卷积神经网络现状范文

时间:2024-03-28 16:38:35

导语:如何才能写好一篇卷积神经网络现状,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

卷积神经网络现状

篇1

关键词:深度学习;机器学习;卷积神经网络

1概述

深度学习(Deep Learning)是人工智能、图像建模、模式识别、神经网络、最优化理论和信号处理等领域的交叉学科,主要构建和模拟人脑进行分析学习,它属于机器学习的新兴领域。

2大数据与深度学习

目前,光学检测、互联网、用户数据、互联网、金融公司等许多领域都出现了海量数据,采用BP算法对于训练神经网络出现了梯度越来越稀疏、收敛到局部最小值只能用有标签的数据来训练等缺点。Hinton于2006年提出了深度学习的概念,Lecun等人提出了卷积神经网络,卷积神经网络利用空间关系减少参数数目以提高训练性能。

CPU和GPU计算能力大幅提升,为深度学习提供了硬件平台和技术手段,在海量大数据处理技术上解决了早期神经网络训练不足出现的过拟合、泛化能力差等问题。

大数据和深度学习必将互相支撑,推动科技发展。

3深度学习模型

深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络,深深度置信神经网络,循环神经网络。

1)卷积神经网络

在机器学习领域,卷积神经网络属于前馈神经网络的一种,神经元不再是全连接的模式,而是应用了局部感受区域的策略。然而传统的神经网络使用神经元间全连接的网络结构来处理图像任务,因此,出现了很多缺陷,导致模型⑹急剧增加,及其容易过拟合。

在卷积神经网络中,网络中的神经元只与前一层的部分神经元连接,利用图像数据的空间结构,邻近像素间具有更强的相关性,单个神经元仅对局部信息进行响应,相邻神经元感受区域存在重叠,因此,综合所有神经元可以得到全局信息的感知。

另外,一个卷积层中的所有神经元均由同一个卷积核对不同区域数据响应而得到,即共享同一个卷积核,使得卷积层训练参数的数量急剧减少,提高了网络的泛化能力。

一般在卷积层后面会进行降采样操作,对卷积层提取的特征进行聚合统计。降采样区域一般不存在重叠现象。降采样简化了卷积层的输出信息,进一步减少了训练参数的数量,增强了网络的泛化能力。

卷积神经网络实现了局部特征的自动提取,使得特征提取与模式分类同步进行,适用于处理高分辨率的图像数据。目前,卷积神经网络在图像分类、自然语言处理等领域得到广泛应用。

2)深度置信网络

深度置信网络是一种生成模型,网络中有若干隐藏层,同一隐藏层内的神经元没有连接,隐藏层间的神经元全连接。神经网络经过“反向运行”得到输入数据。

深度置信网络可以用做生成模型,通过前期的逐层无监督学习,神经网络可以较好的对输入数据进行描述,然后把训练好的神经网络看作深度神经网络,最后得到分类任务的深度神经网络。

深度置信网络可以用于图像识别、图像生成等领域,深度置信网络可以进行无监督或半监督的学习,利用无标记数据进行预训练,提高神经网络性能。但近几年由于卷积神经网络的飞速发展,深度置信网络已经很少被提及。

3)循环神经网络

循环神经网络是一种专门用于处理时序数据的神经网络,它与典型的前馈型神经网络最大区别在于网络中存在环形结构,隐藏层内部的神经元是互相连接的,可以存储网络的内部状态,其中包含序列输入的历史信息,实现了对时序动态行为的描述。这里的时序并非仅仅指代时间概念上的顺序,也可以理解为序列化数据间的相对位置。如语音中的发音顺序,某个英语单词的拼写顺序等。序列化输入的任务都可以用循环神经网络来处理。如语音、视频、文本等。对于序列化数据,每次处理时输入为序列中的一个元素,比如单个字符、单词、音节,期望输出为该输入在序列数据中的后续元素。循环神经网络可以处理任意长度的序列化数据。

循环神经网络可以用于机器翻译、连写字识别、语音识别等。循环神经网络和卷积网络结合,将卷积神经网络用于检测并识别图像中的物体,循环神经网络用于识别出物体的名称为输入,生成合理的语句,从而实现对图像内容的描述。

4深度学习应用

1)语音识别

语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。其应用领域主要有语音输入系统、语音控制系统和智能对话查询系统,语音识别极大地推动了人工智能的快速发展。1952年Davis等人研究了世界上第一个能识别10个英文数字发音的实验系统。大规模的语音识别研究是在20世纪70年代以后,在小词汇量、孤立词的识别方面取得了实质性的进展。2012年,微软研究院使用深度神经网络应用在语音识别上将识别错误率降低了20%,取得了突破性的进展。2015年11月17日,浪潮集团联合全球可编程芯片巨头Altera,以及中国最大的智能语音技术提供商科大讯飞,共同了一套DNN语音识别方案。

