分类讨论的数学思想方法范文
时间:2024-03-22 18:03:30
导语:如何才能写好一篇分类讨论的数学思想方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1. 结合物体、图形的分类教学进行渗透
在图形学习的章节里,分类思想是渗透得最明显的。如在四年级下册《三角形》的分类学习中,三角形即可按边分类,又可按角分类,就充分反映了分类标准不同,则会出现分类的结果不一样的状况。那么在教学时,就要问学生:你为什么要这么分?你比较了物体图形的哪些特征?分类的标准是什么?
2. 结合概念的学习进行渗透
有位老师在教四年级上册《垂直与平行》时,通过一些数学活动的安排,渗透了分类讨论的数学思想:先出示同一平面内的各种不同位置关系的几组直线,然后引导学生根据“相交与否”作为分类标准,得到两大类后,整理其中一类中各组直线的共同特征,从而引出平行线的概念;在垂线的概念获得活动中,又以“相交是否成直角”为标准,对另一类中各组直线进行分类,进而概括出垂线的概念。
3. 结合统计与概率教学进行渗透
如一年级上册《我们的校园》统计学生活动人数时,就需让学生明确,统计的前提是先对校园内同学们的活动类型进行分类,在此基础上才能统计人数。在二年级下册《统计》一节中,不管是统计同学们的体重还是马路上的车辆,都需先对相关数据或现象进进行合理的分类,再行讨论。
4. 结合《数学广角》教学进行渗透
四年级下册《数学广角》中“一共要种多少棵树?”的几道题,囊括了3种植树类型:两端都种、一端种一端不种、两端都不种。在教学中,教师可通过图例,帮助学生建立分类讨论的意识,依次分析出植树问题的3种类型,然后讨论出各类型的解题模式,最后综合得出解决此类问题的一套有效方法。
篇2
关键词:初中数学;“思想方法”;教学经验
一、初中数学“思想方法”的概念
想掌握好任何一门学科的知识,都应该遵循一定的思想方法。而到底什么是思想方法呢?具体地讲,它是人们在一定的世界观指导下所需要遵循的一些基本规则和程序。这些基本规则和程序是人们在一定的世界观指导下观察、体会、研究新事物和现象时建立的。简而言之,思想方法是指人们在认识客观世界中所采用的方法。
初中数学的教学思想和教学方法是分开的,它们之间至今还没有严格的界限。有人认为,数学教学思想是指对数学教学的一个基本认识,这种认识里包括对数学知识和数学方法的认识。而数学教学方法是指在数学教学中解决问题的一套基本办法和程序。所以说它们之间存在普遍联系也存在具体差别,我们不能一概而论。笔者认为,无论是初中数学教学的基本思想还是教学方法,都对新时代的数学教师教授数学有很大的帮助。它们之间的必然联系可以加深学生对数学教学的理解,数学教师应该有个人独特的教学思想和教学方法,这样才更有益于对初中数学的教学,从而提高学生的数学学习能力。
二、数学教学“思想方法”的内容
初中数学教学思想和教学方法包含的内容千罗万象,我们无法做到一一举例。但是可以从基本规律中研究两者具备的共同特点和内容。初中数学的教学思想和方法大致包括转化思想、分类讨论思想和数形结合思想这几种关于思想方法的内容。其中,转化思想我们能够直接从字面上的意思去理解。“转化”,顾名思义是指把复杂的事物简单化,化烦琐为容易。它需要经过一系列复杂的程序才得以转化,比如在初中数学的教学中,数学教师的任务就是把复杂的数学问题简单化,以一种通俗易懂的形式传授给学生,让他们能明白这道数学题的解题思路与做法。
分类思想在初中数学教学中应用非常广泛。实际上,在初中数学中应用最多的就是分类讨论思想。用分类讨论思想解决问题的一般步骤是首先明确需讨论的对象及讨论对象的范围;其次正确选择分类的标准,进行合理分类;再次根据分类讨论解决问题;最后归纳并作出结论。数学教师在教学中应注重对学生分类思想的培养,及时纠正学生所犯的思维错误。因为数学中的分类讨论思想是一种比^重要的数学思想,通过加强数学分类讨论思想的训练,有利于提高学生对学习数学的兴趣,培养学生思维的条理性、缜密性、科学性,这种优良的思维品质对学生的未来必将产生深刻和久远的影响。
初中数学教师在制订教学目的、采用教学方法时,应有意识地突出分类讨论思想,并在具体教学过程中努力体现。根据初中学生的特点,教学中要遵照循序渐进的原则并采用灵活多变的教学手段来实施分类讨论方法的教学。
三、如何加强初中数学教学 “思想方法”的运用
