人工神经网络的定义范文
时间:2024-04-01 18:16:51
导语:如何才能写好一篇人工神经网络的定义,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:BP人工神经网络 路表弯沉盆 弹性模量反演 沥青面层 沥青路面
中图分类号:U41 文献标识码:A 文章编号:1674-098X(2015)10(b)-0091-04
Research on elastic modulus backcalculation of asphalt course using BP artificial neural network based on surface deflection basin of pavement
Yang Guoliang Zhong Wen Huang Xiaoyun Liang Simin He Huihui Chen Jiaju
(School of Civil Engineering of Guangzhou University,Guangzhou Guangdong,510006,China)
Abstract:Based on layered elastic theory,the elastic modulus of asphalt course in asphalt pavement was predicted using BP artificial neural network.According to the types of pavement structure in common use,the database of surface deflections with their corresponding structural parameters of asphalt course based on layered elastic theory was established.The elastic modulus backcalculation model of asphalt course in asphalt pavement was developed using BP artificial neural network to predict.The predictive results of asphalt course elastic modulus backcalculation using theoretical deflection basin and measured deflection basin indicate that the elastic modulus backcalculation model of asphalt course in asphalt pavement is of good predictive accuracy and reliability.It would provide the references with the elastic modulus backcalculation model of asphalt course to accurately and quickly estimate the conditions of asphalt course in asphalt pavement.
Key Words:BP artificial neural network;Ssurface deflection basin of pavement;Elastic modulus backcalculation;Asphalt course;Asphalt pavement
表征沥青面层性能的其中一个最为重要的指标就是其弹性模量。众多的国内外研究[1-2]表明,利用落锤式弯沉仪采集的路表弯沉盆反算沥青面层弹性模量是可行的。因此,文章基于层状线弹性体系理论,并结合BP人工神经网络具有并行处理、很强的高度非线性映射能力等特点[3-4],进行了采用BP人工神经网络由路表弯沉盆反演沥青面层弹性模量的探讨。
1 沥青路面结构力学分析模型
假设路面沿深度方向分成为n个水平层,层间满足连续条件,路面表面作用有圆形均布轴对称垂直荷载p,第i层厚度、弹性模量和泊松比分别定义为hi,Ei,μi(i=1,2,…,n-1),最下层为土基弹性半空间体,其弹性模量和泊松比分别定义为E0和μ0。每一水平层均符合理想弹性、完全均质、各向同性、微小形变等弹性理论假设,其力学分析图见图1。
2 BP人工神经网络反演沥青面层弹性模量模型
BP网络是一多层前馈网络,如图2所示。
每个结构层的厚度和弹性模量取值范围见表1。
根据表1参数,确定预测模型的拓扑结构,见表2。
对BP人工神经网络进行网络训练,其训练过程曲线如图3所示。
经过BP人工神经网络反演训练后,沥青面层弹性模量预测值与目标值的逼近程度如图4所示。
3 沥青面层弹性模量反演模型精确度分析
3.1 由理论弯沉盆反演沥青面层弹性模量值
构造理论路面结构,见表3。各个传感器与承载板中心的距离及弯沉盆见表4。BP人工神经网络模型反演值及其与理论值之间的误差见表5。
从表5看到,反演值与理论值很接近,两者之间的相对误差只有1.10%。
3.2 由实测弯沉盆反演沥青面层弹性模量
选取三层体系的一个实测弯沉盆数据进行分析,如表6所示。弯沉盆由7个弯沉值表征,其位置及其相应的弯沉值如表6所示。
选择EVERCALC、WESDEF以及MODULUS等反算程序进行对比。
对表6的非标准荷载作用下的弯沉盆进行标准化换算,其换算方法见式(1)。
(1)
式中:P=落锤式弯沉仪作用的非标准荷载,kN;DP=非标准荷载作用下的路表弯沉值,um;a=FWD承载板半径,cm,一般为15cm。
对表6的弯沉值回归后再进行内插和外延获得文中BP人工神经网络预测模型传感器位置处的弯沉值,见表7。
各种反算程序的沥青面层弹性模量反算值见表8。
从表8的各种算法结果来看,文中BP人工神经网络模型与国外反算程序反算结果较为接近。因此,利用BP人工神经网络模型进行模量反演,不仅可以获得理想的精度,而且反算过程更简便。
4 结语
(1)根据国内常用路面结构形式,经过试算与分析,最终建立了沥青路面沥青面层弹性模量反演的BP人工神经网络预测模型。
(2)分别采用了理论弯沉盆和实测弯沉盆进行检验。检验结果表明,文中建立的沥青路面沥青面层弹性模量BP人工神经网络预测模型不仅能迅速得到预测结果,而且反算过程更简便,并与国外反算程序的反算结果差异不大,为评价沥青面层路用状况提供了一种有效的途经。
参考文献
[1] 杨国良,吴旷怀.利用BP神经网络反算沥青路面结构层弹性模量的研究[J].中山大学学报:自然科学版,2008, 47(5):44-48.
[2] 张小宁,孙立军.沥青路面面层和基层结构模量的反算[J].同济大学学报:自然科学版,2004,32(10):1386-1389.
篇2
1.1集先进性、实用性和前沿性为一体的教学内容改革对国内外优秀的人工智能教材[2-6]的内容进行整合,建立人工智能的知识体系,并提取人工智能课程的知识要点,确定集先进性、实用性和前沿性为一体的教学内容。人工智能的核心思想是研究人类智能活动规律和模拟人类智能行为的理论、方法和技术,因此人工智能应围绕“智能”这个中心。由于智能本身的复杂性,难以用单一的理论与方法来描述,因此可以通过建立人工智能的不同层次来刻画智能这个主题。人工智能的主要内容可按图1所示划分为最底层、抽象层、逻辑层和应用层这4个不同层次。在最底层,神经网络与演化计算辅助感知以及与物理世界的交互。抽象层反映知识在智能中的角色和创建,围绕问题求解对知识进行抽象、表示与理解。逻辑层提出学习、规划、推理、挖掘的模型与方式。应用层构造智能化智能体以及具有一定智能的人工系统。将人工智能划分为这4个层次可确定人工智能课程的教学内容,并保证教学内容的循序渐进。
1.2基于人工智能知识体系的教学案例库建设根据所确定的教学内容、知识重点和知识难点,从国内外经典教材、科研项目、研发设计、生产建设以及国内外人工智能网站等多种途径,收集案例素材,加以整理,撰写各知识要点的教学案例及其内容。表1给出基于人工智能知识体系的教学案例示例。
2人工智能课程教学案例的详细设计
在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。
2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。
2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?
2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?