2)图像分析

图像是深度学习最早尝试的应用领域。1989年,LeCun和他的同事们就发表了卷积神经网络的工作。2012年10月,Hinton和他的两个学生用更深的CNN在ImageNet挑战上获得了第一名,使图像识别向前跃进了一大步。

自2012年以来,深度学习应用于图像识别使得准确率大大上升,避免了消耗人工特征抽取的时间,极大地提升了效率,目前逐渐成为主流的图像识别与检测方法。

篇2

人工智能、大数据、光纤网络等技术的发展和改进,人类社会已经进入到了“互联网+”时代,有力的促进了信息化系统的普及和使用,比如证券交易所开发了结算交易系统,政府机关开发了电子政务系统,旅游景区开发了旅游住宿管理系统等,提高了行业智能化、自动化和共享化水平。互联网虽然为人们带来了极大的方便,提高了各行业的信息化水平,但是其也面临着海量的安全攻击威胁,比如数以万计的病毒或木马,都给互联网的应用带来了极大的障碍。目前,网络中流行的攻击包括病毒木马、DDOS攻击等,这些病毒木马常常发生各类型的变异,比如2018年初爆发的勒索病毒,攻击了很多政企单位的服务器,导致终端操作系统无法登录和访问,传统的防火墙、杀毒软件等网络安全防御软件已经无法满足需求,需要引入大数据技术,以便能够将被动防御技术改进为主动防御技术,及时的查处网络中的病毒或木马,从而可以提高互联网防御水平。

1.网络安全防御现状研究

网络安全防御经过多年的研究,已经吸引了很多的学者和企业开发先进的防御技术,比如360安全卫士、访问控制列表、防火墙等,同时还提出了一些更加先进的深度包过滤和自治网络等防御技术,这些技术均由许多的网络安全防御学者、专家和企业进行研究提出,已经在网络中部署喝应用,一定程度上提高了网络防御水平。(1)防火墙防火墙是一种部署于因特网和局域网之间防御工具,其类似一个过滤器,可以不熟一些过滤规则,从而可以让正常的数据通过防火墙,也可以阻止携带病毒或木马的数据通过防火墙,防火墙经过多年的部署,已经诞生了数据库防火墙、网络防火墙、服务器防火墙等,使用枚举规则禁止查看每一个协议是否正常,能够防御一定的病毒或木马。(2)杀毒软件杀毒软件也是一个非常关键的程序代码,可以在杀毒软件系统的服务器中保存检测出的病毒或木马基因特征片段,将这些片段可以与网络中的数据信息进行匹配,从而可以查找网络中的病毒或木马,及时的将其从网络中清除。杀毒软件为了能够准确的识别病毒,目前引入了许多的先进技术,这些技术包括脱壳技术、自我保护技术等,同时目前也吸引了更多的网络安全防御公司研究杀毒软件,最为著名的软件厂商包括360、瑞星、江民、卡巴斯基等,同时腾讯公司、搜狗公司也开发了自己的安全管理技术,大大的提高网络防御能力。(3)访问控制列表访问控制列表是一个易于配置、安装简单和管理容易的网络安全防御工具,设置了黑白两个关键名单,白名单收录了安全数据源IP地址,黑名单收录了非法的数据源IP地址。访问控制列表已经可以在四个层次配置防御策略,分别是目录及控制级、入网访问控制级、属性控制级和权限控制级。访问控制列表级别越高访问性能越好,但是工作效率非常慢,不能够实时升级访问控制列表,因此应用的场所比较简单,一般都是不重要的中小学实验室等,许多大型政企单位都不用这个防御措施。(4)深度包过滤深度包过滤能够嵌入到硬件中形成一个固件,这样就可以快速的采集网络中的数据,然后利用深度包过滤的枚举检查规则,不仅检查数据包的头部IP地址、目的IP地址,还检查数据包中的内容,以便能够深入到数据包内部检查是否存在病毒或木马,一旦发现就可以启动防御软件。深度包过滤可以实施穿透式检查规则,分析每一个协议字段,深入到内部检查的更加详细和全面,从而避免病毒或木马隐藏在数据包内部,因此深度包过滤已经在很多领域得到应用,比如阿里云、腾讯云、百度云等都采用了这些技术,许多的政企单位也采用了深度包过滤技术,进一步提高了数据防御水平。(5)自治网络自治网络作为一种先进的互联网安全防御技术,其采用了自动愈合的建设理念,在网络中构建了一个冗余策略,一旦网络受到病毒或木马的攻击,此时自治网络就可以将这些一部分网络设备隔离,同时形成一个新传输通道为网络设备提供连接,知道数据修复完毕之后才能够将这些网络拓扑结构纳入到网络中。自治网络可以实现自我防御,也可以调动网络信息安全的许多的资源,将网络病毒导入备用服务器,此时就可以杀灭这些病毒。