首先,教师应该树立数学思想方法教学的核心观念,并准确、清晰地把握好初中数学教材中的数学思想方法。同时,要深入地研究初中数学教材大纲,把其中隐含的数学思想方法找出来,并加以运用。其次,在课堂教学过程中,适时渗透与数学有关的思想方法。数学的思想方法并不等同于知识,但又蕴含于知识之中。因此,教师要想方设法把思想渗透在教学内容里,让学生有所体会。例如,一些概念的形成过程、命题、定理、公式法则的推导过程等,都隐藏着向学生渗透数学思想方法的好机会。最后,通过小结的形式归纳概括出其中的数学思想方法,将不同的小知识点联系在一起,总结出应用的某种数学思想,这是学生掌握数学思想方法的一种有效途径。
综上所述,我们了解了初中数学教学思想与方法中包含的很多内容。《九年义务教育全日制初级中学数学教学大纲(试用修订版)》中指出,初中数学课的教学,不仅要加强数学课本的教学,还要大大加强数学思想方法的教学。解题过程中,解题的思路过程就是教师们教学思想方法的深入渗透,只要循序渐进地加强渗透,许多数学教学问题就可以迎刃而解。
参考文献:
[1]陈 燕.数学思想方法的渗透和培养[J].数学学习与研究,2016(22).
篇3
中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。数学思想方法不仅会对数学思维活动、数学审美活动起着指导作用,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。
可见,良好的数学知识结构不完全取决于教材内容和知识点的数量,更应注重数学知识的联系、结合和组织方式,把握结构的层次和程序展开后所表现的内在规律。数学思想方法能够优化这种组织方式,使各部分数学知识融合成有机的整体,发挥其重要的指导作用。因此,新课标明确提出开展数学思想方法的教学要求,旨在引导学生去把握数学知识结构的核心和灵魂,其重要意义显而易见。
二、对初中数学思想方法教学的几点思考
1、结合初中数学大纲,就初中数学教材进行数学思想方法的教学研究
首先,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法—提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。
2、以数学知识为载体,将数学思想方法有机地渗透入教学计划和教案内容之中
教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。
篇4
分类是自然科学中的基本逻辑思想方法之一,各门科学都要运用分类思想(如语文分为文学、语言和写作,外语分为听、说、读、写和译,物理学分为力学、运动学、热学、声学、电学、光学和原子核物理学,化学分为无机化学和有机化学,生物学分为植物学、动物学和人类学等),只有将分类思想应用于空间形式和数量关系时,才能成为数学思想。“数学中的分类思想是按照数学对象的共同点和差异点,将数学对象区分为不同种类的思想方法。分类以比较为基础,通过比较识别出数学对象之间的异同点,然后,根据共同点将数学对象归并为较大的类,根据差异点将数学对象划分为较小的类,从而将数学对象区分为具有一定从属关系的等级系统。”本研究所说的分类讨论思想方法是指数学思想方法中的分类讨论思想方法。
在人类认识史上,分类一直扮演着重要的角色,可以说,自有人类的产生,就有了分类活动,分类活动贯穿于人类的一切生产、生活等社会实践活动中。中西各族人民都有自己悠久的分类活动史,闪烁着丰富的分类思想的光辉。从分类思想的历史考察中可以发现,中西在公元前就有了分类思想,并逐步得到发展。
在数学的发展历史中,分类思想方法是被人们广泛使用来研究数学问题,解决各种各样问题的重要方法,也是一种最基本、较高层次的思想方法。古今中外的名家名著对此有过精辟的研究和阐述:如《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年(公元前一世纪)。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。每道题都以“有问、有答、有术”的形式给出,其中“术”就是解题方法,有的一题一术,有的多题一术。在代数方面,《方程》一章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。公元656年由太史令李淳风等人编纂注释《算经十书》(包括《周髀算经》《九章算术》《海岛算经》《孙子算经》《张丘建算经》《夏侯阳算经》《缉古算经》《五曹算经》《五经算术》和《缀术》),作为算学馆学生用的课本。其中也包含着大量分类讨论思想方法的问题。