3案例教学环节和过程的具体实施细节
人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。
4结语
篇3
关键词:数据 神经网络 数据挖掘
中图分类号:TP311 文献标识码:A 文章编号:1007-9416(2015)12-0000-00
1引言
信息在数据库中被搜集出来通过统计、人工智能、情报检索、在线分析处理、机器学习等多种方法来进行数据的整理和分析,将数据整理的结果应用于商业管理、工程开发、股票管理和科学研究等多个方面。随着社会的不断进步人们对数据的要求也逐渐的增加,通过对数据的收集和分析来解决问提并提供更加可行的方案。而面对数据时代中大量的数据其中有真有伪,如何从中提取隐含在其中对决策有意义的信息,提高信息资源的利用率成为信息时代亟须解决的问题。这一需求就要求我们不断推进神经网络的研究和技术深化数字挖掘,才能让神经网络在数据挖掘中进行应用,方便社会中商业、科研等各领域的使用。
2数据挖掘
从海量的数据库中挖掘信息的过程挖掘就称之为数据挖掘(Data Mining)[1]。简而言之,数据挖掘就是从大量的、随机的数据中,提取隐含在其中的、但是又是潜在有用的信息和知识的过程[2]。
数据挖掘的主要流程是获取和整理数据的来源、使用相关的技术和知识、整合和检查数据、删除隐含着错误的数据、建立模型和假设、进行数据挖掘、测试和检验数据挖掘结果最终将挖掘的数据进行应用。
数据挖掘的主要功能数据的分类是指在数据挖掘的过程中将数据库之中根据不同事物的属性、特点的不同进行划分,利用不同的组类来描绘事物以便对事物进行了解;数据的聚类是指根据分析对象的内在规律将数据库中的数据进行群组的划分,将整个数据库划分出不同的群组,并保证同一群组中数据的相似性以及不同群组之间有一定的差别;数据的关联规则和序列模式是指找出数据库中具有相关性的数据,就是某一事物在发生变化之后与之就有相关性的数据也会发生这一变化;数据的偏差检测是指针对数据中极少数的极端数据、偏差数据进行分析,找出其中的内在原因。
3人工神经网络
人工神经网络是某种抽象、简化和模拟,根据神经网络的结构和功能,先后提出的神经元模型有上百种。[3]
人工神经网络的主要优势是具有自学习功能。这种自学习功能能够在图像识别的过程中进行使用,只要把多个图像样板和需要识别的结果输入到神经网络之中就能够通过自学习功能对图像进行识别。这一功能对未来的预测具有极其重要的意义。通过人工神经网络对未来进行预测能够为经济、股市、市场等提供发展方向,推动经济发展。通过人工神经网络对一复杂问题进行大量的计算来寻求优化解。这一功能主要是依靠神经网络的高速运算能力来完成的,能够在短期内对问题进行优化解。
4 神经网络在数据挖掘中的应用
在最开始神经网络应用于数据挖掘之中并不被众人所看好,其主要原因是由于神经网络再解释自身行为上的能力欠缺以及神经网络容易出现过度训练,造成训练数据效果好而检验数据的效果不佳等问题造成的。然而不可忽视的是神经网络在数据挖据应用的过程之中的优势,可以用于数据中有时间单元的情况还能够对噪声数据进行很好的处理,与此同时还能够保证较低的错误率。
4.1数据准备
数据准备是整个数据挖掘之中至关重要的一项。只有数据准备的过程之中对数据进行合理处理、定义和表示,才能让数据挖掘的过程之中顺利的对数据进行的使用和分析。
数据清洗是指数据在装入数据库之前,通过基于规则的方法对字段定义域以及其与其他字段的相互关系对数据进行评估;通过可视化的方法将数据集以图形的形式展现出来,能够更快速的分辨脏数据;利用统计学方法更改错误数据,填补缺失数据。数据选择则是通过列和行利用SQL语言对本次数据挖掘所需要的数据进行选择。
数据处理是利用新字段、数据值的比例变换等方法对数据进行一个增强处理。这种信息增强处理不仅能够提高数据挖掘的质量而且能够降低数据挖掘的时间消耗,提高效率。由于神经网络只能够对数值性的数据进行处理,这就要求我们对数据进行转换,将文本数据处理成与之相对应的映射表,从而转化成为神经网络数据挖掘算法能够接受的形式。
4.2规则提取
目前,规则提取主要使用的方法有符号方法和连接主义方法两大类。符号方法基于粗集理论、决策树等技术支持,对分类知识进行分类规则的转换;而连接主义方法则主要在其结构中进行知识的存储但是不利于人们的理解。神经网络的这一方法不利于数据的挖掘,但由于神经网络分类精度高、鲁棒性好等优点在分类问题中表现突出,大多数的学者更注重专研从神经网络中进行提取规则。
4.3规则评估
在一个数据库之中隐藏着大量规则,为了在给定数据库中取得好的效果要对提取的原则进行最优的评估。规则评估主要从以下几方面进行考虑:首先要覆盖所有神经网络的知识,其次规则判定与神经网络知识相一致,再次判定是否存在相同前提下得出不同结论的规则,最后判断是否存在冗余规则。规则的正确性能够保证神经网络中的知识全部被提取,也能够保证提取规则与神经网络的一致性。
5结语
目前采用神经网络进行数据挖掘是比较常见的方式,因为能够对大量的数值性数据进行快速的处理,但是仍存在着文字数据等非数值型数据的处理、构造神经网络时要求对其训练许多遍等多种问题。这些问题都需要在将来的神经网络在数据挖掘的应用之中逐渐的解决,这些问题的解决能够给神经网络在数据挖掘的应用带来更强大的生命力。
参考文献
[1]沈达安 等.万维网知识挖掘方法的研究.计算机科学,2000,(2):79-8210.
篇4
关键词Petri网;模糊理论;神经网络;故障诊断
1引言
Petri网与模糊理论相结合,以及Petri网与神经网络相结合已经在故障诊断过程中得到了应用,虽然模糊Petri网具有很强的模糊推理能力,但是其缺乏较强的自学习能力,该缺点严重制约了模糊Petri网在各个领域的应用,所以将人工神经网络引入到模糊Petri网中,建立故障诊断的模糊神经网络Petri网模型,提高了故障诊断系统的精度。本文以船舶主机燃油子系统过程为例,利用模糊神经网络Petri网对该过程中的故障诊断进行建模。
2模糊神经Petri网模型
2.1模糊神经Petri网网定义
模糊神经Petri网定义为一个十二元组,
。其中,
为有限库所集;
为有限变迁集;
为有向弧集;
为权值;
Kp为隐含和输出层库所的活动状态集;
Kt为变迁集到规则集的一一映射;
为初始模糊标识;
为有限命题集;
为置信度集,它与每个变迁一一映射;
为库所到真值的一一映射;
为库所到命题的一一映射;
为变迁到阈值的一一映射。
2.2模糊神经Petri网模型的学习功能
模糊神经Petri网(参见图1),具有神经网络的某些特性,因此可先用神经网络的学习算法进行训练,再调整网络结构中的权值,从而获取知识。图2为模糊神经Petri网转化为神经元模型。
图1模糊神经Petri网模型图2神经元模型
3应用实例
3.1生产过程
船舶主柴油机是机舱系统最为关键的设备,也是一种非常复杂的动力装置系统。它既是一个由往复式机械与其他机械构成的动力装置系统,也包括了由控制装置、伺服系统、检测与显示仪表以及安全保护和报警系统等组成的电气控制系统,同时它还是一个复杂的热工过程。由于船舶主机的极端重要性,其故障诊断和工矿监视问题历来深受重视。目前人们至少已从三个不同的方面探索研究了船舶主机的故障诊断问题,其一是振动分析,其二是通过油品质指标的分析来判断主机机械磨损情况,其三就是从热工参数出发诊断船舶主机系统的故障。本文利用第三种方法,选用燃油流量、燃油压力和燃油黏度,诊断燃油子系统故障。其流程图如图3所示。
3.2模糊神经Petri网模型
船舶主机燃油子系统故障诊断的模糊神经Petri网模型如图4所示。4实例分析
