神经网络本质范文
时间:2024-03-28 18:12:33
导语:如何才能写好一篇神经网络本质,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:边坡;自组织映射神经网络;BP神经网络;权值
中图分类号:TU753.8
文献标识码:B
文章编号:1008-0422(2008)05-0157-03
1引言
自从上世纪80年代以来,神经网络技术已经得到了长足的发展。运用强大的神经网络功能,可以对许多难以解决的问题求解。BP网络现在已经广泛应用于工程的各方面[1],但是由于其自身的缺点,也存在很多问题。对于边坡工程,由于测量手段、仪器、人的主观性等原因,得出的数据不可避免的具有干扰性[2],即用于训练神经网络的学习数据存在很大的噪声,影响网络的推广及泛化能力[3]。
为了解决工程数据样本在进行网络计算时噪声较大的问题,本文阐述了一种新的方法,即:首先将边坡样本的数据归一化到[-1,1]区间,实现对样本的“奖优罚劣”;然后利用自组织映射(SOM)神经网络对各学习样本数据进行分类,优化BP网络的初始状态,从而有利于适度控制BP网络求解的误差范围。
2SOM网络过程的推导
自组织竞争的主要目的是将任意维数的输入信号模式转变为一维或二维的离散映射,并且以拓扑有序的方式自适应实现这个转变[4]。本文采用Kohonen模型推导适合用于工程样本分类的自组织竞争神经网络结构。
2.1 竞争过程
令m表示输入数据的维数。从输入空间中随机选择输入模式记为
(1)
网络中每个神经元的突触权值向量和输入空间的维数相同。神经元j的突触权值向量记为
(2)
其中是网络中神经元的总数。这里假定所有的神经元有相同的阈值;阈值是偏置取负。在通过选择具有最大内积WjTX的神经元,确定兴奋神经元的拓扑邻域中心的位置。
因为基于内积WjTX最大化的最优化匹配准则在数学上等价于向量X和Wj的Euclid距离的最小化。用标号i(x)表示最优匹配输入向量x的神经元,可以通过下列条件确定i(x):
(3)
2.2 合作过程
设hj,i表示以获胜神经元i为中心的拓扑邻域,设di,j表示在获胜神经元i和兴奋神经元j的侧向距离。它们必须满足的条件为:
1) 当di,j=0时,hj,i达到最大值;
2) hj,i随di,j绝对值的增加而单调递减;
3) di,j∞,hj,i= 0。
本文选取高斯函数满足以上条件,即:
由于对工程样本的划分采用一维模式即可,这里假定di,j是整数,而且有:di,j = | j - i |。
som算法中hj,i的宽度σ是随时间的推移而收缩的,这里设定一个指数函数来描述这一衰减过程:
其中σ0是σ的初值,τ1是时间常数。将式(4)代入式(5)中可得:
2.3 自适应过程
由Kohonen模型可知网络中神经元j的权值向量表示为:
式中:η是算法的学习率;g(yj)是响应yj的正的标量函数;wj是神经元j的突触权值向量。
这里将g(yj)设定成一个线性函数以简化计算:
将式(7)和式(8)代入式(9)可得:
由此可得更新权值向量wj(n+1)为:
为了得到更好的网络性能,可以将学习率函数η(n)设定成时变形式,这也是它用于随机逼近的要求。η(n)和hj,i一样,从初始值开始,然后随时间n增加而逐渐递减。因此将它设定为一个指数函数:
其中τ2是另外一个时间参数。
3自适应过程的排序和收敛
根据式(11),可以把网络权值的自适应分解为排序和收敛两个阶段。要求对上述公式中的参数进行合适的设定。
3.1排序阶段
3.1.1学习率函数η(n)初始值η0=0.1;然后递减,但应该大于0.01;并设定时间常数τ2=1000。
3.1.2邻域函数hj,i (n)的初始化应包括以获胜神经元i为中心的所有神经元,然后随时间慢慢收缩。这里通过设定时间常数τ1=1000/logσ0来实现。
3.2收敛阶段
3.2.1当学习率η0.01。
3.2.2邻域函数hj,i (x)应该仅包括获胜神经元的最近邻域,并最终减小到一个或零个邻域神经元。
4无量纲化方法的选用
边坡稳定性受到多种因素的影响,在分析各影响因素时,由于各分指标具有不同的量纲,且类型不同,故指标间具有不可共度性,难以进行直接比较,因此在综合评价前必须把这些分指标按某种效用函数归一化到某一无量纲区间[5]。显然,构造不同的效用函数将直接影响最终的评价结果,因此效用函数的构造十分重要。
设P={P1,P2,・・・,PM}是评估对象集,Z={Z1,Z2,・・・,ZM}是综合评价指标体系中的n个分指标,评价指标矩阵X如下:
式中,Xij代表第i个评估对象的第j个分指标值。记第j个分指标Zj的平均值 ,
则将原始指标值按以下公式(3.7)转换到[-1,1]区间上的效用函数值Xij。
5实例及算法检验
将资料收集到的57个边坡样本[6~8]作为学习样本,数据从略,并将原始数据归一化到[-1,1]区间之后的边坡样本作为SOM网络的输入向量。
现在取目标边坡如表1所示:
将待求边坡样本归一化后与其它边坡样本一起输入到已经训练好的SOM网络进行分类,可以得到与这两组边坡样本相近的样本集合。
网络学习1000次后分类结果如图1所示,其中箭头所指的两个样本即为目标边坡在分类结果中所处的位置,它们的网络分类数值为57、81。对于56号样本,可以取分类数值为39~76之间的17个样本作为其学习样本;57号样本可以取分类数值为62~100之间的18个样本作为其学习样本。它们的学习样本集合见表2。
为了验证SOM网络对边坡样本的归类确实能够提高网络的性能,本文利用BP网络设计了两个试验:
试验(1):用SOM网络归类后的学习样本分别对两组目标边坡进行求解,然后观察其网络性能;
试验(2):用已得的全部55组边坡样本中的前20组样本作为BP网络的学习样本,对两组目标边坡求解,然后观察其网络性能。
因为此处仅用来验证SOM网络的归类结果,所以两组试验所用的BP网络模型用同一初始设置。初始网络权值为(-1,1)之间的随机值、学习速率0.1、隐含层个数为1,隐含层单元数12。
在试验1中,网络在对样本学习了4000次左右的时候,达到了收敛。网络性能可以在图2、图3、图4、图5中看到。
试验2,将55组边坡样本的前20组样本作为网络的学习样本。网络结果分析及误差分布如图6、图7所示:
从以上两个试验的结果可以看到,试验1的网络结果明显要好于试验2;试验1中两个网络的误差也均较试验2中的网络误差要小。这就证明经过SOM网络分类得到的目标样本确实能够提高网络的泛化、推广能力,而且分类之后BP网络的学习次数也较不分类时要少。
6结论
实际工程中,由于测量手段、仪器、人的主观性等原因,得出的数据不可避免的具有干扰性,造成以往的边坡样本数据对网络的学习形成很大的噪声。
6.1本文推导的自组织映射神经网络过程,可以自动对外界未知环境进行学习和仿真,适用于对边坡样本进行归类。
6.2本文所述的方法可以剔除一些隐含的网络干扰太大的样本,通过对学习样本的选择提高BP神经网络的计算精度。
6.3通过对55个边坡样本进行分析计算,相对于将不分类样本作为学习样本的同一BP神经网络,本文所述的方法能得到精度更高的近似解。
6.4由于神经网络方法的局限性,本文所述的方法不能反映边坡样本之间的实际区分界线,且计算中各参数的物理意义不明确。
参考文献:
[1] 周维垣等.岩石高边坡的稳定与治理.岩土工程的回顾与瞻[M].北京人民交通出版社,2001:15~24.
[2] 杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社.2001:41~58.
[3] 何翔,刘迎曦.岩土边坡稳定性预报的人工神经网络方法[J].岩土力学,2003.10:32~34.
[4] 罗四维.大规模人工神经网络理论基础[M].北京:清华大学出版社,北方交通大学出版社.2004.57~70.
[5] 李炳军,朱春阳,周杰.原始数据无量纲化处理对灰色关联序的影响[J].河南农业大学学报.2002.36(2):199~202.
[6] 吴建生,金龙.遗传算法BP神经网络的预报研究和应用[J].数学的实践与认识,2005.1(1):12~15.
[7] 熊海丰.基于神经网络技术的边坡稳定性评价[D].武汉理工大学,2003.