在西方,公元前五世纪柏拉图在分类问题上提出了二分法思想。亚里士多德在批判二分法的基础上提出自己的见解,全面地在各个领域进行分类。而柏拉图的另一个学生大数学家欧几里得是与他的巨著――《几何原本》一起名垂千古。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里得最有价值的一部著作。在《几何原本》里,欧几里得系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里得把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系――几何学。而这本书,也就成了欧式几何的奠基之作。其中组成《几何原本》的概念结构方法就是分类讨论思想方法,在书中点是最小元素,点的延伸形成线,线的延伸形成面,面的延伸形成体。点只有位置,线只有长度,面只有长度和宽度,体有长度、宽度和高度。点、线、面、体,是几何的最大分类。其中,点、线、面、体四大元素各自又可以在内部分类,当然点除外。分类出来的小元素各自又可以在内部继续分类,直至不可以再分类。也就是说,在纵向应该力求尽可能穷尽的分类。在横向也应该力求尽可能穷尽的分类。这就像一个国家,首先分类为省,各省又分类为市,各市又分类为区、县,区又分类为办事处以及街道、县又分类为乡镇以及村落。《几何原本》就是这样力求完美的逻辑体系。两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
经过人类几千年的发展,数学内容的分支也越来越多,从广义上来看,数学有纵向和横向两种分类方法。
从纵向划分:
初等数学和古代数学;变量数学;近代数学;现代数学。
从横向划分:
基础数学;应用数学;计算数学;概率统计;运筹学与控制论。
数学分类现象有现象分类本质分类之别。所谓现象分类,是指仅仅根据数学对象的外部特征或外部联系进行分类。这种分类往往把本质上相同的对象分为不同的类别,而把本质上不相同的对象归为同一类别。例如:自然数集可以根据能否被2整除的标准分类奇数和偶数。为了更好地认识自然数间的内在联系,则需要按自然数所含质因数的个数进行分类
自然数质数(质因数个数为1)1(质因数个数为0)合数(质因数个数大于1)
在这个更深刻的本质分类的基础上,通过对质数、合数的进一步研究,就可得到算术基本定理。
在现代数学教育研究中主要有解恩泽,徐本顺、张奠宙、朱成杰、朱水根、王延文、王林全、李玉琪、彭光明等人对分类思想方法作了一些研究,这些研究成果主要有:
1989年解恩泽,徐本顺 《数学思想方法》(编著)
1991年张奠宙,朱成杰 《现代数学思想讲话》(编著)
1998年朱水根,王延文 《中学数学教学导论》(专著)
1999年王林全,林国泰 《中学数学思想方法概论》(编著)
2000年李玉琪《中学数学教学与实践研究》(编著)
2008年彭光明《数学教学方法思考与探究》(专著)
在这些编著或专著中,分类讨论思想是作为研究的一小部分被提及,作为数学思想的一个部分,研究者一般都是先介绍分类讨论的概念、原则、分类的解题步骤,最后举例分类讨论的应用。对分类讨论思想方法在中学数学教学中的地位,分析分类讨论思想方法教学对学生的培养功能及探索分类讨论思想方法的教学途径,这些书本都没有提到,本研究将会在这些方面加强,这也是论文的创新之处。
由此可见,分类讨论思想方法作为数学中的思想方法一直受到数学家或数学教育者的关注。在数学问题的解决,数学的发展过程中分类讨论思想方法有着极其重要的作用。
参考文献:
篇5
关键词:高中数学;解题教学;数学思想
中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2014)07-0138
数学思想是数学理论和内容经过人脑思维活动而产生并存在于人脑中的一种意识,它是对数学事实与理论内容的最根本认识;数学方法是数学思想在研究数学问题过程中的具体表现形式,实际上它们的本质是相同的,差别只是数学方法站在解决问题的角度看问题,而数学思想是站在问题最本源的角度去思索问题。通常统称为“数学思想方法”。常见的数学思想有:函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想等。