下面以船舶主机燃油子系统的故障诊断为例,燃油流量、燃油压力和燃油黏度作为该子系统神经网络的输入,即。每个输入变量用三种状态表示,即正常(N),偏高(H),偏低(L),该系统有6各种基本故障现象,记为,其中表示无故障,下面以为例,说明神经网络在模糊Petri网的学习能力。
表1是故障现象的学习样本,当模型完成了故障诊断的学习和训练,就可以根据模型输入量进行故障诊断推理,表2和表3为一组故障诊断的运行实例。
由表2可以得出,当输入量时,故障现象的诊断结果为,它的可能性为96%,当输入数据发生变化时,从表2可能看出,故障分类的结果依然是,但是输出值产生了变化,从表中可以看出故障的可能性下降为69%,这说明,神经网络在模糊Petri网的故障诊断系统中对偏离训练样本的输入数据依然具有较强的处理能力。把神经网络引入到模糊Petri网故障诊断过程中,可以提高诊断结果的正确性。
表1故障现象的学习样本表
输入输出故障
原因
P1XP7P8P9P10P11
0X10000正常
1X101000超负荷
1X200100后燃
1X300010提前着火
1X400001燃油管路泄露
表2燃油子系统的故障诊断实例
序号输入输出(%)
QPuP0P1P2P3P4P5P6
1HNN39600010
2H0.6N0.6N97419232
3H-0.4N-0.4N476000200
41.2H-0.4N-0.4N179000200
50.8H-0.4N-0.4N969000211
表3故障现象的诊断实例
序号输入输出(%)
P1XP8P9P10P11
11X197300
21X219360
31X304906
41X400892
51X5683200
5结束语
本文将人工神经网络引入到模糊Petri网中,并以船舶主机燃油子系统过程为例,对过程中存在的故障进行诊断,通过实例说明该方法可以提高故障诊断系统的精度。
参考文献
[1]胡志刚等,基于模糊神经Petri网的故障诊断模型[J].小型微型计算机系统,2005,11(26)
[2]王磊等,甲醇合成过程中基于MAS的故障诊断方法[J].华东理工大学学报,2006,1(32)
[3]KoriemSM.AfuzzyPetrinettoolformodelingandverificationofknowledge-basedsystems[J].TheComputerJournal,2000,43(3):206-223
[4]大卫R,奥兰H.(黄建文,赵不贿译)佩特利网和逻辑控制器图形表示工具(GRAFACET)[M].北京:机械工业出版社,1996
[5]AhsonSI.PetriNetModelsofFuzzyNeuralNetworks.IEEETransonSMC,1995,25(6):926-932
[6]韩光臣等,基于模糊概率Petri网系统的故障诊断仿真研究.计算机集成制造系统.2006,4(12)
[7]TsangECC,YeungDS,LeeJWT.LearningcapabilityinfuzzyPetrinet[J].InProceedingofthe1999IEEEInternationalConferenceonSystems,Man,andCybernetics,Tokyo,1999:355-360
篇5
关键词: 智能控制;神经网络;温度控制系统;
正如大家所知道的,在控制系统发展中,智能控制技术的出现有益于逻辑控制、人工神经网络技术和专家模糊系统的一体化。在由一个误差信号驱动的学习控制中可以看出,对于许多复杂变量的非线性方程,这些系统的功能得以淋漓尽致地发挥。换句话说,和普通软件一样,工业生产的各种各样应用软件已经溶入了智能控制的思想。举个例来说,对于一些较难为传统方案所能控制的复杂或不大明了的系统,这种高级控制能提供一个切实可行的方案使其接近目前人类专家认识水平上的定性数据。随着工业控制的发展,智能控制技术领域的繁荣已经为新的控制技术提供了一些重要的应用。
关于智能控制的一些基本概念已在本篇文章中加以解释,并通过一个例子说明智能控制在温度控制系统中的运用。
模糊控制
模糊理论的发展源于用精确、传统的模型没法解释一些现实中遇到的物理现象,因
此,模糊理论成为探索复杂问题的一种有力工具,因为在没有使用精确、常规模型的情况下,对于定的输入它都能测定出输出量。它是没有模型的控制器。模糊控制理论的本质就是把复杂问题简单化。
设全域U中的一个子集为A,它们之间的关系用函数描述为:μA(χ):χ∈[0,1],表示χ中的所有元素在A中的级别。模糊理论在很大程度上得益于人类语言,它是一
语言控制器,自然语言中的每个字或术语都可以视为全域U中的具体模糊子集A的一个标志。这个语言标志是用字、语法和句子来描述全域U.的子集。一个模糊语言上的变
量值就是作为模糊状态标志使用的语言术语,且是可以变化的。例如,模糊子集标志的高、中、低可作为模糊变量的值。
2、自适应模糊神经控制
自适应模糊神经控制通常包含在体系结构中设定的两个多层神经网络模型。其中第一个神经网络是一个设备竞争者,第二个作为一种补偿以提高基本模糊逻辑控制器的性能。这个系统的发展由三个阶段组成:第一阶段,为设备发展一个基本模糊逻辑控制器;第二阶段,依据设备动力学训练控制神经网络模型,根据设备的不同类型,这种神经网络的训练实时或离线时都可以使用;第三阶段,主要包括神经模糊补偿的在线学习。预期输出与实际输出之间所表现出的误差会通过神经设备竞争者向后反馈,以适应在线神经模糊补偿的分量。这种过程促进了神经网络设备竞争者与实际输出之间的误差在后向反馈中的即时改进。
3、专家模糊系统
专家系统有许多专家知识和实践经历,所以被称为程序系统;在专家的知识和先前实验数据的基础上,专家系统得到了很大的发展。为了要图解式地表达专家的知识,一个知识网络常通过因果关系的例证被证实;模糊全集函数可以像语言学上的陈述来使用。当专家系统出现故障时,它便开始使用向后和向前的链接方法查找根本原因。然后,依照查找到的原因修正控制策略;对每一步操作,它都会考虑到确切步骤不同程度的作用。如果最初原因的判断超过了预先定义的界限,专家系统会执行操作;当判断低于预
定的界限,而且如果这步操作不可撤消的话,专家系统就会给操作员发出消息等待他的决断。如果操作是可逆的,专家系统会毅然使用该操作。这三种不同的控制方案研究是
可选的,比如:给操作员“提出要点”、“模糊回答”、“建议”等。当专家系统执行使用“提出要点”这一方案时,就会发送进程变量的一个最新值给高层控制系统。使用“建议”方案时,系统将“建议”发给进程操作员让其手动完成操作。“模糊回答”包括三个部分,一个进程变量、自预定义模糊集合方程和所发现原始明确原因的程度。对于出现的每一个故障,将建立一个“模糊回答”。
4.人工神经网络
人工神经网络在数学模型中模拟了生物大脑神经网络,大脑是一个大规模的信息处理系统,它连接了将近1010个神经元。人工神经网络以平行分布的方式连接了许多线性
或非线性的神经元模型和进程信息。当传统计算机的计算速度因为从计算方案的预指定运算法则减缓时,神经网络就会以很高的速度执行计算。另外,神经网络有很多有趣吸引人的特征,比如宽大的并行处理,错误容忍力,自适应学习能力和自我组织能力。
一个人工神经网络就是在不同层聚集起来的神经单元的一个集合。如图1所示为一个典型的多个神经网络。
多个网络可以实现任意复杂输入输出之间的映射。一个神经元i在第k层的输出如下:
其中yik是第k层第i个神经元的输出,wyk是第k-i层第i个神经元与第k层第i个神经元之间的连接分量,m是总的层数,Xik-1是第k-i层第i个神经元的活化,θj是第j个神经元的极值,函数表示神经元的活化规则,它通常是一个分段、具有一定斜率的线性s曲线。在一个竞争的神经网络中,在第k层每一个神经元i和同层中的其他神经元形成竞争关系。为了学习神经网络的
