网络可以将不确定的症状信息通过模糊隶属集来表示,能解决诊断系统中的不确定性知识表示、并行推理等问题,对具有模糊性复杂性的蔬菜病害诊断非常适用。此文利用模糊系统和神经网络相结合的方法,在对病害特征模糊量化方法研究的基础上,建立能够实际应用的蔬菜病害模糊神经网络诊断模型,为蔬菜病虫害防治提供依据。
1 蔬菜病害诊断知识整理
一般研究中,将植株的发病部位划分为根、茎、叶、花、果5个部分[9]。由于部分蔬菜病害(如猝倒病)在苗期即表现出典型症状,因此,为提高诊断的全面性和准确性,将蔬菜植株发病表现最终划分为根、茎蔓、叶、花、果、苗6个部分。表示如下:
S={Si | i=1,2,3,4,5,6}
式中,Si表示根、茎蔓、叶、花、果、苗6个部分中的1个。
以“北京农业数字资源中心”中蔬菜病害数据库的知识为基础,结合文献资料、植保专家咨询及案例分析,对病害特征知识根据根、茎蔓、叶、花、果、苗6个部分进行分别提取,建立二维知识表。
2 病害症状重要性划分及隶属函数
不同症状对病害诊断的贡献程度不同,一些特征明显的症状表现往往是确定某种病害的重要依据。通常用模糊的自然语言来描述症状对于病害识别的重要程度,这里将其划分为典型症状、主要症状、一般症状3个层次(表1)。
将症状重要性隶属函数定义为模糊语言值,根据专家经验法,确定不同层次的隶属度如下:
L(Si)=1.0 Si∈a0.7 Si∈b0.4 Si∈c i={1,2,3,4,5,6}
L为Si的隶属度,a、b、c为症状类型。
3 基于术语统一描述的病害症状向量构建
一般方法中,直接利用诊断资料的原始文本,以症状表现部位为单元赋权值(或隶属度)作为样本分量构建输入向量[10],不仅存在向量携带信息量少、向量模长短不一、诊断规律体现不明显等问题,还容易产生相同的样本向量对应不同病害种类的错误情况,不能较好地对病害原因进行区分,这也势必影响到诊断的准确性。对此,本方法将原始资料的自然语言样本映射到共同语义空间中,统一利用病状病症的相关术语对症状资料的原始文本进行描述,并根据术语的定义值以及症状重要性隶属度来确定语义样本的样本值,从而构建输入向量,能有效丰富向量信息承载量,充分表达诊断规律,具体如下。
3.1 自然语言症状的术语映射
本环节即是对原始自然语言病害症状资料在共同语义空间中利用相关术语进行统一描述。根据植物学知识,感病植株的外观病态表现可分为病状和病征两大类。共同语义空间的病害症状术语如表2所示。
根据病害症状表,症状的自然语言描述转化为术语描述。如辣椒枯萎病茎蔓部自然语言症状={水浸状腐烂,后全株枯萎,病部白色霉状物},经语义空间映射后,S2={湿腐,枯死,霉状物},其样本定义值D(S2)为{0,0,2,2,0,1}。
3.2 输入向量的构建
综合样本定义值和症状重要性隶属度,形成具有症状特征和症状重要性信息的向量。为了降低输入向量维度,对矩阵中同列均为0值的列进行简约,形成最终输入向量矩阵。输入向量表示为:
Xi={D(S1)×L(S1),D(S2)×L(S2),……,D(Si)×L(Si)}
其中,D(Si)为Si症状的样本定义值,L(Si)为Si症状的重要性隶属度。
4 蔬菜病害诊断模型建立
蔬菜病害诊断神经网络模型采用模糊BP神经网络构建(图1)。模糊系统和神经网络按串联方式连接,用模糊系统对原始知识进行前处理,用神经网络进行病害诊断。
第一层为输入层,其每一个节点代表一个输入变量,它将样本定义值传递到模糊层。
第二层为模糊层,基于症状样本定义值和症状隶属度构建输入向量。
第三层为隐含层,实现输入变量模糊值到输出变量模糊值映射。隐含层节点数确定方法如下:
l=■+a 0
式中,l为隐含层神经元个数,n为输入层神经元个数,m为输出层神经元个数,a为取值0~10之间的常数。
第四层为输出层,输出向量采用“n中取1”的二进制编码法。其中n为编码长度,即病害总数。每组编码中仅有1位为1,其余n-1位为0,表示某一种病害。诊断过程中,最大向元值对应着可疑病害。该最大值若接近0, 则表示发生相对应病害的可能性很小;若接近1,则表明发生相对应病害的可能性极大。
5 诊断测试分析
以番茄白绢病、番茄猝倒病、番茄根霉果腐病、番茄青枯病等19种病害为例,经上文方法构建20维输入向量(部分输入如表3),19维输出向量(部分输出向量如表4)。设隐层单元15个,目标误差0.000 1,循环1 000次,采用Levenberg-Marquardt 算法进行训练,并开发系统界面,对训练好的模型从诊断容错性和诊断准确性两个角度进行分析。
5.1 模型诊断容错性测试
