人工神经网络的发展范文
时间:2024-04-02 11:39:25
导语:如何才能写好一篇人工神经网络的发展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
近年来国内外兴起的人工神经网络研究方法能对信息进行大规模并行处理;具有很强的鲁棒性和容错性;善于联想、概括、类比和推理;而且具有很强的自学习能力,善于从大量统计资料中分析提取宏观统计规律,很适合灌溉宏观发展战略的定量研究.因此,本文引入人工神经网络原理,来建立全国粮食总产与影响因子间的定量关系模型.
1 模型的建立
在其它条件不变的情况下,粮食总产主要取决于播种面积、灌溉面积、农田成灾面积、渍涝盐碱地面积、粮食价格、良种覆盖率、化肥使用量、科技贡献率8个主要因素.为确定粮食总产与影响因子间的定量关系,根据人工神经网络基本原理,设计相应的神经网络:
网络共分四层,一个输入层,二个隐含层,一个输出层.输入层8个节点,输出层1个节点.
令Qm,Hi,Wj,O分别为第1、2、3、4层的输出;Ui,Vj,S分别为第2、3、4层的输入;Aim,Bji,Cj分别为第1~2层,2~3层,和3~4层单元的连接权值;Xi,Yj,Z分别为第2、3、4层单元的偏置值;Di,Jj,G分别为第2、3、4层的误差信号.
篇2
关键词:人工神经网络;教学实践;教学方法;生物信息学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)17-0208-03
人工神经网络是在神经生理学、生物学、数学、计算机学等学科发展的基础上提出的,模拟人类大脑的结构和思维方式处理、记忆信息的一门学科。具体来说,早在20世纪40年代,随着医学、生物学家们对人脑神经的结构、组成以及信息处理的工作原理的认识越来越充分,有学者提出以数学和物理方法对人脑神经网络进行抽象,并建立简化的模型,用以进行信息处理,这种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,称之为人工神经网络ANN(Artificial Neural Network)[1]。
在人工神经网络中,各种待处理的对象(数据、特征、字符、抽象的模式等等)都可用神经元处理单元表示。这些神经元主要可以分为输入神经元、隐含神经元和输出神经元三大类。其作用各不相同,作为输入神经元的处理单元用来与外界产生连接,接收外界的信号输入;隐含神经元处于中间层,为信息处理的不可见层;输出神经元主要实现结果的输出。神经元之间相互连接,连接的权重反映了各神经元之间的连接强度,神经元之间的连接关系中蕴含着信息的表示和处理。人工神经网络主要是在不同程度、不同层次上模拟大脑处理信息的风格,具有非程序化、较强的适应性、自组织性、并行分布式等特点,其实现主要是通过网络的变换和动力学行为,涉及数学、生物学、人工智能、计算机科学、非线性动力学等多个学科[1]。作为一门活跃的边缘叉学科,在处理信息方面,相比于传统人工智能方法具有非线性适应性,成功地应用于神经专家系统、模式识别、组合优化、预测等多个领域,尤其在生物信息学领域得到了广泛的应用。生物信息学是20世纪末发展起来的一极具发展潜力的新型学科。人类的基因中蕴含着大量有用信息,利用神经网络可以对这些海量的信息进行识别与分类,进而进行相关的生物信息学分析。如利用神经网络分析疾病与基因序列的关系,基于神经网络对蛋白质结构的预测,基因表达谱数据的分析,蛋白质互作位点的预测等等,都取得了很好的效果[2]。
因此,在生物信息相关专业的本科生中开设人工神经网络课程尤为重要。经过多年的研究发展,已经提出上百种的人工神经网络模型,这就需要教师针对不同的专业背景,不同层次的学生,讲授不同模型的核心思想、推导过程、实际应用等等。本文主要根据人工神经网络在生物信息学相关专业的教学实践,从以下几个方面进行探讨。
一、引导式教学,激发学生的学习积极性
神经网络作为一门偏于理论分析的学科,传统的教学模式,即首先讲解模型的起源,接下来介绍模型的核心思想,然后就是一连串的数学公式推导,面对满黑板的公式,学生很难提起兴趣去认真学习相应的模型。所以,如何激发起学生的学习积极性,让学生重视这门课程,更好地掌握课程内容,掌握相关的模型理论基础、核心思想,更好地服务于本专业,是人工神经网络教学者亟待解决的问题。
首先,在导课的时候要生动,以引起学生对将要学习的内容的好奇心,让学生有兴趣投入到课堂学习内容中去。布卢姆说过:“最大的学习动机莫过于学生对所学知识有求知的兴趣。”只有在这种动机下的学习,才会提高自身的主动性与自觉性,达到提高教学质量的目的[3]。例如,在讲解hopfield神经网络的时候,通过举例对苹果、橘子的质地、形状、重量等特征的描述,运用“0,1”进行量化描述,然后应用神经网络就可以进行有效地分类;对于旅行商TSP问题,也可以通过hopfield神经网络寻找到最优路径。那么,这些问题是如何解决的呢?就需要大家来一起揭开hopfield神经网络的神秘面纱。其次,由于神经网络涉及大量的数学公式与数学方法,学生往往会有畏惧的心理,这就需要教师帮学生澄清思想误区,现在很多用于数据分析与计算的软件,如matlab工具箱、R软件里面都有很成熟的人工神经网络软件包,所以,学生只需要理解其工作原理、核心思想,学会使用现成的人工神经网络软件包处理数据,在熟练应用程序包的基础上,对相应的神经网络模型进行优化,改进,并且与其他的人工智能算法相结合,更好地为本专业服务。第三,在讲授人工神经网络理论内容的时候,要摒弃传统的呆板式的推导过程,以往的神经网络教学方法注重理论分析,通常是一连串的公式推导,公式中又涉及大量的符号,计算起来复杂又烦琐,学生会觉得索然无趣,厌学情绪严重。在教学过程中,教师要精心设计,创设出特定的问题环境,将所学内容与本专业相结合起来,多讲应用,启发和诱导学生选取合适的神经网络模型来解决本专业的实验数据分析与处理等问题。
二、理论教学与实验教学相结合
除了在理论课堂上将基本的理论知识传输给学生,教师还应该安排若干实验教学内容,让学生以实验为主,将理论课上所学的知识运用到解决实际问题中来,理论联系实际,主动操作思考,观察,分析,讨论,以培养学生解决问题的能力。一旦学生自己动手处理一些问题后,很自然地就会对人工神经网络产生一种亲切感,并能强烈激发起学生继续探究下去的兴趣。对于同一问题,可以让学生选取不同的网络模型,设置不同的参数,甚至可以让学生自己动手编写相应的网络模型程序,并且给予改进,根据得出的结果来评价模型在解决实际问题时的好坏,以及模型改进的效果。作为授课教师,需要不断优化实验教学内容,在生物信息学专业开设人工神经网络课程,实验教学主要是针对生物信息专业的海量生物数据处理与分析的实际需要,培养学生综合运用人工神经网络方法和生物信息学知识,进行信息的分析与处理。除了在实验课堂上给学生最大的自由发挥空间外,课后作业也尽量以开放式问题的形式给出,比如,可以让学生选取相应的网络模型处理本专业的一些实际问题,例如,数据的分类、聚类等等,其中,数据来源可以不同,类型也可自由选取,最后给出相应的模型参数设置、方法的改进、实验结果,也可以安排学生自己查询文献进行学习,并安排学生作报告。这样,学生可以在世界范围内了解神经网络的在本专业的应用情况,又能提高英语的读写能力,还能锻炼学生做科研报告的能力。
三、加强师资队伍建设以及其他基本条件的建设
由于生物信息学是一门新兴的交叉学科[4],这就要求人工神经网络的授课教师要熟练掌握生物信息相关专业的知识,教师的业务水平必须得到充分保证,才能给学生以全面透彻的指导。学院应该本着自主培养与重点引进的原则,优化教师队伍的专业结构和学历结构,提高教师的自身修养。授课教师要将课堂的理论知识联系实际生物问题进行讲授,让学生感受到人工神经网络在本专业的应用,提高学生的学习效率,同时也需要阅读大量的专业文献,提高编程技巧和数据库应用能力,让自己成为一名合格的复合型教师。同时,人工神经网络课程的实验,高度依赖于计算机网络等设备,因此,相关的软硬件设施的建设也必不可少,由于,基因组测序技术的发展,目前生物信息学研究所用的数据都是海量的,神经网络训练起来所需时间太长,不能用普通的电脑完成,需要专门的服务器来处理,学校有关部门应在条件允许的情况下,配备机房,购买服务器,以及相关的软件,为学生创造良好的环境,让学生完成课程内容。
最后,人工神经网络涉及数学、计算机、人工智能和神经学等专业知识,因此,需要授课教师加强与其他相关专业教师的交流与合作,并渗透到授课过程中去,让学生在学习人工神经网络网络时能将各专业联系起来,更好地解决生物信息学中的问题,要想成为一名合格的人工神经网络课程教师,首先要成为一名复合型的教师,不仅要具备教学和科研能力,同时也要具备计算机、生物学、信息学等多学科的知识。
参考文献:
[1]朱大奇,史慧.人工神经网络及其应用[M].北京:科学出版社,2006.
[2]朱伟,史定华,王翼飞.人工神经网络在蛋白质二级结构预测中的应用[J].自然杂志,2003,(3):167-171.
[3]赵俊,李晓红.趣味教学法在预防医学教学中的运用[J].现代医药卫生,2005,21(15):2089-2090.