分量,可以使用后向反馈误差的运算法则。这种法则运用倾斜的搜索技巧求出误差函数的最小值。近来,神经网络使用控制系统与其他控制器组合到一起,比如神经网络PID控制器,神经网络模糊控制……众多实例说明组合控制的效果优于单个系统。
5、仿真实例
在锅炉温度控制中,神经网络控制的实现过程如图2所示:
控制器是神经网络PID控制计划,温度控制系统结构如图3所示:
当神经网络PID校准器是一个两层网络控制的系统,其如图4所示:
, ( 2 )
,
运算法则是基于一种倾斜的理论基础上的,它被称之为后向传输理论,这个在两层
之间的反向误差信号表达式为:
, (3)
其中f(x)是f与x之间关系的派生,这个关系分量表示为:
, (4)
其中,学习比例 , (5)
精深的论据 , (6)
系数 η0=0.3 ,α0=0.95 . 实验中使用容积为8升的锅炉,选用800W的加热器,当时间0 <t<60 min温度保持40℃,60<t<120 min时保持60℃,采样时间间隔设为20秒。实验中可观察到使用神经PID控制器的过程输出,如图5(a)为其输入、输出曲线图。但如果使用的是基本的PID控制器,则输出曲线在理想输出线附近逆向振荡,其输入、输出曲线如图5(b)所示。
6、结论
篇6
[关键词]人工神经网络;旅游物流;需求预测
[DOI]1013939/jcnkizgsc201538051
1引言
旅游物流对广西地区经济的发展至关重要,准确把握、预测旅游物流需求有助于有关部门制定合理的旅游物流规划、促进国民经济可持续发展、提高居民生活水平。国内学者通过一定的方法和模型确定了影响旅游物流能力的关键要素,为旅游物流需求的预测提供了一定的理论基础,而在物流需求预测方面也提出了很多如时间序列模型、灰色预测、回归分析等具有创新性和实践意义的方法。由于旅游物流具有的独特性和负责性使得这些模型及分析方法在前提条件、适用范围和侧重点的选取方面具有一定的困难,因此在实际应用中各有利弊。人工神经网络可以将定量或定性的信息等势的分布贮存于网络内的各神经元,有很强的鲁棒性和容错性,通过建立基于人工神经网络的预测模型,利用Braincell软件进行计算以期达到精确预测旅游物流需求的目的。
2旅游物流的需求界定
经过多年的发展,关于旅游物流需求的定义至今仍没有一个令各方满意的结论。物流服务贯穿了整个旅游活动过程中,旅游物流可以看作为了使旅游消费者获得更好地满足感和旅游体验,与旅游相关的主体提供让旅游消费者更为畅通流动的旅游服务,与此相应的旅游物流的能力指提供的旅游服务内容以及相关主体使用物流设施对旅游物流活动进行计划、组织、协调和控制的能力,到旅游物流的具体环节,可以从涉及旅游者的吃、住、行、购、游、娱等方面界定旅游相关主体运用物流设施为游客提供旅游服务的能力。文中对旅游物流需求的预测可以从往年的旅游物流能力方面进行预测,通过准确的预测旅游物流需求可以较好地规划未来年份旅游业发展方向,对物流设施和设备进行准确的投入,减少资源的浪费及设施投入不足的状况。
旅游物流能力是指旅游服务主体向旅游消费者从“吃、住、行、购、游、娱”6个方面提供服务的能力,旅游物流需求可根据这6方面来选取指标,但是旅游物流需求预测的准确性不仅受到旅游物流的独特性的制约,还受到一些客观性条件的影响。如物流统计制度不健全,目前,我国仍没有建立系统全面的物流统计制度,更没有涉及旅游物流领域;物流统计没有涉及物流活动的全过程;物流统计指标过于单一。此外,国内只有基本的货物运输量和货物周转量统计,其他与物流相关的指标没有公开的统计资料,也没有权威的统计方法和基础数据,致使物流需求预测不能通过直接指标来衡量需求规模的大小。
3基于神经网络的旅游物流需求预测模型的建立
神经网络具有非线性、曲线拟合能力、学习能力和抗干扰能力,是一种通用的非线性函数逼近工具。通过对BP神经网络的训练,特别适用于构造非线性预测函数,而且精度可达到预定的要求。
31预测领域中的BP神经网络模型简介
BP神经网络通过正向输入,反向传播误差不断迭代的学习过程,直到误差减到可以接受的程度。一般包括输入层、隐含层和输出层的单隐含层网络就能以任意精度表示并揭示任何连续函数所蕴含的非线性关系。其中:
(1)工作信号正向传播。输入信号从输入层经过隐含层,传向输出层,在输出端产生输出信号,这是工作信号的正向传播。在信号的正向传播过程中网络的权值是固定不变的,上一层神经元的只影响下一层神经元的状态,即正向影响。如果在输出层不能得到期望的输出,则转入误差信号反向传播。
(2)误差信号反向传播。网络的实际的输出与所期望的输出之间差值即为误差信号,误差信号由输出端开始逐层向前传播,即误差信号的反向传播。在误差信号反向传播中,神经网络的权值根据误差的反馈进行调节。通过不断地对权值的修正,使实际输出更加接近期望输出。
(3)预测神经网络流程。通过了解工作信号与误差信号的传播方向,可以清楚地了解预测神经网络的工作流程。预测开始时神经网络读入样本、权值,通过计算输入层的输入得出结果传递到输出层,在输出层进行计算,最后在计算输出值与期望值的误差。若误差小于确定值则计算结束,若误差大于确定值则继续回到前两层进行权值调整,把调整后的权值重新输入到模型中,直到误差小于设定的确定值。
本文应用Braincell神经网络软件来实现神经网络的计算与分析。
32BrainCell软件及实现
321BrainCell 神经网络基本原理
BrainCell 神经网络采用误差反向传播学习算法,算法从两个方面(信号的前向传播和误差的反向传播)反复进行迭代学习,与神经网络预测模式基本原理相同。
322BrainCell 神经网络实现步骤
(1)数据的预处理和后处理。为方便的计算减少误差,保证数据同一量纲,需要将数据归一化为区域[0,1]之间数据。在实际的预测模型中当数据接近0或1的时候训练效果会明显下降。因此,为了避免数据落入最大饱和区,保持数据的原有特征,根据经验将数据规范到[015,085]来进行修正。模型中采用反归一化处理输出数据。
(2)网络层数目的确定。由Kolmogorov定理可知,含有一个神经元隐含层的三层神经网络可以从任意精度逼近一个从输入到输出的映射关系,因此在Braincell神经网络中采用含有单隐层的三层神经网络[2]。
(3)网络节点的确定。输入层节点的多少与评价指标个数是相对应的。
(4)网络训练。假设训练样例是形式(x,y),其中x为输入向量,y为输出值。N为输入节点数,M为输出层节点数。从单位i到单位j的输入表示xij,单位i 到单位j的权值表示Wij。一是创建具有N 个输入单位,M 个输出单位的BrainCell 神经网络;二是用随机数(0 或1)初始化某些数字变量网络权值Wij;三是对于第k个训练样例(a,b),把入跟着网络前向传播,并计算网络中每个单元x的输出Qx,使误差沿着反向传播;四是对于每个输出单元u,计算它的误差项;五是对于每个隐含单元h,计算它的误差项;六是利用误差项更新调整每个网络权值;七是重复三到六点,直到完成指定的迭代次数或者是其误差值达到可接受的范围。
33神经网络的旅游物流需求预测模型的建立
331模型中数据指标确定
目前我国仍没有健全的物流统计制度,因此实际工作中收集旅游物流需求数据十分困难。这里采用间接指标法――利用与旅游物流需求相关的经济指标来建立旅游物流需求的经济指标体系,通过数学的方法进行总结与推导,确定旅游物流需求模型。