2.基于大数据的网络安全防御系统设计

网络安全防御系统集成了很多先进的技术,尤其是快速的数据采集和大数据分析技术,能够将传统的被动网络安全防御模式转变为主动,提高网络安全防御性能。本文结合传统的网络安全防御功能及引入的大数据技术,给出了网络安全防御系统的主要功能,这些功能包括四个关键方面,分别是数据采集功能、大数据图1基于大数据的网络安全防御系统功能分析功能、网络安全防御功能和防御效果评估功能。(1)网络数据采集功能目前,人们已经进入到了“互联网+”时代,网络部署的软硬件资源非常多,访问的用户频次数以亿计,因此网络安全防御首先需要构建一个强大的数据采集功能,可以及时的采集网络中的软硬件数据资源,将这些网络数据发送给大数据分析功能。网络数据采集过程中可以引入深度包过滤功能,利用这个深度包过滤可以快速的采集网络数据,提高网络数据采集速度。(2)大数据分析和处理功能网络数据采集完毕之后,系统将数据发送给大数据分析和处理模块,该模块中包含了很多的病毒基因片段或特征,可以针对网络数据进行智能分析,将预处理后的网络数据与学习到的特征进行对比,以便能够发现这些数据信息中是否潜藏着木马或病毒,发现之后及时的将其发送给安全防御模块。(3)网络安全防御功能网络安全防御与传统的防御技术一致,采用木马或病毒查杀软件,因此一旦发现网络中存在病毒或木马,此时就可以启动网络安全防御工具,及时的将网络中的病毒或木马杀灭,并且可以跟踪病毒或木马来源,从而可以锁定源头服务器,将源头清除掉。如果源头涉及到犯罪就可以获取这些证据,同时将这些证据发送给公安机关进行侦破。(4)防御效果评估功能网络安全防御功能完成之后,系统可以针对处理效果进行评估,从而可以获取网络系统中的杀毒信息,将这些网络病毒消灭,避免网络中的病毒或木马复发。网络安全防御效果评估之后,还可以跟踪大数据分析的准确度,一旦准确度降低就可以及时进行学习,从而提高网络安全防御性能。大数据是一种非常关键的数据处理和分析技术,可以利用多种算法,比如BP神经网络算法、支持向量机、深度学习、K-means算法等挖掘数据中潜在的知识,这些知识对人们是有价值的,能够帮助人们进行决策。本文为了能够更好的展示互联网应用性能,重点描述了深度学习算法分析互联网安全数据过程。深度学习算法是一种多层次的卷积神经网络,包括两个非常关键的层次结构,一个是卷积层称为病毒数据特征提取层,一个卷积层为病毒数据特征映射层,可以识别病毒数据中的特征数据,同时将池化层进行处理,压缩和处理池化层数据信息,比如进行预处理、二值化等,删除病毒数据中的一些明显的噪声特征。池化层可以将海量的病毒数据进行压缩,减少卷积神经网络分析时设置的参数,解决卷积神经网络学习和训练时容易产生的过度拟合问题,避免病毒识别模型陷入到一个过度拟合状态,避免无法提高病毒识别能力,还会提升病毒识别处理开销。全连接层就是一个关键分类器,可以将学习到的病毒知识标记到一个特征空间,这样就可以提高病毒识别结果的可解释性。卷积神经网络通过学习和训练之后,其可以形成一个动态优化的网络结构,这个结构可以在一定时期内保持不变,能够实现病毒特征的识别、分析,为病毒识别提供一个准确的结果。

篇3

关键词人脸识别;特征提取

1人脸识别技术概述

近年来,随着计算机技术的迅速发展,人脸自动识别技术得到广泛研究与开发,人脸识别成为近30年里模式识别和图像处理中最热门的研究主题之一。人脸识别的目的是从人脸图像中抽取人的个性化特征,并以此来识别人的身份。一个简单的自动人脸识别系统,包括以下4个方面的内容:

