物理学论文范文

时间:2023-04-01 05:18:07

导语:如何才能写好一篇物理学论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

物理学论文

篇1

【论文摘要】针对目前医用物理学课堂教学中存在的教学内容不合理,学生学习兴趣不高等问题,应该改革教学内容,提高教师素质,优化教学方法,以实现教学目标,提高专业素质。

医用物理学是高等医药院校医学相关专业本科一年级的必修基础课。近两年我校教学改革,将临床医学专业的医用物理学课程的学时数改为36学时(理论学时),然而教学目的没有变。鉴于学时少、内容多的实际情况,怎样使医学生较好地掌握相关物理学基础理论知识的同时,科学素质也得到相应的提高,是我们迫切需要解决的问题。根据这两年本人从事医用物理学的教学实践,结合我校的实际,谈谈我的一些想法。

一、医用物理学课堂教学中存在的主要问题

1、学生的学习兴趣不高

第一,物理学是基础课,是解释生命现象的基础,却不能代替生命科学去解释生命现象,因此大部分学生认为物理学与跟自己的专业关系不大,学物理没什么用处。第二,主讲教师绝大多数不是医学专业出身,而是来自于物理学或物理教育专业,具有物理学和教育学的知识和能力,但从事医用物理教学还缺乏相关的医学知识。正是因为我们教师自身对医学知识了解不够,教学中不能很好地阐明物理学在医学中的应用,教学内容缺乏实用性,以及教学过程枯燥乏味,所以不能激发学生的学习兴趣[1]。第三,我校90%以上的学生在高中分科的时候,选读的科目是生物或化学,因此物理基础相对薄弱,很多学生认为物理学比较难学,存在畏难情绪。例如:我们学校临床医学(全科医学方向)05(2)班共63人,高中选物理的只有4人,占总人数的6%。

2、教学内容不合理

医用物理学以培养学生的逻辑思维能力和操作能力为目标,让学生通过学习物理学知识,理论联系实际去解释生命现象,学会发现问题、分析问题和解决问题,为以后的学习和研究做好铺垫。而我们的医用物理学教学中往往注重物理学体系的完整性,教学内容以讲授物理规律为主,仅仅是在每一章的最后一节加了一点物理学知识在医学上的应用,不能有效地把理论联系实际贯穿在整个授课过程[2]。另外,目前我校临床医学专业的医用物理学讲授的内容有:流体的运动、振动和波、电磁学、波动光学、几何光学、量子力学基础、原子核与放射性等部分,而与医学联系非常紧密的X射线、激光和核磁共振等,由于学时数不够没办法讲授。同时课时少、内容多的矛盾日益突出,物理教学以理论课为主,实验操作很少,使学生缺乏锻炼,仪器设备适应能力差,动手能力差。

3、考试内容不尽人意

考题内容多以理论分析、定量计算为主,偏重于物理理论的掌握和定量分析计算,纯物理味过浓,考试内容的应用性与医学相关性较差,较少涉及医学相关内容,不能体现医用物理学的特点[1]。

二、医用物理学课堂教学改革思路

1、改革教学内容

(1)精选教学内容。由于内容多,课时少的矛盾极为突出,根据基本保证物理学本身系统性,兼顾医学专业需要以及医学物理学的发展趋势的原则,选择物理学中与医学有密切联系的内容。建议将原来的量子力学基础部分换成x射线和激光。

(2)重视物理知识在实际生活特别是在医学中的应用。第一,主要介绍物理学与医学相结合的知识。例如,流体的运动部分侧重介绍与人体血液循环和呼吸过程有关的流体的运动;振动和波动部分主要介绍与人的声音和听觉有关的振动、波动和声;电磁学部分主要介绍对深入了解生物电磁现象和有效使用现代医学仪器而必备的电磁学知识;几何光学主要介绍人眼的光学结构,还有激光、X射线以及核医学物理基础等等。在教学过程中合理地引入临床医学问题,有助于综合应用物理学现象和物理规律,有助于学生理论联系实际,提高其分析问题、解决问题的能力,有助于活跃课堂气氛,提高学生的学习兴趣。第二,教学中尽量避免纯数学的推导和计算,增加与医学相关内容的讲授时间。由于高等数学与医用物理学都是大一上学期开课,医用物理学的有些内容需用到高等数学,但由于课时方面的原因,进度不能保证一致,如静电场中电场强度与电势的计算都需用到定积分,然而讲授静电场时,学生还没学到定积分。因此把高等数学中微积分的分析思路引入即可,不必定量计算,等到学生高等数学课跟上节拍后,自然就能解题。对重要的物理定律、公式、结论要讲清思路,讲明来源和应用思想,让学生了解、明白,会定性分析即可[1]。第三,注意物理新知识的延伸[3],在适当的地方介绍一些近代物理知识及与医学相关的物理学成就,也可将教学内容中的重点和临床医学中的实际结合在一起,开展专题讲座。例如:激光医学专题、医学影像专题、电疗、磁疗等。

2、提高教师素质

(1)强化教师队伍的建设。要构建具有“医用”特色的物理学体系,就必须找到物理与医学的最佳切入点及生长点,以推动医用物理学的改革。这就要求医用物理学教师必须有较完善的知识结构,既要有充分的物理学的知识,又要有解剖学、病理学以及生理学等方面的医学基础知识。然而,主讲教师的医学知识缺乏,不能很好的将理论联系在医学实际中。为此,物理学教师必须主动适应知识的动态需求,走出课堂、调查研究、更新知识。首先,在保证教学的前提下,通过进修、攻读学位等方式,进一步强化教师队伍的建设。其次,鼓励和组织教师跨学科听课,以增长相关学科的知识和拓宽知识面,促使教学内容从单一化向多样化、综合化发展。再次,积极开展科学研究,及时追踪学科发展新动向及新技术、新方法。在此基础上,进一步了解临床和科研对物理学的需求,架构起二者联系的“桥梁”。[4](2)加强集体备课。整合每一位教师的专长,定期召开研讨会,学重点,分解教学难点,争论教学热点,分析医学与物理在实践中的典型例子,充分发挥每个人的优势。

3、优化教学方法

(1)培养学生独立思考和自学能力。大一新生刚进入大学,思维方式还停留在中学的学习方法上。中学教师每节课讲的内容较少,课后做大量的习题,而大学课堂上每节课讲述的内容多,习题相对少,学生一时很难适应。因此我们在学期初应该在学习方法上对学生加以指导,培养学生独立思考和自学能力,帮助学生尽快地适应大学的学习方式[3]。例如:每次课结束的时候告诉学生下次课将要学习的内容,让学生提前预习,并把看不懂的地方记录下来,这样带着问题去听课,将会达到更好的效果。另外,也可以把下一节课要讲的内容分成几个主题,让学生分别去准备,要求学生带着问题去看书或者去图书馆查阅相关资料。学生通过预习书本上的内容和查阅相关文献把答案准备好,上课的时候由学生来讲,老师负责纠正错误并进行总结。这种方式不但充分调动了学生的积极性,还使讲课内容更加丰富。

(2)采用多种教学方法。例如:类比教学法:物理学中有些概念、规律较抽象,学生很难理解,我们可以拿学生熟悉的概念、规律与它们类比,这样学生就很容易接受。例如:我们讲到电势梯度的概念时,由于高等数学中与其相关矢量的知识没有学,因此有些学生不理解,如果我们拿学生很熟悉的速度的概念与电势梯度进行类比:速度是位移随时间的变化快慢,电势梯度实际上就是电势沿空间某个方向(这个方向就是等势面的法线方向)的变化快慢,这样学生就恍然大悟。归纳总结法:每学习完一节内容,我们应该做一个小结,学习完一章或者物理学一部分(例如:电磁学、波动光学、几何光学、原子核物理与放射性等)也要做总结,并且总结的时候要讲究方法,例如:对于相似的、容易混淆的物理概念或者规律,可以采用对比归纳法,这样更容易记忆,并且不容易混淆。例如:光的干涉和光的衍射都描述的是光的波动性,它们二者有什么相同点和不同点呢?我们可以从以下方面进行分析对比和归纳总结:干涉现象和衍射现象产生的条件;干涉现象和衍射现象的分类;不同类型的干涉条纹和衍射条纹中明暗条纹的条件;条纹间距;影响干涉条纹和衍射条纹的因素等等。我们可以采用列表或者框图的形式,这样更直观、更容易记忆。另外,对于有共性的物理量或者规律,可以放在一起来记忆。例如:静电场比较抽象,很多学生学习起来有些困难。例如我们可以把静电场力做功跟重力做功进行类比等等。当然,每个人都有适合自己的学习方法,如果教师做好所有的归纳总结,然后让学生被动地去接受,这样是不能达到较好的教学效果的。我们应该督促学生自己归纳总结,让所学的物理知识在他们的头脑中构建一个清晰的系统结构。