篇3
决策支持系统经过二十多年的发展,形成了如图l所示公认的体系结构。它把模型并入信息系统软件中,依靠管理信息系统和运筹学这两个基础逐步发展起来。它为解决非结构化决策问题提供了相应的有用信息,给各级管理决策人员的工作带来了便利。从图1可以看出决策支持系统体系结构可划分为三级,即语言系统(LS)级、问题处理系统(PPS)级和知识系统fKS)级。其中问题处理系统级包括推理机系统(RS)、模型库管理系统(MBMS)、知识库管理系统(KBMS)及数据库管理系统(DBMS)。知识系统级包括模型库(MB)、知识库(KB)及数据库(DBo九十年代中期,兴起了三个辅助决策技术:数据仓库(DW)、联机分析处理(0LAP)和数据挖掘(DM)。联机分析处理是以客户,服务器的方式完成多维数据分析。数据仓库是根据决策主题的需要汇集大量的数据库,通过综合和分析得到辅助决策的信息。数据挖掘顾名思义,是为了获得有用的数据,在大量的数据库中进行筛选。人工智能技术建立一个智能的DSS人机界面,可进行图、文、声、像、形等多模式交互,人机交互此时变得更为自然和谐,人们能沉浸其中,进行合作式、目标向导式的交互方法。从目前情况来看,财务决策支持系统的研究还处于初级发展阶段,财务数据的保密性、特殊性决定了财务决策不能全部公开化、透明化,但随着中央及国务院相关部门财务预决算数据的公开,财务决策系统及其支持系统和过程也将随之公开,这就要求决策者充分利用财务知识和决策支持系统的知识“聪明”决策、合理决策、科学决策、规范决策。
2财务管理神经网络智能决策支持系统总体研究框架
2.1神经网络运行机制神经网络的着眼点是采纳生物体中神经细胞网络中某些可利用的部分,来弥补计算机的不足之处,而不是单单用物理的器件去完整地复制。第一,神经网络中的链接的结构和链接权都可以通过学习而得到,具有十分强大的学习功能;第二,神经网络所记忆的信息是一种分布式的储存方式,大多储存在神经元之间的权中;第三,神经网络部分的或局部的神经元被破坏后,仍可以继续进行其他活动,不影响全局的活动,因此说,神经网络的这种特性被称作容错性;第四,神经网络是由大量简单的神经元组成的,每个神经元虽然结构简单,但是它们组合到一起并行活动时,却能爆发出较快较强的速度来。我们可以利用神经网络的上述特点,将之应用于模式识别、自动控制、优化计算和联想记忆、军事应用以及决策支持系统中。
2.2财务管理神经网络集成智能财务DSS的必然性在企业经营管理、政府机构财务活动中,人们时常面临着财务决策。人们往往需要根据有关的理论及经验制定出一系列的衡量标准。这种评价是一个非常复杂的非结构化决策过程,一般都是由内行专家根据一定的专业理论凭经验和直觉在收集大量不完全、不确定信息基础上建立起多级指标体系。但在这种指标体系中,各种指标之间的关系很难明确,而且还受评价者的效用标准和主观偏好所左右。因此,很难在指标体系和评价目标间建立起准确的定量或定性模型。因此,我们需要采用一种可处理不确定性、不完全性信息的评价方法以支持决策。自然,利用人工神经网络构造系统模式来支持这类评价决策问题是目前财务管理智能决策支持系统的一种发展趋势和必然趋势圈。
2.3财务管理神经网络集成智能DSS系统框架神经网络智能决策支持系统主要以知识、数据和模型为主体,结合神经网络进行推理与数据开采。图2给出了神经网络智能决策支持系统研究框架『2I。研究中有两个重点,即神经网络推理系统和神经网络数据开采系统。
2.3.1神经网络数据开采系统神经网络数据开采时利用神经网络技术协助从数据中抽取模式。数据开采有五项基本任务:相关分析、聚类、概念描述、偏差监测、预测。常用的前馈式神经网络,如BP网络,可用于进行概念描述及预测。对向传播(CounterPropagation,简称CP)神经网路可用来进行统计分析和聚类。CP网络是美国神经计算专家RobertHecht—Nielsen提出的一种新型特征映射网络,其网络结构分输入、竞争、输出三层。该网络吸取了无教师示教型网络分类录活、算法简练的优点,又采纳了有教师示教型网络分类精细、准确的好处,使两者有机地结合起来。由竞争层至输出层,网络按基本竞争型网络学习规则得到各输出神经元的实际输出值,并按有教师示教的误差校正方法调整由竞争层至输出层的链接权。经过这样反复地学习,可以将任意输入模式映射为输出模式。
2.3.2财务管理神经网络推理系统财务管理神经网络推理系统主要利用神经网络的并行处理机制来解决传统推理方法中存在的“组合爆炸”、“无穷递归”,等问题。在神经网络系统中,计算与存储时完全合二为一的,即信息的存储体现在神经元互连的分布上,并以大规模并行方式处理。流动的过程就是从部分信息找到全部信息的过程,这就是联想记忆的基本原理。若视动力系统的稳定吸引子为系统计算能量函数的极小点,系统最终会流向期望的最小点,计算也就在运动过程中悄悄地完成了。因而,可用双向联想记忆(BAM)网络或CP网络实现并行推理。CP网络具有特殊的联想推理映射功能。将输入学习模式和期望输出模式取为同一模式,且将之分为x和Y两部分。网络通过提供的样本对进行充分的学习后,就可用来进行模式问的联想推理。
3财务管理神经网络智能DSS研究展望
当前世界上最热门的研究课题,是模仿人类的思维方式来解决实际问题。专家系统和人工神经网络是比较常用的技术,但由于自身的局限性,它们都侧重于人类思维方式的某一方面。平时解决简单的问题的时候还好,但真遇到解决复杂的问题的时候,它就显得力不从心了,所以,这个时候我们可以将两种技术结合起来解决,除了它们要自身不断发展和完善外,还要注重两者的协调配合,神经网络DSS未来的发展趋势就是依靠这两种技术不断结合,从而能帮助我们解决更多的实际问题。
3.1财务管理神经网络支持专家系统常见的财务管理神经网络支持专家系统主要包括几个方面:知识维护、知识表示、知识获取、推理等,我们针对各个步骤展开讨论。
3.1.1知识维护。如果知识是通过人工神经网络来获取的,我们就可以同样利用人工神经网络,来让维护工作变得更加方便快捷,维护可以通过人工神经网络来自动完成,我们需要做的只是重新运行网络模块,或者重新训练网络模块,又或是增加新的网络模块。
3.1.2推理。一般的专家系统只是求解专门性问题,应用的领域非常狭窄,同时由于控制策略不灵活,推理方法简单,容易出现一些这样或那样的问题,推理效率低、速度慢。人-T-~$经网络可以解决这一问题,从根本上提升工作效率,提高工作速度,它可以拓展知识空间,不只局限在狭窄的领域。
3.1.3知识表示。很多专家知识事实上很难用规则表示出来,但在现实工作中,我们大部分财务管理专家却都采取这种方式,无论是直接的还是间接的。其它的知识表示方法也存在着同样的问题。为了解决这一问题,我们可以采用人工神经网络系统来将知识提供给专家系统,这样做就可以避免这一问题,当专家系统需要相应知识时,就不需要用规则来表示知识,直接调用人工神经网络就可以了。
3.1.4知识获取。人工神经网络可以帮专家系统来获取知识,知识获取是通过人机对话的形式进行的。首先,专家系统向专家提出问题,人工神经网路则负责对这些信息进行收集、处理,在人工神经网络的联结权值中已经具有通用的知识,所以这一步骤会很方便,之后再产生相应的数据结果。接着,专家系统在对这些数据进行进一步的分析。在这一过程中,专家系统只运用很少的规则就可以获得相关的知识,大大提高了工作效率。
3.2财务管理专家系统支持神经网络财务管理专家主要通过三种方式来对神经网络提供必要的支持:第一,提供相应的必要的解释;第二,进行预处理:第三,联合应用。
3.2.1解释。作为专家系统的人工神经网络,它做不到同其他专家系统那样,具体详细地跟踪问题求解的过程,以获得答案的原因,它只能依靠增加一个小型的专家来解决这一问题,以获得答案的原因,这个专家系统可以反向推理,从结果到初始输入,系统提供具体的解决方法。在这种模式中,经过训练的人工神经网络来解决问题。当用户要求解释的时候,就可以通过网络输入一个并行的专家系统。
篇4
关键词:人工神经网络;尖峰神经元模型
近年来,人们在计算机智能化领域上取得了很大的进步,但计算机领域还有很多问题无法解决,例如视觉、语言识别和计算机等技术,人们仍不能将计算机系统设计得像生物系统那样灵活。因此,大批研究者转移到仿生科学研究,希望由此找到新的技术,设计出新的智能计算机,其中人工神经网络是其中一个比较热门的领域。随着这个领域的发展,一些团队已经建立起一些创造性的、复杂的神经电路模型,并将其应用到一些项目中,也有研究团队在致力研究人工神经网络的软件和硬件方案,希望能够为智能计算机提供更高层次的理解能力。
人工神经网络模型的并行特性使它与传统的计算机模型相比具有更强的理能力,使它更有机会解决如手写文字识别这类问题。长期以来,大多数研究者都是在CPU上使用模拟的方式进行神经网络的计算,由于CPU工作模式和结构的限制,无法提供最佳的计算性能,因此本文寻求一种新的智能计算硬件平台,在硅芯片上设计神经网络电路。
一、神经网络模型
人工神经网络理论已发展了很多年,并日益趋于成熟,在各领域都得到了一定的应用。人工神经网络的运算主要由计算的基本单位神经元进行,通过若干个神经元构成神经网络以解决现实中的各种问题。
如图1所示,一组神经元构成一个神经网络系统。每一个神经元都有独立的计算单元。神经元计算公式如下:yi(t)=■W■?着ij(t-tij) (1)
公式(1)中yi(t)表示神经元的输出结果,i表示神经元序号,?着ij(t-tij)表示神经元输入值,W■表示每个神经元的权值。
人工神经网络的基本运算包括了乘法和加法运算。为了能够在硬件上执行神经网络的理功能,必须为每个神经元设计独立的加法器和乘法器,我们将其称为加乘法运算单元(MAC),每个神经元都包含了一个MAC单元。
为了使系统能够更好地模拟人类神经系统工作原理,发挥硬件的理能力,本文采用了Gerstner的尖峰神经元模型构建神经元理器的工作流程。在该模型中,每个神经元的膜电位在时间t时表示如下:
ui(t)=■■■W■?着ij(t-tij)+?浊i(t-tij) (2)
?着ij(t)=exp(-■)-exp(-■)*H(t-t■) (3)
公式(2)中,W■表示为第i神经元和第j神经元之间连接的权值,?着ij(t-tij)表示为神经元i能够提供给神经元j的突触后电位(PSP),而?浊i(t-tij)表示倔强函数。公式(3)表示突触后电位(PSP)的计算方法,其中t■和t■为时间常数,H(t-t■) 为Heaviside阶梯函数,t■为轴突传输延时系数。
二、神经元硬件设计
如图2所示,神经网络系统是由多个神经元构成,每个神经元是一个单独的实体,神经元既相互独立,又相互联系,神经元根据所受到外界的刺激(输入)和邻居神经元对自己的影响,做出判断与决策(输出),并影响到周围神经元的反应。为了能够实现神经网络功能,需要模拟神经元单位设计一个特殊的理器用于计算外界刺激而做出的反应,它包含了简单的算数逻辑运算单元、寄存器和控制器,在本文中使用PN表示该理器。