旅游物流需求是一种派生需求,这种需求的大小与其本身发展有着密切的关系。从宏观层面上考虑主要有内外两部分因素:旅游业自身发展的状况及外部环境的影响。从微观层面来说,旅游业自身发展的状况是旅游物流需求的关键因素。旅游业产值越高,旅游物流需求增长随之增加,反之亦然。由此,本文选取旅游总收入和接待人数作为预测旅游物流需求的指标。其次,影响旅游物流的其他关键因素就是旅游行业本身所投入的设施、人员、公路铁路旅客周转量等因素。根据旅游物流能力的理解从“吃、住、行、购、游、娱”等方面进行指标的选取,如“吃、住”方面使用餐饮住宿从业人数、星级饭店数目衡量;“行”使用公路、铁路旅客的周转量来衡量等;“游”则使用旅行社从业人数等方面来衡量。这些因素都对行业的产值有较大的影响。因此,在模型中可将这些相关经济指标作为旅游物流需求规模的影响因素。由此可选择如下输入层指标:星级饭店数X1、接待入境旅游者平均每人消费额X2、餐饮住宿业从业人数X3、旅行社从业人数X4、铁路旅客周转量X5、公路旅客周转量X6、旅游部门游船年末实有船数X7,旅游部门旅游客车年末实有数X8,共有8个。而把旅游业的年收入Y1与年接待入境旅游者人数Y2作为物流需求预测的目标。
332数据来源
本文选取的数据资料来源于广西壮族自治区历年统计年鉴、中国统计年鉴、中国旅游年鉴,如表1所示。根据样本数据选取原则,将2005年和2012年的数据作为网络测试样本,最后用训练好的神经网络预测2014―2016年的物流需求规模。
333广西旅游物流需求的BP人工神经网络模型
(1)样本数据的归一化处理。选取X1,X2,X3,X4,X5,X6,X7,X8作为广西旅游物流需求预测BP人工神经网络模型的输入,Y1,Y2为BP网络的输出。根据BP 的本身特点,对输入层数据进行归一化时,采用如下公式:y=log[JB((]x[JB))]/10。对输出层数据则使用归反一化处理,公式如下:P=log[JB((]tT[JB))]/10。
(2)网络节点的确定。根据构建好的评价指标体系,可以确定输入层的节点数为8,输出层的指标数为2。
(3)网络训练。以traindx作为训练函数,利用matlab计算。可知在最大训练次数为200次,目标误差为001,学习率设置为003,误差曲线收敛于目标001,进过45次迭代后,网络达到目标要求,训练误差图见下图。
训练误差图
通过设置的数据,使用Braincell软件对数据进行训练,选取全部数据作为样本数据组,2010―2013年的样本作为将预测样本,输入模型可得2010―2013年的预测值见表2。
据表3可以看出,预测效果较好,一般来说,对于经济指标的预测,误差能够控制在3%以内就算比较准确。因此,基于与旅游物流相关的其他经济数据来建立BP神经网络模型预测旅游物流需求有一定的实用价值。
4结论
根据人工神经网络理论建立的旅游物流需求预测模型,通过Braincell神经网络的自学习特征,运用traindx函数进行训练,在训练过程中对权值进行不断修正,误差比率控制合适的在范围内,使网络的实际输出向量逐渐地接近期望的输出值。最后把仿真的预测结果与真实量进行初步比较分析,得出的结果能够证明使用神经网络模型对旅游物流的预测精度较高。因此可以得出以下的结论:用BP神经网络建立模型,可以准确地把与旅游物流相关的经济数据与目标本身的需求量进行结合,可得到较为精准的旅游物流需求预测值。由此可以推断,人工神经网络作为高度的非线性体系,能够对经济系统中个变量之间的非线性关系进行高精度的预测,将其运用在物流领域中的应用具有更加广阔的发展潜力。
参考文献:
[1]王新利,赵琨基于神经网络的农产品物流需求预测研究[J].农业技术经济,2010(2):64-66
[2]秦立公,韦金荣等基于BrainCell 的B2B 电子商务供应链协同绩效评价体系[J].中国集体经济,2014(15):112-113
[3]张圣楠,郭文义,等基于MATLAB的BP神经网络的设计与训练[J].内蒙古科技与经济,2005(17):96-98
[4]熊勋人工神经网络在环境质量评价和预测中的应用研究[D].武汉:华中科技大学,2009
[5]白平,陈菊红基于旅游物流能力的西部旅游发展研究[J].新疆大学学报,2013(41):16-17
[6]秦立公,王东,等旅游景区物流能力优化研究[J].现代商业,2010(24):47
篇7
【关键词】传感器;数据融合;智能小车;避障
1.概述
智能小车实际上是一类轮式移动机器人,其运行原理是依据单片机程序来自动实现行使、转向、加速等运动形式。因此对智能小车运动方式的控制属于机器人学的范畴。对智能小车运动轨迹的控制主要依赖于传感器的信息采集技术和智能控制技术。而在智能小车的运动轨迹控制问题中的一个重要问题是如何实现其自动避障。要完成这一任务,需要解决两个方面的问题,一是利用传感器准确的收集小车所在的环境信息,二是将环境信息自动处理后变成控制信息。实践表明,采用的单一的传感器技术已经不能满足收集充足环境信息的需要,而需要多种类型的传感器相配合,从而获得准确的环境信息。对这些通过多种类型传感器获得的环境信息的处理需要实现不同数据的之间的整合,即需要利用多传感器的数据融合技术。常用的数据融合技术如传统的卡尔曼滤波法、D-S证据推理等,但其核心思想是一致的,即通过对多种信息的融合来实现对目标的识别和跟踪。采用基于多传感器的数据融合技术已经成为智能小车避障控制中的重要研究方向。在本文中将以多传感器的数据融合技术为基础,研究智能小车的避障问题。
2.基于多传感器的数据融合
基于多传感器的数据融合技术需要处理来自多个传感器的实时数据,并进行快速的处理。从传感器获得数据的类型来看,这些数据代表不同的物理含义,如速度、距离、角度等,数据类型和特征也不尽相同,分属于不同的层次,因此对来自多个传感器的数据融合实际上要完成对多层次数据的综合评定,这必须依赖于一定的数据融合结构。
2.1 基于多传感器信息的融合结构
从现有的研究成果来看,基于多传感器信息的数据融合结构主要有四种形式:无反馈分布式融合、反馈分布式融合、集中式融合和反馈并行融合,各类融合结构的主要特点分别为:①无反馈分布式融合。无反馈分布式融合模式需要对每个传感器的数据都进行滤波分析,并完成对各传感器的局部信息融合,最后再实现对多个传感器数据的融合。这类数据融合方式的优点是不需要太大的通信开销,融合速度较快,所需的存储空间也较小。②反馈分布式融合。反馈分布式融合的基本原理和无反馈分布式融合类似,但每个传感器多了一个信息反馈通道,可提高预测和状态估计的精度,但需要更大的通信开销。③集中式融合。集中式融合的主要特点是对所有传感器采集的信息进行状态的估计和预测,通过对每个传感器采集信息的检测判定来实现对所有传感器信息的综合判定。由于采用了所有传感器的全部信息,因此这类融合方法的精度较高,但也需要更高的硬件配置。④反馈并行融合。这类数据融合结构综合了以上三类融合结构的优点,对局部、整体的数据处理效率和精度都很高,但对硬件和数据关联技术等要求也较高,是一类重要的研究方向。
2.2 基于多传感器信息的数据融合方法
基于多传感器信息的数据融合方法主要分为两类,一是基于概率统计的方法,如统计决策法、贝叶斯法等,二是人工智能方法,如模糊控制法、人工神经网络、D-S证据推理等。每种方法可参考有关文献,此处不再一一详述。
3.模糊神经网络基本原理
模糊神经网络是模糊控制理论和人工神经网络理论的耦合技术,能够有效的处理对经验性依赖较高的问题,并能广泛的适用于无法精确建模的系统。而人工神经网络则能够具备自学习能力和快速求解能力。通过模糊控制和人工神经网络的结合,能够形成函数估计器,有效的处理模糊信息和完成模糊推理,其性能比单一采用模糊控制或人工神经网络控制效果更优。模糊神经网络的基本原理为:①定义若干各模糊集合,并形成对应的控制规则。定义神经网络的层次(一般分为三层)和节点数量。②定义输入层。将输入层中的节点与输入向量分量之间实现连接。③定义隶属函数层。以语言变量值构成隶属函数层的节点,与输入层的连接权值固定为1,节点阈值为0。④定义规则层。每一条模糊控制规则定义为一个节点,节点的输出为隶属函数的输出。