4、认真批改作业和讲评作业

每次布置的课后作业,都认真批改,作为平时成绩的一部分;指出学生的错误之处,并且把学生出错的地方都做好笔记,然后把各种不同的错误进行分析、归纳总结,做好相应的电子课件,该课件不仅展示作业的参考答案,而且还列举各种不同的错误做法,这样可以加深学生的印象,告诫他们以后不要出现此类错误。除此之外,对于学生频繁出错的地方,教师应该作自我总结,在以后的教学过程中要注意改进教学方法,着重强调这些地方。

5、改革考试内容

改变过去以计算题为主的做法,增加论述性、主观性、综合性、应用性(与医学相关的内容)和设计性的题目。这样可以帮助学生提高分析、比较、归纳、综合的能力和发现问题、解决问题的能力及语言、图形表达的能力。

总之,为了适应医学生物理基础培养的需要,落实素质教育目标,医用物理教学改革势在必行。医用物理学教学改革的宗旨应该是改过去枯燥、乏味、难学、缺乏实用性的教学模式为轻松愉快的教育形式。从总体培养目标出发,本着因材施教、因需施教的原则,改变过去物理教学中求精求深的教学方式,使教学方式多样化、内容实用化,加强与医学的有机结合,既保证医学生对物理基本概念的掌握,又保证大纲的完成。

【参考文献】

[1]艾拜都拉•肉孜,马远新,樊孝喜.医用物理学教学改革初探[J].新疆医科大学学报,2002,25(3):347-348.

[2]丰新胜.医用物理学教学探讨[J].山东医学高等专科学校学报,2007,29:275-276.

篇2

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

二、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

篇3

(一)消除心理障碍很多学生一看到物理问题,就感觉心烦意乱,摸不着头脑。有些题目文字一大堆,讲述的内容非常多,这样的问题不仅仅是在考验学生掌握知识的水平,还是在考验学生的心理素质。在面对这样的问题时,首先不要恐慌,更不要抗拒和逃避,我们应该勇敢面对,用平常心去对待,就把它当成一个简单的问题去看待,其实很多题目,当我们读完之后,会发现,其实并不是那么复杂,也许考察的正是最基础的那部分知识。在平时的教学训练中,教师就可以有计划、有目的性地选取一些这样的题目进行分析,帮助学生消除心理障碍。

(二)消除认识障碍高中物理就其学科特征而言,的确具有逻辑性、严谨性、系统性、理论性等特征,在教学中,我们需要向学生说明这些特征,让学生对物理有一个基础而全面的了解,但是,在教学过程中,我们一定要谨记,不能一味地灌输给学生这些知识,如果我们只是过分地强调这些,只会让学生对物理学习产生恐惧心理,让他们害怕学习物理,甚至出现放弃学习物理的念头。所以,我们在教学中,除了向学生阐述物理学科的特征外,更应该向学生介绍物理学科的趣味性和多面性,物理与我们的生活息息相关,在我们生活中,随处可见各种物理现象,这些现象,有些是有趣的,有些是神奇的,物理这个大世界中还包括太多有趣、神奇的东西,都需要我们一步步的去揭开,去解密,只有通过学习,我们才能了解到这些现象发生的本质,用这样的语言去为学生描述一个多彩物理大世界,消除他们的认识障碍。

二、高中物理教学设计的具体流程

(一)课题引入———创设问题情境在高中物理教学设计方案中,第一步就是要进行有效的课前导入,教学一个新课题,会带给学生一些新鲜感,激发学生的好奇心理,基于此,我们可以采用情境教学法,创设问题情境,以此来激发学生的求知欲,让学生带着问题去学习,去思考。课前导入是非常关键的教学环节,这一环节的成效,直接影响整堂课的教学质量。在课题引入这一环节中,教师要注意一点,必须要明确课堂教学的目标和任务,课前导入也是为了这一目标而服务的,所以课前导入所选择的案例、实验和问题,一定要与整堂课的教学基调相一致。

(二)概念形成———实验探索,创设发现情境物理定理的形成,就是一个从发现到解密,再从解密到实验的过程,也就是从理论到实际,从实际再到理论的一个循环过程。首先,发现问题,然后,对问题进行分析和思考,归纳出其内在的规律和本质,再将这一规律运用于实际,看是否符合,这样一个发现、分析的过程,就是一个概念形成的过程。一般来说,概念形成的途径和方法都是通过物理实验,实践才是检验真知的唯一标准,同样,实验也是获取真知的重要途径。在高中物理教学中,教师应该尽可能地开发一些探索性的实验,引导学生去做实验,探究其中的原理,让学生自己经历发现、分析的过程,这样可以大大加深学生的印象,并且会让学生得到一种前所未有的满足感和胜利感。

(三)难点化解———创设阶梯情境,获得规律针对高中物理中的重点难点,我们要着重进行分析和探究,教师在进行这些知识点的教学时,务必要充分结合学生的认知能力、学习能力以及所掌握的知识水平,然后再根据教学内容所需,选择出一种最适合的教学方式,来对这些难点一一破解,化解难点的教学手段很多,教师可以采用实验教学、多媒体教学等等教学手段。

篇4

关键词:物理学习兴趣培养

正文:

兴趣指人经常趋向于某种事物,力求认识参与某种活动,并且有积极情绪色彩的心理倾向。而学习兴趣是学生对学习活动或学习对象的一种力求认识的倾向。有兴趣的学习不仅能让学生在学习中全神贯注,积极思考,甚至达到废寝忘食的地步。没有兴趣的学习无异于一种苦役,忙于脱身。孔子云“知之者不如好知者;好之者不如乐之者。”学习兴趣是“最好的老师”,把直接兴趣与间接兴趣有机结合,是提高物理学习效果的重要条件。那么如何提高学生学习物理的兴趣,特别是整体基础较差的农村中学生对学习物理的兴趣?根据我多年的教学经验,认为以下几点方法对提高学生的物理学习兴趣能起到事半功倍的效果。

一,“开场白”

小学升初中是一个角色的转变,初一进入初二是知识又上了一个新台阶,他们将接触一门新的学科——物理。如何吸引学生,培养其学习物理的兴趣?某些老师认为树立威信最重要,因此在第一节师生见面的开场白上,多数老师都宣布了“铁”的课堂纪律,课堂上的要求,以及学习物理的重要性,和对将来中考的影响,也许这种方法保证了以后的课堂纪律,但这样必然对学生心理产生负面影响,也不利于学生发展,学生处处小心,担心自己出错或学不好物理影响将来中考,不利于发挥学生学习的积极性和主动性。更不能提高学生的学习兴趣。因此,第一堂课的第一印象非常重要,老师应该是和蔼可亲的,而不是又凶又恶的“老虎”。师生之间应建立“平等对话,共同发展”的关系,这样才能激发起学生学习物理的兴趣。在第一堂师生见面课的时候应从以下几个方面讲起。如作一些简要的自我介绍;简要的纪律说明,强调作业要求等;特别是介绍有关物理的一些趣事,例如筷子放入装有水的碗中看起来是弯折的,这是光的折射;“天狗吃月”是光在同一种均匀介质中沿直线传播;我国的万里长城以及埃及的金字塔的修建是用什么工具来运输此庞大的石头;死海不死的原因;第一次世界大战期间,一名法国飞行员在2000m高空飞行的时候,发现脸旁有一个小东西,以为是一只小昆虫,敏捷地把它抓了过来,令他吃惊的是抓到竟是一颗德国的子弹。为什么飞行员能抓住一颗子弹呢,你学了运动的相对性后,你也能像飞行员一样抓住一颗子弹的。军事上上使用的核潜艇,宇宙飞船,过山车等与物理有关的知识。上知天文,下晓地理。可以讲到下课铃响,让学生感到一游未尽。一节课下来,会让学生认识到老师知识渊博,同时对老师产生敬佩心理。自然会对物理学习产生兴趣,觉得物理非常有趣,一心的想要学物理。“万事开头难”,好的开头已成功了一半。