图3显示了一个PN理单元的工作流程图,每个PN理器包括了进行神经元计算必须的运算器和存储器以及相关附属器件。PN理单元的工作流程是:当外部有输入数据通过总线进入PN理器时先存放在输入事件存储器;系统根据事件时间将数据输入到突触后电势寄存器;同时输入值被编号后分别放入公共连接存储器;突触后电势PSP值与其他神经元的权值相乘后与原有膜电位值相加,相加结果更新膜电位存储器值;同时结果与阈值相比较,如果大于阈值则将结果输出到输出存储器中作为该神经元的输出结果存放在输出时间存储器。
系统是由若干个神经元理器构成。如图4所示,人工神经网络系统由若干个神经元共同构成,图5表示了人工神经网络的硬件构成。每一个人工神经网络都是由若干个神经元理单元构成,每个神经元理单元又是由逻辑运算器、存储器和通信单元构成。将这些神经元理器构建在一块电路板或者芯片上,同时理器与理器通过总线连接起来相互通信,共同完成神经网络的运算。系统还为每一个神经元单位配置了一个PN理器,理器之间相互独立,并行计算。当外部刺激(输入)进入系统时,立刻被分配到各个PN理器并行计算神经元对刺激的响应(输出),同时根据计算结果,调整神经元之间的权值系数,并更新存储其中的权值。由于PN理器是并行计算,相对于传统计算机模拟运算,极大地提高了神经网络的计算速度。
本文以Gerstner的尖峰神经元模型为基础,设计了模拟神经元工作的PN理单元,并由若干个PN理单元构成模拟人类神经系统的人工神经网络的硬件系统。相对于在传统计算机上的操作,PN理单元的并行性使新系统有更强的理能力,有效地提高了神经网络的计算速度,使神经网络系统有更好的应用前景。
(作者单位:广东肇庆科技职业技术学院)
参考文献:
[1]Gerstner,W. & Kistler,W.M.Spiking neuron models:single neurons,populations,plasticity. Cambridge,UK:Cambridge University Press,2002.
[2]Mazad S. Zaveri. Dan Hammerstrom1. Performance/price estimates for cortex-scale hardware: A design space exploration,2011,(24).
[3]徐明华,甘强.脉冲神经网络的振荡与分割[J].生物物理学报,1997,(1).
篇5
摘要:随着电力工业的发展,人工神经元网络(ANN)在电力系统中获得了广泛的应用。本文概述了人工神经元网络的特点、基本结构以及发展过程,并对ANN在电力系统中的具体应用做了详细的话述。最后,对人工神经元网络的发展趋势和在电力系统中的应用前景进行了展望。
关键词:人工神经元网络(ANN) 电力系统 应用前景 展望
人工神经网络,是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入一输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。人工神经网络具有四个基本特征:非线性、非局限性、非定性、非凸性。人工神经网络理论,作为人工智能的一个最活跃的分支,其模拟人脑的工作方式,为解决复杂的非线性、不确定性、不确知性系统的问题开创了一个崭新的途径,因而在电力系统应用研究中受到了广泛的关注。
1.ANN发展过程
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。
2.ANN的特点与结构
人工神经网络的研究与发展及神经生理科学、数理科学、信息科和计算机科学等众多领域,是一种新的信息处理理论。它所特有的信息处理机制,与传统的数字计算机有着本质的不同。ANN网络由大量模拟人脑的神经元互连组成,无独立的用于存储的信息空间,更没有单一执行指令的CPU,每个神经元的结构都十分简单,信息处理与存储合二为一,通过调整连接权值,由整体状态来给出响应信息。ANN是一种非线性映射系统,具有强大的模式识别能力,可以对任意复杂状态或过程进行分类和识别。
3.ANN在电力系统中的应用
目前,ANN已用于负荷预测,警报处理,控制等方面,它已经从研究阶段转为实际应用。
3.1智能控制
在电力系统中利用ANN实现智能控制,就是利用其估计和联想的能力,实现系统状态与参数的识别和控制,这已在多种控制结构中如自校正控制、模型跟踪控制、预测控制等控制中得到应用。Y M Park等采用2个BP网络构成电力系统稳定器(PSS)的模型,其中1个在系统功率摆动中估计发电机的输出功率。另一个用于判断并给出控制决策。范澍等应用4层BP网络对发电机运行方式和系统干扰进行精确在线识别,并以此为基础设计了一种最优励磁调节器模型,计算与仿真结果表明,这种调节器比固定点线性励磁方式具有更强的稳定性能和动态品质,在系统运行方式较大的变化范围内都能提供很好的控制性能,在大小扰动下均表现出很好的阻尼特性和良好的电压性能。袁宇春等提出了用ANN进行电力系统的实时切负荷控制,选用的是多输入单输出的单层前向神经网络,选取185个样例进行网络训练后,在西北电网模拟某线路故障显示了较好的控制特性。
3.2优化计算
由于ANN能够建立任意非线性的模型,并适于解决时间序列预报问题,尤其是随机平稳过程的预报,因此电力系统短期负荷预报是其应用研究的一个重要方面,欧建平等以3个ANN构成负荷与天气变化量的周、日、时3个预报分析系统,气象参数和预测周、日、时前某段历史负荷参数作为网络的训练输入参数,各自产生独立的预报,再综合产生最终的预报。姜齐荣等则用ANN建立发电机、励磁系统和调速系统的详细模型,把这三部分的模型连接起来并与电力系统网络接口,形成一个ANN模型与电力系统网络混联的系统,这种混联系统的暂态稳定计算结果与用常规机理模型的计算结果几乎相同。为实现ANN并行、快速、在线处理电力系统实时计算提供新途径。
3.3故障诊断
要保证电力系统的安全运行和实现电力设备由定期检修转变为状态检修,如何准确地进行电力设备的故障诊断,一直是受关注的焦点之一。而这类故障的征兆错综复杂,往往呈现出非线性和不确定性,很难用某一确定的逻辑或算法进行识别。而这种识别恰好是ANN所擅长的。ANN在电机状态监测与诊断上也获得了成功的应用。何雨傧等提出一种联想记忆神经网络,取零序电流、定子不对称电流及其变化率等电测参数为故障征兆,通过网络的联想能力快速准确地进行电机早期故障的双向诊断,能有效地处理各种模式并存的故障诊断问题。并且容错性好,能有效抑制现场噪声干扰,使诊断系统具有良好的鲁棒性。电网故障诊断中,用全局逼近的BP算法完成故障的快速定位,便于控制人员及时处理故障。
3.4继电保护
继电保护是电力系统安全运行的重要保障之一,随着电力系统的发展,常规的继电保护技术已经不能完全适应需要。党德玉提到一种基于小波变换和ANN的保护模型,其输入特征量经过小波变换,也选用了3个三层的BP网络用于判断故障种类,故障性质和故障定位。故障种类和故障性质的判断正确率可达100%,对线性短路故障的位置判断正确率为94%,非线性故障(如经非线性过渡电阻接地)的判断正确率为96%。张海峰等使用3层前向网络构成变压器保护模型,取变压器2端的电流和其他故障特征量进行综合判断。经大量样本训练后,可准确判断变压器的励磁涌流和各种故障。张津春等介绍了ANN构成的自适应自动重合闸模型,能较好地判别各种情况下瞬时性故障与永久性故障。
为了解决用电路方法进行巨量神经元连接无法实现的问题,采用光电集成技术制作的光神经元、光互连器件、光神经芯片也已出现,并成功地应用于模式识别、联想记忆等方面。此外,ANN在输电容量限制条件下经济调度、基于同步相量测量的电压安全监控、电厂控制、HVDC的电流控制器等方面也得到了研究与应用。
4.ANN在电力系统中的发展趋势
ANN在电力系统中应用已做了大量的研究,一但是总体上来说仍停留在理论分析和仿真实验上,因此必须加强理论研究与实际工程应用的结合,例如可在状态检修、在线监测等电力系统有较迫切需求的领域中,寻找实际应用的突破口。近几年兴起的小波变换方法,由于其克服了傅里叶变换不能对信号进行局部化分析的缺点。同时具有很强的特征值提取功能,特别适用于故障信号的分析,经小波变换处理后的信号作为神经网络的输入,可使网络大大提高抗干扰性并加速收敛。所以小波分析与ANN的结合将在电力系统控制、保护、故障诊断等方而发挥更大的作用。ANN与专家系统和模糊控制的综合对电力系统这样一个复杂的动态大系统来说,应用潜力更大。ANN的形象思维能力,专家系统的逻辑思维能力和模糊逻辑这三者的结合,可体现出各自的优势,互相弥补各自的不足。
人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人丁智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
篇6
关键词:BP人工神经网络;RBF人工神经网络;经济增长预测
中图分类号:TP183文献标识码:A文章编号:1009-3044(2011)10-2345-03
The Study of Forecast of Zhejiang Province's Economic Growth Using BP and RBF Artificial Neural Network
BAI Xue-bing
(Zhengjiang University of Technology, Hangzhou 310014, China)
Abstract: Based on existing studies of economic forecasting methods, the article studies the Zhejiang province'sEconomic Growth Forecastusing BP and RBF Artificial Neural Network.Thedata research shows Artificial Neural Network hasgood precision, but different Artificial Neural Network have different behavior, some have big error. Artificial Neural Network can provide good reference for the making policy of sector of economy.