篇2
随着社会工业化速度的不断加速,能源的竞争愈来愈激烈。生物质能源作为一种可再生的清洁能源被广泛认可,生物气化技术就是利用生物质能的一种有效手段,对经济的发展和环境的保护都起到积极作用。但是,生物气化技术是一种热化学处理技术,其工作过程十分复杂,包含着大量的不确定因素,这就需要运用生物质气化炉的智能控制系统来达到预期的控制效果。新形势下,积极运用模糊神经网络对生物质气化炉进行智能控制,是实现可靠控制效果的重要举措。
【关键词】模糊神经网络 生物质气化炉 智能控制
生物质气化过程是一项复杂化学反应过程,具有非线性、不稳定性、负荷干扰等特性,只有实行智能控制才能受到良好的控制效果。模糊神经网络作为智能研究比较活跃的领域,有效融合了神经网络和模糊理论的优点,能够有效的解决生物质气化过程中的非线性、模糊性等问题,既保证控制的精确度,又能进行快速地升降温。本文通过对模糊神经网络的内涵特征进行全面分析,阐述了基于模糊神经网络的生物质气化炉的智能控制,并通过仿真实验进行反复验证。
1 模糊神经网络的内涵功能
简而言之模糊神经网络就是具有模糊权值和输入信号的神经网络。模糊神经网络是自动化控制领域内一门新兴技术,其本质上是将常规的神经网络输入模糊信号,因而模糊神经网络具备了模糊系统和神经网络的优势,集逻辑推理、语言计算等能力于一身,具有学习、联想、模糊信息处理等功能。模糊神经网络是智能控制和自动化不断发展的产物,在充分利用神经网络的并行处理能力的基础上,大大提高了模糊系统的推理能力。
模糊神经网络是科技发展的产物,有效吸收了神经网络系统和模糊系统的优点,在智能控制和自动化发展等方面有着重要的作用,能够有效地处理非线性、模糊性等诸多问题,在处理智能信息方面能够发挥巨大潜力。模糊神经网络形式多种多样,主要包括逻辑模糊神经网络、算术模糊神经网络、混合模糊神经网络等多种类型,被广泛的运用于模糊回归、模糊控制器、模糊谱系分析、通用逼近器等方面的研究中,随着智能控制和自动化领域的不断发展,模糊神经网络广泛应用于智能控制领域。
2 基于模糊神经网络的生物质气化炉的智能控制系统
2.1 温度智能控制系统
生物质热值、给料理以及一次风量等因素变化能够影响到生物质气化炉的炉温,但是最重要的影响因素是在气化炉工作过程中物料物理和化学反应的放热和吸热。由于生物质气化工作过程中的生物质热值的变化范围较小,在实际运行中很难测量与控制,有时可以忽略不计,同时,该工作过程中存在非线性和大滞后等问题,采用传统的数学模型达不到预期测量效果,因此需要利用模糊神经网络设计气化炉炉温控制系统,不断的提高温度的控制效果。模糊神经网络首先根据当前温度以及设定温度设,主控制器对最优的生物质物料添加量进行预测,然后由副控制根据该添加量,全面跟踪控制送料速度,从而能够进行精确上料和控制炉温。模糊神经网络系统十分庞大复,其中包含了大量错综复杂的神经元,蕴含对非线性的可微分函数训练权值的基本理念。模糊神经网络具有正向传递和反向传播两个不同的功能,在信息的正向传递中,采用逐步运算的方式对输入的数据信息进行处理,信息依次进入输入层、隐含层最终到达输出层。假如在输出层获得的输出信息没达到预期效果时,就会在计算输出层的偏差变化值后通过网络将偏差信号按原路反向传回,与此同时各层神经元的权值也会随之进行改变,直到符合预期的控制效果。
2.2 含氧量智能控制系统
在生物质气化工作过程中,可燃气体的含氧量是衡量其生产质量的重要依据,能够严重影响气化产物的安全使用,因此,通过模糊神经网络实现生物质气化炉含氧量的智能控制十分重要。其含氧量智能控制系统的目的是为了合理控制可燃气体的含氧量,从而稳定气化炉的温度。但是,一次风进风量是影响可燃气体的含氧量的重要因素,所以可以把控制一次风量作为主要调节手段,有效地解决含氧量控制和炉温控制之间的矛盾,在控制炉温的前提条件下,最大程度地降低可燃气体含氧量,进而有效控制气化产物含氧量的。生物质气化炉含氧量的智能控制系统是严格运用模糊神经网络控制原理,主控制器采用温度模糊免疫 PID控制,根据炉内含氧量和温度的偏差进行推算,查找出鼓风机转速的最优状态,副控制则以此为根据,全面跟随与控制鼓风机的速度,确保鼓风机转速。生物质气化炉工作过程中的不同阶段和部件具有不同的控制要求,模糊神经网络就要充分发挥被控对象的优良性能,根据不同的控制要求,合理运用模糊神经网络控制原理对 PID参数模型中的数据信息进行在线修改,从而达到预期的控制效果。
3 基于模糊神经网络的生物质气化炉智能控制系统的仿真实验
为了验证运用模糊神经网络进行生物质气化炉的智能控制的真实效果,对生物质气化炉的温度智能控制系统进行仿真实验,并进行详细地分析。为了保证生物质气化炉能够在条件大体一致的状态下进行运行状况,仿真实验可以采用组合预测算法。首先要到某厂气化炉现场采集2000组干燥层温度数据,并且从中选取连续1500组作为仿真实验样本数据,然后对剩余500组实验样本数据进行研究,通过两组数据的分析建立预测模型。然后采用模糊神经网络对生物质气化炉的温度控制系统进行三次模拟化实验,三种不同情况下的仿真试验结果为:在无外界任何干扰的情况下,模糊神经网络控制无论在超调量还是其他方面,都比单纯的模糊控制效果好;在生物质给料量扰动的情况下,模糊神经网络控制要比单纯的模糊控制所受的影响要小很多;在发生一次风量搅动的情况下,模糊神经网络控制仍受到极小的影响。从三种不同情况下的仿真试验中可以看出基于模糊神经网络的生物质气化炉的炉温智能控制系统效果较好,具有极强的抗干扰性,能够有效地预测气化炉温度实时值,把平均误差控制在很小范围内,并且智能控制系统能实时跟踪实际温度的变化,根据实际温度的变化做出相应的变化,从而能够有效地控制气化炉温度和可燃气体含氧量。
4 结束语
总之,基于模糊神经网络的生物质气化炉的智能控制系统具有较好的控制效果,有效的解决了生物质气化过程中的一系列问题,能够十分精确地控制生物质气化炉的炉温及可燃气体的含氧量,对于保证社会经济的稳定发展以及生态环境的改善发挥了重要作用。
参考文献
[1]王春华.基于模糊神经网络的生物质气化炉的智能控制[J].动力工程,2009(09):828-830.
[2]王中贤.热管生物质气化炉的模拟与试验[J].江苏大学学报:自然科学版,2008,29(6):512-515.