在实际应用过程中,用户提供的病害症状无法与样本完全一致,病害典型症状被选的可能性最大,但部分主要症状和一般症状存在A-误选(提供症状与样本症状不一致)、B-多选(提供症状多于样本症状)、C-少选(提供症状少于样本症状)、A+B-多选及误选、A+C-少选及误选的情况,据此选取用户5组具有代表性测试数据(表5),以番茄溃疡病为例来检验模型的容错性,输出结果如表6。
样本输出向量中第17位为向元最大值,则表明该输出结果为番茄溃疡病。在5组具有代表性的用户测试数据中,输出向量的向元最大值始终在第17位,说明诊断模型具有较强的容错能力。同时,当用户“误选”、“多选”,以及“多选+误选”时,输出向量第17位向元值分别为0.999 9、0.987 6、0.921 6,接近样本模拟值1;当用户“少选”以及“少选+误选”时,输出向量第17位向元值分别为0.778 6、0.594 6,较之其他组测试数据,较远离样本模拟值1,说明用户提供的病害症状信息越多,进行正确诊断的可能性越大。
5.2 模型诊断准确性测试
将本研究与一般方法中直接利用症状权值作为输入向量的一般神经网络诊断模型进行准确性比较。测试数据包括两类,即实验室根据田间数据资料生成的数据,以及涉农用户根据实际生产情况进行症状选择操作生成的数据。经植保专家验证,获得测试结果平均值见表7。
统计结果显示,室内室外测试中,基于模糊神经网络的诊断方法较一般神经网络在正确率方面均有所提高,说明本研究的思路方案是有效的。其中,实验室所利用的田间数据资料测试结果好于农户实际应用。其原因在于,实验室所使用的田间数据资料较接近文献资料中的诊断知识,且基于模糊神经网络的蔬菜病害模型具有较好的容错性,因此诊断正确率较高。外部基层农户则完全按照自己在生产中见到的症状表现进行选择操作而形成测试数据,更为真实地反映了模型的实际应用情况。由于实际生产中存在多个病害夹杂同时表现的复杂情况,这一定程度上影响了诊断正确率,因此也说明在该方面努力能进一步提高模型的实用性。
6 小结
利用基于术语统一描述的病害症状量化方法,能构建既能描述症状特征又能反映症状重要性的输入向量,更能有效地体现病害诊断规律。经过误选、多选、少选、多选+误选、少选+误选的5组测试中,诊断结果仍然能指向正确的病害,模型容错推理能力较强。将模糊数学方法引入神经网络中,结合基于术语统一描述的病害症状量化方法,建立基于模糊神经网络的蔬菜病害诊断模型,较之一般基于神经网络的病害模型,诊断准确性得到了有效提高。
由于农业生产中病害作用的复杂性,今后将在多个病害同时作用的诊断方面进一步努力探索,以提高模型的生产实用性。同时,随着移动网络技术的迅猛发展以及移动设备终端的日益普及,将进行蔬菜病害诊断系统的研究,以期为蔬菜病虫害防治咨询提供更加便捷、灵活、有效的服务。
参考文献:
[1] LAI J C, MING B, LI S K, et al. An image-based diagnostic expert system for corn diseases[J]. Agricultural Sciences in China,2010(8):1221-1229.
[2] 李 旺,唐少先.基于图像处理的农作物病害识别研究现状[J].湖南农机(学术版),2012,39(1):176-178.
[3] 刘连忠,张 武,朱 诚. 基于改进颜色特征的小麦病害图像识别技术研究[J]. 安徽农业科学,2010,40(26):12877-12879.
[4] 邹修国. 基于计算机视觉的农作物病虫害识别研究现状[J]. 计算机系统应用,2011,20(6):238-242.
[5] MANSINGH G, REICHGELT H, BRYSON K O. CPEST: An expert system for the management of pests and diseases in the Jamaican coffee industry[J]. Expert Systems with Applications,2007,32(1):184-192.
[6] 林 潇,李绍稳,张友华,等.基于本体的水稻病害诊断专家系统研究[J].数字技术与应用,2010(11):109-111.
[7] GHOSH I, SAMANTA R K. Teapest:An expert system for insect pest management in tea[J].Applied Engineering in Agriculture,2003,19(5):619-625.
[8] 王军英.基于BP神经网络的葡萄病害诊断方法研究[J].农业网络信息,2010(6):21-23,36.
- 上一篇:民法典的体例
- 下一篇:妊娠高血压的健康教育