Key words: BP artificial neural network; RBF artificial neural network; economic growth forecast
1 经济预测概论
经济预测是与未来有关的旨在减少不确定性对经济活动影响的一种经济分析。它是对将来经济发展的科学认识活动。经济预测不是靠经验、凭直觉的预言或猜测,而是以科学的理论和方法、可靠的资料、精密的计算及对客观规律性的认识所作出的分析和判断。
2 人工神经网络经济预测技术
由于人工神经网络具有大规模并行处理、容错性、自适应和联想功能强等特点,作为非线性智能预测方法的人工神经网络预测方法成为国内外经济预测研究的一个热点。
人工神经网络不断应用于证券预测分析、企业经济战略预测、经济理论创新、经济预测预警等研究中,都得到了一定的效果。
3 BP与RBF神经网络预测模型分析
3.1 经济增长神经网络设计模型
3.1.1 宏观经济预测指标
经济增长率是判断宏观经济运行状况的一个主要指标。经济增长率指的就是不变价国内生产总值增长率(简称国内生产总值增长率。因此,判断宏观经济运行状况要落脚到对国内生产总值的核算上。在本文中我们采用GDP的增长率来作为预测目标。
3.1.2 神经网络设计模型经济模型的设计
本论文采用两种模型对经济进行预测。
1) 第一种 GDP预测模型:第n年的一、二、三产业的增长率作为输入,第n+1年GDP增长率作为输出。
2) 第二种预测模型。第n-3、n-2、n-1、n年的经济增长率作为输入,第n-1、n、n+1年经济增长率作为输出。
这里还要说明两个问题。第一我们用到的数据来自2009年 浙江省统计年鉴,它的网址是 。
3.1.3 神经网络模型结构
设计经济预测神经网络模型前,首先需要确定神经网络的结构,主要包括如下内容:网络的层数,每层的神经元数和激活函数等。采用的神经网络结构如图1。
3.2 使用BP在以浙江省过去的每年的GDP增长指数的基础上进行BP神经网络预测
3.2.1 学习样本的选择
本次实验使用Matlab 软件采用3层BP神经网络建立浙江省经济发展的的预测模型。输入层节点数为n=4,输出层节点m=3.而隐含层节点数的选择是人工神经网络最为关键的一步,它直接影响网络队复杂问题的映射能力,实验中我们采用试凑法来确定最佳节点数。现设置较少的隐节点训练网络,然后逐渐增加网络节点数,用同一样本进行训练,从中确定网络误差最小时对应的节点数,隐层、输出层神经元的转移函数,隐含层和输出层转移函数分别采用tansig和logsig,训练函数选择traindx。
3.2.2 数值归一化处理
对于浙江省经济增长序列Q=(Q1,Q2…,Qt)。设序列的最大值、最小值分别为Qmax、Qmin。对时间序列的值作归一化处理。
令xi=(Qi-Qmin)/(Qmax-Qmin)
3.2.3 样本数据训练和数据预测
采用1978~2003年的数据样本在MatLab7.0软件中对输入网络进行训练.隐层节点数先从4开始训练,逐步增加到12时,当数值 为10时预测结果较好。允许误差为0.001,训练3217次达到训练要求。
采用1978~2004年的数据作为第一组训练数据,2005-年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007-年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表1所示。
3.2.4 数据分析
从2000-2004的拟合数据来看,相对误差比较小,BP网络对整个模拟数据的拟合程度还是比较好的,但是从2005-2009的预测数据来看预测数据的误差还是比较大的,这也说明对未来的预测是很难的。各种不确定的因素在起作用。
3.3 三种产业增加率BP确定法预测GDP
3.3.1 样本数据训练
将1978-2004年数据对输入网络进行训练。然后把需要预测的样本2000-2004年的样本数据输入网络,得到结果,然后用反归一化公式获得结果。在Matlab7.0中调用newff函数,建立一个3个输入节点、18个隐含层节点、一个输出结点的BP神经网络,隐含层和输出层转移函数分别采用tansig和logsig,训练函数选择traindx,允许误差为0.001,训练1748次达到训练要求。
采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表2所示。
3.3.2 数据分析
从预测数据来看预测数据的误差尽管比上一种类型的数据要好,但是误差还是比较大的,但是考虑到预测的能力 ,数据还是可以接受的 。但是数据误差还是比较大的,这也说明对未来的预测是很难的,不是十分确定的,有些文章的数据精确度挺高的,但我想应该是不太可能的,也许有故意凑数据的嫌疑。如果预测一年的话,可以通过调整参数获得近似结果,但是很多年就很困难。
3.4 使用RBF在以浙江省过去的每年的GDP增长指数的基础上进行RBF神经网络预测.
3.4.1 RBF 神经网络模型设计
该种方式与第一种BP神经网络预测方法类似, 以以前四年的GDP增长率作为输入,后两年加以预测的年作为输出。输入层节点数为n=4,输出层节点m=3.而隐含层节点数的选择是采用matlab的newrbe自动来设置.然后用同一样本进行训练。
3.4.2 样本数据训练和数据预测
1) 采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表3所示。这儿采用newrbe函数,spread参数为0.25。这是因为通过测试采用0.25获得的数据结果较好。
3.4.3 数据分析
从实验数据看,RBF对整个模拟数据的曲线拟合程度是相当完美,但是从2005-2009的预测数据来看预测数据的误差还是比较大的,这也说明RBF神经网络尽管曲线的拟合程度比BP网络好 ,但是从预测的能力来讲,并不比BP网络好,反而通过试验显得更差一些。这仍然表明对未来的预测是很难的。各种不确定的因素在起作用。神经网络的预测也只能作为参考之用,不能对各种的突发事件进行预测。
3.5 使用RBF三种产业增加率确定法预测GDP
3.5.1 RBF神经网络模型设计
该种方式与对应的BP神经网络预测方法类似, 以一年的三种产业增长率作为输入,后一年的GDP增长率预测作为输出。本次实验采用RBF神经网络建立浙江省经济发展的的预测模型。输入层节点数为n=3,输出层节点m=1.而隐含层节点数的选择采用RBF自动的newrbe方法实现。
3.5.2 数据处理
1) 采用1978~2004年的数据作为第一组训练数据,2005年数据作为仿真预测数据,通过神经网络预测GDP。采用1978~2005年的数据作为第一组训练数据,2006年数据作为仿真预测数据,通过神经网络预测GDP, 采用1978~2006年的数据作为第一组训练数据,2007-年数据作为仿真预测数据,通过神经网络预测GDP,依次类推,产生结果如表4所示。
3.5.3 数据分析
但是从2005-2009的预测数据来看预测数据的误差比上一组得RBF的误差还要大,几乎有点难以接受。这也说明RBF神经网络尽管曲线的拟合程度比BP网络好,但是从预测的能力来讲,并不比BP网络好,反而我通过试验更差一些。2009年的数据变得极为不合理,从而导致数据的偏差性很高。,从测试数据可看出,但是由于经济运行的复杂性,以及不可预知性,特别是由于2008的美国金融导致的世界范围的经济危机,导致经济数据的不可靠性大大增加,历史数据变得用处不太大。2009年的数据变得极为不合理,从而导致数据的偏差性很高。
4 总结与归纳
从我们的试验来看,各种神经网络的确可以对未来进行预测,但是精度多高却有一些问题,从我们的试验来看BP神经网络的数据要比RBF神经网络的数据要好,但是也只在一定范围内 ,四种检测方法,只有一种数据还略微能够接受。神经网络预测仍然需要不断的完善。
参考文献:
[1] 张德丰.Matlab神经网络应用设计[M].北京:机械工业出版社,2009.