(1)人脸检测(Detection):即从各种不同的场景中检测出人脸的存在并确定其位置。

(2)人脸的规范化(Normalization):校正人脸在尺度、光照和旋转等方面的变化。

(3)人脸表征(FaceRepresentation):采取某种方式表示检测出人脸和数据库中的已知人脸。

(4)人脸识别(Recognition):将待识别的人脸与数据库中的已知人脸比较,得出相关信息。

2人脸识别算法的框架

人脸识别算法描述属于典型的模式识别问题,主要有在线匹配和离线学习两个过程组成,如图1所示。

图1一般人脸识别算法框架

在人脸识别中,特征的分类能力、算法复杂度和可实现性是确定特征提取法需要考虑的因素。所提取特征对最终分类结果有着决定性的影响。分类器所能实现的分辨率上限就是各类特征间最大可区分度。因此,人脸识别的实现需要综合考虑特征选择、特征提取和分类器设计。

3人脸识别的发展历史及分类

人脸识别的研究已经有相当长的历史,它的发展大致可以分为四个阶段:

第一阶段:人类最早的研究工作至少可追朔到二十世纪五十年代在心理学方面的研究和六十年代在工程学方面的研究。

J.S.Bruner于1954年写下了关于心理学的Theperceptionofpeople,Bledsoe在1964年就工程学写了FacialRecognitionProjectReport,国外有许多学校在研究人脸识别技术[1],其中有从感知和心理学角度探索人类识别人脸机理的,如美国TexasatDallas大学的Abdi和Tool小组[2、3],由Stirling大学的Bruce教授和Glasgow大学的Burton教授合作领导的小组等[3];也有从视觉机理角度进行研究的,如英国的Graw小组[4、5]和荷兰Groningen大学的Petkov小组[6]等。

第二阶段:关于人脸的机器识别研究开始于二十世纪七十年代。

Allen和Parke为代表,主要研究人脸识别所需要的面部特征。研究者用计算机实现了较高质量的人脸灰度图模型。这一阶段工作的特点是识别过程全部依赖于操作人员,不是一种可以完成自动识别的系统。

第三阶段:人机交互式识别阶段。

Harmon和Lesk用几何特征参数来表示人脸正面图像。他们采用多维特征矢量表示人脸面部特征,并设计了基于这一特征表示法的识别系统。Kaya和Kobayashi则采用了统计识别方法,用欧氏距离来表征人脸特征。但这类方法需要利用操作员的某些先验知识,仍然摆脱不了人的干预。

第四阶段:20世纪90年代以来,随着高性能计算机的出现,人脸识别方法有了重大突破,才进入了真正的机器自动识别阶段。在用静态图像或视频图像做人脸识别的领域中,国际上形成了以下几类主要的人脸识别方法:

1)基于几何特征的人脸识别方法

基于几何特征的方法是早期的人脸识别方法之一[7]。常采用的几何特征有人脸的五官如眼睛、鼻子、嘴巴等的局部形状特征。脸型特征以及五官在脸上分布的几何特征。提取特征时往往要用到人脸结构的一些先验知识。识别所采用的几何特征是以人脸器官的形状和几何关系为基础的特征矢量,本质上是特征矢量之间的匹配,其分量通常包括人脸指定两点间的欧式距离、曲率、角度等。

基于几何特征的识别方法比较简单、容易理解,但没有形成统一的特征提取标准;从图像中抽取稳定的特征较困难,特别是特征受到遮挡时;对较大的表情变化或姿态变化的鲁棒性较差。

2)基于相关匹配的方法

基于相关匹配的方法包括模板匹配法和等强度线方法。

①模板匹配法:Poggio和Brunelli[10]专门比较了基于几何特征的人脸识别方法和基于模板匹配的人脸识别方法,并得出结论:基于几何特征的人脸识别方法具有识别速度快和内存要求小的优点,但在识别率上模板匹配要优于基于几何特征的识别方法。

②等强度线法:等强度线利用灰度图像的多级灰度值的等强度线作为特征进行两幅人脸图像的匹配识别。等强度曲线反映了人脸的凸凹信息。这些等强度线法必须在背景与头发均为黑色,表面光照均匀的前提下才能求出符合人脸真实形状的等强度线。

3)基于子空间方法

常用的线性子空间方法有:本征子空间、区别子空间、独立分量子空间等。此外,还有局部特征分析法、因子分析法等。这些方法也分别被扩展到混合线性子空间和非线性子空间。

Turk等[11]采用本征脸(Eigenfaces)方法实现人脸识别。由于每个本征矢量的图像形式类似于人脸,所以称本征脸。对原始图像和重构图像的差分图像再次进行K-L变换,得到二阶本征空间,又称二阶本征脸[12]。Pentland等[13]提出对于眼、鼻和嘴等特征分别建立一个本征子空间,并联合本征脸子空间的方法获得了好的识别结果。Shan等[14]采用特定人的本征空间法获得了好于本征脸方法的识别结果。Albert等[15]提出了TPCA(TopologicalPCA)方法,识别率有所提高。Penev等[16]提出的局部特征分析(LFALocalFeatureAnalysis)法的识别效果好于本征脸方法。当每个人有多个样本图像时,本征空间法没有考虑样本类别间的信息,因此,基于线性区别分析(LDALinearDiscriminantAnalysis),Belhumeur等[17]提出了Fisherfaces方法,获得了较好的识别结果。Bartlett等[18]采用独立分量分析(ICA,IndependentComponentAnalysis)的方法识别人脸,获得了比PCA方法更好的识别效果。