篇3
关键词经济活动预测模型人工神经网络
经济活动诸如商品价格走势、生产活动的产量预测、加工的投入产出分析、工厂的成本控制等方面都是重要的技术经济层面。定量化的经济活动分析是经济学研究的必由之路,而建模是量化分析的基础,这是因为模型为科学分析和质量、成本等控制提供了理论依据。本文针对经济活动中大多数研究对象都具有的非线性特点,给出了用人工神经网络(ArtificialNerveNetwork)模型建立经济活动的预测模型的原理和方法,并描述了神经网络与各种先进的建模方法相结合的模型化方法,为经济活动的分析、预测与控制提供了理论基础。
1神经网络模型方法
现实的经济系统是一个极其复杂的非线性系统,客观上要求建立非线性模型。传统上使用回归与自回归模型刻画的都是线性关系,难于精确反映因变量的变化规律,也终将影响模型的拟合及预报效果。为揭示隐含于历史记录中的复杂非线性关系必须借助更先进的方法———人工神经网络(ANN)方法。
人工神经网络具有并行处理、自适应、自组织、联想记忆及源于神经元激活函数的压扁特性的容错和鲁棒性等特点。数学上已经证明,神经网络可以逼近所有函数,这意味着神经网络能逼近那些刻画了样本数据规律的函数,且所考虑的系统表现的函数形式越复杂,神经网络这种特性的作用就越明显。
在各类神经网络模型中,BP(Back-Propagation误差后向传播)神经网络模型是最常用的也是最成熟的模型之一。本质上,BP模型是对样本集进行建模,即建立对应关系RmRn,xk∈Rm,ykRn。数学上,就是一个通过函数逼近拟合曲线/曲面的方法,并将之转化为一个非线性优化问题来求解。
对BP神经网络模型,一般选用三层非循环网络。假设每层有N个处理单元,通常选取连续可微的非线性作用函数如Sigmoid函数f(x)=1/(1+e-x),训练集包括M个样本模式{(xk,yk)}。对第P个训练样本(P=1,2,…,M),单元j的输入总和记为apj,输出记为Opj,则:
apj=WQ
Opj=f(apj)=1/(1+e-apj)(1)
对每个输入模式P,网络输出与期望输出(dpj)间误差为:
E=Ep=((dpj-Opj)2)(2)
取BP网络的权值修正式:
Wji(t+1)=Wji(t)+?浊?啄pj+?琢(Wji(t)-Wji(t-1))(3)
其中,对应输出单元?啄pj=f’,(apj)(dpj-Opj);对应输入单元?啄pj=f’,(apj)?啄pkWkj;
?浊是为加快网络收敛速度而取值足够大又不致产生振荡的常数;?琢为一常数项,称为趋势因子,它决定上一次学习权值对本次权值的影响。
BP学习算法的步骤:初始化网络及学习参数;提供训练模式并训练网络直到满足学习要求;前向传播过程,对给定训练模式输入,计算网络的输出模式,并与期望比较,如有误差,则执行下一步,否则返回第二步;后向传播过程,计算同一层单元的误差?啄pj,按权值公式(3)修正权值;返回权值计算公式(3)。BP网络的学习一般均需多周期迭代,直至网络输出与期望输出间总体的均方根误差ERMS达到一定要求方结束。
实践中,BP网络可能遇到如下问题:局部极小点问题;迭代收敛性及收敛速度引起低效率问题。此外还有,模型的逼近性质差;模型的学习误差大,记忆能力不强;与线性时序模型一样,模型网络结构及节点作用函数不易确定;难以解决应用问题的实例规模与网络规模之间的矛盾等。为克服这样的一些问题,同时为了更好地面向实际问题的特殊性,出现了各种基于神经网络模型或与之结合的模型创新方法。
2灰色神经网络模型
灰色预测和神经网络一样是近年来用于非线性时间序列预测的引人注目的方法,两种方法在建模时都不需计算统计特征,且理论上可以适用于任何非线性时间序列的建模。灰色预测由于其模型特点,更合用于经济活动中具有指数增长趋势的问题,而对于其他变化趋势,则可能拟合灰度较大,导致精度难于提高。
对于既有随时间推移的增长趋势,又有同一季节的相似波动性趋势,且增长趋势和波动性趋势都呈现为一种复杂的非线性函数特性的一类现实问题,根据人工神经网络具有较好的描述复杂非线性函数能力特点,用其对季节性建模;最后根据最优组合预测理论,建立了兼有GM(1,1)和ANN优点的最优组合预测模型。该模型能够同时反映季节性时间序列的增长趋势性和同季波动性的双重特性,适用于一般具有季节性特点的经济预测。
首先,建立GM(1,1)模型,设时间序列x(0)=(x(0)(1),x(0)(2),?撰,x(0)(n)),作一阶累加生成:
x(1)=(x(1)(1),x(1)(2),?撰,x(1)(n))(4)
其中x(1)(k)=(x(0)(i),k=1,2,?撰,n
构造一阶线性灰色微分方程并得到该方程的白化微分方程:
+ax=u
用最小二乘法求解参数a,u,得到x(1)的灰色预测模型:
(1)(k+1)=(X(0)(1)-u/a)e-ak+u/a,(k=0,1,2,?撰)(5)
其次,根据上节方法建立BP人工神经网络模型。
第三,将两模型优化组合。设f1是灰色预测值,f2是神经网络预测值,fc是最优组合预测值,预测误差分别为:e1,e2,ec,取w1和w2是相应的权系数,且w1+w2=1,有fc=w1f1+w2f2,则误差及方差分别为ec=w1e1+w2e2,Var(ec)=w21Var(e1)+w22Var(e2)+2w1w2cov(e1,e2)
对方差公式求关于w1的极小值,并取cov(e1,e2)=0,即可得到组合预测权系数的值。
2基于粗糙集理论的神经网络模型
粗糙集理论与模糊集理论一样是研究系统中知识不完全和不确定问题的方法。模糊集理论在利用隶属函数表达不确定性时,为定义一个合适的隶属函数,需要人工干预,因而有主观性。而粗糙集理论由粗糙度表示知识的不完全程度,是通过表达知识不精确性的概念计算得到的,是客观的,并不需要先验知识。粗糙集通过定义信息熵并进而规定重要性判据以判断某属性的必要性、重要性或冗余性。
一般来说,BP神经网络模型对模型输入变量的选择和网络结构确定等都基本凭经验或通过反复试验确定,这种方法的盲目性会导致模型质量变差。用粗糙集理论指导,先对各种影响预测的因素变量进行识别,以此确定预测模型的输入变量;再通过属性约简和属性值约简获得推理规则集;然后以这些推理规则构造神经网络预测模型,并采用加动量项的BP的学习算法对网络进行优化。有效改善了模型特性,提高了模型质量。其建模步骤为:由历史数据及其相关信息历史数据构造决策表;初始化;对决策表的决策属性变量按划分值域为n个区域的方式离散化;采用基于断点重要性的粗糙集离散化算法选择条件属性变量和断点(分点),同时计算决策表相容度,当决策表相容度为1或不再增加时,则选择条件属性变量和分点过程结束;由选择的条件属性变量及其样本离散化值构造新的决策表,并对其约简,得到推理规则集;由推理规则集建立神经网络模型;对神经网络进行训练;若神经网络拟合误差满足要求,则结束,否则,增加n。必须指出,区间分划n太小,会使得拟合不够,n太大,即输出空间分得太细,会导致过多的区域对应,使网络结构过于复杂,影响泛化(预测)能力。
3小波神经网络模型
人工神经网络模型存在的网络结构及节点函数不易确定问题,结合小波分析优良的数据拟合能力和神经网络的自学习、自适应特性建模,即用非线性小波基取代通常的非线性S型函数。
设非线性时间序列变化函数f(t)∈L2(R),定义其小波变换为:
Wf(a,b)==f(t)?渍()dt(6)
式中,?渍ab(t)称为由母小波?渍t(定义为满足一定条件的平方可积函数?渍(t)∈L2(R)如Haar小波、Morlet小波、样条小波等)生成的依赖于参数a、b的连续小波,也称小波基。参数a的变化不仅改变小波基的频谱结构,还改变其窗口的大小和形状。对于函数f(t),其局部结构的分辩可以通过调节参数a、b,即调节小波基窗口的大小和位置来实现。
用小波级数的有限项来逼近时序函数,即:
(t)=wk?渍()(7)
式中(t),为时间序列y(t)的预测值序列;wk,bk,ak分别为权重系数,小波基的平移因子和伸缩因子;L为小波基的个数。参数wk,bk,ak采用最小均方误差能量函数优化得到,L通过试算得到。
4模糊神经网络模型
模糊集合和模糊逻辑以人脑处理不精确信息的方法为基础,而人工神经网络是以大量简单神经元的排列模拟人脑的生理结构。二者的融合既具有神经网络强大的计算能力、容错性和学习能力,又有对于不确定、不精确信息的处理能力,即同时具有底层的数据处理、学习能力和高层的推理、思考能力。
一种应用模糊理论的方法是把模糊聚类用来确定模糊系统的最优规则数,从而确定模糊神经网络的结构。这样确定的网络结构成为四层:第一层为直接输入层;第二层为模糊化层,对输入做模糊化处理;第三层为模糊推理层,对前层模糊结果做模糊推理;第四层为非模糊化层,可以采用重心非模糊化法,产生网络输出。该网络采用动态处理法,增强了其处理能力,且适用性强、精度高。
5结语
除上述几种结合式神经网络方法之外,人工神经网络模型在算法设计方面一直在取得巨大的进步。神经网络模型方法是一种先进的具有智能的非线性建模方法,其在自然科学、经济现象、社会活动等方面的应用正在不断深化,把神经网络方法引入经济活动的分析和预测中,并紧密联系诸多先进的建模方法,是使工业经济、商业经济及其对经济本质规律的研究等各项工作推向前进的重要理论武器。
参考文献
篇4
关键词:神经网络 建筑管理 数据仓库
中图分类号:F274 文献标识码:A 文章编号:1007-9416(2015)09-0000-00
1神经网络系统理论的研究目标
是以研究以模拟人体神经系统的运动行为, 建立神经网络基本特征的一种神经网络系统运算算法。这种算法可在计算机上,通过硬件与软件的相互配合来实现, 也可以在神经网络计算机上更加快捷的实现,最终可以实现智能计算机终端智能运算的目标。神经网络系统是由大量的神经元--简单的信息处理单元,按特定的配对方式相互构成, 神经元之间的信息传递和储存,依照一定的规则进行, 网络连接规则以及数据存储方式有一定的稳定性与匹配性, 即具有学习和训练的特定效果。
1.1神经网络系统模型与应用范围
有反馈网络模型。有反馈网络也称回(递)归网络, 在这这当中, 多个神经元互联以组成一个互连神经网络。有些神经元的输出被反馈至同层或前层神经元, 因此, 信号能够从正向和反向流通。
1.2 神经网络的设计
在决定采用神经网络技术之前, 应首先考虑是否有必要采用神经网络来解决问题。一般地, 神经网络与经典计算方法相比并非优越。只有当常规方法无法解决或效果不佳时神经网络才能显示出其优越性。尤其是当问题的机理等规律不甚了解, 或不能用数学模型表示的系统, 神经网络往往是最有力的工具。另一方面, 神经网络对处理大量原始数据而不能用规划或公式描述的问题, 表现出极大的灵活性和自适应性。
2 建筑管理模式
建筑管理模式是在TFV理论基础上构筑的。建筑管理模式在国外,对精益建造的理论和应用研究已取得了很多成果, 但国内对于精益建造,未能给予足够重视。
数据处理技术在企业的逐步成功应用,企业积累了大量的生产"科研相关和业务数据,但面对浩如烟海的企业数据,决策人员常常难以及时获得足够信息,提出决策的现状,许多企业已经构建了完善的数据库.并且通过联机分析处理的方式技术,可以使决策人员更快捷的从数据仓库中提取精良信息。
3 建筑管理模式
3.1 任务制度管理
任务制度管理是从生产管理转换的角度管理生产制造, 虽然本质依然是硬性管理, 但管理的内容为与适应建造相关用户的合理配合安排, 主要依据顾客需求设计来配编生产系统, 最后一招合同流程来实现。
3.2 流程过程管理
流程过程管理是从流程的角度管理数据模型, 其本质为软性数据管理。流程管理的目标是不但要有高效率可预测数据目标的综合流程, 而且要做好建设项目的相关单位,现场数据工作人员之间的相互协调工作。
3.3 价值趋向管理
价值趋向管理是从数据价值的角度管理生产, 它是以一种更加柔性的方式来体现顾客消费价值和一种硬性的方式完成生产预订目标的的趋向性管理。
4 数据仓库概论
数据仓库,就是一个更完全面支持企业组织的决策分析处理数据的面向主题的总成的,不可随时间不断变化持续更新的数据仓库体系结构,美国哈佛大学计算机科学系的专门小组,通过长期对数据技术的研究,提出了数据仓库技术的完善概念,该概念是在体系结构整体上对数据仓库进行了描述,从各个数据源收集所需数据,并与其他数据源的数据衔接,将集成的总体数据存入数据仓库终端,用于用户直接从数据仓库中访问相关数据,用于理论和实践应用的案例.运用这种建筑管理模式, 可以提高生产率, 降低成本和增加顾客满意度, 在建筑业中有广阔的应用前景。
5 结语
在当今日益激烈的竞争环境下决策人员能否及时地从大量原始数据中提取更多更好的信息是一个企业生存发展的关键,传统的神经网络系统的建筑管理数据仓库的设计已不能适应行业的发展精益建造这种体系应运而生。他是由精益生产延伸而来,将神经网络系统的建筑管理数据仓库的设计以及实践应用到行业之中。
参考文献
[1]赵璐.基于精益建造的成本管理[J].华中科技大学学报,2005.