一、函数与方程思想
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学特有的语言将问题中的条件转化为数学模型(方程、不等式、或方程与数学思想方法不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解;有时,还能实现函数与方程的互相转化,达到解决问题的目的。例如,数列是特殊的函数,函数有解析法、列表法、图像法三种表示方法,相应的数列就有通项公式、递推公式、列表、图像等表示方法,用函数的单调性、最值等性质解决数列问题非常快捷。
二、转化与化归思想
转化与化归思想是把生疏问题转化为熟悉问题、复杂问题转化为简单问题、抽象问题转化为具体问题的一种重要的思想方法。通过不断的转化,学生可以把未知解的复杂问题转化为在已知范围内可解的简单问题。我们教师要不断培养和训练学生自觉的转化与化归意识,这将有利于训练学生思维能力,使学生更聪明、更灵活、更敏捷;也有助于我们提高教学水平。
三、分类讨论思想
在解答某些数学问题时,有时会遇到多种情况,对此,我们必须对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。以下是来自教材的命题:
例1. 若loga3/40且a≠1),求实数a的取值范围。
解:因为loga3/4
当a>1时, 函数y= logax在其定义域上递增,则有a>3/4,故有a>1 成立。
当0
综上所述,a>1或0
例2. 已知集合A={x|x2=1},B={x|ax=1}若BA,求实数a的值。
解:显然集合A={-1,1},对于集合B={x|ax=1},
当a=0时,集合B=满足BA,即a=0;
当a≠0时,集合B={},而BA,则,=1或=-1,
得a=-1,或a=1,
综上所述,实数a的值为-1,0,或1。
在教学中,教师要和学生一起分析总结引起分类讨论的原因主要有以下几个方面:
①题目所涉及的数学概念是分类进行定义的。如指数函数、对数函数的定义中对底数a的要求是a>0且a≠1。这种分类讨论题型可以称为概念型。如例1。
②题目中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③解含有参数的题目时,学生必须根据参数的不同取值范围进行讨论。例如解不等式mx>2时分m>0、m=0和m
④某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都需要通过分类讨论,以保证其完整性与确定性。
在解答分类讨论问题时,我们要遵循的原则是:分类的对象是确定的;标准是统一的;不重不漏的科学划分;分清主次;不越级讨论;其中最重要的一条是“不重不漏”。我们的基本步骤是:首先,要确定讨论对象及所讨论对象的全体范围;其次,确定分类标准并进行正确合理的分类,即标准统一、不漏不重;再次,对所分类别逐类进行讨论,获取阶段性结果;最后,归纳总结得出结论。
四、数形结合思想
数形结合思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动和直观性来阐明数之间的联系,即以形作为手段、数为目的,比如运用函数的图像来直观地说明函数的性质;二是借助于数的精确性和严密性来阐明形的某些属性,即以数作为手段、形作为目的,如解析几何中运用椭圆、双曲线、抛物线的方程来精确地阐明这三种曲线的几何性质。
例3. 方程sin((πX)/2)=logaX,(a>0且a≠1),恰有3个不相等实数根,则a的取值范围()
A. 空集B. (5,9) C. (1/7,1/3)D. (5,9)∪(1/7,1/3)
解:因为方程sin((πX)/2)=logaX,(a>0且a≠1),恰有3个不相等实数根,所以函数y=sin((πX)/2)和函数y=logaX的图像有3个交点。
做出函数y=sin((πX)/2)在区间[0,10]的图像,(周期为4)
当a>1时,作出函数y=logaX的图像,(单调递增)因为有3个交点,
所以loga51,
解得5
当0
所以-1
解得1/7a
综上所述,a的取值范围是(5,9)∪(1/7,1/3)
师生共同观察黑板上画的图象,很明显地能看出a的取值范围。
师:同学们反思一下自己的解题过程,用两句话概括出解决本题的关键是什么?