4.实例应用
4.1 硬件
在本例中,智能小车所采用硬件平台为STC89C52型单片机,动力系统为AUSRO马达130,驱动芯片型号为TA7267,驱动芯片与单片机相连,其输出端和马达直流电机连接,从而实现对小车的方向控制,小车通过两轮驱动。
小车采用的传感器有两种类型:超声波测距系统和红外传感器系统。超声波测距系统的型号为TCT40-10T/R,红外传感器的型号为索尼CX20106。
4.2 传感器数据融合规则
在采用了5路超声波测距系统后,基本上可以对小车周围的障碍状况有比较可靠的了解,红外传感器的作用是为了弥补超声波测距系统的盲区。对这两类传感器所采集数据的处理方式为:①超声波测距系统和红外传感器同时工作;②若红外传感器的有效探测距离内发现障碍,以红外传感器的数据为准;③其他情况以超声波测距系统的探测值为准。
对5个方向的超声波测距的数据所采用的数据融合流程为:开始选择通道发射超声波盲区延时接收信号计算小车与障碍之间的距离数据融合选择小车动作。数据的融合技术采用模糊神经网络法。
4.3 模糊神经网络的构建
结合智能小车避障控制的需要,在小车车身配置5个超声波系统和一个红外系统,分别完成对前、左、左前、右、右前5个方向的测量,因此模糊神经网络共需要建立起5个输入和2个输出的网络结构。各个输入量的物理含义为小车在上述5个方向的与障碍的距离,神经网络的输出量为小车的前进和停止。以红外传感器采集的数据作为小车运动控制的开关量。隶属函数层的函数形式采用高斯型,模糊语言变量分别为{“远”、“近”},因此结合第一层的5个输入,共构成10个神经元。结合输入层和隶属函数层的情况,输出层的神经元数量为2的5次方,共32个神经元。
4.4 模糊控制规则和样本训练
(1)模糊控制规则
模糊控制规则体现的是人为控制经验的总结,分别对5个方向的超声波探测到的距离信息为基础来控制小车的转向。其基本原则为,若距离障碍较近,则小车停止前进,若距离障碍较远,则小车继续前进。分别以F表示前进、TF表示左转、TR表示右转、在实际控制规则中,共有9条,这里仅举一条来进行说明:若前方障碍较近,且左、左前、右、右前距离障碍较远,则小车左转。将上述规则转换为模糊语言后,即可获得具体的控制规则。具体转换方式可参照有关文献。
(2)模糊神经网络的训练样本
依据上述模糊神经网络的基本组成方式,其模糊输入范围的论域为[0,5],以高斯型隶属度函数来划分距离远近的模糊集合。训练样本的数据量较大,因此这里不便一一列出,神经网络的训练方法可参照有关文献。
4.5 运行效果
在上述的步骤完成后,对小车的避障能力进行了实际验证。实验表明,利用超声波测距系统结合红外传感器后,以模糊神经网络融合上述两类传感器采集的数据可有效的实现智能小车的避障运动。
参考文献
篇8
关键词:玉米种子;品种识别;人工神经网络;支持向量机
中图分类号:S513;S326 文献标识码:A 文章编号:0439-8114(2016)09-2366-04
近年来,假种子事件频发,给农业造成巨大损失,农民由于缺乏识别种子的能力和设备,往往不能有效区分各个品种,迫切需要一种快速的种子识别方法。数字图像识别作为一种快速识别技术而被广泛应用,在水稻、小麦和花生等作物种子识别上都有成功应用的报道。
现代玉米种植和水稻一样,广泛杂交育种,不能自留种,增大了不法商家贩卖假种子的空间。为了有效鉴别玉米种子的真伪和类别,郝建平等、杨锦忠等通过数十个外观特征,采用图像处理的方法识别种子:韩仲志等研究了对种子识别起关键作用的特征提取方法,如子粒的胚部特征和果穗DUS测试特征的提取方法:另外杨锦忠等针对玉米果穗形态研究了品种识别问题,对关键特征进行了选择优化。
在玉米识别相关算法和系统工程应用之前,需要对品种识别过程中的关键因素进行有效的性能与效率测试。由于人工神经网络方法广泛应用于识别问题,本研究拟针对不同的神经网络模型进行比较研究,进而考察各种模型的效能,为将来品种识别软件的开发与工程应用提供算法支持。
1 材料与方法
1,1 试验材料
供试玉米品种共11个,均是北方黄玉米品种,种质来源为青岛农业大学种质资源库,每个品种50粒种子。采用平板扫描仪采集图像(图1)。基于Matalb2010b编程,采用子粒区域标记的方法将图像中各个子粒的子图(SubImage)提取出来。然后进行特征提取。
1.2 特征提取
提取的特征包括颜色、形态和纹理3大类,见表1,相关定义参见文献。从二值图上提取形态特征,从RGB和HSV彩色图获取颜色特征,依据灰度图像获取纹理特征。
1.3 特征优化
随着统计指标的增加,统计特征的维数相应增加,因此也需要进行必要的降维和特征优化。传统的特征降维与优化是基于二阶统计量进行的主分量分析(PCA)方法。PCA是统计学中分析数据的一种有效的方法,其目的是在数据空间中找一组向量以尽可能地解释数据的方差,将数据从原来的R维空间降维投影到M维空间(R>M)。降维后保存了数据中的主要信息,从而使数据更易于处理。PCA方法是沿数据集方差最大方向寻找一些相互正交的轴,主成分分析方法是一种最小均方误差下的最优维数压缩方法,特征提取和优化后,特征维数将进一步减少。
1.4 品种识别
基于表1中的特征可实时进行品种识别。人工神经网络是模拟人的神经感知结构,寻找非线性情况下的一种最优映射,由于所提取的特征与玉米类别之间存在着非常复杂的非线性映射关系,所以特别适合采用此方法进行品种识别。由于神经网络的初始权值由系统随机给出,所以往往带来结果的不稳定,通常的做法是多次测试取最优实现。基于提取的特征数据即可进行种子检验和品种识别,本研究涉及的神经网络模型包括7种,即BP、rbf、grnn、pnn、compet、sofm,以及一个BP(backpropagation)神经网络的改进型,即极限学习机ELM。其中神经网络BP算法是最典型的神经网络分类方法。支持向量机(SVM)模型是近几年发展起来的优秀的识别模型,在农作物种子识别领域已经被证明比神经网络识别模型具有更为稳健的性能。
2 结果与分析
图2是6种神经网络识别模型的识别结果,图3是BP神经网络的改进型极限学习机(ELM)与支持向量机(SVM)模型识别结果。表2为上述8种识别模型在不同主分量及不同特征下的识别效果。
2.1 不同模型的识别性能
比较6种神经网络识别模型可以发现(图2、表2),首先从识别率上,基于60个原始统计特征,6种神经网络识别模型和1种改进型识别模型的识别性能从高到低为grnn>ELM>pnn>rbf>BP>compet>sofm,决定系数R2从大到小为grnn>rbf>ELM>BP>pnn>compet>sofm,所耗时间上从少到多为ELM
鉴于极限学习机ELM是广泛应用的BP神经网络的改进型,且其识别效果优越,将其作为神经网络模型的代表与支持向量机模型进行比较。图3列出了两种模型的识别效果,部分数据在表2中有所体现,可以看出支持向量机(SVM)模型的识别效果较好,且效果更为稳定。
2.2 特征优化对模型的影响
由于分类性能严重依赖特征的选取,这就表明某种特征的组合可能具有更优秀的分类能力,此时主分量是一个很好的选择,它不仅可以进行数据降维,还可以寻找对所有类都尽量适应的优化特征组合。表3列出了不同数目PCA情况下8种识别模型的识别性能。从表3可以看出,从识别率看,神经网络模型表现极其不稳定,识别率并不是随着PCA数目的增加而增加,但总体上还是呈增加趋势,这种不稳定性与神经网络初始权值的随机赋值有关,同时由于神经网络的隐含层神经元数目到目前为止缺乏理论指导,所以只能通过经验给出,故要得到较为稳定的结果可通过多次训练得到较为稳定的识别模型为止:但比较来看,支持向量机模型表现出更为稳定的识别效果,且随着PCA数目的增加。识别模型的总体识别率呈上升趋势。另外从模型的决定系数和识别模型的时间上来看,支持向量机模型都是较为优秀的模型。其中决定系数R2越接近于1,识别的时间越短,说明模型越优秀。在这些模型中compet表现的效果最差,不仅识别的效果最差。且识别的时间最长。