二,上课之门

在教学过程中不仅要教书,还要注意育人。而有些教师只注重了知识的传受,忽约了对学生的思想教育。利用物理课本上编写的一些科学家好学的精神对学生进行教育,既可以激发学生的学习兴趣,又达到教育学生的目的。如法国科学家安培好学的故事:有一次,他在路上边走边思考问题,猛一抬头,发现前面有一块黑板,不由喜上心头,马上掏出一支随身携带的粉笔,把脑袋中的问题计算起来,这块黑板向前移动了,安培一边跟着前移,一边计算着。渐渐的黑板移动更快了,这位专心的计算者也跟着跑起来。当他实在跑不动而停下来时,发现这并不是什么黑板,而是马车的后背。他望着车背上的公式渐渐远去,懊丧地叹了一口气“唉!可惜还没有算完。”当然课堂教学是完成教学内容的重要手段,教学“六认真”是必不可少的。除做好常规的教学外,针对整体基础水平差的学生,还应注意以下方面:

第一方面,上课前尽量了解学生情况,针对性备课,立足于课本,讲解尽量浅显易懂。课堂气氛要活跃,语言要风趣,幽默,提倡轻松愉快教学法。如以故事导学:用“猴子捞月”的故事引入平面镜成像;用“阿基米德鉴定黄冠”的故事引入密度的测量实验。课堂偶发事件的处理还要讲究艺术,注意随机应变,临变不慌,因势利导。有的老师遇类似情况就过于紧张,方寸大乱,不知如何是好,往往含糊其辞,敷衍搪塞,要么置之不理,消极回避:要么大动肝火,怒斥学生。转嫁危机,这些非但无助于问题的解决,反倒使问题复杂化,并影响老师在学生心目中的威信。如一位老师在连电路时,连好后灯泡不亮,下面的同学都在嘀咕,而这为老师没有慌,而是说前面我们已经学过电压表检验电路的故障,下面我们就用学过的知识来检查是那里出了问题。结果这位老师熟练的找出了毛病,同学们也佩服的笑了。由于老师的冷静而生智及时调整了教学过程,不仅没有影响教学进度,反而在学生头脑中巩固了用电压表检查电路故障这一技能。

第二方面,做好书上的演示实验,提高学生的兴趣。如人们拿着鸡蛋的时候都小心谨慎的,但如果将鸡蛋握在手中即使用较大的劲也压不坏。在演示的时,可以叫一位力气较大的同学来完成,让学生觉得实验的真实性。再解释其中的道理是因为在压力一定时,受力面积越大,压强越小的原因。再比如说,讲蒸发吸热时,让学生自己在手臂上涂上酒精亲身体验蒸发吸热的感觉,让他们身临其境。再发两支温度计给学生,将其中的一支涂上酒精,待一会后,对比两支温度计的示数,让学生自己得出结论,验证蒸发是一个吸热的过程。

第三方面,对于学生实验更应该认真对待,让学生亲自参与,亲自动手,培养学生的动手能力。如在上串并联电路时学生就很感兴趣。老师在演示的时候,就伸长脖子在观察,如果让他们自己去连接电路,则一定会有很高的兴趣,因此,我们在讲解后应该放手让学生自己去完成实验。如在研究凸透镜成像的特点时,一些老师是先总结了透镜成像的特点,再让学生去做实验,这样学生带着结论去完成实验不利于发挥学生的探究能力。在上这一内容时可以调整一下,先让学生去完成实验,再和老师一起总结。这样更利于发挥学生的探究能力,也充分调动了学生的兴趣。我们还可以利用生活中常见的物品来做一些有趣的小实验,激发学生的兴趣。如用废牙膏皮来完成“核潜艇”浮沉实验。用气球来演示力的作用效果实验等。

第四方面,还要注意晓之以理,动之以情。莎士比亚说过“赞美是照在人心灵的阳光,没有阳光,我们就不能生产”。廉姆杰尔说过“人性最深切的需求就是渴望别人的欣赏”所以对于差生,我们应该善于发现他们的闪光点并及时加以表扬鼓励,增强他们的自信心。如我校某班有一位成绩差的学生,但对体育特别爱好,在一次运动会上为班上夺得了多项第一,老师发现后给与他肯定并说如果他把这种勇于拼搏,不怕吃苦的精神放到学习上,那你的成绩一定会提高,一定会迎得老师和同学的赞扬。结果这位同学受到老师的赞扬和鼓励后,刻苦学习,成绩一直上升,后来考入了某重点体院。教师一句赞扬的语言,一个鼓励的眼神,一次颔首的微笑,一个肯定的动作,一次低难度的考试,都可以使差生体会到鼓励,信赖,满意的情感,从而树立起学好物理的自信心,促使他们逐步转化。

三:课后作业处理

在新课程标准背景下,布置作业不能仅限于书本知识或理论知识,必须加强课程内容与学生生活以及现代社会发展的联系。减少死记硬背,机械训练。我在我校06级二班试着这样实验了一个月,同时进行了一次检测,从分析看,根据我校情况,不能完全丢掉死记硬背机械训练,因为有一部分学生的基础太差,还不能完全丢掉课本,相反的在这方面还应加强。因此在布置作业时应从以下方面着手。为了避免出现优生“吃不饱”,学困生“吃不了”,采取分层次布置作业,向不同层次的学生推荐作业范围,让学生在不同范围内自由选择,只限最少题量,而不作同一要求,分选做题和必做题。让有精力的学生做更富有个性的作业。要求基础差的同学记住书上的公式,定义等知识点。

针对整体基础差的学生,从以上方面进行加强,多花精力,晓之以理,动之以情,激之以行,一定能启发学生强烈的求知欲望,提高学生对物理的学习兴趣,从而提高他们的学习成绩,全面完成义务教育的教学任务。

参考文献:

1《心理学》石油工业出版社魏龙渝第九章154页

2《论语》

篇5

1国内外城市化进程发展状况

当前,城市的快速发展已成为全球的共同趋势。联合国的统计资料[1]表明,人口城市化的趋势在不断地加速发展。图1表示了这种发展趋势。从图1可以看出,1950年的世界人口约为25亿,其中仅有30%的人口生活在城市。到20世纪末,城市人口大幅度增加,已经达到世界人口的50%。根据图1所示数据,预计到2025年,城市人口将占据世界人口的60%。城市数量和城市人口的迅速增长对人居环境提出了严峻的挑战。表1给出了世界上人口在100万以上的城市数量的增长[1]。从1950-1995年期间,全世界拥有百万人口以上的城市数目由83个增加到325个,说明95年城市数量是50年的3.9倍,这种趋势在第三世界国家尤为明显,同一时期城市的数目增加了6.3倍。

表11950-1995年间人口在百万以上的城市数目

Table1Citynumbersofpopulationbeyondonemillionbetween1950to1995

年代195019951995:1950

第三世界城市数342136.3

发达国家城市数491122.3

全世界城市数833253.9

我国的城市化进程与世界同步,近年来呈现出高速发展的趋势。图2给出了我国城市数量增加的数据[2]。

2城市化促进自然科学新领域的产生与发展

我们首先以传统的地理学为例。近几十年来,尤其是第二次世界大战以后城市地理研究发展迅速,内容和影响都超过了传统地理学,成为人文地理学的一门重要分支学科。对城市进行地理学研究始于19世纪。第二次世界大战以后,许多国家的城市需要重建,世界范围内的城市化进程加速,这些都要求对城市进行全面的研究和规划,促使大批地理学家投入城市研究或城市规划工作。新兴的城市地理学的核心问题是研究区域的空间组织与城市内部的空间组织两种地域系统的关系。围绕这两种地域系统,具体的研究内容有:城市化研究、城市分类研究、城市体系研究、城市群和大城市集群区研究、城市综合地理研究等。城市地理学在城市化进程中逐渐形成了独特的研究方法:早期数量方法、系统分析方法、城市信息系统方法、空间抽样调查方法等。此外,地图是地理研究的传统工具。航空像片和卫星像片在城市地理研究中表现出重要作用,是研究城市时空变化关系的基础数据。

附图

图1全世界城市化城市人口百分比[1]

Fig.1Percentageofurbanpopulationamongthetotalpopulationinworldcities

附图

图2中国城市数目随时间的变化[2]

Fig.2NumberofcitiesinChina

以典型的工程科学——建筑学为例,随着城市化现象的迅速推进,建筑学向广度和深度发展。孤立地、狭隘地研究建筑现象已经说明不了问题,满足不了需要。客观实际已经按照系统工程的规律伸展了它固有的领域。城市及其区域已经逐步形成了一个开放的复杂的巨系统。城市化对建筑科学的影响,使得系统的思想进入到传统的建筑科学,进一步突出了新的建筑科学的关系——人与环境的关系[3]。钱学森考虑到中国传统的文化艺术和自然特色等种种因素,形象地提出了山水城市的理念,这一思想对建筑科学的发展,具有深远的意义。