4)基于统计的识别方法

该类方法包括有:KL算法、奇异值分解(SVD)、隐马尔可夫(HMM)法。

①KL变换:将人脸图像按行(列)展开所形成的一个高维向量看作是一种随机向量,因此采用K-L变换获得其正交K-L基底,对应其中较大特征值基底具有与人脸相似的形状。国外,在用静态图像或视频图像做人脸识别的领域中,比较有影响的有MIT的Media实验室的Pentland小组,他们主要是用基于KL变换的本征空间的特征提取法,名为“本征脸(Eigenface)[19]。

②隐马尔可夫模型:剑桥大学的Samaria和Fallside[20]对多个样本图像的空间序列训练出一个HMM模型,它的参数就是特征值;基于人脸从上到下、从左到右的结构特征;Samatia等[21]首先将1-DHMM和2-DPseudoHMM用于人脸识别。Kohir等[22]采用低频DCT系数作为观察矢量获得了好的识别效果,如图2(a)所示。Eickeler等[23]采用2-DPseudoHMM识别DCT压缩的JPEG图像中的人脸图像;Nefian等采用嵌入式HMM识别人脸[24],如图2(b)所示。后来集成coupledHMM和HMM通过对超状态和各嵌入状态采用不同的模型构成混合系统结构[25]。

基于HMM的人脸识别方法具有以下优点:第一,能够允许人脸有表情变化,较大的头部转动;第二,扩容性好.即增加新样本不需要对所有的样本进行训练;第三,较高的识别率。

(a)(b)

图2(a)人脸图像的1-DHMM(b)嵌入式隐马尔科夫模型

5)基于神经网络的方法

Gutta等[26]提出了混合神经网络、Lawrence等[27]通过一个多级的SOM实现样本的聚类,将卷积神经网络CNN用于人脸识别、Lin等[28]采用基于概率决策的神经网络方法、Demers等[29]提出采用主元神经网络方法提取人脸图像特征,用自相关神经网络进一步压缩特征,最后采用一个MLP来实现人脸识别。Er等[30]采用PCA进行维数压缩,再用LDA抽取特征,然后基于RBF进行人脸识别。Haddadnia等[31]基于PZMI特征,并采用混合学习算法的RBF神经网络进行人脸识别。神经网络的优势是通过学习的过程获得对这些规律和规则的隐性表达,它的适应性较强。

6)弹性图匹配方法

Lades等提出采用动态链接结构(DLA,DynamicLinkArchitecture)[32]的方法识别人脸。它将人脸用格状的稀疏图如图3所示。

图3人脸识别的弹性匹配方法

图3中的节点用图像位置的Gabor小波分解得到的特征向量标记,图的边用连接节点的距离向量标记。Wiskott等人使用弹性图匹配方法,准确率达到97.3%。Wiskott等[33]将人脸特征上的一些点作为基准点,构成弹性图。采用每个基准点存储一串具有代表性的特征矢量,减少了系统的存储量。Wurtz等[34]只使用人脸ICI部的特征,进一步消除了结构中的冗余信息和背景信息,并使用一个多层的分级结构。Grudin等[35]也采用分级结构的弹性图,通过去除了一些冗余节点,形成稀疏的人脸描述结构。另一种方法是,Nastar等[36]提出将人脸图像I(x,y)表示为可变形的3D网格表(x,y,I(x,y)),将人脸匹配问题转换为曲面匹配问题,利用有限分析的方法进行曲面变形,根据两幅图像之间变形匹配的程度识别人脸。

7)几种混合方法的有效性

(1)K-L投影和奇异值分解(SVD)相融合的分类判别方法。

K-L变换的核心过程是计算特征值和特征向量。而图像的奇异值具有良好的稳定性,当图像有小的扰动时,奇异值的变化不大。奇异值表示了图像的代数特征,在某种程度上,SVD特征同时拥有代数与几何两方面的不变性。利用K-L投影后的主分量特征向量与SVD特征向量对人脸进行识别,提高识别的准确性[37]。