生:利用函数与方程思想方法解题,关键是找到函数。
生:利用数形结合思想方法,找到图像的交点。
师:很好。本题运用函数思想的前提是把求方程的实根转化为求两个函数的图像交点。此题,我们可以体会到函数思想和数形结合思想以及转化与化归的思想。希望在以后的解题中,同学们能敞开思路,实现数学思想方法在解题中的应用。
华罗庚先生说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”数形结合的思想,巧妙地将抽象的数学语言与直观的图像结合起来,是数的问题与图形之间相互转化的桥梁。
篇6
关键词:初中数学;思想方法;思维策略
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2016)12-260-01
一、初中数学思想方法教学的重要性
传统的数学教学中,过分注重知识的传授,往往忽视知识的形成过程中的数学思想方法的渗透,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者,特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备的数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴含的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。事实上,单纯的知识教学,只显见于学生知识的积累,是会遗忘甚至于消失的,而方法的掌握,思想的形成,才能使学生受益终生,正所谓“授之以鱼,不如授之以渔”。不管他们将来从事什么职业和工作,数学思想方法,作为一种解决问题的思维策略,都将随时随地有意无意地发挥作用。
二、初中数学思想方法的主要内容
初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。
1、转化的思想方法。转化的思想方法就是人们将需要解决的问题,通过某种转化手段,归结为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法。如化繁为简、化难为易,化未知为已知等,它是解决问题的一种最基本的思想方法。具体说来,代数式中加法与减法的转化,乘法与除法的转化,几何中添加辅助线等等,都体现出转化的思想方法。
2、数形结合的思想方法。数学是研究现实世界空间形式和数量关系的科学,因而研究总是围绕着数与形进行的。“数”就是代数式、函数、不等式等表达式,“形”就是图形、图象、曲线等。数形结合就是抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。数学家华罗庚曾说:“数无形时不直观,形无数时难入微。”数形结合是研究数学问题的重要思想方法。初中数学中,通过数轴,将数与点对应,通过直角坐标系,将函数与图象对应,用数形结合的思想方法学习了相反数的概念、绝对值的概念,有理数大小比较的法则,研究了函数的性质等,通过形象思维过渡到抽象思维,大大减轻了学习的难度。
3、分类讨论的思想方法。分类讨论的思想方法就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。初中数学从整体上看分为代数、几何两大类,采用不同方法进行研究,就是分类思想的体现。具体来说,实数的分类,方程的分类、三角形的分类,函数的分类等,都是分类思想的具体体。
4、函数与方程的思想方法。函数思想是客观世界中事物运动变化,相互联系,相互制约的普遍规律在数学中的反映,它的本质是变量之间的对应。用变化的观点,把所研究的数量关系,用函数的形式表示出来,然后用函数的性质进行研究,使问题获解。如果函数的形式是用解析式的方法表示出来的,那么就可以把函数解析式看作方程,通过解方程和对方程的研究,使问题得到解决,这就是方程的思想。在初中数学教材中,其它的思想方法都是隐藏在数学知识里,没有单独提出来,而函数与方程的思想方法,其内容和名称形式一致,单独作为章节系统学习。
三、初中数学思想方法的教学规律
数学思想方法蕴含于数学知识之中,又相对超脱于某一个具体的数学知识之外。数学思想方法的教学比单纯的数学知识教学困难得多。因为数学思想方法是具体数学知识的本质和内在联系的反映,具有一定的抽象性和概括性,它强调的是一种意识和观念。对于初中学生来说,这个年龄段正是由形象思维向抽象的逻辑思维过渡的阶段,虽然初步具有了简单的逻辑思维能力,但是还缺乏主动性和能动性。因此,在数学教学活动中,必须注意数学思想方法的教学规律。本人通过多年教学,有以下几方面的心得体会。
1、深入钻研教材,将数学思想方法化隐为显。首先,在备课时,要从数学思想方法的高度深入钻研教材,数学思想方法既是数学教学设计的核心,同时又是数学教材组织的基础和起点。通过对概念、公式、定理的研究,对例题、练习的探讨,挖掘有关的数学思想方法,了然于胸,将它们由深层次的潜形态转变为显形态,由对它们的朦胧感受转变为明晰、理解和掌握。一方面要明确在每一个具体的数学知识的教学中可以进行哪些思想方法的教学;另一方面,又要明确每一个数学思想方法,可以在哪些知识点中进行渗透。只有在这种前提下,才能加强针对性,有意识地引导学生领悟数学思想方法。
篇7
其中分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同种类的思想方法。分类是以比较为基础的,它能揭示数学对象之间的内在规律,对培养学生思维的条理性、缜密性,提高学生全面、周密地分析问题和解决问题的素质和能力起到十分关键的作用,故“分类讨论”思想在初中数学中占有重要地位。但初中学生常常分类讨论的意识不强,不知道哪些问题需要分类及如何合理的分类。这就需要教师在教学中结合教材,创设情景,予于强化,需要区分种种情况进行讨论的问题,启发诱导,揭示分类讨论思想的本质,从而培养学生自觉应用分类讨论的意识。
分类讨论一般应遵循以下的原则:
1.对问题中的某些条件进行分类,要遵循同一标准。
2.分类要完整:不重复,不遗漏。
3.有时分类并不是一次完成,还须进行逐级分类,对于不同级的分类,其分类标准不一定统一。
而在初中数学的教学过程中我们常在以下情况中应用分类讨论思想:
一、在概念教学中渗透分类讨论意识和原则
分类讨论是重要的数学思想方法,由于数学中的许多概念的定义是分类给出的或是不少概念都有一定的限制,如实数的分类:
例:比较a与-a的大小。
分析:易得a〉-a 的错误,导致错误在于没有注意到数a可表示不同类型的数。应分a〉0,a= 0,a
又例:在学习绝对值的定义时,要有意识地启发学生从有理数分类进行认知的迁移,帮助学生概括出a>0,a=0,a
二、在法则、定理、公式导出过程中体现分类讨论思想
有些数学性质、公式或定理在不同条件下有不同的结论,或是结论在一定限制条件下才成立,这就要在教学的过程中逐步体现分类讨论思想。
例:方程kx2-2x+5=0有几个实数根?