[2]肖智军,党新民.精益生产方式JIT[M].广州: 广东经济出版社,2004.
[3]Glenn Bllard3 刘来红, 王世宏.空气过滤器的发展与应用.过滤与分离,2000,10
[4]Lauri Koskela. We Need A Theory Of Construction
[C], Berkeley - Stanford CE&M Workshop: Defining a Research
Agenda for AEC Process/Product Development in2000 and Beyond Stanford, Berkeley, 1999.
篇5
人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。
经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。
因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。
本文介绍了一种基于人工神经网络(ANN)理论的保护原理。
1、人工神经网络理论概述
BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。
在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线是BP算法的一大优点。
2、神经网络型继电保护
神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。
文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。
ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。
3、结论
本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。
一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。
神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。
参考文献
1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993
2、RobertE.Uhrig.ApplicationofArtificialNeuralNetworksinIndustrialTechnology.IEEETrans,1994,10(3)。(1):371~377
3、LeeTH,WangQC,TanWK.AFrameworkforRobustNeuralNetwork-BasedControlofNonlinearServomechannisms.IEEETrans,1993,3(2)。(3):190~197
篇6
【关键词】沸点;饱和烃;模式识别;神经网络
引言
量子力学计算是了解性质与结构关系本质的最好方法,但由于条件限制要精确解方程组很困难,因此,我们应用经典的价键理论处理该问题,以了解分子中键的性质、原子间的结合顺序、分支的多少及分子的形状等拓扑信息,进而推出分子的一些物理性质。
1 模式识别与神经网络
1.1 统计模式识别的方法
统计模式识别包括:样本输入、样本统计、窗函数训练、监控与测试、识别及识别方法性能评价6部分。
1.2 神经网络的结构和模型
神经网络的结构是由基本处理单元及其互连方法决定的,一个人工神经网络的神经元模型和结构描述了一个网络如何令它的输入矢量转化为输出矢量的过程。其实质即体现网络输入及其输出间的函数关系。即通过选取不同的模型结构和激活函数,可形成各种不同的人工神经网络,以及输入和输出关系,进而达到不同的目的或完成不同任务。
1.2.1 人工神经元的模型
连接机制结构的基本处理单元与神经生理学类比往往称为神经元。每个构造起网络的神经元模型模拟一个生物神经元。
该神经元有多个输入,i=1,2,.. n和一个输出Y组成。中间状态由输入
信号权的加和表示,而输出为:式(1)中θj为神经网络的偏置,Wji为连接权系数,n为输入信号数目,yj为神经元输出,t为时间,f()为输出变换函数,也叫做激发或激励函数。
1.2.2 激活函数
激活函数是一个神经元及网络的核,网络解决问题的能力与功效除了和网络结构有关,很大程度上取决于网络所采用的激活函数。激活函数往往采用0和I二值函数或S形函数,它们都是连续和非线性的。
1.2.3人工神经网络的基本类型
1.2.3.1人工神经网络的基本特性
人工神经网络由神经元构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单-输出,能够与其它神经元连接;具有诸多输出连接方法,每种连接方法对应一个连接权系数。严格地说,该网络每个节点存在一个状态变量、阈值并定义一个变换函数,且从节点j至节点i存在一个连接权系亥摧教。
1.2.3.2人工神经网络的基本结构
递归网络中,多个神经元互连而成一个互连神经网络。有些神经元的输出被反馈至同层或前层神经元。因此,信号能够从正向和反向流通。前馈网络具有递阶分层结构,由一些同层神经元间不存在互连的层级组成。从输入层至输出层的信号通过单向连接流通;神经元从一层连接至下一层。
3 神经网络计算饱和烃的沸点
采用三层拓扑结构为3-4-1的反向传播模型来建立预报导饱和烃沸点的人工神经网络。输入层以影响饱和烃沸点的3个参数为输入矢量,包括分子连接性指数,分子连接性指数,C原子数。训练时可根据计算误差自动地调整权重,待达到要求时即可固定权重值和偏置。
4 实验
4.1 实验步骤
拉制内径为1~1.2mm、一端封口、另一端有平整开口的毛细管做内管将待测液体式样装入微量沸点管的外管中,将一端封口的毛细管作为内管,开口朝下插入外管中,将外管固定在温度计上,试样部分位于温度计水银球中部。
将装好试样的沸点管用橡皮圈固定在温度计上,试样段靠在温度计水银球中部。将带有沸点管的温度计用一端有侧沟槽的单孔塞固定在盛有浴液的Thiele管内,温度计水银球位于上下侧管口中部。
以酒精灯加热Thiele管的倾斜部分,使浴液因温度差而形成对流从而使管中液体受热把带有沸点管的温度计放入熔点测定管内。加热熔点测定管,使温度均匀升高,见内管中有大量气泡冒出,则停止加热。当最后一个气泡缩回管内时,读取温度即为饱和烃沸点。
4.2 结果
通过实验测出19种饱和烃的沸点,经公式计算及实验测定得到的2组数据比较得出,神经网络模型所优化的数据的相对误差极小,精确到10-4,所做的图形和试验数据也是拟合的极好。
5 结论
神经网络模式识别的方法建立数据模型对饱和烃的沸点进行计算有着非常好的准确度,充分地利用了给出的参数。该模型在大大提高了计算精确度的同时并且具有很好的预测能力,而且其对于提高物质性质计算的效率和准确率有着重要的参考价值。
参考文献:
[1]杜红,刘强国.统计模式识别方法在录井油气评价中的应用[J].长江大学学报: 理工卷,2006(3).