(2)HMM和奇异值分解相融合的分类判别方法。

采用奇异值分解方法进行特征提取,一般是把一幅图像(长为H)看成一个N×M的矩阵,求取其奇异值作为人脸识别的特征。在这里我们采用采样窗对同一幅图片进行重叠采样(如图4),对采样所得到的矩阵分别求其对应的前k个最大的奇异值,分别对每一组奇异值进行矢量标准化和矢量重新排序,把这些处理后的奇异值按采样顺序组成一组向量,这组向量是惟一的[38]。

图4采样窗采样

综合上述论文中的实验数据表明[39],如表1:

表1人脸识别算法比较

8)基于三维模型的方法

该类方法一般先在图像上检测出与通用模型顶点对应的特征点,然后根据特征点调节通用模型,最后通过纹理映射得到特定人脸的3D模型。Tibbalds[40]基于结构光源和立体视觉理论,通过摄像机获取立体图像,根据图像特征点之间匹配构造人脸的三维表面,如图5所示。

图5三维人脸表面模型图6合成的不同姿态和光照条件下二维人脸表面模型

Zhao[41]提出了一个新的SSFS(SymetricShape-from-Shading)理论来处理像人脸这类对称对象的识别问题,基于SSFS理论和一个一般的三维人脸模型来解决光照变化问题,通过基于SFS的视图合成技术解决人脸姿态问题,针对不同姿态和光照条件合成的三维人脸模型如图6所示。

三维图像有三种建模方法:基于图像特征的方法[42、43]、基于几何[44]、基于模型可变参数的方法[45]。其中,基于模型可变参数的方法与基于图像特征的方法的最大区别在于:后者在人脸姿态每变化一次后,需要重新搜索特征点的坐标,而前者只需调整3D变形模型的参数。三维重建的系统框图,如图7所示。

图7三维建模的系统框图

三维人脸建模、待识别人脸的姿态估计和识别匹配算法的选取是实现三维人脸识别的关键技术。随着采用三维图像识别人脸技术的发展,利用直线的三维图像信息进行人脸识别已经成为人们研究的重心。

4总结与展望

人脸自动识别技术已取得了巨大的成就,随着科技的发展,在实际应用中仍然面临困难,不仅要达到准确、快速的检测并分割出人脸部分,而且要有效的变化补偿、特征描述、准确的分类的效果,还需要注重和提高以下几个方面:

(1)人脸的局部和整体信息的相互结合能有效地描述人脸的特征,基于混合模型的方法值得进一步深入研究,以便能准确描述复杂的人脸模式分布。

(2)多特征融合和多分类器融合的方法也是改善识别性能的一个手段。

(3)由于人脸为非刚体性,人脸之间的相似性以及各种变化因素的影响,准确的人脸识别仍较困难。为了满足自动人脸识别技术具有实时要求,在必要时需要研究人脸与指纹、虹膜、语音等识别技术的融合方法。

(4)3D形变模型可以处理多种变化因素,具有很好的发展前景。已有研究也表明,对各种变化因素采用模拟或补偿的方法具有较好的效果。三维人脸识别算法的选取还处于探索阶段,需要在原有传统识别算法的基础上改进和创新。

(5)表面纹理识别算法是一种最新的算法[52],有待于我们继续学习和研究出更好的方法。

总之,人脸识别是极富挑战性的课题仅仅采用一种现有方法难以取得良好的识别效果,如何与其它技术相结合,如何提高识别率和识别速度、减少计算量、提高鲁棒性,如何采用嵌入式及硬件实现,如何实用化都是将来值得研究的。

参考文献

[1]O''''TooleAJ,AbdiH,DeffenbacherKA,etal.Alowdimensionalrepresentationoffacesinthehigherdimensionsofspace.[J].JournaloftheOpticalSocietyof2America,1993,10:405~411

[2]张翠萍,苏光大.人脸识别技术综述.中国图像图形学报,2000,5(11):885-894

[3]A.Samal,P.A.Iyengar.Automaticrecognitionandanalysisofhumanfacesandfacialexpressions:asurvey[J].PatternRecognition,1992,25(1):65-67

[4]TurkM,PentlandA.Eigenfacesforrecognition[J].JournalofCognitiveNeuroscience,1991,3(1):71~86

[5]BartlettMS,MovellanJR,SejnowskiTJ.FaceRecognitionbyIndependentComponentAnalysis[J].IEEETrans.onNeuralNetwork,2002,13(6):1450-1464

[6]ManjunathBS,ShekharCandChellappaR.Anewapproachtoimagefeaturedetectionwithapplication[J].Patt.Recog,1996,29(4):627-640

