神经网络论文范文

时间:2023-04-05 17:29:49

导语:如何才能写好一篇神经网络论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

神经网络论文

篇1

[关键词]软件项目风险管理神经网络粗集

本篇论文的中心是基于粗集的人工神经网络(ANN)技术的高风险识别,这样在制定开发计划中,最大的减少风险发生的概率,形成对高风险的管理。

一、模型结构的建立

本文基于粗集的BP神经网络的风险分析模型,对项目的风险进行评估,为项目进行中的风险管理提供决策支持。在这个模型中主要是粗糙集预处理神经网络系统,即用RS理论对ANN输入端的样本约简,寻找属性间关系,约简掉与决策无关的属性。简化输入信息的表达空间维数,简化ANN结构。本论文在此理论基础上,建立一种风险评估的模型结构。这个模型由三部分组成即:风险辨识单元库、神经网络单元、风险预警单元。

1.风险辨识单元库。由三个部分功能组成:历史数据的输入,属性约简和初始化数据.这里用户需提供历史的项目风险系数。所谓项目风险系数,是在项目评价中根据各种客观定量指标加权推算出的一种评价项目风险程度的客观指标。计算的方法:根据项目完成时间、项目费用和效益投入比三个客观指标,结合项目对各种资源的要求,确定三个指标的权值。项目风险系数可以表述成:r=f(w1,w2,w3,T,T/T0,S/S0,U/U0),R<1;式中:r为风险系数;T、T0分别为实际时间和计划时间;S、S0分别为实际费用和计划费用;U、U0分别为实际效能和预计效能;w1、w2、w3分别是时间、费用和效能的加权系数,而且应满足w1+w2+w3=1的条件。

2.神经网络单元。完成风险辨识单元的输入后,神经网络单元需要先载入经初始化的核心风险因素的历史数据,进行网络中权值的训练,可以得到输入层与隐含层、隐含层与输出层之间的权值和阀值。

(1)选取核心特征数据作为输入,模式对xp=[xp1,xp2,.,xpn]T,dp(网络期望输出)提供给网络。用输入模式xp,连接权系数wij及阈值hj计算各隐含单元的输出。

m

Ypj=1/{1+exp[-(∑wijxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,

i=1

(2)用隐含层输出ypj,连接权系数wij及阈值h计算输出单元的输出

m

Yp=1/{1+exp[-(∑wjxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,

i=1

Yp=[y1,y2,……,yn]T

(3)比较已知输出与计算输出,计算下一次的隐含各层和输出层之间新的连接权值及输出神经元阈值。

wj(k+1)=wj(k)+η(k)σpσpj+α[wj(k)-wj(k-1)]

h(k+1)=h(k)+η(k)σp+α[h(k)-h(k-1)]

η(k)=η0(1-t/(T+M))

η0是初始步长;t是学习次数;T是总的迭代次数;M是一个正数,α∈(0,1)是动量系数。σp是一个与偏差有关的值,对输出结点来说;σp=yp(1-yp)(dp-yp);对隐结点来说,因其输出无法比较,所以经过反向推算;σpj=ypj(1-ypj)(ypwj)

(4)用σpj、xpj、wij和h计算下一次的输入层和隐含层之间新的连接权值及隐含神经元阈值。wij(k+1)=wij(k)+η(t)σpjxpi+α[wij(k)-wij(k-1)]

3.风险预警单元

根据风险评价系数的取值,可以将项目的风险状况分为若干个区间。本文提出的划分方法是按照5个区间来划分的:

r<0.2项目的风险很低,损失发生的概率或者额度很小;

0.2≤r<0.4项目的风险较低,但仍存在一定风险;

0.4≤r<0.6项目的风险处于中等水平,有出现重大损失的可能;

0.6≤r<0.8项目的风险较大,必须加强风险管理,采取避险措施;

0.8≤r<1项目的风险极大,重大损失出现的概率很高,建议重新考虑对于项目的投资决策。

总之,有许多因素影响着项目风险的各个对象,我们使用了用户评级的方式,从风险评估单元中获得评价系数五个等级。给出各风险指标的评价系数,衡量相关风险的大小。系数越低,项目风险越低;反之,系数越高,项目风险越高。