以地球物理学为例,城市化问题使得传统地球物理学的研究方法、研究对象和研究内容面临新的机遇和挑战。20世纪初,地震波证实了地球铁核的存在,证明了2900km深度存在地核与地幔的边界。30年代,地球物理方法发现了地球内核的存在,在此基础上,科学家提出了地球内部分层模型。20世纪中期,各种地球物理勘探方法初步形成。40~50年代,地球物理学的主要研究对象是勘探固体矿产资源,60~70年代在此基础上增加了石油和天然气,80~90年代又增加了水资源。随着工业化进程的加快,环境问题也日益成为地球物理学的研究对象。总而言之,20世纪地球物理学的研究对象是以自然资源为主。20世纪末的全球性城市化发展趋势,使21世纪的地球物理学不可避免地要面对诸多的城市问题。80年代以来,由于地球科学各分支学科的日益成熟和全球环境问题的日益突出,人们认识到地球各圈层相互作用以及人类活动的重要性,地球科学的发展开始进入地球系统科学的新时代。城市地球物理学的发展在这样的时代背景下产生。城市地球物理学是一个全新的概念,是地球科学国际研究前沿的新兴学科。传统地球物理学的主要研究对象是自然现象,而城市地球物理学则主要研究自然现象与人类活动的相互作用。因此,在城市地球物理学研究中,除了自然科学问题之外,还应强调科学与社会的结合、各相关学科的综合及与各社会部门的协调。图3表示了城市地球物理学与环境科学和地理学之间的关系,这三者既有各自独特的研究领域,又有密切相关的交叉研究内容。

附图

图3城市地球物理学、环境科学、地理学之间的关系

Fig.3Relationshipamongurbangeophysics,environmentalsciencesandgeography

3城市地球物理研究的社会需求

(1)城市建设。科学家们预计21世纪的城市在向高空发展的同时,也将向地下索取空间,建设深层地下都市已经在科学家构想之中。20世纪平面式的城市功能在21世纪将从地下、地上两个方面重新进行立体配置。在一系列城市建设活动中,迫切需求地学界利用地球物理的观测和预测方法对城市地下空间的结构给出定量的描述,为城市规划积累基础数据。

(2)城市灾害。人类大规模的经济—工程活动对环境的影响,已经达到了与自然地质作用相提并论的程度,而且发展速度快、影响范围大。各种灾害无情地破坏着人类的居住空间,给人类的生存造成威胁。这些灾害发生在地学研究的领域,迫切需求地学界利用地球物理的观测和预测方法对各种起因的城市地质灾害和对环境的破坏进行详细的调查。

(3)城市地下污染。原生环境的缺陷以及由人为因素造成的地下环境污染,在地下水的作用下,对生态与工业构成极大的危害,迫切需求地学界利用地球物理的观测和预测方法调查地下水的分布,为制定防治规划提供基础数据。

4城市地球物理研究的主要科学问题及其研究方法

城市地球物理学作为一门新兴学科,其主要特点是学科的交叉性及其社会服务性,城市地球物理不仅与地学界的其他学科有广泛的交叉性,而且与地学界以外的诸如人文类、社科类学科也有不可缺少的交叉内容。城市地球物理研究的最终任务是服务于社会,科学研究的核心问题是人与自然的关系问题。具体解释为:

(1)城市近地表结构与地质灾害的相互作用关系。天然与人为的地质灾害对城市构成极大的危害。这些灾害改变和破坏近地表地质结构,近地表地质结构从客观上阻止或促成地质灾害的发生。二者之间的相互作用关系是科学研究的问题之一。

(2)城市近地表结构与地下基础设施和地下建筑的相互作用关系。地下基础设施是城市的命脉,地下基础设施的科学规划以及地下建筑计划需要对近地表结构的观测与评价,大型地下建筑有可能改变城市地下应力场的平衡,二者之间的相互作用关系在未来城市发展中为地学研究提供了一个新的研究空间。

(3)城市近地表结构与地下环境污染的相互作用关系。地下环境污染破坏生态环境、危害人类健康,地下环境污染直接受控于地下水的分布,同时受控于近地表地质结构。对地下水的分布及其浸染走向的研究是防止和治理地下环境污染的重要依据。

城市地球物理学研究方法主要依靠观测技术、数据处理技术以及综合评价系统。观测是地球物理学研究得天独厚的手段,数字地震台阵、地球信息系统、INSAR计划、浅层地球物理观测在地学研究领域发挥了重要的作用。地球物理观测数据起到了透视地下的作用,是实现地下结构定量化与可视化研究的基本条件。针对城市问题的地球物理观测,需要在提高仪器动态范围的基础上获得高分辨率的数据,需要研究城市特定环境下的观测方式。认识浅层介质的复杂性以及地球物理数据的特殊性是研究城市各类问题数据处理方法的出发点。数据处理方法研究应该从基础研究出发,研究地震波场、电磁场、重力场分布规律以获得清晰的三维地下图像。保证足够的信息量是对城市问题做出准确评价与预测的基础,综合性研究在评价和预测中至关重要。地球物理学中各类方法的优化与组合以及与地学研究领域中其他学科的交叉,包括与非地学研究领域相关学科的交叉是开展城市地球物理评价与预测研究的主要方向。

5城市地球物理现阶段主要研究内容

(1)城市条件下地球物理观测方法研究。城市条件下的地球物理观测比常规野外条件下的观测表现出更多的复杂性。需要在已知的典型地下结构的条件下进行足够多的观测方法实验,针对“源”的问题,研究电磁波与弹性波的聚束发射,研究综合方法的同时观测技术以及时移观测技术,并根据已知条件进行数值模拟计算,对比观测数据与理论数据的差别,分别城市条件下观测噪声与干扰的特殊性,发现规律性,为实际的工业性调查提供指导性方案。

(2)城市介质地球物理正演算法研究。城市地下介质除受到地质构造运动外,更多地受到人为因素的改造,演变成为难以保存其原生地质痕迹的、极其复杂的地下介质。其地球物理响应与以往的地球物理观测必将表现出极大的差异。因此,必须以城市地下条件的特殊性为介质模型,研究地球物理正演计算方法,认识城市介质条件下观测数据的基本性质和形成规律。

(3)城市地球物理数据处理方法研究。城市地球物理需要采用非常规观测方式,其观测数据包含了大量意想不到的噪声。认识噪声的特征和有效地消除噪声,保护观测数据的分辨率是数据处理的关键问题。针对时移观测数据研究四维数据处理方法。在信号分析与数字处理方法研究中,需要充分吸收现代数字信号技术,开展适用于城市特定问题的处理方法研究,为综合评价提供准确数据。

(4)城市介质三维可视化研究。城市地下介质覆盖在水泥路面、绿地和建筑物之下。传统的钻井或探槽式观察方法在现代化城市中即落后又不适用。这项研究通过对观测数据的有效反演对城市地下介质实现三维空间可视化描述,提供三维精细成像结果。对典型问题开展有针对性的反演算法研究,为三维精细成像和可视化描述以及综合评价提供有效资料。

6城市地球物理研究需要社会关注

城市地球物理研究如何落实与如何发展是一个非常重要的问题。大专院校和研究机构应该进行必要的学科调整,实现资源共享和优势互补,应该积极参与城市地球物理研究相关工程项目,在学科之间进行经常流。工业、商业与企业部门应该面向用户,以市场为导向,为城市地球物理技术的研究提供场所和经济支撑,同时有必要参与各种研究活动,各学术团体应该相互配合,设立城市地球物理专业委员会,在学术刊物上开辟专栏广泛宣传城市地球物理研究的科研成果,各专业学会之间也应进行广泛交流。政府部门应该做出具体计划,以便各职能管理部门统筹安排,实现资源的合理分配与协调,要选择典型城市和典型项目作为依托,开展研究工作,在基础研究方面需要得到自然科学基金和国家相关部门的支持。

应该充分估计到地球物理各种方法在目前技术条件下的难点,要通过研究地球物理新方法、新技术提出新的认识、加强科技创新尤其是原始性创新。要集中精力利用地球物理数据编制城市地下三维结构的图像,当前城市地球物理研究的主题是“城市三维地图(3-DImagingofUrbanUnderground)”(注:国家自然科学基金委员会.中国内地—香港城市地球物理战略研讨会,香港大学.2001.)。