[2] 高隽.人工神经网络原理及仿真实例[M].2版.北京:机械工业出版社,2007.
[3] 韩力群.人工神经网络理论、设计与应用[M].2版.北京:化学工业出版社,2007.
篇7
关键词 BP网络;客车备件;需求预测
中图分类号 F426 文献标识码 A 文章编号 1673-9671-(2012)102-0195-01
客车备件需求是售后服务的基础和重要组成部分。产品备件准备的是否合理,不仅关系到售后服务的质量,而且也关系到企业的经营效率。然而,准确的备件预测是相当困难的。一方面,影响备件需求量的因素很多,例如产品的市场保有量、产品的地理分布及使用状态、备件的生命周期、备件通用度等等。另一方面,需求预测具有很强的时效性和复杂性,各种因素的影响力随环境变化而变化。
目前国际上采用多种方法进行需求预测的应用研究,如增量法、回归法、季节指数法、时间序列法等。但在备件需求预测方面的实际效果却不尽如人意。起源于二十世纪八十年代的人工神经网络(ANN)属于人工智能技术之一,突破了传统技术的局限,在诸多领域取得了成功。近年来,ANN技术已经成为经济预测、管理决策领域的研究热点,并已经成功的运用在非线性领域以及识别、智能传感器等工程领域。
但在汽车和客车备件需求预测领域,很少见到采用该方法进行研究的案例,因此,本文着重研究神经网络在客车备件需求预测领域的应用。
1 人工神经网络基本理论
1.1 人工神经网络概述
人工神经网络(Artificial Neural Network,简称ANN)的研究始于20世纪四十年代初期。经过半个多世纪的兴衰,经历了从兴起到又到萧条最终走向稳步发展的艰难路途,如今人工神经网络已经是一门比较成熟的学科了。特别是经过最近将近20年的发展,目前的人工神经网络是一门融汇了神经学、信息学、计算机科学、工程学等为一体的边缘交叉学科,是一种大规模、并行、复杂的非线性系统。人工神经网络具有高度并行的处理机制,高度灵活的拓扑结构,以及强大的自组织、自学习、自适应能力和处理非线性问题的能力。因此,人工神经网络在预测科学领域得到了高度重视。
至今为止,人工神经网络技术的发展大致经历了五个阶段,其研究集中在三个方面:开发现有模型的应用,并在应用中根据实际运行情况对模型、算法加以改造,以提高网络的训练速度和运行的准确度;希望在理论上寻找新的突破,建立新的专用或通用的模型和算法;进一步对生物神经系统进行研究,不断的丰富对人脑的认识。
人工神经网络模拟人脑的功能,虽然只是低级近似,但区别于一般的人工智能和其他计算机智能程序,它表现出的许多特质与人类的智能相似。同人类的大脑类似,单个神经元功能很弱,但是当成千上万的神经元组合起来所表现出的活动处理功能却十分强大。
1.2 人工神经网络模型
人工神经网络是由大量的神经元按照层内连接、循环连接和层间连接等模式相互连接起来而构成的。将一个神经元的输出送至另一个神经元作为输入信号称之为连接,每个连接通路对应一个连接权值,神经元的连接方式不同会生成具有不同特性的神经网络。经过几十年的探索,目前已经提出了上百种人工神经网络结构,但大部分都是几种典型网络的组合和变形。
根据神经元的连接方式不同这一特点,可将神经网络分为两大类:分层网络和相互连接型网络。分层网络的代表是BP网络、RBF网络和Hopfield网络。
1.3 BP神经网络
目前应用最为广泛的神经网络结构是多层前馈神经网络。由于采用的网络结构、传递函数和学习规则的不同,前馈网络主要有感知神经网络、BP网络(Back Propagation Network)、RBF网络等不同网络模型。上述三种网络各有其优缺点,经对比得知,BP网络相比其他网络具有算学习精度高、运行速度很快、网络具有一定的推广能力和概括能力等多方面优点。
因此,我们决定采用BP网络作为客车备件需求预测的神经网络模型。
2 基于BP网络的客车备件需求预测设计
2.1 客车备件需求预测方法设计
2.1.1 模型输入和输出设计
本文选取对配件需求量影响程度大的三个因素即近期实际需求量(6个月的实际需求值)、季节性因素以及客车保有量作为网络的输入,分别将其量化后得到8个点作为神经网络的输入向量。显而易见,目标向量Y就是某配件预测月当月的需求量。
2.1.2 数据归一化
在本研究过程中,除了季节性因素值X7已经提前设置在0~1之间,其余各变量都应按照上式进行归一化处理;在网络训练完毕进行测试时,还要将预测输出结果进行反归一化处理并与实际值进行比较来对网络进行评价。
2.2 BP网络结构设计
本研究选择三层BP网络即单隐层的BP网络进行设计仿真。本文使用Kolmogorov定理和试凑法相结合的方法,经多次试验和结果比较,选择网络误差最小和训练速度最快时对应的隐层节点个数,最终确定隐层神经元个数为17。
针对本文研究的问题,按照BP网络的一般设计原则,中间层神经元的传递函数设定为S型正切函数tansig()。由于网络的输出向量值已经被归一化到区间[0,1]中,因此,输出层神经元传递函数设定为 S型对数函数logsig()。
网络的训练算法对网络收敛速度、泛化能力、网络性能等有很大影响。经过对几种改进的BP算法进行实验对比,观察各算法的收敛速度和网络误差,最终确定最适合本研究的训练算法为“拟牛顿算法”。
2.3 预测实现和结果对比
本文选取某大型客车制造企业的售后备件进行研究,选取高频需求备件中的两种数据归一化后作为样本数据进行实验。根据设计好的网络结构方案进行网络创建和训练仿真。使用train()函数对两种备件分别进行训练。经过35次和44次训练后,网络目标误差达到要求。
使用训练好的模型开始对其余样本数据进行预测,实际结果说明,网络的预测误差范围在±7%之内,已达到客车领域备件需求预测预期目标。
在将网络测试结果与实际值比较的同时,我们也将它与该企业目前采用的时序预测方法进行对比,结果说明利用神经网络进行备件需求预测的效果明显好于传统方法。
参考文献
[1]张立明.人工神经网络的模型及其应用[J].复旦大学出版社,1993:5.
[2]丁杏娟.基于人工神经网络的产品需求预测研究[J].上海交通大学硕士学位论文,2006:1.
[3]王万森.人工智能原理及其应用[J].电子工业出版社,2000:27-51.