篇7
关键词:数据挖掘;数据库;遗传算法;神经网络
中图分类号:TP392文献标识码:A文章编号文章编号:1672-7800(2013)012-0129-02
基金项目:佛山科学技术学院重点项目(2010)
作者简介:刘晓莉(1961-),女,佛山科学技术学院副教授,研究方向为应用数学。
1遗传算法基本特征
遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种具有广泛适用性的通用优化搜索方法。遗传算法主要借用了生物遗传学的观点,通过自然选择、遗传和变异等作用机制来产生下一代种群,如此逐代进化,直至得到满足要求的后代即问题的解,是一种公认的全局搜索能力较强的算法。
遗传算法有良好智能性,易于并行,减少了陷于局部最优解的风险。遗传算法的处理对象不是参数本身,而是对参数集进行了编码的个体,可以直接对集合、队列、矩阵、图表等结构进行操作。同时,在标准的遗传算法中,基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,并在此基础上进行遗传操作; 遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜寻方向。正是这些特征和优点,使得遗传算法在数据挖掘技术中占有很重要的地位,既可以用来挖掘分类模式、聚类模式、依赖模式、层次模式,也可用于评估其它算法的适合度。
2神经网络基本特征
神经网络是人脑或自然神经网络若干基本特征的抽象和模拟,是以大量的、同时也是很简单的处理单元(神经元)广泛地互相连接形成的复杂非线性系统。人工神经网络本质上是一个分布式矩阵结构,它根据样本的输入输出对加权法进行自我调整,从而近似模拟出输入、输出内在隐含的映射关系。建模时,不必考虑各个因素之间的相互作用及各个因素对输出结果的影响机制,这恰好弥补了人们对各个因素及对输出结果的机制不清楚的缺陷,从而解决众多用以往方法很难解决的问题。
神经网络具有大规模的并行处理和分布式的信息存储,有良好的自适应、自组织性,学习能力很强,有较强的联想功能和容错功能,在解决机理比较复杂、无法用数学模型来刻画的问题,甚至对其机理一无所知的问题等,神经网络方法特别适用,是一种用于预测、评价、分类、模式识别、过程控制等各种数据处理场合的计算方法,其应用已经渗透到多个领域,在计算机视觉、模式识别、智能控制、非线性优化、信号处理、经济和机器人等方面取得了可喜的进展。
3遗传算法与神经网络混合算法在数据挖掘中的应用
作为一种有效的优化方法,遗传算法可以应用于规则挖掘,可以单独用于数据仓库中关联规则的挖掘,还可以和神经网络技术相结合,建立基于神经网络与遗传算法的数据挖掘体系,用于数据挖掘中的分类问题。
学习能力是神经网络中最引人瞩目的特征,学习算法的研究一直占据重要地位。可以将遗传算法应用于神经网络的学习过程中,这样可以避免传统的神经网络算法容易陷入局部极小的问题。有研究者提出了一种基于遗传算法的神经网络二次训练方法,可以提高神经网络的模糊处理能力,有效解决神经网络陷入局部极小的缺点,加快收敛速率,提高学习效率。也有研究者探究了基于基因重组的遗传算法优化神经网络的方法,通过训练权值来实现分类,可以提高神经网络数据分类的准确性。因此,采用遗传算法与神经网络模型相结合方法,可以解决多维非线性系统及模型未知系统的预测、评价与优化等问题,其成功案例有很多,下面是其中的几例。
一些研究者针对当前专家系统知识获取瓶颈的难题,提出了基于神经网络与遗传算法的汽轮机组数据挖掘方法。该方法首先将汽轮机组历史故障数据进行模糊化及离散化处理后,建立神经网络模型,然后再利用遗传算法对神经网络进行优化,实现了基于神经网络与遗传算法相结合的汽轮机组数据挖掘和故障诊断仿真系统,其诊断正确率达到了84%。
综合运用人工智能、计算智能(人工神经网、遗传算法) 、模式识别、数理统计等先进技术作为数据挖掘工具,可以建立可靠、高效的数据挖掘软件平台,已在很多工业控制和优化中得到应用和实验验证,并取得了满意的应用效果。例如,某铝厂根据以往不同原料成分和原料的不同配比与产品质量关系记录的数据库,应用数据挖掘软件平台,可以挖掘出适应不同原料成分的最佳配比规律,从而提高产品质量的稳定性。又如,以往在化工产品优化配方、催化剂配方优化或材料工艺优化等研究中,基本上都是采用试验改进的方式,需经过多次试验才能达到预期目的,但也有可能失败。为降低消耗, 少做试验就能达到预期目的,可采用神经网络对产品配方实验数据建模,在此基础上,再应用遗传算法对配方模型进行优化,得到优化配方。
正是遗传算法与神经网络等算法的支撑以及计算机技术的发展,目前,数据挖掘广泛地应用于天文、地理、生物信息学、金融、保险、商业、电信、网络、交通等众多领域。例如,应用在地理数据库上,主要挖掘地质、地貌特征,为寻找矿产或进行城市规划等提供参考依据;在电信Web服务器方面,可以挖掘Web日志,根据用户兴趣动态链接Web页面,统计页面链接及权威主页等,对检索页面进行聚类,方便用户找到需要的信息;在生物医学信息和DNA数据分析方面,进行遗传、疾病等数据特征的挖掘,为疾病诊断、治疗和预防研究提供科学依据;对金融数据进行挖掘,可以分析客户信用度;在CRM(客户关系模型)上使用数据挖掘,获得客户群体分类信息、交叉销售安排及开发新客户和保留老客户的策略;在电信业中使用挖掘技术,以预防网络欺诈等;应用在商业问题的研究包括:进行客户群体划分、背景分析、交叉销售等市场行为分析,以及客户流失性、信用度分析与欺诈发现;在电子商务方面,从服务器以及浏览器端的日志记录中发现隐藏在数据中的模式信息,了解系统的访问模式以及用户的行为模式,作出预测性分析等等。
4结语
神经网络和遗传算法作为数据挖掘技术,也有一些不足和缺陷。遗传算法除了要进一步改进基本理论和方法外,还要采用和神经网络、模拟退火、最近临规则等其它方法相结合的策略,提高遗传算法的局部搜索能力,从而进一步改善其收敛速度和解的品质,提高数据挖掘技术。特别是对于单调函数或单峰函数,遗传算法在初始时很快向最优值逼近,但是在最优值附近收敛较慢;而对于多峰函数的优化问题,它往往会出现“早熟”,即收敛于局部极值。因此,研究如何改进遗传算法,采用合适的算法加快寻优速度和改善寻优质量,无论在理论上还是在实践上都有重要意义。神经网络的神经计算基础理论框架以及生理层面的研究仍需深入与加强,如何提高神经网络的可理解性问题,以及研究遗传算法、神经网络技术与其它人工智能技术更好地结合,从而获得比单一方法更好的效果等问题,值得进一步探索。
虽然数据挖掘技术已得到了广泛应用,但现有的数据挖掘方法并不能完全适应所面临的具有多样性的海量数据分析的现实,急需解决的问题是:如何研究并行处理和抽样的方法,来处理大规模的数据以获得较高的计算效率;如何利用统计、模糊数学来确定隐含变量及依赖关系,开发容噪的挖掘方法,以解决异质数据集的数据挖掘问题;如何更好地进行文本数据挖掘、Web数据挖掘、分类系统、可视化系统、空间数据系统和分布式数据挖掘等新技术的应用。因此,未来数据挖掘的研究表现在数据挖掘功能、工具、方法(算法) 的拓展与理论创新,其应用的范围和深度会进一步加强。
参考文献参考文献:
[1]孟晓明.浅谈数据挖掘技术[J].计算机应用与软件,2004 (8).
[2]李慧芳,姚跃华,陈一栋.改进的遗传算法对神经网络优化的分类[J].微计算机信息,2008(15).
[3]王东龙,李茂青.基于遗传算法的数据挖掘技术应用[J].南昌大学学报, 2005(1).
[4]宋仁国.铝合金工艺优化的遗传算法[J].材料科学与工程,1998(1).
[5]韩力群.催化剂配方的神经网络建模与遗传算法优化[J].化工学报,1999(4).
[6]郭崇慧,陆玉昌.预测型数据挖掘中的优化方法[J].工程数学学报,2005(1).
[7]杨杰.用于建模、优化、故障诊断的数据挖掘技术[J].计算机集成制造系统,2000(10).