7城市地球物理研究的技术支撑条件

近20年来,地理信息系统技术的出现,乃至空间数据基础的建设和“数字地球”战略的提出,使得获取地球信息的手段达到了前所未有的高度,不仅使全球的制图和动态性制图成为可能,而且在环境监测、灾害预警预报、区域与城市规划等方面也发挥着极为重要的作用。21世纪将广泛采用高分辨率的观测系统(地面、海洋和空间对地观测)、高灵敏度和高准确度的分析测试系统(包括微粒、微量、纳米级和超微量)、不同条件下的实验模拟系统、建立在动力学及高性能计算基础上的数值模似以及数字化的地球信息系统,此外,现代化的观测技术与设施也将成为开展城市地球物理研究必要的支撑条件。

圈层相互作用研究是地球科学20世纪90年代以来的全新发展方向,方兴未艾。这些研究将导致交叉学科、综合学科的兴起与发展,形成整体性的地球系统科学。地球及其各圈层是一个整体。一些地球科学问题固然有区域性的一面,但这种区域性是寓于全球性之中的。在一定意义上,只有更好地了解全球才能更好地了解区域。同时,区域也是全球的窗口,区域性是通向全球性的大门。地球科学方面的“全球变化及其区域响应”研究计划,则为城市问题的研究提供了广泛的科学基础。

8结语

地球不仅在自然力作用下发生变化,而且人类活动作为地球上有关过程的一种作用力将进一步得到深入研究。21世纪将从人—地关系的角度审视环境的变化,为人类社会与自然环境的协调发展提供科学理论基础,使人居环境得到最大限度地改善,同时又要保持地球的“健康”演化。在新千年和新世纪来临之际,地学界应该重新考虑地学发展的方向和重点,使地学研究在人类社会发展中体现出自身的价值。在新世纪,地学在应用研究领域所面临的主要任务是合理地利用地球资源,帮助工业界解决难题,改善地球的可居住性。为此,作为地学领域主要学科之一的地球物理学应该做出应有的贡献。

收稿日期:2002-01-08;修回日期:2002-05-23.

【参考文献】

[1]UnitedNations.WorldDemographicEstimatesandProjections(1950-2025)[M].NewYork:PressofUnitedNations,1990.

篇6

信息技术与物理学科的整合是指在物理教学过程中,把信息技术、信息资源、信息方法、人力资源和物理教学内容有机地结合起来,使其相互渗透、相互作用、相互协调,利用信息技术支持物理的教与学,并在这一过程中提高学生的信息获取、分析、加工、交流、创新、利用的能力,培养学生的协作意识和能力,促进学生掌握在信息社会中的思维方法和解决问题的方法.信息技术与物理教学整合的本质是教学方法的变革.在整合过程中,信息技术在教学中的作用可以分为三个方面:演示工具(信息技术作为教学工具)、学习工具、环境建构工具.在两者整合中,信息技术不仅是物理教学的辅助工具,它更是促进学生自主学习的认知工具和情感激励工具.信息技术与物理教学的整合,不是简单地把信息技术仅仅作为辅助教师教学的演示工具,而是要实现信息技术与物理教学的“融合”.突出人的地位,实现人与物化的信息之间、网络虚拟世界与现实世界之间的融合.其本质是指信息技术有机地与课程结构、课程内容、课程资源以及课程实施等融合为一体,成为课程的有机组成部分.信息技术与物理教学的整合,不是被动地纳入,而是主动地适应和变革课程的过程,信息技术与物理教学的整合,将会对物理这门课程的各个组成部分产生变革性影响和作用.

2信息技术与物理学整合在物理教学中的作用

以计算机为核心的信息技术与物理学的有机整合,会给现在的物理教学带来根本性的变革:使教学信息传输网络化、教学过程智能化、学习资源系列化、教学形式多样化.突破现有的教学结构、教学模式,改变传统教学的方式、方法.其在物理教学中的作用具体体现在以下几点:

2.1易于突出重点、突破难点,有利于激发学生的学习兴趣、培养想象力

许多物理知识比较抽象,不容易理解,这是造成物理难学的一个原因.例如运动电荷在磁场中所受到的洛伦兹力和电场的双重作用时,它的运动轨迹是怎样的?交流发电机是怎样工作的?在传统教学方式下只能描述,而且很难说清楚,学生也很难想象出那种情景来.但在新技术下,利用Flash制作的动画利用多媒体在屏幕上演示出来,学生一看,马上记住了它的运动情景和工作情景,建立起感性认识,难点随即被突破.类似的问题还有好多,如运动的合成与分解(飞机投弹),机械运动(地球绕太阳公转),光学(双缝干涉)等,这些内容既是教学的重点,也是难点.在传统教学方式下不易被突破,但在信息技术下的多媒体中,利用虚拟实验室,可以非常形象、直观地演示出来.在信息技术下,学生感受到的不再只是语音和静止的图像.由于多媒体技术把电视机的视、听功能和计算机的交互功能合二为一,产生一种图文并茂、丰富多彩的画面,进行多方位地刺激,这有利于知识的获取和保持,还有利于右脑的开发.实验心理学家赤瑞特拉曾经做过一个关于人类获取信息途径的实验.实验表明:人类获取的信息其中83%来自视觉,11%来自听觉.可见,视听功能在学生的学习中有重要的作用.另外,网络的应用,使学生做物理实验的机会更多,学生得到的信息会更多,更方便,能够弥补由于教师或地域文化的不同所造成的教学质量信息技术与中学物理教学整合模式的教学设计研究的差异,最大限度地做到资源共享,聆听名师的授课.所有这些都有利于激发学生学习物理的兴趣,使其产生强烈的学习欲望,从而形成学习动机.信息技术在物理教学中的应用,学生不但比较容易地理解知识,而且还有利于培养想象力.通过动画模拟物理动态图景,能大面积地提高学生的想象力,能使学生建立起正确的动态物理情景,特别是对培养时空和微观动态方面的想象力,作用十分明显.

2.2有利于因材施教和个性的培养,发挥学生的主体作用

在信息技术下,利用人工智能技术构建的导师系统能够根据学生的不同特点和需求进行教学和提供帮助.学生可以自主选择适合自己的和自己喜欢的内容和方式进行学习,甚至可以选择个别化教学策略;学生选择的空间会更大,更有利于教师个别指导.信息技术与物理教学的整合有利于学生主体性的发挥.在传统的教学过程中,教师是课堂的主宰.从教学内容、教学过程、教学方式到作业,都由教师决定,学生只是被动地听、写、记,学生缺乏学习的主动性.但在整合的情况下,学生可以按自己的学习情况来选择适合自己的学习内容.这有利于因材施教和个性培养.基于信息技术的物理教学更是动态的.在教学中,通过人-机,人-人交互,通过亲自做实验,让学生更主动地思考、探索、发现,感受获得知识的过程.现代信息技术环境下,教师的指导性活动和学生的自主参与性活动增多,学生在学习过程中充分体验到了作为学习主体的感受.

2.3有利于学生经历知识的产生和培养学生的合作精神

由于物理学是一门以实验为主的学科,所以许多知识都源于实验.但在传统情况下,学生很难亲自体验知识的产生过程.这是因为很难做到每人都能亲自做每一个实验,没有有利于体验的环境,交流主要发生在师生之间.但在信息技术与物理教学整合的情况下,却很容易做到这一点.利用网络提供的虚拟实验室及所提供的器材,学生可以做各种各样的实验,而且还可以发挥自己的想象力,构建新的实验.学生利用计算机网络可以完成合作的小组作业,学生合作的频率也增大,另外,计算机还可以扮演同伴角色等等.所有这些都有利于学生体验知识的产生和培养合作的精神.

2.4有利于培养学生的创新精神、实践能力和信息能力

创新能力、实践能力和信息能力(包括对信息进行获取、分析、加工利用和评价)是信息社会的人所必备的能力.在整合的情况下,教学方式、方法是新的,再加上网络所提供的丰富材料和方案,学生会利用多种手段和方法达到目的.在这种方式下训练,这对学生创新信息技术与中学物理教学整合模式的教学设计研究意识、创新能力和实践能力的培养十分有利.在整合的情况下,教与学是开放的.教师提出问题后要靠学生自己收集信息、分析信息和应用信息来完成.信息技术和网络为这些能力的发展提供了理想的环境.因特网是世界上最大的知识库、资源库.它拥有丰富的教育资源.而且这些都是按照符合人类联想思维特点组织起来的,适合学生基于自主发现、自主探索的探究性学习.这种学习方式有利于培养学生收集信息、分析和处理信息的能力.并由此发展和带动学生的思维能力、解决问题的能力、决策能力和交流能力的发展.