篇8
【摘要】 人工神经网络由于其具有高度的自适应性、非线性、善于处理复杂关系的特点,在许多研究领域得到了广泛应用,并取得了令人瞩目的成就。对其目前在医学研究领域中的应用做一简单综述。
【关键词】 人工神经网络; 应用
人工神经网络(Artificial Neural Network,ANN)方法自从本世纪40年代被提出以来,许多从事人工智能、计算机科学、信息科学的科学家都在对它进行研究,已在军事、医疗、航天、自动控制、金融等许多领域取得了成功的应用。目前出现了许多模仿动物和人的智能形式与功能的某个方面的神经网络,例如,Grossberg提出的自适应共振理论(Adaptive Resonance Theory,ART),T-Kohenen的自组织特征映射网络(Self-Organizing feature Map,SOM),径向基函数网络(Radial Basis Function,RBF),Hopfield网等。进入90年代以后,由于计算机技术和信息技术的发展,以及各种算法的不断提出,神经网络的研究逐渐深化,应用面也逐步扩大,本研究对常用的神经网络方法及其在医学领域中的应用做一简单综述。
1 自组织特征映射网络(self-organizing feature map,SOM)在基因表达数据分析中的应用
1.1 方法介绍
脑神经学的研究表明,人脑中大量的神经元处于空间的不同区域,有着不同的功能,各自敏感着各自的输入信息模式的不同特征。芬兰赫尔辛基大学神经网络专家T.Kohonen根据大脑神经系统的这一特性,于1981年提出了自组织特征映射网络,它模拟人的大脑,利用竞争学习的方式进行网络学习,具有很强的自组织、自适应学习能力,鲁棒性和容错能力,其理论及应用发展很快,目前已在信息处理、模式识别、图像处理、语音识别、机器人控制、数据挖掘等方面都有成功应用的实例。
Kohonen网络由输入层和竞争层组成,网络结构见图1。输入层由N个神经元组成,竞争层由M个输出神经元组成,输入层与竞争层各神经元之间实现全互连接,竞争层之间实行侧向连接。设输入向量为x=(x1,…,xd)T ,输出神经元j对应的权重向量为wj=(wj1,…,wjd)T ,对每一输出神经元计算输入向量x 和权重向量wj 间的距离,据此利用竞争学习规则对权向量进行调节。在网络的竞争层,各神经元竞争对输入模式的响应机会,最后仅一个神经元成为胜利者,并对与获胜神经元有关的各权重朝着更有利于它竞争的方向调整,这样在每个获胜神经元附近形成一个“聚类区”,学习的结果使聚类区内各神经元的权重向量保持与输入向量逼近的趋势,从而使具有相近特性的输入向量聚集在一起,这种自组织聚类过程是系统自主、无教师示教的聚类方法,能将任意维输入模式在输出层映射成一维或二维离散图形,并保持其拓扑结构不变。网络通过对输入模式的学习,网络竞争层神经元相互竞争,自适应地形成对输入模式的不同响应,模拟大脑信息处理的聚类功能、自组织、自学习功能,实现用低维目标空间的点去表示高维原始空间的点,其工作原理和聚类算法及改进方法参见相关文献[1]。
1.2 应用
基因芯片技术的应用使得人们可以从基因水平探讨疾病的病因及预后,而基因芯片产生的数据具有高维度(变量多)、样本量小、高噪声的特点,样本量远小于变量数,如何从海量的数据中挖掘信息或知识成为重大课题。聚类分析是数据挖掘中的一类重要技术,传统方法主要有系统聚类、k-means聚类等,但在处理复杂非线性关系及变量间的交互作用时效果较差,受异常值影响较大。近年来神经网络技术法成为聚类领域的研究热点,其中自组织特征映射网络由于其良好的自适应性,其算法对基因表达数据的聚类有较高的稳定性和智能性,尤其在处理基因表达中有缺失数据及原始空间到目标空间存在非线性映射结构时有较好的体现,适用于复杂的多维数据的模式识别和特征分类等探索性分析,同时可实现聚类过程和结果的可视化[2]。目前Kohonen网络已被成功用到许多基因表达数据的分析中,Jihua Huang等[3]设计6×6的网络对酵母细胞周期数据进行分析,总正确率为67.7%;曹晖等[4]将其算法改进后用在酵母菌基因表达数据中,总正确率高达84.73%,有较高的聚类效能;邓庆山[5]将该模型与K平均值聚类方法结合用于公开的结肠基因表达数据集和白血病基因表达数据集,聚类的准确率分别为94.12%和90.32%。目前Kohonen网络在医学领域中主要应用前景有:① 发现与疾病相关的新的未知基因,对目标基因进一步研究,提高诊断的正确率,并对药物的开发研究提供重要的线索;② 对肿瘤组织的基因表达谱数据聚类,以期发现新的、未知的疾病亚型(肿瘤亚型),以便提出更加有针对性的治疗方案,为从分子水平对疾病分型、诊断、预后等提供依据;③ 发现与已知基因有相似功能的基因,为推断未知基因的可能功能提供线索。
2 BP神经网络在医学研究中的应用
2.1 BP神经网络在疾病辅助诊断中的应用
2.1.1 方法介绍
BP神经网络是目前应用最多的神经网络,一般由一个输入层(input layer)、一个输出层(output layer)、一个或几个中间层(隐层)组成。每一层可包含一个或多个神经元,其中每一层的每个神经元和前一层相连接,同一层之间没有连接。输入层神经元传递输入信息到第一隐层或直接传到输出层,隐层的神经元对输入层的信息加权求和,加一个常数后,经传递函数运算后传到下一个隐层(或输出层),常用的传递函数是logistic函数,即Φh=1/(1+exp(-z)) ,输出层神经元对前一层的输入信息加权求和经传递函数Φ0 (线性或logistic函数或门限函数)运算后输出,BP神经网络一般采用BP算法训练网络,关于BP算法及改进可参考相关文献[1]。
人工神经网络具有强大的非线性映射能力,含一个隐层的网络可以实现从输入到输出间的任意非线性映射,是典型的非线性数学模型,建立BP神经网络模型的一般步骤为:① BP网训练集、校验集、测试集的确定;② 输入数据的预处理:使输入变量的取值落在0到1的范围内,如果是无序分类变量,以哑变量的形式赋值;③ 神经网络模型的建立及训练:学习率、传递函数、隐层数、隐单元数的选择,注意防止过度拟合。一般使用灵敏度、特异度、阳性预测值、阴性预测值、ROC曲线对模型的预测性能进行评价。
2.1.2 应用
BP神经网络已广泛用于临床辅助诊断中,白云静等[6]用于中医证候的非线性建模,建立了RA证侯BP网络模型和DN证侯BP网络模型,结果显示平均诊断准确率分别为90.72%、92.21%,具有较高的诊断、预测能力。曹志峰[7]采用PROBEN1中的甲状腺疾病数据库用于甲状腺疾病(甲亢、甲减、正常)的诊断,结果显示训练样本的正确识别率为99.3% ,测试样本的正确识别率为98.2%,提示对临床诊断甲状腺疾病提供有益的帮助;还有学者用于急性心肌梗塞、甲状腺功能紊乱、乳腺癌、前列腺癌、宫颈癌、肺癌、卵巢癌、急性肺梗塞等的辅助诊断等[8]。
2.2 BP神经网络在生存分析中的应用
2.2.1 方法介绍
传统的生存分析方法有非参数、半参数、参数模型,参数模型主要有指数回归模型、Weibull回归模型,都要求对基线风险做一定的假设,但实际资料常常不符合条件,生存分析中应用最为广泛的半参数模型:Cox比例风险模型,但它要求满足比例风险的假定,在很多情况下也难以满足。基于神经网络的生存分析模型可以克服这些困难,可以探测复杂的非线性效应,复杂的交互效应,模型中协变量的效应可以随时间变化,对数据的分布不做要求。目前一些策略被用到神经网络预测方法中分析含有删失的生存数据,主要有Faraggi-Simon(1995)法、Liestol-Andersen-Andersen(1994) 法、改良uckley-James(1979)法等。
BP神经网络建立生存分析模型常用的方法有[9]:连续时间模型(continuous time models)与离散时间模型(discrete time models)。常用的Faraggi和Simon[10]提出的连续时间模型扩展了Cox回归模型,允许非线性函数代替通常的协变量的线性组合,这种方法既保持了Cox回归模型的比例风险的特点,又提供了处理复杂非线性关系、交互作用能力的好方法。
离散时间模型常用的模型有:① 输出层为单个结点:模型的输出层只有一个神经元结点,是最简单的神经网络模型,生存时间被分成两个区间,当研究者仅仅对某一时间点的预后感兴趣时,例如预测癌症患者的5年生存情况,如欲预测多个时间点,则需建立多个神经网络模型(每个模型对应一个时间区间);② 输出层为多个结点:生存时间被分成几个离散的区间,估计某个时间区间事件发生的概率,Liestol法是常用的离散时间模型。还有研究者在建立多个时间区间模型时将时间也做为一个输入变量,也有学者将神经网络纳入Bayes方法的研究框架。
一般采用灵敏度、特异度、一致性指数C(Concordance index)作为预测准确性的评价指标,神经网络在生存分析中的应用主要在于[11]:个体患者预后的预测,研究预后因子的重要性,研究预后因子的相互作用,对于预测变量的影响力强弱及解释性,还有待进一步探讨。
2.2.2 应用
国外Ruth M.Ripley等[9]将7种不同的神经网络生存分析模型(3种离散时间模型,4种连续时间模型)用于1335例乳腺癌患者复发概率的预测,并对其精确性、灵敏度、特异度等预测性能指标进行比较,结果证明神经网络方法能成功用于生存分析问题,可以提取预后因子所蕴涵的最大可能的信息。Anny Xiang等[12]采用Monte Carlo模拟研究方法,在9种实验条件下(不同的输入结点、删失比例、样本含量等)对Faraggi-Simon法、Liestol-Andersen-Andersen法、改良Buckley-James法处理右删失生存数据的性能与Cox回归作比较,研究结果提示神经网络方法可以作为分析右删失数据的一个有效的方法。D.J.Groves[13]等将Cox回归与神经网络方法对儿童急性淋巴母细胞白血病的预后进行了比较,Lucila Ohno-Machado等[14]建立输出层为4个结点的离散时间神经网络模型做为AIDS预后研究的工具,并使用ROC曲线下面积、灵敏度、特异度、阳性预测值、阴性预测值对不同时间区间的预测性能做了评价。国内用于生存分析方面的研究还较少,黄德生[15]等利用BP神经网络建立time-coded model和single-time point model用于肺鳞癌预后预测,贺佳[16]等把BP网络用于预测肝癌患者术后无瘤生存期,也有学者对AIDS、恶性肿瘤的预后做了相关的研究。
2.3 BP神经网络在其它方面的应用
近年来BP神经网络在疾病筛查中的的应用引起学者的关注,例如在乳腺癌、宫颈癌、糖尿病的筛查都有成功的应用[17]。神经网络在法医学研究领域具有实用性和广泛的应用前景,法医学家将其用在死亡时间推断、死因分析、个体识别和毒物分析等研究中[18]。在药学研究中也有一定的应用,例如在定量药物设计、药物分析、药动/药效学研究中,都有成功的应用案例,相秉仁等[19]对其做了详细的综述。曹显庆[20]等还将神经网络用于ECG、EEG等信号的识别和处理、医学图像分析中,取得了较好的结果。
人工神经网络是在研究生物神经网络的基础上建立的模型,迄今为止有代表性的网络模型已达数10种,人工神经网络不需要精确的数学模型,没有任何对变量的假设要求,能通过模拟人的智能行为处理复杂的、不确定的、非线性问题。在医学研究领域,变量间关系往往非常复杂,为了探测变量间的复杂模式,神经网络正逐渐变成分析数据的流行工具。目前国际上已出现许多著名的神经网络专业杂志:Neural Network,Neural Computation,IEEE Transaction on Neural Networks等,同时已有许多商业化的神经网络开发软件,如Matlab软件, S-plus软件,SNNS(Stuttgart Neural Network Simulator)等,高版本SAS系统中的Enterprise Miner应用模块中也可以建立神经网络模型,随着计算机技术的进一步发展,人工神经网络在医学领域的应用前景也会更加广阔。
【参考文献】
1 余雪丽,主编.神经网络与实例学习.中国铁道出版社,1996.