3 小结与讨论
从本研究的识别结果看。识别结果非常不稳定,这种不稳定的结果与两个因素有关,一是神经网络的不稳定,与确定神经网络初始权值时随机给出有关,二是采用的交叉验证法是随机给出,随机将训练和测试样本进行分组,每次试验选用了不同的训练集和测试集。
PCA是一种优秀的特征优化和数据降维方法,通过PCA降维可以在很大程度上提高运算速度,减少计算量,特别适合在线监测。另外从比较结果可以看出,支持向量机是一种优秀的分类模型,特别适合于对小样本进行分类,其效果要优于神经网络模型,且结果稳定。支持向量机和神经网络虽然都用来进行品种识别,但所依据的理论基础和识别机理均不相同。支持向量机普遍认为其泛化能力要比人工神经网络强:支持向量机模型理论基础是结构风险最小化理论。也涉及模型参数优化问题:另外支持向量机可以得到识别决策函数的解析表达式,而神经网络不能明确地得到一个解析解。
篇9
(1.克拉玛依职业技术学院,新疆克拉玛依834000;2. 新疆农业大学机械交通学院,新疆乌鲁木齐830052)
摘要:学习向量量化(LVQ)神经网络可以通过监督学习完成对输入向量模式的准确分类,提出了一种基于改进的LVQ神经网络的发动机故障诊断方法,介绍了LVQ神经网络及其改进的学习算法。以长城哈佛GW2.8TC型发动机为实验对象,让发动机在怠速状况下,对发动机进行故障设置,利用金德KT600电脑故障诊断仪采集发动机数据流,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ神经网络能对发动机故障做出正确分类,准确率比较高。
关键词 :改进的LVQ神经网络;发动机;故障诊断;神经元
中图分类号:TN98?34 文献标识码:A 文章编号:1004?373X(2015)17?0107?03
0 引言
人工神经网络(Artificial Neural Networks,ANNs),也称为神经网络(NNs),是模拟生物神经网络进行信息处理的一种数学模型。它以对大脑的生理研究成果为基础,目的在于模拟大脑的某些机理与机制,实现一些特定的功能。由于人工神经网络具有联想记忆功能、优化计算能力以及其他的一些性质,所以人工神经网络具有较强的分类识别功能。学习向量量化(LVQ)神经网络是常用的一种神经网络,LVQ神经网络是一种有导师训练竞争层的方法,竞争层自动学习识别输入向量,并对输入向量分类。
本文以长城哈佛GW2.8TC 型发动机为例,运用LVQ神经网络对发动机进行故障诊断。
1 LVQ 神经网络
1.1 LVQ神经网络结构
LVQ神经网络是两层的网络结构,即竞争层和线性层。竞争层对输入向量进行学习分类,把竞争层的分类称为子分类;线性层根据用户的要求将竞争层的分类结果映射到目标分类结果中,把线性层的分类称为目标分类。LVQ神经网络结构如图1所示。
由图1可以看出,竞争层和线性层每一类别各有一个神经元,竞争层通过学习,可以得到S1类子分类结果;然后,线性层将S1类子分类结果再分成S2类目标分类结果(S1始终大于S2)。例如,假设竞争层的第1,2,3个神经元对输入空间的子分类所对应的线性层的目标分类为第2类,则竞争层的第1,2,3个神经元与线性层的第2个神经元的连接权将全部为1,而与其他线性层神经元的连接权全部为0,这样,当竞争层的第1,2,3 个神经元中的任意一个神经元在竞争中获胜时,线性层的第2个神经元将输出1。
1.2 LVQ神经网络学习算法的改进
LVQ 神经网络学习算法的改进是在LVQ1 的基础上进行的,它可以改善LVQ1学习结果的性能。改进的LVQ网络的学习过程与LVQ1类似,在应用LVQ1 进行学习后,再用改进的LVQ 网络进行学习,不同的是,改进的LVQ 是针对最接近输入向量的两个相邻神经元的权值进行的,其中一个神经元对应正确的分类模式,另一个神经元对应错误的分类模式,而输入向量位于定义的窗口时,有:
这样,如果给定两个很相近的输入向量,其中一个对应正确的分类,而另一个对应错误的分类,则改进的LVQ也能对靠的非常近,甚至对刚刚可分的模式进行正确地分类,从而提高分类结果的鲁棒性。
2 改进的LVQ 神经网络在发动机故障诊断中的应用
基于改进的LVQ神经网络在发动机中的故障诊断仿真步骤如下:
(1)让发动机处在怠速状态下,并对其进行故障设置,用电脑检测仪及其他设备测出发动机有无故障时的数据流参数;
(2)用改进的LVQ神经网络建立诊断模型,并用已知的样本数据训练网络;
(3)用训练好的网络对发动机进行故障诊断,并对训练结果进行分析。
2.1 发动机故障设置及采集样本
为了验证改进的LVQ神经网络在发动机故障诊断中的可行性,本文以长城哈佛GW2.8TC 型发动机为研究对象,让发动机在怠速状况下,对发动机进行故障设置,并利用金德KT600故障诊断仪采集发动机数据流。以发动机在正常怠速、油门踏板1接地线开路、凸轮轴传感器线路故障、1缸喷油器线路故障、冷却液温度传感器线路串联某阻值电阻和油门踏板插头开路六种状态下,采集发动机数据流,采集到的样本数据如表1所示。
2.2 程序设计
在Matlab环境中,调用LVQ神经网络工具箱,创建的代码如下:
在代码中,p 中数据为样本数据;t 中以1表示正常状态,以2表示故障状态;T=ind2vec(t)为使t 中的向量转换成学习向量量化网络使用的目标向量;net=newlvq()为创建LVQ 神经网络,神经元数目设置为20,0.17 和0.83,分别表示所采集的样本种类中正常状态和故障状态所占的比例,网络学习率设为0.5;net=init(net)为网络初始化,使其每次训练时权值都是随机的,这样可以达到预期的目标;网络训练步数设置为200;训练间隔设置为50;训练目标设置为0;网络设置好后,开始训练网络,运行程序后所得的网络训练状态图如图2所示,训练曲线如图3所示。
由图2和图3所示,网络训练只训练了8次,用时不到1 s,就达到了预期目标,可见,用改进的LVQ神经网络进行故障诊断,速度非常快,精确度很高。
3 结语
LVQ神经网络将监督学习和无监督学习结合起来,可以完成对输入向量模式的准确分类。本文以长城哈佛GW2.8TC 型发动机为实例,并对发动机进行故障设置,采集数据流,介绍了LVQ神经网络及其改进的学习算法,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ 神经网络能对发动机故障进行模式识别和准确分类,诊断结果完全正确,而且训练速度极快。改进的LVQ 神经网络具有较高的研究价值,该方法不仅可以运用到汽车诊断领域,而且可以运用到其他故障诊断领域。
参考文献
[1] 董长虹.神经网络与应用[M].北京:国防工业出版社,2005.[2] 史忠植.神经网络[M].北京:高等教育出版社,2009.
[3] 孙祥,徐流美,吴清.Matlab 7.0[M].北京:清华大学出版社,2005.
[4] 周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005.
[5] 张德丰.Matlab神经网络应用设计[M].北京:机械工业出版社,2009.
[6] 李国勇.智能控制及其Matlab实现[M].北京:电子工业出版社,2005.
[7] 舒宁,马洪超,孙和利.模式识别的理论与方法[M].武汉:武汉大学出版社,2004.
[8] 蒋宇,李志雄,唐铭.LVQ 神经网络在滚动轴承故障诊断中的应用研究[J].机械科学与技术,2011(3):408?411.