篇8
1 引言
很长时间以来,在我们生活中所接触到的大部分计算机,都是一种被称为“电脑”的冯诺依曼型计算机。这种计算机在运算等很多方面确实超越了人类大脑的水平,但是基于串行控制机构的冯诺依曼型计算机在图像处理、语音识别等方面远不如大脑的处理能力。于是,在人类对大脑的不断探索中,一种更接近人脑思维方式的神经网络计算机走进人们的视线。
2 大脑的研究
大脑活动是由大脑皮质许许多多脑神经细胞的活动构成。
神经细胞由一个细胞体、一些树突 、和轴突组成,如图1所示。神经细胞体是一颗星状球形物,里面有一个核。树突由细胞体向各个方向长出,本身可有分支,是用来接收信号的。轴突也有许多的分支。轴突通过分支的末梢和其他神经细胞的树突相接触,形成所谓的突触,一个神经细胞通过轴突和突触把产生的信号送到其他的神经细胞。每个神经细胞通过它的树突和大约10,000个其他的神经细胞相连。这就使得人脑中所有神经细胞之间连接总计可能有1,000,000,000,000,000个。
神经细胞利用电-化学过程交换信号。输入信号来自另一些神经细胞。这些神经细胞的轴突末梢(也就是终端)和本神经细胞的树突相遇形成突触,信号就从树突上的突触进入本细胞。信号在大脑中实际怎样传输是一个相当复杂的过程,但就我们而言,重要的是把它看成和现代的计算机一样,利用一系列的0和1来进行操作。就是说,大脑的神经细胞也只有两种状态:兴奋和不兴奋。发射信号的强度不变,变化的仅仅是频率。神经细胞利用一种我们还不知道的方法,把所有从树突上突触进来的信号进行相加,如果全部信号的总和超过某个阀值,就会激发神经细胞进入兴奋状态,这时就会有一个电信号通过轴突发送出去给其他神经细胞。如果信号总和没有达到阀值,神经细胞就不会兴奋起来。
尽管这是类似0和1的操作方式,由于数量巨大的连接,使得大脑具备难以置信的能力。尽管每一个神经细胞仅仅工作于大约100hz的频率,但因各个神经细胞都以独立处理单元的形式并行工作着,使人类的大脑具有非常明显的特点:
1) 能实现无监督的学习。
2) 对损伤有冗余性
3) 善于归纳推广。
4) 处理信息的效率极高:神经细胞之间电-化学信号的传递,与一台数字计算机中cpu的数据传输相比,速度是非常慢的,但因神经细胞采用了并行的工作方式,使得大脑能够同时处理大量的数据。这个特点也是神经网络计算机在处理方法上最应该体现的一点。
3 人工神经网络基础
对于脑细胞的活动原理,用简单数学语言来说, 一次乘法和累加就相当于一个神经突触接受一次信息的活动。许许多多简单的乘法和累加计算, 就形成了脑细胞决定是激活状态还是抑制状态的简单数学模型。从这种模型出发, 任何复杂的大量的脑神经细胞活动与只是大量乘法、累加和判别是否达到激活值的简单运算的并行与重复而已。因此用这种大量并行的简单运算就可以来模拟大脑的活动, 这就是人工神经网络。
神经网络的基本单元是人工神经元,它是根据人脑的工作原理提出的。图2所示为一个人工神经元,可由以下方程描述
σi =wijxj + si2θi , ui = f(σi) ,yi = g(ui)
xi 为输入信号;
yi 为输出信号;
ui 为神经元的内部状态;
θi 为阈值;
si 为外部控制信号输入(控制神经元的内部状态ui ,使之保持一定的状态);
wij 为神经元的连接权值。
其中,可通过学习改变连接权wij ,使得神经元满足或接近一定的非线性输入输出关系。
4 神经网络计算机的实现
对于神经网络计算机实现,目前主要有以下三种实现途径:
4.1 用软件在通用计算机上模拟神经网络
在sisd(单指令流、单数据流,如经典个人计算机)、simd(单指令流、多数据流,如连接机制机器)或mimd(多指令流、多数据流,如在transputer网络上)结构的计算机上仿真。
这种用软件实现神经网络的方法,灵活而且不需要专用硬件,但是基于此方法实现的神经网络计算机速度较慢,一般仅适合人工神经网络的研究,另一方面,它在一定程度上使神经网络计算机失去了它的本质,体现不出并行处理信息的特征。
4.2 对神经网络进行功能上的仿真
以多个运算单元节点进行运算,在不同时间模拟各异不同的神经元,串并行地模拟神经网格计算。换句话说,即用m个物理单位去模拟n个神经元,而m<n。基于并行计算机和阵列机的神经网络虚拟实现,具有一定的通用性。 <br="">
虚拟实现的神经网络计算机主要可分为:协处理机,并行处理机阵列及现有的并行计算机等。目前已经有多种产品及系统问世,包括mark v神经计算机、gapp系统、gf11、基于transputer的系统以及基于dsp的系统。它们各有特点,技术已日益成熟。
但是这种实现方式仍以神经网络仿真为主要目标,另外其速度,容量等性能的提高则以增加处理机等费用为代价,较难成为神经网络的最终应用产品。
4.3 利用全硬件实现
4.3.1 基于cmos, ,ccd工艺和浮栅工艺的神经网络全硬件实现
在微电子芯片上作上许多具有模拟神经元功能的单元电路,按神经网络模型的拓扑结构在芯片上联成网络,这类神经网络芯片上的电路与所模拟神经网络种的各个神经元和神经突触等都有一一对应的关系,神经网络中的各个权值也都存贮在同一芯片上。
我国1995年开发的预言神一号就是一台实现了全硬件的通用神经网络处理机。它以pc机作为宿主机,通过编程实现前馈网络、反馈网络、som等人工神经网络的模型和算法,在网络运算过程中预言神一号神经计算机还具备随时修改网络参数及神经元非线性函数的功能。
但是这类芯片受硅片面积的限制,不可能制作规模庞大的神经网络硬件。如果一个数万个神经元的全联接网络,其互联线将达到10亿根;若以1微米三层金属布线工艺来计算,仅仅布线一项所占硅片面积将达到数十平方米。因此,在微电子技术基础上用这种一一对应的方式实现规模很大的神经网络显然不现实。
4.3.2 用光学或光电混合器件实现神经网络硬件系统
光学技术在许多方面有着电子技术无法比拟的优点:光具有并行性,这点与神经计算机吻合;光波的传播交叉无失真,传播容量大;可实现超高速运算。现在的神经计算机充其量也只有数百个神经,因此用“电子式”还是可能的,但是若要把一万个神经结合在一起,那么就需要一亿条导线,恐怕除光之外,任何东西都不可能完成了。但是光束本身很难表示信号的正负,通常需要双层结构,加之光学相关器件体积略大,都会使系统变得庞大与复杂。
5 小结
篇9
关键词:矩形混凝土柱;屈服位移;人工神经网络;预测模型
中图分类号:TU375.3 文献标识码:A
文章编号:1674-2974(2015)11-0017-08
随着社会经济的发展,以及对近些年大地震的不断反思,基于性能的结构抗震设计已成为地震工程领域研究的热点问题和前沿发展方向,为众多国家的规程所提及或者采用(如FEMA273[1],FEMA356[2],ASCE41[3]和Eurocode8[4]).柱子作为实际结构中承受竖向荷载和抵抗水平荷载的关键构件,其屈服位移的合理评估对于性能化结构抗震设计中结构的动力响应、结构性能水准的评估和抗震延性设计有很大影响.综合以往对柱子屈服位移的研究,其定义不明确,经验理论模型预测结果离散度较大的特点,使柱屈服位移的合理取值成为一个亟待解决的问题.
对于柱屈服位移的定义,国内外研究者提出了不同的看法,如Park在文献\[5\]中总结了4种不同的定义方法,并推荐使用割线刚度的方法定义屈服位移.Panagiakos[6]认为判定柱屈服的条件是柱中纵向钢筋屈服或者混凝土发生严重的非线,并在此基础上给出了对应的经验公式.Montes[7]基于柱中钢筋屈服,提出了对应不同强度等级钢筋的柱有效屈服曲率计算公式.Berry[8]等模拟了PEER[9]柱性能数据库中255根矩形截面混凝土柱的屈服位移.钱稼茹[10]亦对该数据库中144根剪跨比大于2的矩形柱考虑轴压比的影响进行回归分析,提出了修正的柱屈服转角表达式.蒋欢军[11]综合Berry[8]关于屈服位移以及Priestley[12]对于屈服曲率的定义,在计算屈服位移的公式中加入了考虑柱端钢筋滑移和柱子剪切变形影响的修正项.Peru[13]基于Eurocode8[14]中柱屈服位移的定义,利用CAE方法对PEER柱性能数据库的柱屈服位移进行了预测.
柱屈服过程中钢筋和混凝土都发生了复杂的非线,加之影响屈服性能的因素也非常多,上述基于经验理论的非线性拟合公式预测柱屈服性能时存在预测结果离散度非常大的问题.人工神经网络作为一种在数据稀少的情况下能够有效预测数据输入和输出关系的手段而进入研究者的视野.人工神经网络是以人类神经活动为基础而发展起来的一项新颖的计算手段,适合处理复杂线性及非线性映射问题.由于其强大的非线性映射能力,神经网络在工程领域被用于预测圆柱形混凝土柱约束状态的极限压应力和对应的压应变[15],模拟金属疲劳裂纹开展速率[16].神经网络的其它工程应用还有如混凝土柱在弯曲失效模式下的极限变形预测[17],边坡稳定性分析[18],修正结构有限元模型[19]等.
本文基于经验理论模型对弯曲型混凝土柱屈服性能影响因素的研究,利用神经网络预测PEER柱性能库210组矩形混凝土柱的屈服性能,并以此来探讨神经网络对柱性能预测的可行性和有效性.通过对比神经网络的预测结果与实验结果以及经验理论模型估算结果,评价神经网络预测模型的效果.最后基于Carson敏感性分析方法验证所选神经网络输入参数的合理性并得到输入各参数对混凝土柱屈服位移的贡献程度.
1 经验模型预测实验数据库柱屈服转角
1.1 实验数据库
本文对弯曲型失效为主的柱屈服转角进行预测,在PEER[9]柱性能数据库中通过以下标准:1)柱子截面形状为矩形;2)柱子受往复荷载作用直至失效;3)柱子的实验失效模式为弯曲失效.选择210组实验数据,作为神经网络预测数据库.该预测数据库的主要属性参数范围如图1所示.
从图1中可看出本文所选数据库主要参数分布覆盖了常规设计的参数取值范围,具有广泛的代表性.
从图2和表1中可以看出,利用4种经验模型估算构件的屈服转角时,预测值与实验值的比值分布相当离散,ASCE41模型计算结果变异系数相对较小为0.443,而利用ACI318-08(b)变异系数则达到0.65.针对上述预测结果离散的问题,本文采用BP神经网络预测PEER数据库柱的屈服转角.