学生往往不注意k对方程性质的影响,讨论或讲评中,使学生明确系数k决定方程的次数,从而分k=0,k≠0两类讨论。当k≠0时,再分>0,=0,
例:解关于x的不等式:ax+3>x+a
分析通过移项不等式化为(a-1)x>a-3的形式,然后根据不等式的性质可分为a-1>0,a-1=0,和a-1
当a-1>0,即a>1时,不等式的解是x>a-3>/a-1;
当a-1=0,即a=1时,不等式的左边=0,此时不等式不成立;
当a-1
又例:二次函数y=kx+b的图像过哪几个象限?
这道题势必要考虑图像的变化趋势,又要考虑图像与y轴交点的位置。要对字母k和b进行分类讨论。怎么分,则应由学生讨论,互相补充,互相评价,逐步完善。
三、在几何中,常常由于图形的的形状、位置的不同而要进行分类讨论
例如:若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。
简析:已知条件并没有指明哪一部分是9cm,哪一部分是12cm,因此,应有两种情形。若设这个等腰三角形的腰长是xcm,底边长为ycm,可得或解得或即当腰长是6cm时,底边长是9cm;当腰长是8cm时,底边长是5cm。
又例如:已知半径为a的两圆外切,半径为2a且和这两圆都相切的圆共有多少个?
篇8
函数与方程的思想方法。函数思想的实质是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系。很明显,只有在对问题的观察、分析、判断等一系列的思想过程中,具备有标新立异、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的。
数形结合的思想方法。数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,使问题化难为易,化抽象为具体。
分类讨论的思想方法。分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数,到曲线方程等,无不包含着参数讨论的思想。
等价转化的思想。等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题是一种重要数学思想方法,转化包括等价转化和非等价转化。转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。
2.数学思想方法教学的主要途径。
篇9
关键词:数学;思想方法;高中;应用
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)08-264-01
数学思想、数学方法很多,这里仅就高中教材中和考试题中常见的四种:函数思想、数形结合思想、分类讨论思想、转化化归思想作些探讨,让学生从中体会四种基本数学思想方法在解题中的重要作用。
函数思想就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决的思想。
方程思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型―方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想。
1、函数与方程的思想
函数与方程的思想是高中数学中最基本也是最重要的思想方法之一,在高考中有非常重要的地位。数学中很多函数的问题需要用方程的知识和方法来支持,很多方程的问题需要用函数的知识和方法去解决,即函数与方程可相互转化。
下面来看这样一道例题:
例1:和 的定义域都是非零实数集,是偶函数,是奇函数,且求的取值范围。
分析:已知两个函数的和,求商,好象从未见过。我们不能只看符号,不注重文字,其实这一题的关键在于“是偶函数,是奇函数”,于是就有,又有再把换成。这时不能再把 当函数解析式来看了,知道了+,-就可以把它们当成两个未知数,只需去解一个二元一次方程组问题就解决了。
由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考要考察的重点,它在解析几何、立体几何、数列等知识中都有广泛应用。
2、数形结合的思想