2.5有利于丰富学生的情感和减轻教师的工作强度

在传统教学方式下,交流主要发生在教师和学生之间,而且往往是教师对学生的单向交流居多.但在信息技术与物理教学整合的情况下,现代媒体能同时提供多方位的、双向的及时地交流.在交流中,教学内容是纽带,学生交流的对象和渠道都增多了.通过这种多向的互动,很容易丰富学生的情感、促进学生的情感发展.当教师和学生利用媒体教学时,教师的一些重复性体力劳动就会减轻.例如在物理复习课中利用CAI制作的课件能浓缩内容,突出重点、突破难点,提高效率;另外如备课、板书、作业等方面都可以得到减轻,使教师把更多的精力投放到设计教学、关注学生的发展和自身的提高等方面.

2.6有利于实现对教学信息最有效的组织与管理

信息技术中的多媒体系统具有超文本特性.超文本(Hypertext)是按照人的联想思维方式,用网状结构非线性地组织管理信息的一种技术.它可以管理文字、图形、动画、图象、声音、视频等其他媒体的信息.利用多媒体的这种性质可以实现对教学信息最有效地组织与管理,例如:可按教学目标的要求,把包含教学信息的各种教学内容组成一个有机的整体,例如在《超导及其应用》中,把教学目标用文字、电流流过导体发热的机理用fls演示,超导研究用图片和声音给以呈现,这样就实现了图、文、音、像并茂,能更好地达到教学目的.再如,按教学内容的不同,把包含教学信息的资料组成一个有机的整体加以呈现,如把练习题、习题、测验题、答案及解答的过程、相应的演示或实验等组合在一起,而且这种组合条理清楚,可以大大节省课堂的时间,提高效率.

2.7有利于开拓学生的视野

信息技术与物理教学的整合可以按照学生不同的基础与水平把相关学科的预备知识和开阔眼界的资料组成有机的整体,实施因材施教.这种做法在传统教学中很难做到,但有了多媒体的帮助,这一点很容易做到.

3信息技术与物理学整合下的教学模式

研究和实践信息与物理课程的目的在于构建现代教育技术支持下的整合的教学模式.经过近年来的不断努力,根据不同教学内容,结合教学实践过程,初步形成了整合下的教学模式的基本框架.

3.1教学设计的指导思想

(1)现代教育技术的支持下,尊重学习的主体,将学生的主体能动性与教师的主导性相结合.建构主义理论指出,学习是主体对知识的主动建构的过程,不是在外部刺激作用下形成反映的过程.因此学生学习的过程中的主体能动性对学习效果的影响起着决定性的作用;当学生在思维和操作遇到困难或阻碍时,教师应发挥引导作用,合理借助现代教育技术调动学生的学习主动性,引导学生进行主动的意义建构.(2)以提高学生的科学素质为核心,结合学生已经掌握的知识结构和能力基础,从知识与技能、过程与方法、情感态度与价值观等方面确定多元的物理课堂教学目标,并充分考虑到学生认知水平和认知风格的差异将教学目标分层.为学生设计能帮助有效理解新知识的“先行组织者”.(3)在教学过程中,利用传统媒体和现代教育技术媒体精心组织教学活动,充分利用现代教育技术作为集体演示工具、信息加工工具和协作组织工具,创造条件让学生积极主动的参与物理课堂教学的全过程.强化物理概念和物理规律形成过程和实际运用过程,在强调基础知识学习和基本能力训练的同时,重视创新精神和创造能力的培养.

3.2教学设计的一般过程

教学设计过程就是运用系统方法分析教育教学问题、确定教育教学解决方案检验和评价解决方案的过程.物理课堂教学的教学设计流程为:分析教学目标(确定教学内容或教学主题)协作学习环境设计评价方式设计强化练习设计分析学习者特征确定教学起点,设计组织者情景创设信息资源设计与提供自主学习策略设计结束.一般来说,教学要经过“感知—理解—概括”三个过程,这种模式就是在演示实验的基础上,用计算机模拟实验现象的物理过程,从而强化学生的表象,促进学生识别实验现象发生及变化的条件,然后再进行抽象概括,形成概念规律或找出物理现象的共同特征.此模式以此流程为基础可以有多种变式.例如,可以有多次演示实验和模拟实验,也可以利用计算机呈现问题情景、物理模型等作为补充.该模式的基本课程流程如图所示.

4教学案例

下面以《波的形成和传播》一节的教学为例,对这种模式进行探讨.

4.1教学目标

(1)知识与技能①知道波是怎样形成的②能分析波上各质点的运动③知道波是能量的一种传播形式(2)过程与方法①能优化和完善认知结构.②能掌握应用物理知识和物理思想解决实际问题的方法.(3)情感态度与价值观①培养学生的观察能力和分析能力②培养学生正确表述实验现象的能力③通过讨论培养学生合作学习的习惯,培养自信心

4.2学生分析

学习者是我校高二年级的学生,他们基础知识掌握的不很扎实,所以本节教学的起点为质点的振动和波的形成.

4.3教学方法情境导入式

4.4器材水波发生器、多媒体课件、实物投影仪

4.5教学过程

篇7

关键词:物理学;人文文化

物理学是一门最基本的自然学科,它是探讨物质结构和物质基本运动规律的学科,所以人们往往认为物理学只是包含一些枯燥的理论公式,而忽视了物理学中包含的人文因素诸如人文哲学思想、美学、道德等方面。实际上,物理学在产生、形成、发展的过程中,人们不是为了物理学而研究物理学,而是为了有助于人类、社会以及个体人的发展而研究物理学,所有这些都涉及到了人与人的关系、人与自然的关系,这些关系中都蕴含着丰富的人文文化。

著名物理学家吴健雄曾指出:为了避免出现社会可持续发展中的危机,当前一个刻不容缓的问题是消除现代文化中两种文化,即科学文化和人文文化之间的隔阂,而加强这两方面的联系。没有比大学更加适合的场所了。只有当两种文化的隔阂在大学园里加以弥合之后,我们才能对世界给出连贯而令人信服的描述。所以我们有必要去讨论科学文化中的人文思想。

下面从文化角度去剖析物理学中的人文思想,主要有以下几方面:

1物理学中的唯物辩证法思想

物理学在古代被称为自然哲学,物理学作为一门精密的学科进行研究是从1687年牛顿发表的《自然哲学的数学原理》开始的。随着学科的发展与不断完善,物理学才从哲学中分化出来,形成独立的学科,但物理文化中蕴含的哲学思想是不会被分离的。

1.1实践是检验真理的唯一标准

物理学是实验科学,物理实验既是建立物理理论的基础又是检验物理理论真理性的方法。杨振宁教授说“物理学是以实验为本的学科”,物理学上很多理论都是通过实验检验论证的结果,体现了唯物辩证法的认识论观点——实践是检验真理的唯一标准。

1.2物质是普遍联系的

物理发展史上,很多地方体现了物质是普遍联系的观点。比如人们曾经把电和磁孤立起来,物理学家奥斯特接受自然力统一的哲学思想。坚信电和磁之间存在某种潜在联系,经过多年研究,终于发现了电流的磁效应,并由此开创了电磁学的新纪元。把电和磁联系了起来,这正体现了唯物辩证法的特征——物质是普遍联系的。

1.3事物发展过程中的“否定之否定”规律

人们对物理现象及其本质的认识是不断地发展和完善起来的,每一种理论的建立过程都体现了“实验(事实)——理论假设——实验(新的事实)——修正理论”,遵循着辩证唯物主义中的“否定之否定”规律。比如在整个光学的发展史中对光本质这个问题的认识,先是牛顿的微粒说;再是惠更斯的弹性波动说;接着麦克斯韦提出电磁波动说;到20世纪爱因斯坦提出光量子说。最终人们认识到光具有波粒二象性,人类对光本性的认识就正是遵循着“否定之否定”认识规律的反映。

1.4主要矛盾与次要矛盾的辩证关系

物理学中为了方便研究问题,经常抓住物体的主要特征,忽略物体的次要特征,而抽想出一些理想模型。如“质点”这个理想模型保留了实际物体的质量和存在的位置,而忽略了物体本身的大小形状,体现出辩证唯物主义中的“主要矛盾与次要矛盾之间的辩证关系”。

1.5运动的相对性和时空的相对性

近代物理学的一大理论—爱因斯坦的相对论中涉及的哲学问题很多。最突出的就是相对运动和相对的时空观念。相对论指出:相对性原理的本质在于运动的相对性这一事实,而不存在绝对运动。相对论否定了绝对运动的存在,就否定了绝对时空的概念。它通过不变的光速把时间和空间联合为一个整体,由洛伦兹变换建立起各个惯性系之间的时空关系。