二、实证:以软件开发风险因素为主要依据

这里我们从影响项目风险诸多因素中,经项目风险系数计算,作出决策表,利用粗集约简,抽取出最核心的特征属性(中间大量复杂的计算过程省略)。总共抽取出六个主要的指标(PersonnelManagement/Training,Schedule,ProductControl,Safety,ProjectOrganization,Communication)确定了6个输入神经元,根据需求网络隐含层神经元选为13个,一个取值在0到1的输出三层神经元的BP网络结构。将前十个季度的指标数据作为训练样本数据,对这些训练样本进行数值化和归一化处理,给定学习率η=0.0001,动量因子α=0.01,非线性函数参数β=1.05,误差闭值ε=0.01,经过多次迭代学习后训练次数N=1800网络趋于收敛,以确定神经网络的权值。最后将后二个季度的指标数据作为测试数据,输入到训练好的神经网络中,利用神经网络系统进行识别和分类,以判断软件是否会发生危机。实验结果表明,使用神经网络方法进行风险预警工作是有效的,运用神经网络方法对后二个季度的指标数据进行处理和计算,最后神经网络的实际输出值为r=0.57和r=0.77,该软件开发风险处于中等和较大状态,与用专家效绩评价方法评价出的结果基本吻合。

参考文献:

[1]王国胤“Rough:集理论与知识获取”[M].西安交通大学出版社,2001

篇2

1.1事件的选取和回顾在实证分析中以“宁波PX事件”为预警模型的最终目标,而选择了“厦门PX事件”和“昆明PX事件”为学习样本进行学习。这一连串关于PX事件其危害的对象不仅仅是政府形象更是对整个社会和谐稳定造成了较大的影响。尤其是宁波PX事件中,甚至出现了不理智的因受谣言的蛊惑冲击政府机关掀翻执勤警车的情况。倘若能及时且准确地对此类事件进行预警并作出相应的预防措施就能对事件进行有效的控制。

1.2指标数据的获取对于所建立的模型而言其关键不仅仅在于预警模型的指标的建立和神经网络的识别。其数据的获取亦是十分关键的一步。根据各个数据的特点,整理各个指标数据获取方式如下。将厦门PX事件和昆明PX事件作为一个学习样本,其数据清单如表3所示。同样将模型的预警目标——“宁波PX事件”作为目标数据,其数据清单如表4所示。

1.3输入数据的标准化处理网络舆情危机预警指标体系中有5个预警指标,其中存在定性指标和定量指标两大类,并且对各个指标的数据进行了量化处理,然而各个指标的单位的量纲是不同的,为了能够对各个指标进行对比评分,需要将它们进行标准化得到[0,1]无量纲指标。量化的指标均有正负方向均有正负方向之分,自然这些数据的标注化方法均有不同:1)正向指标处理:正向指标表示值越大越安全,危机等级越小无量纲化以最小值为基准,正向无量纲化处理方程:2)负向指标处理:负向指标在文章中表示指标值越小越安全,危机等级越小。无量纲化以最大值为基准,负向的无量纲化处理方程:其中,X表示量化后的指标值,xmin表示指标的最小值,xi表示指标的实际值,xmax表示指标的最大值。

2舆情预警模型的建立及结果

2.1模型的建立神经网络模型是一个典型的“输入-处理-输出”的过程。输入是采集到的指标的实际值,输出是模型识别的结果,即预警的敏感度,而中间过称则采用BP神经网络模型进行学习计算,这部分相当于“黑匣子”。在处理的时候,该文采用三层BP网络(一个输入层、一个隐含层、一个输出层)的网络结构,那么输入、输出节点数分别是5和1[8]。在设置完参数之后用第四章所讲述的利用Matlab软件完成模型的建立。

2.2结果及检验通过搜集得到的数据汇编成的学习样本,并将其中的70%作为样本,30%作为检验样本进行。通过计算可以得到该表,从该表中容易得到,学习过程中准确率达到了91.76%。并在测过程中抽取了5项进行预测,得到的准确率为92.31%,其较高的准确率。因此有理由认为该模型在未来的预测过程中其准确率应该达到90%以上。

3研究结论

篇3

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线是BP算法的一大优点。

2、神经网络型继电保护

神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。

文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。

ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。

3、结论

本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。

一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。

神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。

参考文献

1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993

2、RobertE.Uhrig.ApplicationofArtificialNeuralNetworksinIndustrialTechnology.IEEETrans,1994,10(3)。(1):371~377

3、LeeTH,WangQC,TanWK.AFrameworkforRobustNeuralNetwork-BasedControlofNonlinearServomechannisms.IEEETrans,1993,3(2)。(3):190~197

篇4

基神经于网络判别指标过滤方法的两级识别策略,具有物理意义清晰,定量、定性的特点。应用于结构的损伤诊断,可以有效解决结构不适定性、非线性带来的评估误差及精度问题。

1.1自适应神经网络(Auto2associateNeuralNetwork)