2 白耀辉,陈明.利用自组织特征映射神经网络进行可视化聚类.计算机仿真,2006,23(1):180~183.
3 Jinua Huang,Hiroshi Shimizu,Suteaki Shioya.Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks.Journal of bioscience and bioengineering,2003,96(5):421~428.
4 曹晖,席斌,米红.一种新聚类算法在基因表达数据分析中的应用.计算机工程与应用,2007,43(18):234~238.
5 邓庆山.聚类分析在基因表达数据上的应用研究.计算机工程与应用,2005,41(35):210~212.
6 白云静,申洪波,孟庆刚,等.基于人工神经网络的中医证侯非线性建模研究.中国中医药信息杂志,2007,14(7):3~4.
7 曹志峰. BP 神经网络在临床诊断中的应用与探讨.实用医技杂志,2005,12(9):2656~2657.
8 William G Baxt. Application of artificial neural networks to clinical medicine. The Lancet,1995,346(8983):1135~1138.
9 Ruth M.Ripley,Adrian L.Harris,Lionel Tarassenko.Non-linear survival analysis using neural networks. Statistics in medicine,2004,23(5):825~842.
10 David Faraggi,Richard Simon.A neural network model for survival data. Statistics in medicine,1995,14(1):73~82.
11 高蔚,聂绍发,施侣元,等.神经网络在生存分析中的应用进展.中国卫生统计,2006,23(4):358~360.
12 Anny Xiang,Pablo Lapuerta, Alex Ryutov.Comparison of the performance of neural network methods and Cox regression for censored survival data.Computational statistics & data analysis,2000,34(2):243~257.
13 D.J.Groves,S.W.Smye,S.E.Kinsey.A comparison of Cox regression and neural networks for risk stratification in case of acute lymphoblastic leukaemia in children.Neural computing & applications,1999,8(3):257~264.
14 Lucila Ohno-Machado.A comparison of cox proportional hazards and artificial neural network models for medicial prognosis.Comput Biol Med,1997,27(1):55~65.
15 黄德生,周宝森,刘延龄,等.BP人工神经网络用于肺鳞癌预后预测.中国卫生统计,2000,17(6):337~340.
16 贺佳,张智坚,贺宪民.肝癌术后无瘤生存期的人工神经网络预测.数理统计与管理,2002,21(4):14~16.
17 黎衍云,李锐,张胜年.人工神经网络及其在疾病筛查中的应用前景.环境与职业医学,2006,23(1):71~73.
18 汪岚,刘良.人工神经网络的法医学应用.中国法医学杂志,2005,20(3):161~163.
篇9
摘要:旅游需求的预测预报研究一直是旅游学研究的一个重要课题。本文在对到访澳门地区中国内地游客量分析的基础上,运用人工神经网络(ANN)的理论和方法,构建了ANN模型分析中的3层BP模型,以澳门近10年(1996-20__)入境来访的中国内地旅游人数为例进行模型验证,模拟结果表明,BP神经网络预测的结果能够高程度的吻合原始数据,在旅游市场预测中,BP神经网络预测是一种有效的预测方法。一.问题的提出与分析近年来,对澳门地区的旅游业来说,中国内地旅客是旅游收入的主要来源。目前旅游业已成为澳门地区经济发展特别是第二产业发展的支柱。建立科学的可操作的旅游预测模型是实现澳门地区旅游业持续健康稳定发展的理论基石和前提。由于影响某地旅游人数的因素各异,还不存在普遍适用的神经网络模型。基于此,本文拟用3层BP神经网络模型来仿真模拟分析和预测澳门地区旅游需求,以此为旅游需求预测提供一种新的方法。二.模型的假设与符号说明1.基本假设1)交通在旅游中通常不是重要的,为了研究的方便(主要是无法获得交通数据),把交通这个影响忽略。2)假设澳门的接待能力都满足需求。3)在本例旅游需求预测模型中,我们考虑的主要因素有:客源地的人口,客源地的总收入,客源地的消费水平,旅游目的地的生活水平。4)为了研究的方便,假定以上四因子之间相互独立,本例旅游需求即为上述四因子的函数,即y=f(GDI,POP,GDE,M-GP)。就用这四个因素作为人工神经网络模型输入层的神经元。2.符号说明T澳门内地游客量GDI中国内地国民总收入POP中国内地人口总数GDE中国内地国民消费水平M-GP澳门生产总值三.模型的建立与求解1.人工神经网络模型理论原理
人工神经网络(ArtificialNeuralNetwork)是由大量的、简单元件(神经元)广泛相互联结而成的非线性的、动态的复杂网络信息处理系统,它是在现代神经学研究成果基础上提出的,能模拟人脑的若干基本功能[1]。它具有并行分布的信息处理结构,可以通过“自学习”或“训练”的方式完成某一特定的工作。它可以从积累的工作案例中学习知识,尽可能多地把各种定性或定量的因素作为变量加以输入,从而建立各种影响因素与结论之间的高度非线性映射,采用自适应模式识别方法来完成预测工作[2]。人工神经网络模型尤其是对处理内部规律不甚了解、不能用一组规则或方程进行描述的复杂的、开放的非线性系统显得较为优越。人工神经网络模型一般由处理单元、激活状态、单元输出、连接模式、激活规则、学习规则等6个部分组成。一个多层神经网络中包含有很多个信息处理单元,分布于不同的层次中。根据每项输入和相应的权重获取一个综合信号,当信号超过阈值则激活神经元而产生输出。各类影响因素和最终输出结果之间可以假定存在一种映射,即输出结果=F(影响因素)。为了寻求最佳的映射关系F,将训练样本集合和输入、输出转化为一种非线性关系,通过对简单非线性函数的复合,从而建立一个高度的非线性映射关系F,最终实现输出值的最优逼近[3]。在人工神经网络的实际应用中,80~90的人工神经网络是采用前馈反向传播网络(back-propagation-network,简称BP网络)或它的变化形式。BP神经网络(如图一)是一种单项传播的多层前向神经网络,分为输入层、隐含层和输出层,层与层之间采用全连接方式,同一层单元之间不存在相互连接。它是前向网络的核心部分,体现了人工神经网络最精华的部分[4]。标准的BP网络是根据W-H学习规则,采用梯度下降算法,对非线性可微函数进行权值训练的多层网络。图一:BP神经网络的每一层的权值通过学习来调节,其基本处理单元为非线性输入-输出关系,选用S型作用函数:其中:xj为该神经元第i个输入;wij为前一层第i个神经元至该神经元j的连接权值,i=0时的权值为阈值。其计算步骤如下:(1)给定一组随机的权值和阈值初始值及步长系数η与势态因子α;(2)取学习样本数据,根据学习样本、权值及阀值计算输出,并与学习期望输出比较,当误差满足要求时结束训练,否则将误差向后逐层传播,并修正各层连接权值,调整公式为:其中:k取j结点所在层的前一层所有结点。5)澳门内地旅客人数神经网络模型的建立(一)BP网络设计网络设计是一个综合性问题,它应满足多种不同要求,例如,希望所涉及的网络有较好的推理能力,易于硬件实现,训练速度快等,其中有较好的推理能力是最主要的。一般来说,推广能力决定于3个主要因素,即问题本身的复杂程度、网络结构以及样本量大小。在一般情况下,旅游需求预测研究中样本的数量是一定的,因此可归结为在样本量一定的情况下,如何选择网络规模的问题。在进行BP网络预测模型设计中,我们主要考虑以下因素:网络的层数、每层中的神经元个数、初始值的选择、学习速率和期望误差。i)网络的层数已证明:具有偏差和至少一个S型隐含层加上一个线性输出层的网络,能够逼近任何有理函数。所以,本文选择一个3层的BP网络。ii)每层中神经元的个数输入层和输出层神经元的个数根据解决具体问题的复杂程度而定。为了提高网络训练的精度,可以通过采用一个隐含层,再加上1到2个神经元以加快误差的下降速度即可。因此,本文输入层神经元个数选择为4个,隐含层神经元个数分别选择了9、12、15个,输出层神经元个数选择为1个。iii)初始值的选择由于人工神经网络是一个非线性系统,初始值的选择对于网络学习是否达到局部最小、是否能够收敛以及训练时间的长短都有较大影响。在初始值的选择上一般是使经过初始值加权后的每个神经元的输出值都接近零,这样可以保证每一个神经元的连接权值都能够在它们的S型激活函数变化最大处进行调解。所以,初始值一般选择在(-1,1)之间的随机数。本文的初始值为默认值。iv)学习速率对于任何一个网络都对应一个合适的学习速率。学习速率决定每一次循环训练中所产生的权值的变化量。大的学习速率可以导致网络的不稳定,但是小的学习速率又会导致训练时间延长,收敛速度较慢,不能保证网络的误差能最终趋于最小。综合上述考虑,在学习速率的选择上倾向于选择较小的学习速率以保证网络的稳定性,本文选择的学习速率为0.01。v)期望误差值期望误差值的确定也是通过网络对不同误差值分别进行训练比较后确定的最适合值。所谓的最适合值是相对于所需要的隐含层的节点数来确定的,一个较小的误差值的获得需要增加隐含层的节点以及训练时间。本文经过不断测试,选择0.0001为期望误差值。(二)1.网络训练模式的选择训练网络有两类模式:逐变模式和批变模式。在逐变模式中,每一个输入被作用于网络后,权重和偏置量被更新一次。在批变模式中,所有的输入被应用于网络后,权重和偏置量才被更新 一次。使用批变模式不需要为每一层的权重和偏置量设定训练函数,而只需为整个网络制定一个训练函数,使用起来相对方便,因此,本文在进行网络训练时采用批变模式。表格一:年度