可见,不论是物理文化知识本身,还是物理文化形成、发展的过程都蕴含着丰富的哲学思维方法,对人类的自然观和哲学思想有重大的影响。2物理学中的美学文化

2.物理理论的美学特征

2.1简单深刻美

在一个艺术家眼里简单是一种美。自然现象错综复杂,物理学则力求用简单的方程或定律去概括自然规律,但其反映的内在规律确是非常深刻的。如能量的转化和守恒定律反映了各种不同形式的能量的转化,牛顿的三大定律更是概括了宏观低速条件下各种机械运动的规律,麦克斯韦电磁方程组将复杂的电磁现象统一其中,爱因斯坦相对论中的基本原理简单凝练,但其中内涵确是丰富而深刻的。

2.1.2对称守恒美

对称是自然界中广泛存在的也是人们很乐于接受的一种美学形式,物理学在对自然的表述中处处显现出了这种对称的美:引力和斥力,“电生磁”与“磁生电”,粒子与反粒子,物质与反物质、圆孔或单缝衍射图样的对称、无限长直导线周围磁场的轴对称等等。物理定律对某种规范变换的不变性、守恒性更是贯穿于整个物理学的一种对称形式,物理学中有许多守恒定律如:动量守恒、机械能守恒等等。实际上,对称性已经成为当代物理学家研究物理理论的一种方法。

2.1.3统一和谐美

物理理论的和谐统一美实际上是自然界和谐统一美的理论形态。如麦克斯韦电磁场理论把电学、磁学、光学统一了起来,量子力学把波动性和粒子性统一了起来,爱因斯坦的相对论把时间、空间、物质和运动统一起来,把经典物理学都包容在他的理论框架之内,创造了程度更高范围更大的和谐统一理论。

2.2物理学家与美学思想

世界著名物理学家狄拉克认为:让一个方程具有美感要比符合实验更为重要。法国科学家彭加勒曾说:“科学家研究自然,是因为他从中能得到乐趣,他之所以能得到乐趣,是因为她美”。著名物理学家杨振宁曾经说过:“物理学的原理有它的结构,这个结构有它的美跟妙的地方,而各个物理学工作者对于这个结构的不同的美跟妙的地方的感受,有不同的了解,因为大家有不同的感受,所以每一个工作者会发展他自己独特的研究方向跟研究方法,形成他自己的风格。”

许多著名的物理学家都有感知美的奇异本领,美学思想在许多物理学家创立与评价物理学理论时起着重大的启发与指导作用。追溯人类科学源头,科学美始终被作为一种人文理想而追求,成为科学家们献身科学、潜心研究的直接动力之一。

3物理学中的科学道德精神

3.1对未知的好奇与探索精神

好奇心是一种情感,是一种人文精神,也是最重要的科学精神。科学进步的真正动力是许多物理学家对了解未知事物的欲望。牛顿看到苹果落地,就去想苹果为什么会从树上掉下来,从而想到了万有引力;阿基米德从浴桶洗澡中得到启示,发现水面上升与他身体侵入部分体积之间的内在联系,找到了鉴别金质王冠是否掺假的方法,产生阿基米德原理,发现浮力定律等。这种对未知的好奇与探索精神,对物理学的发展与人类的文明有很重要的作用。

3.2实事求是、勇于创新的科学精神

实事求是认知的基础,而创新则是科学精神的核心。20世纪物理学的革命告诉我们:科学的发展道路上科学家要创立一种新理论的时候,都必须要有敢于向已有的旧理论、旧思想提出质疑的勇气。例如:伽利略正是因为对亚里士多德“力是产生物体运动的原因”的怀疑,才建立了正确的力和运动的关系。以至于后来的牛顿运动定律的产生。著名物理学家杨振宁和李政道正是因为敏锐的觉察到了从未被人怀疑过的宇称守恒定律的适用范围,大胆提出了弱相互作用中宇称不守恒的论断,才使物理学理论有了一个突破性的进展。

3.3合作与宽容精神

篇8

高一是高中学习的基础阶段,对于学生高中三年的学习有重要的意义。有不少学文科的孩子之所以选择文科,不是由于他们热爱文科,而是因为在理科科目中,往往是物理最让他们头痛。其原因分析如下:

一、客观原因

高中物理相对初中物理内容的较大变化和学习内容对学习要求的较大变化是导致学生学习困难的重要原因。初中物理多数是以学生的感性认识为基础,着重回答“是什么”的问题。学生凭仗他们在接受物理学教育前,通过自己的观察、体验和思考,对各种物理现象与物理过程的理解和认识,接受起来是不太困难的;但是,进入高中后,物理内容发生了较大变化,它不再是简单地观察现象,得出“是什么”的结论,更多的是,我们不但要知其然,更要知其所以然。在这个转变过程中,对学生关于信息的采集、分析、判断和整合的逻辑思维能力有了较高的要求。而刚进入高一的学生,其思维的优势更多的偏向于形象思维,所以许多学生感到物理学习的困难。

第一章力学是物理学的基础,无论是动力学、热学还是电磁学,许多时候都离不开对研究对象的受力分析,但是受力分析对学生的要求是比较高的,如研究对象的确定、力的产生、力的方向的确定等,不但抽象,而且难度大;

第二章出现了抽象的物理模型---质点以及与极限知识相关的即时速度;第三章的牛顿定律要求学生深刻领会力与运动的关系,而这又与他们“力产生运动”的前物理观念发生激烈的冲突;第四章的曲线运动涉及到了抽象的切向、法向加速度;接下来的几章如行星的运动、机械能等带来的困难更是明显。所以,学生一进入高中,就遇到了一个与其现有思维能力还不十分相称的大门槛,所以感到难学也是必然的。导致学生物理学习困难的另一个客观原因是物理知识的要求与学生当时的数学知识不相匹配。如讲力的分解时,有些学生的三角函数知识还不够熟练;讲即时速度时,学生还没有极限的概念;将物理问题转化为数学问题后,应付一些较为复杂的方程组的能力还欠缺。这些都是导致学生物理学习困难的原因。

二、心理原因

在学习物理时,刚进入高中的学生还受到以往学习方法的影响。初中时,多数孩子都是听从老师的安排,几乎没有自己安排学习的习惯;着重记忆老师讲课的内容包括习题;很少预习;很少及时复习;很少先复习,再做作业;解题时,经常是一套用公式就可以解决问题,几乎不需要分析物理过程、不需要建立较复杂的方程组、不需要建立物理模型、不需要等效思想。进入高中后,对学习方法的要求有了很大的提高,而学生的适应能力的提高又不能一蹴而就,因此,在适应高中学习的过程中,学生迫切要求提高成绩的心理要求与现实之间发生激烈的冲突。如果他们不能及时调整自己的学习方法,那么学习过程中产生的焦虑将随之而来,这种焦虑的不断增长会严重影响到学生的心理及学习效果,从而陷入到学不好物理不想学物理更学不好物理越不想学物理的死循环中。

导致物理学习困难的原因是客观存在的,尤其在我们这一类型的学校,多数学生在初中时,物理成绩都比较差,对物理有一定的畏惧,那么如何让学生在这种前提下愉快地、成功地学习呢?人们常说:兴趣是最好的老师这句话隐含着一个意思:人,如果有了想学习的愿望,他就会尽自己的最大努力达到自己的最高水平。所以学生对物理学习的渴望程度极大地影响了物理学习的效果。因此,重视学生的心理因素对于物理教学是非常重要的。教师,在很大程度上扮演着一个激发学生学习兴趣、帮助学生寻找和形成学习动力、发现自我价值以形成健康的学习心理的角色。首先,教师在日常的教学中,应给予学生正确的导向,培养并保护学生学习物理的兴趣。对刚进入高中的孩子,不应该立刻用高考的标准来要求他们。如果老师为了让学生在物理这一科目上多花些精力或取得比较好的成绩而一味地加大题目的难度、数量,超出学生现时的能力,那么长期下去,学生的学习兴趣就会大打折扣,学习也很难取得很好的效果。因此,教师在教学过程中不能操之过急,对所学的知识不能要求学生一次到位,而应根据学生实际情况,适当放慢速度,使学生对概念的理解和掌握随着认识能力的提高螺旋式上升。

如在《牛顿第二定律》一章的教学中,应先将定律中加速度和力的关系及各物理量作为预备知识总结归纳,如力的概念、合力与分力的概念、加速度概念及牛顿第一定律等,以扫除定律学习中的障碍,再进行定律的实验和理论讨论。在安排学生练习时要注意到题型和难度的控制。先练习水平面上的问题,再逐渐深入到斜面问题;先分析物体受一个力的问题,再逐渐深入到物体受两个、三个力的问题;先研究单个物体问题,再逐渐深入分析连接体问题。