2 神经网络预测柱屈服转角方法
2.1 BP神经网络
BP神经网络作为前向型多层神经网络的一种,其实质是利用误差反向传播算法(Back-Propagation)对神经网络进行训练.BP神经网络结构由输入层、隐含层和输出层三个部分组成,Hornik[22]已经证明单隐层的神经网络可以实现任意精度的非线性映射关系.BP神经网络训练分为信息的正向输入和误差的反向传播两个阶段.在信息正向输入阶段,输入参数通过阀值和权值的调节,再经激活函数传递对计算结果进行输出;而在误差反向传播阶段则是通过计算输出层的结果和目标值之间的误差来反向调节各神经元的权值和阀值;在实际训练中这两个阶段交替进行,直至达到训练的性能目标为止.
但由于BP学习算法其本质是梯度下降学习算法,权值的修正是沿性能函数梯度的反向进行,使普通的BP神经网络在训练时有以下不足:1)作为一种局部搜索的方法,容易陷入局部极小值而不能得到全局最优的结果;2)由于BP算法本身反向传播的特点,使其在求解矩阵时耗费大量的计算时间,致使神经网络收敛速度很慢.针对上述不足,众多学者对其进行修正,其中L-M(Levenberg-Marquardt)[23] 算法因其能够进行快速迭代,又具有全局优化的特点而在小型神经网络中得以广泛应用.L-M算法中迭代项如式(3)所示:
综合以上讨论,可以确定影响柱屈服转角的主要参数有:混凝土的抗压强度、轴压比、剪跨比、纵向钢筋的屈服强度、配筋率以及纵向钢筋直径,并将作为神经网络预测模型的输入参数.
2.3 构建BP网络预测模型
根据前述从PEER数据库中遴选出的210组数据,180组作为BP神经网络的训练集,30组作为测试集.将2.2节讨论的6个主要参数作为神经网络输入参数,柱的屈服转角为输出结果,在MATLAB中建立如图3所示的3层BP神经网络N 6-H-1(其中输入层节点数为6,H为隐含层的节点数,输出层节点数为1).
利用MATLAB神经网络工具箱建立神经网络模型需要确定以下参数:学习函数、学习速率、激活函数、训练函数、学习周期、性能目标和隐含层节点数.神经网络参数选择如下:
利用BP网络进行预测分析,为避免因输入因子数量级差别而引起较大的网络误差,一般先将输入因子进行归一化处理.为避免激活函数其极值0和1附近饱和而伴随出现“麻痹现象”,这里采用如式(12)所示方法将神经网络的输入和输出规格化:
2.4 BP网络预测结果
根据以上讨论对图3中BP神经网络进行训练、测试,得到如表2所示的预测结果.
从表2中可以看出当隐含层节点数为13和15时,其测试集和训练集的性能函数值分别达到最小;而当隐含层节点数为17和21时,神经网络训练集和测试集的性能函数均有相对较好的取值.限于篇幅,本文只以13和15节点神经网络为例,讨论其对混凝土柱屈服性能预测的适用性.
图4和表3列出了对应节点数目为13和15的BP神经网络模型预测结果.为了进一步检验神经网络的预测能力,将这两组预测结果与实验结果进行线性回归分析,结果如图5所示.
根据表2和图5给出的预测结果以及对应的线性回归结果,其对应较小的性能函数MSE的值和较高的相关系数R的值,可以看出神经网络能够准确预测混凝土柱的屈服转角.
在表3和图4中可以看出,2种不同节点数的神经网络均能取得较好的预测结果,表3中训练集和测试集的最大变异系数仅为0.164和0.179.从图4~图5以及表2~表3分析可以看到,利用BP网络预测柱的屈服位移可以得到相当满意的结果.
2.5 BP网络预测结果与经验模型比较
为了对比说明神经网络预测结果的准确性,本文也将Elwood在文献\[20\]基于理论推导的有效刚度模型带入式(2),计算结果列于图6(a)中.同时对应式(1)中屈服位移的定义,计算对比文献\[11\]所提出的经验模型屈服转角:
从图6和表4中可以看出:在利用Elwood计算模型估算构件的屈服转角时,估算精度高于前述4种规范模型,但是也看出Elwood模型和Jiang经验模型估算结果依旧相当离散,其中Elwood模型计算结果变异系数较小为0.365,而Jiang模型的计算结果则为0.477.相对于上述6种经验理论模型,本文所提的13和15节点神经网络模型,其预测结果与实验值的比值均值为1;变异系数仅为0.16和0.13.
相对于前述6种经验理论模型中仅考虑其中一部分因素的影响或者用一个数学表达式描述输入参数和柱子屈服位移之间的关系,神经网络综合考虑输入参数之间的相互影响,通过权值和阀值矩阵的调节得到更为准确的预测结果.
2.6 BP网络敏感性分析
为得到输入参数对混凝土柱屈服位移的影响程度以及验证2.2节通过经验模型选用神经网络输入参数方法的合理性,本文采用基于Garson算法[28]的神经网络敏感性分析.作为基于连接权神经网络敏感性分析方法的代表,该方法通过连接权的乘积计算输入变量对输出变量的贡献程度.对于一个N X-H-1的神经网络,其计算表述如式(14)所示:
3 结 论
为了能够准确地预测混凝土柱构件的屈服性能,建立一种基于BP神经网络预测混凝土柱的屈服性能的方法.本文首先利用以往的经验理论模型详细解构了影响混凝土柱屈服性能的因素,并将混凝土强度、轴压比、剪跨比、纵向钢筋配筋率、纵向钢筋直径及纵向钢筋屈服强度作为BP神经网络的输入参数预测混凝土柱的屈服性能.通过与已有估算模型结果的对比,显示出利用BP神经网络预测模型的高效性.最后通过利用Garson敏感性分析方法证明了本文选择预测模型输入参数合理性,并评估了各个输入因素对混凝土柱屈服位移影响的程度.本文通过利用神经网络预测矩形混凝土柱的屈服性能,说明在数据不充分的情况下神经网络对于预测工程结果是一种很有潜力的手段.
参考文献
[1] FEMA 273 Guidelines for the seismic rehabilitation of buildings[S]. Washington: Federal Emergency Management Agency, 1997:13-14.
[2] FEMA 356 Prestandard and commentary for the seismic rehabilitation of buildings \[S\]. Washington: Federal Emergency Management Agency, 2000:218-218.
[3] ASCE/SEI41 Seismic rehabilitation of existing buildings \[S\]. American Society of Civil Engineers, Reston, VA. 2007:354-354.
[4] Eurocode 8:Design of Structures for earthquake resistance Part 1: General rules, seismic actions and rules for buildings\[S\]. Brussels European Committee for Standardization,1998:219-219.
[5] PARK R. Ductility evaluation from laboratory and analytical testing \[C\]// Proceedings 9th World Conference on Earthquake Engineering.Tokyo-Kyoto, Japan. 1988:VIII,605-616.
[6] PANAGIOKOS T B, FARDIS M N. Deformations of reinforced concrete members at yielding and ultimate \[J\]. ACI Structural Journal, 2001, 98(2): 135-148.
[7] MONTES H E, ASCHLEIM M. Estimates of the yield curvature for design of reinforced concrete columns \[J\]. Magazine of Concrete Research, 2003, 55(4): 373-383.
[8] BERRY M, EBERHARD M O. Performance models for flexural damage in reinforced concrete columns \[R\]. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, 2004:158-158.
[9] PEER. Peer structural performance database \[DB/OL\]. \[2003-12-29\]. http: // nisee. berkeley. edu / spd.
[10]钱稼茹,徐福江.钢筋混凝土柱基于位移的变形能力设计方法\[J\]. 建筑结构, 2007(12): 30-32.
QIAN Jia-ru, XU Fu-jiang. Displacement-based deformation capacity design of RC columns \[J\]. Building Structure, 2007(12): 30-32.(In Chinese)
[11]JIANG Huan-jun, LU Xi-lin, KUBO T. Damage displacement estimation of flexure-dominant RC columns[J]. Advances in Structural Engineering, 2010, 13(2): 357-368.
[12]PRIESTLEY M. Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design \[J\]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998,31(4): 246-259.
[13]PERU I, FAJFAR P. Prediction of the forceCdrift envelope for RC columns in flexure by the CAE method \[J\]. Earthquake Engineering & Structural Dynamics, 2007,36(15): 2345-2363.
[14]Eurocode 8: design of structures for earthquake resistance CPart 2: Bridge\[S\]. Brussels European Committee for Standardization, 2005:133-133.
[15]ORETA A W, KAWASHIMA K. Neural network modeling of confined compressive strength and strain of circular concrete columns \[J\]. Journal of Structural Engineering, 2003, 129(4): 554-561.
[16]罗广恩,崔维成. 金属疲劳裂纹扩展速率的贝叶斯正则化BP神经网络预测\[J\]. 船舶力学, 2012, 16(4): 433-441.