数形结合思想就是充分运用数的严谨和形的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象思维和形象思维结合,通过图形的描述,代数论证来研究和解决数学问题的一种数学思想方法。
数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。
看一道数形结合的例题:
例2:已知关于x 的方程=px,有4个不同的实根,求实数p的取值范围。
分析:设y = = 与y=px这两个函数在同一坐标系内, 画出这两个函数的图像
(1)直线y= px与y=-(x-4x+3),x[1,3]相切时原方程有3个根。
(2)y=px与x轴重合时, 原方程有两个解, 故满足条件的直线y=px应介于这两者之间,由:得x+(p -4)x+3=0,再由=0得,p=4±2,当p=4+2时, x=-[1,3]舍去, 所以实数p的取值范围是0
在数学中只要我们注意运用数形结合思想,既可增加同学们对数学的兴趣,同时又能提高对数学问题的理解力和解题能力,也是提高数学素质不可缺少的因素之一。
3、转化与化归的思想
转化与化归思想是通过某种转化过程,把待解决的问题或未知解的问题转化到已有知识范围内可解的问题或者容易解决的问题的一种重要思想方法。通过不断转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式化、简单的问题。
转化与化归的思想贯穿于整个数学中,掌握这一思想方法,学会用转化与化归的思想方法分析问题、处理问题有着十分重要意义
看一个简单的例子:
例3:求函数的最值
分析:若平方、移项等,你会发现这些尝试都是徒劳无功的。我们注意到:可以把换成什么?有了,也是在上的!
从某种意义上讲,解答每一道题都是通过探索而找到解题思路,通过转化达到解题目的。转化时,一般是把一个领域内的问题转化为另一个领域内的问题;把实际问题转化为数学模型;把陌生繁复的问题转化为熟悉,简单的问题等。
4、分类讨论的思想
所谓分类讨论,就是在研究和解决数学问题时,当问题所给对象不能进行统一研究,我们就需要根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后逐类进行研究和解决,最后综合各类结果得到整个问题的解决,这一思想方法,我们称之为“分类讨论的思想”。
分类讨论时,必须遵循两个原则:(1)对存在总域的各个子域分类做到“既不重复,又不遗漏”;(2)每次分类必须按同一标准进行。数学分类思想的关键在于正确选择分类标准,要找到适当的分类标准,就必须运用辨证的逻辑思维,就必须对具体事物具体分析,在表面上极为相似的事物之间看出它们本质上的差异点,在表面上差异极大的事物之间看出它们本质上的相同点。这样才能揭示数学对象之间的内在规律,对数学对象进行有意义的分类。
分类讨论难免会有点繁琐,看似一道题,却相当于几道题的工作量。但当目标不明确时,分类讨论就是开门钥匙了!
篇10
关键词 初中数学教育;数学思想;数学教育;教育方法
初中阶段的教育尤其是数学教育的重点和难点在于数学思想方法和数学思维方式的培养,良好的数学思想和数学思维对于初中阶段数学的学习可以说是至关重要的。随着社会的发展,初中阶段的教育也越来越受到广大家长以及教师的重视,同时初中数学的教学目标、教学内容、教学方法等一系列的问题也都在随之不断的变革。在这样的社会大背景之下,我们更有责任和义务去深入的研究初中数学常用思想方法,不断的深思其重要性,从而为我们社会的初中数学教育贡献自己的一份力量。
一、数学思想方法和数学思维
数学思想和方法,其实就是我们平时所说的数学学科本身的一些客观存在的“公式、定理、原理、数学符号”等,这些都是我们用来解决实际数学问题的最基本的工具。而数学思维则更多的是一种主观性的存在,是一种思考的方式的,当我们看到眼前的事物时,能将看到的现象,用数字、符号等数学语言描述出来,然后运用理性的思考方式找出各个事物之间存在的关系和规律,最终使问题得到解决。