[7]ChengY.LiuK,YangJ,etal.Humanfacerecognitionmethodbasedonthestatisticalmodelofsmallsamplesize.SPIEProc,Intell.RobotsandComputerVisionX:AlgorithmsandTechn.1991,1606:85-95

[8]NefianAVEmbeddedBayesianNetworksforFaceRecognition[A].Proceedings.IEEEInternationalConferenceonMultimediaandExpo[C]2002,2:133-136

[9]GuttaS,WechslerH.FaceRecognitionUsingHybridClassifiers[J].PatternRecognition,1997,30(4):539-553

[10]HaddadniaJ,AhmadiM,FaezKAHybridLearningRBFNeuralNetworkforHumanFaceRecognitionwithPseudoZernikeMomentInvariant[A].Proceedingsofthe2002InternationalJointConferenceonNeuralNetworks[C].2002,1:11-16

[11]M.Lades,J.C.Vorbruggen,J.Buhmann,ect.Distortioninvariantobjectrecognitioninthedynamiclinkarchitecture.IEEETrans.onComputer,1993,42(3):300-311

[12]NastarC,MoghaddamBA.FlexibleImages:MatchingandRecognitionUsingLearnedDeformations[J].ComputerVisionandImageUnderstanding,1997,65(2):179-191

[13]羊牧.基于KL投影和奇异值分解相融合人脸识别方法的研究[D].四川大学.2004,5,1

[14]白冬辉.人脸识别技术的研究与应用[D].北方工业大学.2006,5

篇4

    论文摘要: 当点扩展函数未知或不确知的情况下, 从观察到的退化图像中恢复原始图像的过程称为图像盲复原。近年来, 图像盲复原算法得到了广泛的研究。本文在介绍了盲图像恢复算法的现状的基础上进一步研究其的发展方向。

    一、引言

    图像恢复是图像处理中的一大领域,有着广泛的应用,正成为当前研究的热点。图像恢复的主要目的是使退化图像经过一定的加工处理,去掉退化因素,以最大的保真度恢复成原来的图像。传统的图像恢复假设图像的降质模型是己知的。而许多情况下,图像的降质模型未知或具有较少的先验知识,必须进行所谓的盲恢复。其重要性和艰巨性而成为一个研究热点。目前所能获取的观测图像是真实图像经过观测系统成像的结果。由于观测系统本身物理特性的限制,同时受观测环境的影响,观测图像和真实图像之间不可避免地存在着偏差和失真,称观测系统对真实图像产生了降质。图像恢复的目的就是根据降质的观测图像分析和计算得出真实图像。

    二、图像盲恢复算法的现状

    总体来说, 图像盲复原方法主要分为以下两类: 一是首先利用真实图像的特别特征估计PSF,然后借助估计得到的PSF,采用经典的图像复原方法进行图像的复原。这类方法将PSF的估计与图像的复原过程分为2个不同的过程,因而具有较少计算量的特点;二是PSF辨识和真实图像估计相结合,同时辨识PSF和真实图像。这类算法较为复杂,计算量较大。另外,对于点扩展函数也考虑了空间变化的复杂情况。针对目前的盲复原算法的现状,根据退化模型的特点, 重新将算法分为空间不变的单通道盲复原算法、空间不变多通道盲复原算法和空间变化图像盲复原算法3类。

    (一)单通道空间不变图像盲复原算法

    在这类算法中, 最为常用的是参数法和迭代法。

    1)参数法。所谓参数法, 即模型参数法, 就是将PSF和真实图像用某一类模型加以描述, 但模型的参数需要进行辨识。在参数法中, 典型的有先验模糊辨识法和ARMA 参数估计法, 前者先辨识PSF的模型参数,后辨识真实图像, 属于第1 种类型的图像盲复原算法, 因而计算量较小;后者同时辨识PSF和真实图像模型参数, 属于第2种类型图像盲复原算法。

    2)迭代法。所谓的迭代法, 不是通过建立模型而是通过算法的迭代过程, 加上有关真实图像和PSF的约束来同时辨识PSF和真实图像的方法。迭代法是单通道

    图像盲复原算法中应用最广泛的一类算法, 它不需建立模型, 也不要求PSF 为最小相位系统, 因而跟实际更为接近。在这类算法中, 迭代盲复原算法(IBD), 基于非负性和决策域的递归逆滤波器算法(NAR2R IF) ,基于高阶统计特性的最小