LUO Guang-en, CUI Wei-cheng. Prediction of fatigue crack growth rate of metal based on Bayesian regularized BP neural network \[J\]. Journal of Ship Mechanics, 2012, 16(4): 433-441. (In Chinese)
[17]INEL M. Modeling ultimate deformation capacity of RC columns using artificial neural networks \[J\]. Engineering Structures, 2007, 29(3): 329-335.
[18]刘思思,赵明华,杨明辉,等. 基于自组织神经网络与遗传算法的边坡稳定性分析方法\[J\]. 湖南大学学报:自然科学版,2008,35(12): 7-12.
LIU Si-si, ZHAO Ming-hua, YANG Ming-hui, et al. Slope stability analysis method based on self-organizing neural network and genetic algorithm\[J\]. Journal of Hunan University: Natural Sciences, 2008, 35(12): 7-12. (In Chinese)
[19]王蕾,郁胜,李宾宾,等. 基于径向基神经网络的桥梁有限元模型修正\[J\]. 土木工程学报, 2012,45(S2): 11-15.
WANG Lei, YU Shen, LI Bin-bin, et al. Bridge model updating based on radial basis function neural network \[J\]. China Civil Engineering Journal, 2012,45(S2): 11-15. (In Chinese)
[20]ELWOOD K J, EBERHARD M O. Effective stiffness of reinforced concrete columns \[J\]. ACI Structural Journal, 2009, 106(4):483-483.
[21]ACI 318-2008 Building Code requirements for structural concrete and commentary \[S\]. Farmington Hills: 2008, American Concrete Institute, 2008:143-143.
[22]HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators \[J\]. Neural Networks, IEEE Transactions on, 1989, 2(5): 359-366.
[23]HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm \[J\]. Neural Networks, IEEE Transactions on, 1994, 5(6): 989-993.
[24]郑罡,李贵乾. 钢筋混凝土桥墩有效刚度\[J\]. 土木工程学报, 2013,46(6):44-52.
ZHENG Gang, LI Gui-qian. Effective stiffness of reinforced concrete bridges piers \[J\]. China Civil Engineering Journal, 2013,46(6):44-52. (In Chinese)
[25]SEZEN H, MOEHLE J P. Bond-slip behavior of reinforced concrete members \[C\]//Proceedings of fib symposium on concrete structures in seismic regions. Athens, Greece. CEB-FIP. 2003.
[26]BERRY M J, LINOFF G. Data mining techniques: for marketing, sales, and customer support \[M\].New York: John Wiley & Sons Inc,1997:444-444.
篇10
1公路工程造价估算概述
1.1 公路工程造价估算的重要性
公路工程造价估算作为公路工程管理的重要组成部分其重要性主要体现在如下几个方面。
第一,公路工程造价的估算是实现工程成本控制的基础。其中工程施工前期造价估算、施工前的编制预算以及施工图设计阶段的编制预算等环节作为工程造价估算的核心,同样是公路工程施工成本控制的起点,因此,实现公路工程造价的合理估算是实现工程成本控制的重要前提条件。
第二,公路工程造价的估算可以为施工企业成本控制计划方案的制定提供重要的参考依据。施工企业通过工程造价的估算可以寻找到降低工程成本的有效途径,从而为工程施工过程中施工成本的控制提供正确的方向。
第三,公路工程造价的估算可以帮助施工企业在进行设计招标前可以确定工程的大致造价。这样一来,施工企业在招标的过程中就可以有效避免中间商的欺诈以及保标等恶意行为的发生。
1.2 传统公路工程造价估算中存在的问题
尽管工程造价估算在公路工程建设中越来越受到人们的重视,但是由于受各方面因素的影响,在传统公路工程造价估算中还存在一系列的问题,其中我国传统公路造价估算中主要存在如下几个方面的问题:一是相关规章制度的限制,造价估算结果往往与投标报价相差悬殊;二是预算结果与概算结果差距较大,不利于工程实际造价的控制和确定;三是缺少对工程造价估算的有效监督机制,从而使最终的造价结果变的十分不确定;四是由于各参与方利益的问题,在进行工程造价估算时很难早到平衡点,以至于造价估算精度不能得到有效的保证。
2认识模糊神经网络
2.1 模糊数学概述
(1)模糊数学的概念,我们通常说的模糊就是指一些模棱两可的、即可能又不可能、即是又不是的概念。而模糊数学就是要用数学的方法来表示那些模糊概念发生的可能性的大小,换句话讲就是明确那些模糊概念所处的状态,从而利用数学的思想来解决那些模棱两可的、不确定的实际问题。
(2)模糊数学的数学描述,一般模糊数学的数学描述,多采用的是类似与集合的数学表示方法。与集合的区别就在于模糊数学在表示集合元素时需要附带一个称为隶属函数值的参数,其中该参数的值是隶属函数与元素的值进行运算的结果。
2.2 神经网络概述
(1)神经网络的概念,所谓的神经网络是一个借鉴物理和生物技术来实现的用来模仿人类大脑神经细胞结构和功能的系统,与人类的大脑结构相似,它也由大量的模拟神经元所组成的,而且这些神经元之间相互连接,并行工作,作为一个系统协同完成一系列复杂的信息处理活动。
(2)神经网络的基本原理,神经网络在结构和功能上都是模拟人脑的神经系统来进行设计和实现的,它同时作为模拟生物神经元的一种计算方法,其基本原理是这样的,与生物神经元的基本原理相似,用那些具有突的网络结点来接受信息,并不断的将接受到的信息累加起来,这些信息有些是抑制神经元,有些则是激发神经元,对于那些激发神经元,一旦积累到一定的阈值后,相应的神经元便会被激活,被激活的神经元就会沿其称为轴突的部件向其它神经元传递信息,并完成信息的处理。
2.3 模糊神经网络概述
模糊神经网络是模糊数学和神经网络有效结合的应用研究成果。其中在模糊神经网络中模糊数学的应用体现在它可以根据那些假定的隶属函数以及相应的规律,用逻辑推理的方法去处理各种模糊的信息。
3模糊神经网络在公路工程造价估算中的应用
3.1 基于模糊神经网络的公路工程造价估算方法的实现
将模糊神经网络应用于公路工程造价估算方面,是近年来公路工程造价估算发展的特点和重点。从本质上来看,模糊神经网络就是一个系统,它即有输入又有输出,与公路工程的造价估算十分相似,因为公路工程造价估算就是在输入公路工程施工的一系列要求和特点后输出相应结果的,所以与模拟神经网络所提供的输入输出机制非常相似,其中结合模糊神经网络的原理,基于模糊神经网络的公路工程造价估算方法的实现过程如下。
第一,构建已施工公路工程的造价信息库,其中包括应经施工的公路工程的各种特征因素以及工程造价等其他各方面的材料。
第二,结合拟建工程的施工需求来确定其包括评价指标等在内的各种特征因素的数据取值。
第三,按照模糊数学的思想法在已施工公路工程的造价信息库中选取若干个(至少三个)与拟建工程最相似的已施工的工程,将其作为神经网络进行学习和训练的基础数据。其中,将信息库中公路工程的各种特征因素值的隶属度作为神经网络的输入向量,信息库中公路工程的造价值作为神经网络的输出向量。
第四,将拟建公路工程的各种特征因素值的隶属度作为神经网络的输入向量,通过神经网络的学习后所得到的输出向量即为拟建公路工程的造价估算值。
第五,建立公路施工工程造价信息数据,编制神经网络学习的算法通用程序。将学习训练的基础数据输入神经网络,然后合理设计学习率,经过一定次数的迭代运算,有效提高公路工程造价估算结果的精度。
3.2 基于模糊神经网络的公路工程造价估算方法的优点
基于模糊神经网络的公路工程造价估算方法有效的克服了传统上工程造价估算方法的一系列缺点,与传统的工程造价估算方法相比,其显著优点就在于造价估算的迅速以及估算结果的精确。其中该方法的优点可以概括为如下几点。
第一,模糊神经网络中所采用的模糊数学可以对公路工程造价估算中的模糊信息进行有效的处理,通过对已竣工的公路工程和计划施工的公路工程的相似度进行定量化描述,从而使模糊的公路工程造价问题得以模型化。
第二,基于模糊神经网络的公路工程造价估算方法的估算结果科学合理,因为该方法采用的是基于数学模型的数学计算分析,所以其结果受人为因素的影响较小。
第三,模糊神经网络中所采用的神经网络模型对公路工程造价的估算具有很好的适应性,与传统的造价估算方法相比,该方法能更好的适应公路工程造价的动态变化。
第四,基于模糊神经网络的公路工程造价估算方法是借助计算机来完成的,所以还具有运算速度快和运算精度高的优点。
4结语
由于影响公路工程造价的因素比较多,而且各因素的构成比较复杂,计算相对繁琐,所以公路工程的造价估算具有很大的模糊性。对于使用传统的工程造价估算方法而言,公路工程造价的估算将是一项非常复杂的工作。然而结合模糊数学和神经网络的理论思想,利用工程之间所存在的相似性,使用基于模糊神经网络的公路工程造价估算方法可以迅速的得出精确的工程造价估算结果。
- 上一篇:劳动实践体会心得
- 下一篇:历史文化遗产保护的意义