澳门的内地游客量(T)(千人)中国内地国民总收入(GDI)(亿元)中国内地人口数(POP)(万人)中国内地居民消费水平(GDE)(元)澳门生产总值(M-GP)(亿美元)1996604.270142.5122389278966.31997529.877653.1123626300266.71998816.883024.3124761315961.919991645.288189.0125786334659.220__2274.798000.5126743363261.020__3005.7108068.2127627386961.920__4240.4119095.7128453410668.220__5742.0135174.0129227441179.220__9529.7159586.71299884925103.320__10463183956.11307565439115.62.数据和模型的建立神经网络模型要求数据具有:A、易获得性B、可靠性C、可测度性。本项研究采用很可靠的官方发表的数据作为分析的数据源(见表1),主要来自于中国统计局网。用3层BP网络模型对本例旅游需求进行模拟,根据BP网络的映射原理,对于样本集合X和输出Y,可以假设存在一映射F。为了寻求F的最佳映射值,BP网络模型将样本集合的输入、输出转化为非线性优化,通过对简单的非线性函数的复合,建立一个高度的非线性映射关系,实现F值的最优逼近。对于本例旅游需求模型的模拟:其输入层结点数(4个神经元):中国内地国民总收入(GDI)、中国内地人口总数(POP)、中国内地国民消费水平(GDE)、澳门生产总值(M-GP)。把澳门内地游客量(T)作为输出结点。从而得出3层前馈反向传播神经网络模型。四.模型结果及分析1网络训练性能的检查。不同个数的隐层单元组成的BP网络训练曲线如图1,2,3所示。通过比较发现,中间层神经元个数为9和12时,网络的收敛速度比较快。2网络预测性能的考查。在数据列表中选取1996年到20__年的数据作为网络的测试数据。20__、20__年的(文秘站:)游客量检验误差曲线如图4。其仿真结果令人满意,达到预期的效果。图1图2图3图4五.模型的应用与评价(优缺点与改进)从上面的分析可以看出,3层BP神经网络模型的仿真模拟效果是邻人满意的。可以看出,人工神经网络的拟合精度比较高,主要是基于人工神经网络抗干扰能力强,稳定性好,能自动准确地找出各种输入和输出之间的线性或非线性关系,具有较强的模拟适应能力等特点。在本例对于澳门的内地游客量的旅游预测中BP神经网络模型是一种有效的预测方法。这一研究方法为旅游学的定量预测研究提供了一种新的思路,也为工程实践问题中的一些研究工作提供了一种非常好的指导方法。虽然BP网络得到了广泛应用,但其自身也存在一些缺陷和不足,主要包括几个方面的问题。首先,由于学习速率是固定的,因此,网络的收敛速度慢,需要较强的训练时间。再次,网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据应验或者通过反复试验确定的。因此,网络往往存在很大的冗余性,在一定上也增加了网络学习的负担。六.原题附带问题简析通过对本例旅游需求模型的分析,我们认为在利用数学建模的方法对旅游需求进行预测预报时,对于数据的采集和整理工作需要认真做好。对于数据的分析有助于我们寻求变量间的关系,以形成初步的想法。如何获得数据以及如何获得准确的数据对于我们研究实际问题具有相当重大的意义。收集数据并非多多益善,而是要弄清究竟需要哪些数据,剔除不必要的数据,从而减少冗余的工作。同时,需要什么形式的数据也是我们应该思考的一个问题,这与建立模型的目的和所选择的模型的特点有关。[参考文献][1]王士同,等.问题求解的人工智能:神经网络方法[M].北京:气象出版社,1995.[2]HillT,MarquezO’connorM,RemusW.ArtificialNeuralNetworkMedelsfor
ForecastingandDecisionMaking[J].InternationalJournalofForecasting,1993,
篇10
[关键词]多目标决策;BP神经网络;矿产资源;综合开发利用评价
矿产资源综合开发利用评价是一个典型的多目标决策问题,应用多目标决策的有关技术进行方案的排序选优,能较好地解决多方案的优化问题。关凤峻根据给出的多个综合开发利用方案,采用的层次评价方法,建立评价体系并采用理想点法进行排序,选出最优方案。宋光兴等人改进了理想点法中权重的确定方式,利用熵技术法确定矿产资源综合开发利用的评价指标的权重,并得出了排序选优的最终结果。李学全等人提出了一种灰色关联度线性加权和方法,是解决矿产资源综合开发利用评价问题的一个有益的尝试。周科平提出了一种新的多属性决策法,有效解决了主观确定的权重不精确的缺点。陈林、曹树刚采用博弈论分析框架中混合策略情况下应用最优化方法,寻求混合策略Nash均衡的最优化点,作为多指标决策问题的优选方案。
矿产资源综合开发利用评价中权重的确定是一个关键,采用BP人工神经网络技术构建的非线性评价模型对矿产资源的综合利用水平进行评价,可避免人为确定各指标的权重带来的主观性。本文试采用BP人工神经网络方法对矿产资源综合开发利用各个方案做出评价,并把评价结果与其他方法作比较,以验证方法的可靠性。
1数据来源以及研究方法
1.1数据来源
(1)数据来源于参考文献三篇论文的举例部分,某铁金矿经研究设计得出9个方案。
(2)将数据进行归一化处理,将每一列的数字xi代入归一化公式x*i=[SX(]ximaxxi′[SX)]
即每一指标数据除以各自指标中的最大值,将数据划归在[0,1]范围之内。
1.2研究方法
BP人工神经网络简介:人工神经网络是将大量简单的神经元广泛连接而成,用以模拟人脑思维方式的复杂网络系统,具有自组织、自适应、自学习和容错性等特点,被广泛应用于模式识别、图像处理、自适应控制等领域。由于矿产资源综合利用水平评价系统是一个多层次、多因素的复杂系统,采用BP人工神经网络技术构建的非线性评价模型对矿产资源的综合利用水平进行评价和识别可避免人为确定各指标的权重带来的主观性,提高评价结果的准确性。
2运用BP人工神经网络对矿产资源综合开发方案进行评价
运用matlab环境下的BP网络模块,我们将经济发展水平分级指标作为样本输入,评价级别作为网络输出BP网络通过不断学习修改权重,找出评价指标与评价级别间的内在对应关系,利用此网络模型进行经济发展水平的综合评价。
第一、评价指标体系的建立。以某铜铁矿设计方案为例建立评价体系。参考其他人的研究成果及数据的可获取性,选取5项指标,分别为铁选矿回收率(%)、金选矿回收率(%)、产值利润率(%)、成本利润率(%)、吨矿利润(元/吨)。
第二、网络模型的构建。选取以上5项指标作输入神经元,输出神经元为铜铁矿的综合开发利用水平,构建神经网络,采用等间距的线性内插方法,对已经归一化了的数据进行等级划分,构建人工神经网络的训练数据(见表1),并将铜铁矿的综合开发利用水平分为3级,3代表综合开发利用水平高,2代表综合开发利用水平中等,1代表综合开发利用水平低。
据此构建5×1×1的神经网络结构,其中隐含层神经元为3个,输出层神经元1个。网络设计的参数为:网络初始值为[0,1]之间的随机数,基本学习速率0.1;网络训练的终止参数为:最大训练批次为10000次,最大误差为0.01。网络训练达标后,将表1中的原始数据归一化后输入网络,得出铜铁矿的综合开发利用水平的BP估计值。
表2表明,方案8的综合开发利用水平BP值最大,是诸方案中最优的;方案7的综合开发利用水平次之,为次优方案;方案1的综合开发利用水平BP值最小,是诸方案中最差的。
3与基于理想点法评价模型计算得到的结果相比较
3.1理想点法简介
理想点法是属于多属性效用理论的多目标决策方法,它最基本的思想是依据“综合效用值”进行方案排序选优。其效用值的计算是用理想点法中的“距离值”的计算方法而得。通过选取各个目标中的最优值构成一个多目标的理想方案(也称为理想点),并以目标空间中,各方案与理想方案的距离值来度量各方案的优劣。距离越小表示方案目标值越接近理想方案的目标点。这样依距离值的大小来排列方案的优劣顺序,距离越小,方案越优。
以下两表格分别为基于层次评价方法与基于熵值法确定权重的理想点法得到的矿产资源综合开发利用评价结果。
3.2各评价模型所得结果比较
将矿产资源综合开发利用水平的BP值排序情况(表2)分别与基于层次方法和基于熵值法确定权重的理想点法(表3)得到的优方案排序相比较。采用BP人工神经网络计算得到的结果与采用熵值确定权重的理想点法得到的结果相同;BP值法计算的结果中最好的三个方案分别为方案8、方案7、方案9,与层次理想点法的结果相同,不同之处仅仅存在于方案1与方案2,方案5与方案6,他们的排名也十分接近。这充分说明采用BP人工神经网络方法对矿产资源的综合开发利用进行评价是可行的。此外,由于运用matlab软件可以轻易地实现BP神经网络运算,这种方法在处理大量数据方面还有着独特的优越性。
- 上一篇:微观经济的目标
- 下一篇:巩固脱贫攻坚成果总结