篇10
[关键词] BP神经网络 模型构建 模型训练 模型仿真
一、BP神经网络在测量竞争力中的优势
人工神经网络(Artificial Neural Network,简称ANN)系统是借鉴于人脑和神经系统存储和处理信息的某些特征抽象出来的一种人工智能化的数字模型,具有并行分布的信息处理结构,通过对非线性函数的复合来逼近输入输出之间的映射关系。人工神经网络具有许多优秀的特性,最擅长对近似的、不确定的、甚至矛盾相关的知识环境中进行决策,可以解决人为的权重设计和相关系数的计算。神经网络通过对样本的学习可以确定稳定的人工神经网络模型,以该模型对C2C电子零售商竞争力进行动态评价和排序,计算误差小,从而可以保证评价结果的客观性。
人工神经网络本身包含非常多的网络模型,如BP网络、Hopfield网络、 Hamming 网络、Grossberg网络和竞争网络等,由于BP网络可以任意精度逼近任意连续函数,所以在已有的竞争力评价研究文献中,使用BP(Back Propagation Network)网络的居多。如高晓宏、郭军、吴晓伟(2004)建立了时序BP网络和因果BP网络,根据企业竞争力的指标体系预测了企业的竞争力;李煜华等(2006)通过BP网络对老工业基地的核心竞争力进行了评价;陈红转(2003)等通过BP网络对银行竞争力进行了评价。这些研究说明用BP网络方法评价竞争力具有可行性。
BP网络可以通过以下具体过程实现:
1.建立网络模型,初始化网络及字习参数;BP网络的建立需要借助MATLAB软件实现。通常有两种方法:
编程法:net=newff (PR,[S1,S2……Sn],{Tf1 Tf2 Tf3……Tfn},BTF,BLF,PF)
其中net中存放所建立的网络属性和网络参数,四个输入变量分别为:
PR输入向量的取值范围;
Si 第i层的神经元个数,总共N层;
Tfi第i层的传递函数,缺省值为“tansig”;
BTFBP网络训练函数,缺省值为“trainlm”;
BLFBP网络权值和阙值学习函数,缺省值为“learngdm”;
PF 性能函数,缺省值为“mse”。
GUI法:在matlab 命令窗口中输入命令nntool, 就会弹出人工神经网络的构建训练仿真窗口。
本文使用第二种方法创建BP网络。
2.提供训练模式
选实例作学习训练样本训练网络,直到满足学习要求;常使用的训练函数有批梯度下降训练函数(traingd,traingdm)、自适应修改学习率算法(traingda,traingdx)、有弹回的算法(trainrp)及共轭梯度算法(traincgf,traincgp)等。
3.前向传播过程
对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若误差不能满足精度要求,则误差反向传播,否则转到2;
4.反向传播过程
BP算法是一个很有效的算法,它把一组样本的输入、输出问题变成一个非线性优化问题,并使用了优化问题中最普遍的梯度下降法,用迭代运算求解权相应于学习记忆问题,加入隐节点使优化问题的可调参数增加,从而可以得到更精确的解。
二、BP网络在C2C电子零售商竞争力评价中的应用
本文选取包含20个测量指标的C2C电子零售商竞争力评价指标体系及调查数据(赵丽,2008)来说明BP网络在竞争力测量方面的使用方法。
在设计BP网络之前,首先应该准备好数据。Matlab7.0与Excel2003相通,所以将调查数据导进Matlab7.0中,命名为“data”。然后,将其中的10个C2C电子零售商竞争力指标数据作为训练输入数据,设为“traindata”;将专家对这10个C2C电子零售商竞争力的评价结果作为目标输出量,设为“targets”;评价值越大,表明此电子零售商越有竞争力,由此构成10个训练样本对;将剩余的6个C2C电子零售商竞争力指标测量数据作为仿真数据,设为“simulatedata”。数据准备完毕,即可构建网络。
1.构建网络
网络的输入、输出神经元的数量是由问题外部描述定义的。所以,如果有4个外部变量作为网络输入,那么网络就有4个输入。同样,如果网络有7个输出,那么网络的输出层就应该有7个神经元:最后,输出信号所期望的特征有助于选择输出层的传输函数。研究已表明,两层网络在其隐层中使用s形传输函数,在输出层中使用线性传输函数,就几乎可以以任意精度逼近任何感兴趣的函数,只要隐层中有足够的单元可用(见[Host89])。
根据论文研究实际,设计BP网络评价模型如下:
A输入层:根据C2C电子零售商竞争力评价指标体系,将最低层指标数作为输入层神经元数,在本文中为20;
B隐含层:隐含层神经元数的选取关系到整个BP网络的精确度和学习效率,在本文中结合理论分析和经验选取隐含层神经元数为10;
C输出层:对C2C电子零售商竞争力的评价是一个从定性到定量然后再到定性的过程,通过BP网络模型将定性转化为定量输出,然后综合评价集和输出结果,对C2C电子零售商竞争力作出定性评价。因此,将输出层神经元设置为1个。
所以,本研究的BP网络结构是具有20-10-1结构的二层网络,在matlab7.0中构建。命名为bpnetwork,选择网络类型为Feed-forward backprop,输入数据范围根据训练样本中的输入数据确定,训练函数选择TRAINLM,自适应学习函数选择LEARNGDM,效果函数选择MSE,层数为2,第一层的神经元有10个,传输函数为TANSIG,第二层的神经元个数为1,传输函数为TANSIG。构建好的C2C电子零售商竞争力评价BP模型如图1所示:
图1 C2C电子零售商竞争力评价BP模型
2.训练网络
点击Train菜单,在Training Info中选择输入数据traindata,选择目标输出数据targets,其它默认;在Training Parameters中设最大训练步数epochs为50; goal为0.00001; show为25。其它参数time、min_grad、max_fail等均为缺省值。点击Train Network,出现训练效果图,如图2所示:
图2 模型训练效果图
图2中蓝色曲线表示训练路径图,黑色直线表示预定误差值。在第15步时,两线相交,网络误差平方和MSE达到了误差目标goal =0.00001的要求,网络模型训练结束,说明网络已初步符合要求。同时,MATLAB还提供了函数postreg用于对网络训练结果的进一步分析。函数postreg利用了线性回归的方法分析了网络输出和目标数出的关系,即网络输出变化对于目标输出变化的变化率,从而评估了网络的训练效果。将网络训练的数据导出后,在Matlab7.0的命令窗口中输入命令:
[m,b,r]=postreg(bpnetwork_outputs,targetdata)
按Enter键,就会返回三个值,m和b分别表示最优回归直线的斜率和y轴截距,当m=1且b=0时,网络输出与目标输出完全相同,此时的网络具有最优性能;r表示网络输出与目标输出的相关系数,它越接近于1,表示网络输出与目标输出越接近,网络性能越好。通过图3可知,m接近于1,b几乎为0,r等于1,这说明此网络的性能非常好。
图3 模型训练效果参数
图4绘出了函数postreg显示的图形,横坐标为目标输出,纵坐标为网络输出,“”表示数据,理想回归直线(网络输出等于目标输出时的直线)由实线表示,最优回归直线由虚线表示。从图可以看到虚线和实现几乎重合,说明网络具有非常好的性能,可以用这一网络去判断其它C2C电子零售商的竞争力了。
图4 模型回归直线图
3.网络仿真
将剩下的6个C2C电子零售商(“C1”、“C2”、“C3”、“C4”、“C5”、“C6”)竞争力指数的各项数据作为仿真数据,命名为simulatedata,作为输入数据添加到Inputs中。点击simulate,如图5所示:
图5 模型仿真
在Inputs下拉框中选择simulatedata, outputs默认为bpnetwork_outputs,其他默认,点击Simulates Network,在Network Data Manager窗口的Outputs中就会出现输出结果值,在Errors中就会出现误差值。
打开输出结果参数,得其值如图6所示。根据输入数据与调查对象的对应关系,“C1”的竞争力为0.94224,“C2”的竞争力为0.74897,“C3”的竞争力为0.62101,“C4”的竞争力0.055052, “C5”的为0.56066, “C6”的为0.23556。根据训练设置,值越大说明竞争力越强。所以,在这6个C2C电子零售商中,竞争力最强的是“C1”,其次是“C2”和“C3”,然后依次是“C6” “C7”,最差的是“C4”。
图6 模型模拟结果
三、结论
本文通过比较竞争力综合评价方法和人工神经网络方法,指出了人工神经网络在评价竞争力应用上的优势,并通过文献发现使用BP网络具有可行性;在介绍了BP网络的基本原理之后,借助Matlab7.0软件构建了评价C2C电子零售商竞争力的二层BP网络,通过训练,使网络达到了良好的性能,并仿真得到了6个C2C电子零售商的综合竞争力,这再次说明了应用BP网络评价C2C电子零售商的竞争力具有可行性,具有较强的应用推广性。但是,在使用BP网络评价竞争力时应选择可靠的指标体系和权威的数据对来训练网络,否则计算结果会不准确。
参考文献:
[1]李煜华胡运权胡瑶瑛:基于BP 神经网络的老工业基地企业核心竞争力的综合评价.商业研究,2006,05
[2]高小红郭军:基于BP人工神经网络的企业竞争力预测模型.中国矿业,2004,08
[3]吴晓伟徐福缘:基于神经网络的企业竞争力综合评价方法.工业技术经济,2004,04
[4]陈红转王飞等:基于BP网络的银行竞争力综合评价.山东科技大学学报,2003,12
[5]闻新周露李翔张宝伟著:Matlab神经网络仿真与应用.科学出版社,2003,07
[6](美)哈根等著戴葵等译:神经网路设计.机械工业出版社,2002,09