虽然在数学教学理论上各种数学思想方式有着各自明确的定义和概念,但是在实际的初中数学教学中,教师的教学中一般是各种数学思想方法和思维方式相互的融合贯通,不再去刻意的追求某一种具体的数学思维或是数学思想方法,从而加强了学生在解决实际数学问题时的各种综合能力,使得学生能够独立的运用已经掌握的各种数学思想方法来看待问题,用独特的数学思维去解构数学问题,全面增强解决问题的实际能力。笔者以为,这也是初中数学教育的本质所在。
二、常用数学思想方法的研究
就我国现阶段初中数学教育来说,在当下的初中数学教学中采用最多的数学思想方法主要有:数形结合的思想方法、分类讨论的思想方法、化归思想方法、整体思考的思想方法等等。这几种数学思想方法也是初中数学教学中运用最多的,因此我们有必要对其进行深入的研究。
1.数形结合的思想方法
所谓的“数形结合”的思想方法就是在解决一些数学问题时,对待用文字数学语言描述的数学问题,我们可以用图形语言将它翻译过来。由此一个“数学问题”在一定程度上就变成了一个“几何问题”,从而完成了由抽象的思维方式到直观可视的思维方式的转变,在相当的程度上减小了解决数学问题的难度。对于初中阶段抽象思维还不是很完善的学生来说,“数形结合”的思想方法应当是最好的解题方法。
“数形结合”的思想方法中最常用的数学符号语言其中有数轴、平面直角坐标系等。“数形结合”思想方法就是数字和图形相结合的解题方式,它同时包含了抽象数学数据和直观的图形,成功的完成了抽象思维向形象思维的过渡转化,减小了解题的难度。
在解决实际的数学题目时,学生应该注意数量与图形的转化,在看待数字的同时在图像上找到与之相称的图像信息,在分析具体的数学图形时要做到见形思数,数形结合,最终完成问题的解答。
2.分类讨论的思想方法
分类讨论的思想方法也是初中数学教学中比较常用的一种思想方法,主要在有一定解题数量的基础之上,对遇到的数学题目进行归类、分析、总结,从而的出一套能够运用在一系列相同或者相似的数学问题之上的解题理论方法,减少分析已有问题的思考量。
分类讨论思想方法中的分类方式不是随意分类的,而是具有一定严格的分类原则的:被分类问题的标准时统一一致的,被分类问题的解题原理是相同或是相近的,被分类题目不能重复但是也不能遗漏。正确的分类是分类讨论思想方法的重点所在,因此在实际教学中,在必要的时候,教师应该进行适当的引导以保证教学方向的正确。
分类讨论思想方法的一般过程是,找到明确的数学问题个体,由该数学问题个体找到能够涵括此类问题的问题总体,完成问题的分类,在此基础之上,深入的研究解决此类问题共同的理论依据,总结出解决此类问题的实际方法,推广运用。
3.化归思想方法
化归思想方法的就是用已有的数学思想方法和数学技能把全新的数学问题转化为已经熟悉的数学问题的过程。其实这个过程就是一种知识的解构过程,把全新的数学问题“化成”几部分,然后运用熟知的数学思想方法重新组合、重新思考这个问题,完成看由全新到熟知的转化。
化归思想方法也是一种“由繁化简”的过程,例如在方程式问题方面,运用化归思想方法就能完成高次方程到低次方程的转化,多元方程向二次方程甚至是一元方程等转化。当完成了从复杂到简单的转化之后,数学问题就变的简单明了,学生就能很好的处理好初中阶段相对复杂相对困难题目的解答,对于学生数学能力的提升有很大的帮助。
4.整体思考的思想方法
古诗有“不知庐山真面目,只缘身在此山中”,告诫我们看待问题是不能局限于一个点或者是一个面,应该用一个整体的角度全面的去看待问题,只有这样才不会迷惑,不会陷于其中。
同样在解决数学问题时,我们应该汲取古人的经验,全面的看待问题。在实际教学中,经常出现学生因看不懂题目的一个方面,死钻牛角尖,最终无法完成问题解答的情况。每每遇到这种情况,我总是感慨,当我们在教学中不断的给学生灌输各种解题技巧各种数学思想方法的时候,我们忘记了告诉学生这样去思考,怎么全面的去看待问题。
三、总结
通过对初中阶段数学教育中常用的集中数学思想方法的介绍和深入的研究,我们对各种数学思想方法有了更加深入的了解和认识。在明了各种数学思想方法的基础之上,进一步明确了各种数学思想方法的作用方式,从宏观上更加深入的认识到各种数学思想方法在初中阶段数学教育中的重要性,各种数学思想方法相互作用,相互渗透,共同构成了数学教学的理论基础。
参考文献:
[1]高瑞.浅谈当前环境初中数学课堂中探究性学习探讨[J].中国教育.2010.(6)
[2]王薇.初中数学课堂中素质教育的思考[J].新疆农垦经济.2008.(11)