    熵算法等最为典型。

    (二)多通道二维图像盲复原

    多通道二维图像盲复原, 这类方法将数字通讯领域应用的一维多通道盲原分离算法扩展到二维情况并用于图像的盲恢复。这类算法中有两种代数方法, 一种是先辨识模糊函数, 再采用常规的恢复算法进行复原;另一种是直接对逆滤波器进行估计。此类算法的优点在于不需对初始图像进行估计, 也不存在稳定性和收敛性问题,对图像以及模糊函数的约束是松弛的,算法具有一般性。但是第1种算法要求采用复原算法具有收敛性;第2种算法对噪声敏感。

    (三)空间改变的图像盲复原方法

    在许多实际的应用中, 模糊往往是空间变化的,但由于处理工作的难度, 目前的研究较少,基本有相关转换恢复和直接法两类。

    相关转换恢复的基本思想是区域分割, 即将整幅图像分为若干局部区域, 然后假设在各个局部区域模糊是空间不变的, 利用空间不变的图像复原有关算法进行复原。这类方法都是基于窗口的模糊辨识技术, 图像的估计取决于窗口的大小, 由于模糊参数是连续变化的, 在范围较大时空间不变的假设是不成立的, 因而模糊的估计精度较差, 而且这种方法只能针对部分空间变化的模糊进行处理, 缺乏通用性; 其次在区域的边上存在振铃现象。

    直接法的基本思想是直接对图像进行处理。如采用简化的二维递推卡尔曼滤波器进行图像模型和模糊模型的直接转换方法, 其缺点是只能针对有限的模型, 而且模型数增加, 计算量会显着增大;采用共轭梯度迭代算法, 但只见到一个31×31 的文本图像处理的结果报道,对于大图像处理效果尚需进一步的研究;将空间变化图像系统建立成马尔苛夫随机模型,对复原过程,采用模拟退火算法进行最大后验估计的方法,这种方法避免了图像的窗口化, 并能克服模糊参数不连续性造成的影响,但这种方法只能局限于将模糊过程建立成单参数的马尔苛夫随机模型的情况,而且计算量也较大。

    三、图像盲恢复的应用前景

    (1)现有算法的改进以及新的算法研究。现有各种算法还存在许多不足,有必要对算法进一步改进。如IBD算法中, 如何选择初始条件才能保证算法的收敛;如何选择算法终止条件才能保证恢复的质量; 如何选择滤波器中的噪声参数才能减少噪声的影响。又如NAR2R IF算法中, 如何进一步解决噪声敏感问题,支持域的确定以及如何将算法扩展到非均匀背景的情况等。提出新的算法更好地解决图像盲复原问题, 也是今后研究的热点。

    (2)基于非线性退化模型的图像盲复原算法。在实际应用中,严格来讲,所有的退化模型都是非线性的。对模型采用线性化的方法进行近似处理,虽然算法简单,但对非线性严重的情况处理效果并不理想。基于多项式以及神经网络两种参数模型处理非线性信号盲分离算法,算法扩展到二维图像情况需要进一步研究。研究基于非线性退化模型的图像盲复原算法也是下一步研究方向之一。

    (3)去噪处理算法研究。加性噪声的存在,使图像的复原问题变成了一个病态问题,而且由于一般假设只知道噪声的统计特性,因此要从退化图像中完全去除噪声是不可能的。另外,由于噪声的存在,恢复的效果并不理想,结合降噪的图像盲恢复的算法研究有很现实的意义,这方面也进行了部分工作。为克服噪声的影响,一般采用先进行降噪,后进行复原;二是将降噪和复原同时进行这两类方法。目前,大多数算法中将噪声描述成高斯噪声进行研究, 在实际应用时有较大局限性。对于非高斯情况的研究采用基于噪声的高阶统计特性的去噪算法研究也是很重要的研究方向,也可采用其他类型的方法进行降噪,利用自组织映射的非线性独立组件分析方法进行图像降噪处理算法。

    (4)实时处理算法。算法的的复杂性是制约算法应用的一个重要方面。可采用正则化的离散周期Radon变换的方法将二维的卷积转化为一维进行处理,以提高算法的速度;也可采用神经网络的实时处理算法。算法的实时性是算法实际应用的先决条件。

    (5)应用研究。算法的应用是推动算法研究的动力。虽然图像盲复原算法在天文学、医学、遥感等方面获得了较大的应用, 但将算法应用到一般的工业图像实时检测、机器视觉、网络环境下的图像传输恢复、刑事侦破等方面还有大量的工作要做。

    参考文献:

    [1] 薛梅,杨绿溪.用于含噪二值图像的改进NAS-RIF图像盲复原算[J].数据处理.2006.17.(2).

篇5

关键词:大学计算机基础;教学改革;人工智能;智慧课堂

云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2020年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。

1传统教学的缺陷

⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。

2新人工智能环境下对计算机基础课程改革的具体方案

2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。

3结束语