这样,学生的逻辑思维能力在学习循环渐进中得到了培养,学生的信心也会在一次又一次的成功体验中得到增强。

其次,应及时对学生的学习给予积极、客观的评价。

美国的罗西和亨利做了一个实验:把一个班的学生分为三组,每天学习后,接受测验。主试对第一组每天告诉学习成果;对第二组每周告诉其学习成果;第三组则不告诉其学习成果。如此进行实验8周后,一、三组变换条件,即第一组不告诉其学习成果,第三组每天告诉其学习成果,;第二组不变,仍是每周告诉成绩。这样再进行8周的实验。结果表明,除第二组保持进步外,其他两组发生了较大的变化,第一组成绩逐步下降,第三组成绩突然上升。

所以,教师及时批改作业、及时发放作业并且给予评价将有利于激发学生的学习动机。而客观的评价是对学生学习成绩和学习态度的一种肯定或否定的强化方式,它可以激发学生的上进心和自尊心。在对学生进行评价时,除了应客观、公正之外,还要注意鼓励多于批评。心理学家洛克曾做过实验,结果表明,受表扬的学生成绩最好,受训斥的学生其次,只看到别人受表扬或批评的学生再次之,而既看不到别人被表扬,自己也得不到评价的学生成绩最差。可见评价的重要性。有时,我在学生的作业本上写上“认真”以示肯定,往往下一次的作业就更加认真;或偶尔地用英语在学生的作业本上写几个单词、短语加以评价。简简单单的几个字,就把老师的要求与亲切的鼓励传达了出去。

老师经常性的客观评价,会对学生的心理产生影响,时间长了,学生就能从被动地接受别人的评价,转变为积极地进行自我评价,其内心就会建立起自我鼓励、自我教育的机制。而这将是学生在以后更长的人生道路上进行学习的根本。许多不爱学物理的人,其消极情绪都是从一次又一次的失败开始的。通常第一次考试或努力失败了,还会对下一次充满期待;第二次失败了,也还能振作精神继续努力;可是,如果次次失败,有多少人还能继续坚持下去呢?

若在此时老师及时地给予鼓励,孩子的内心就对克服困难多了一些信心;在孩子取得了即使是很微不足道的一点成绩或进步时,如果老师及时地给予肯定孩子或许就得到驱动继续努力;在孩子觉得自己不引人注目的时候,如果老师能够给一些关注,他们的内心就可能体会到自我的尊严与光荣。转

第三、课堂中教师应努力创设一种“以人为本”、以学生为中心的课堂环境。营造一种尊重学生的观点、问题,鼓励学生提问、概括、假设和陈述的课堂氛围,高度鼓励和评价学生的积极参与,使学生对问题产生困惑并产生求解问题的愿望,教师要创造性地设置问题的情境,营造一种让学生发现问题、解决问题的氛围。在教师的引导下学生通过观察、讨论,独立地去发现问题,抓住问题的实质,从不同的方面、不同的思维方式,探求多种求解的途径。传统的教学活动以“告诉”的方式让学生“占有”人类已有的知识经验,这样就造成了学生被动的接受方式。我们应该使教学过程变成师生共同探索的过程。教学中师生要积极开展双向交流,各抒己见,开放彼此对问题的认识、观点、看法,阐明各种观点、看法的原因和理由;平等、公正地进行讨论、验证各自不同的观点和看法。要让学生在探究的氛围中发现问题,总结规律。课堂的教学要营造一个个性得以自由发展的宽松氛围。要使优生发挥特长优势,使后进生不因为有错误观点而受到冷嘲热讽,要消除后进生对学习的“恐惧”,让每个学生都体验到学习的快乐,享受到成功的喜悦。如把验证性学生实验改为探究性学生实验,自然地创设了师生平等交流、探究问题的学习氛围;另外讨论开放性实验,设计实验方案等都是创设课堂氛围的好方法。

篇9

一是要精心“设疑”。教师要精心设计疑问,巧妙提问激励诱导学生。在教学实践中,能否成功运用“设疑法”进行教学,关键在于教师设疑的艺术,所设的问题要富有启发性,符合学生实际,这正是激发学生积极主动思考、讨论的基础。例如,为什么人触电会有生命危险,而鸟落在高压线上却安然无恙?为什么苗田灌水能防霜冻?类似这样的问题一提出,就会深深吸引学生探索。但是,“设疑”一定要注意教学的目的性和学生的接受性、兴趣,力求创设一种使学生产生疑问、渴望解答的情境,以保证学生获得正确的科学知识。

二是“正反”对比。由于受种种思维障碍的影响,再加上没有养成良好的解题习惯,尽管掌握了一定的物理知识,但学生在解题过程中常会出现错误。对于他们在知识上暴露出的缺陷,可让学生发表自己的看法,然后分析其错误的原因,并做出正确的解答。这样通过正反对比的思考和分析,对学生加深物理知识的理解有非常大的好处。

三是培养学生分析、解决问题的能力。在学生现有的知识范围内,着意提出一些要求有创造性或独特见解解答的问题,就好像摘桃子需要跳一跳才能摘到那样。这跳一跳引起的思考和探究,可使学生的创新思维能力和分析解决问题的能力得到提高。

四是要鼓励学生多提问题。让学生向教师质疑,让课堂充满问题,倡导“没有错误的问题,只有不完善的答案”,以此激发学生的批判性、发散性思维。要多主张教师不再是课堂教学的主宰,而是学生创新学习的设计师和引路人,学生疑难问题的解答人;教师也不再是课堂教学的唯一权威,而是课堂讨论的平等参与者,启发学生质疑问难的积极倡导者。

篇10

一、形象思维中的形象淡漠

形象思维在初中学生的物理学习中起着极为重要的作用。如果学生对特定条件下的物理现象和过程,在头脑中没有建立起正确的物理形象,不会利用物理形象进行思维,就难以把文字叙述、数学表达式和现实过程联系起来,也就难以正确地进行分析、推理、判断等逻辑思维活动。例如:学生头脑中因为没有物质原子结构的初级模型的正确形象和电子运动的动态过程的正确图景,则对于摩擦起电的理解、对于电的中和的理解、对于带正电与带负电的理解都产生了困难;又因为学生头脑中没有建立起光线的鲜明正确形象,没有建立起光的直线传播的物理图景,就难以理解和分析影子形成、小孔成像等许多具体的物理问题。

二、因果思维条件的制约

事物的因果联系总是受着条件制约的。对条件的认识是一种较复杂的思维过程,一些思维能力不强的学生难于进行这类思维;对教材不理解或理解不透的学生也无法对一些条件进行分析和选用,从而使得在有条件关系的习题面前一些学生显得无能为力。如关于功的定义及计算方法,绝大多数学生都能流畅地表达出来,但解答具体问题时,很多学生又往往不自觉地把“在力的方向上”这一限制条件抛在脑后,从而出现错误。

三、逆向思维不知反其道而行之

逆向思维是从对立的角度去考虑问题。逆向思维解题的显著特点就是以未知为起点,运用有关概念、定律、定理找出有关物理量方面的联系,层层推理,确定解题路线的分析途径。由于受平时大量的从已知到未知解题方法的思维定势的影响,加之有的教师没有注意进行逆向思维的训练和能力的培养,很多学生不善于甚至不知道运用逆向推理、逆向论证、逆向分析。如一半以上的学生总认为抛出去的物体受到重力和抛力共两个力的作用,其原因除受“抛”字的干扰外,更主要的是不善于进行逆向分析或逆向论证,假如抛力存在,这个抛力的施力物体是谁呢?反过来想一想问题就迎刃而解了。

四、比较思维中的操作不当

比较思维是初中物理学习中最常见的一种思维方式,按理说初中学生应能较好的掌握比较思维的方法进行比较推理、比较分析、比较论证。但实际情况并非如此,调查表明近一半的学生在比较思维中不善于通过比较来认识事物的本质,有的完全不理解两种事物的可比性,有的不理解比较的一般作用在解题中的特殊作用,不善比较两种事物的共性和个性,不善于舍同求异或舍异求同。如回答直流发电机与交流发电机在主要结构上有何不同时,很多学生先直接回答直流发电机的特点以后,再回答交流发电机的特点,而不去比较两者在结构上的差异。同样,有相当多的学生在实际应用中不能区分相邻、相近的物理概念、物理量等。

如压力和压强,有用功、额外功和总功,功和功率,功率和机构效率,左手定则和右手定则等。

五、思维定势导致思维嵌塞