自适应神经网络方法基于无损伤结构在正常服役条件下的实测响应数据(某个动力特性参数、或多个动力特性参数)作为训练对象(人工神经网络的输入和输出数据X、Y),依次构造一个自相关的神经网络Net=T(XY)。训练完成后,循环迭代输入数据X进入已训练的神经网络Net,获得输出数据Yn。通过选取合适的残差判断函数,通过对比数据Y和网络输出数据Yn的差值向量,采用某种距离测度函数加以测量形成健康结构的判别指标Vi。当结构发生损伤,实测响应数据Xd被作为输入数据通过已经训练的神经网络Net,由输入数据Xd和输出数据Yd可以计算得到的新的判别指标Vd,并与Vi相比较计算差值构建损伤指标Di来判定损伤。当Di大于既定残差函数时,即判定结构已经发生损伤。

1.2概率神经网络(ProbabilisticNeuralNetwork,PNN)

自适应神经网络方法构建自相关网络Net,将实测响应信息迭代计算Di,可以定性判定是否存在损伤,在损伤确定的条件下,可通过概率神经网络PNN判定损伤的位置、类型。PNN是通过具有无参估计量的已知数据集的概率密度函数来实现贝叶斯决策,将其加在人工神经网络框架中,接着进行判别未知数据最大可能属于哪个已知数集,构建一个包含损伤类别θ1、θ2….θq…θn集合,基于p维试验向量X的贝叶斯决策d(X)为d(X)∈θq(hqlqfq(X))>hklkfk(X),k≠q

(1)hj———分类指标θj的先验概率。lj———与错误分类d(X)埸θj的相关损失。fj(X)———采用多变量高斯(Gauss)分布函数的概率密度函数:fq(X)∈1nq(2π)p/2σpnqi=1Σexp-(X-Xai)T(X-Xai)2σ222

(2)将该贝叶斯决策映射为一个人工神经网络构成一个概率神经网络,如图1所示。向量X{X1、X2、X3、X4…Xi}———输入层的输入参数。权重向量Wj和向量X的点积zj构成中间层的神经元,而相对与分类号q的决策层神经元输出为:fq(X)=nqj=1ΣZqj=nqj=1Σexp[(X•Wqj-1)/σ2]

(3)σ—高斯核标准差。在应用中,构建的损伤位置或类型假定有多种。以结构的自振频率变化率为例,输入向量X为P个自振频率变化率,将带有某种类型损伤(或混合模式损伤)的实测模态数据输入训练好的PNN,得出决策层(输出层)各个损伤形态在试验向量点对应的概率密度函数PDF的估计值,其中,最大PDF估计值对应的预设损伤集合中则得出损伤的位置及类型。

2应用及展望

美国Purdu大学的Venkatsubrmania和Chan第一次运用BP网络进行了工厂结构的损伤检测与诊断,其后的研究中,Kudva将神经网络两级识别策略运用于平板结构损伤诊断,提出了大型结构损伤检测的方法;杨英杰等开发了评估钢筋混凝土梁的神经网络系统;Worden等运用神经网络识别了一个20根构件组成的结构的损伤;Pandey用两级识别策略,基于三层神经网络对大桥桁架结构进行损伤评估。近年来,结构损伤诊断的研究取得了长足进展。上述基于神经网络的损伤诊断研究表明了在这个领域的研究成果,同时也揭示了尚未解决的问题。

(1)如何选取合适的网络形式及网络参数以及样本集的组成是神经网络两级识别策略应用的关键,研究有效的网络输入参数是一个新的内容;

(2)人工神经网络具备高度适应性,学习能力和容错能力,但其黑箱系统的特性决定了其硬件实施的复杂性,如何提高算法的实现效率亟待研究;

篇5

网络传递函数及算法的确定

BP神经网络神经元采用的传递函数通常取Sigmoid可微的单调递增函数,它可以实现输入到输出间的任意非线性映射,这个特性使得它在函数逼近等领域有着广泛的应用。因此,隐层神经元采取传递函数是正切Tansig函数,这样,整个网络的输出可以限制在一个较小的范围内;而输出层采取的是线性Purelin函数,可使整个网络输出取任意值。常用的BP神经网络算法是梯度下降法,但这种方法的线性收敛速度较慢。

然而,Levenberg-Marquardt优化方法(Trainlm函数)是高斯-牛顿法的改进形式,既有它的局部特性,也有梯度法的全局特性,故训练函数采取的是优化算法Trainlm函数。这个函数适合作函数拟合,收敛快、误差小,缺点是占用存储空间大且性能随网络规模增大而变差。

网络学习参数的确定

学习率决定着权值改变幅度值,为减小迭代次数,学习率在不导致系统误差振荡的情况下尽可能取较大值。通过多次修正,本模型中学习率大小取0.8。而动量系数在一定程度上抑制系统误差振荡,且避免系统误差突升突降情况的发生。动量系数采用先大后小的变参数学习策略较为理想,本模型学习率取0.9。

训练目标为0.0001。在神经网络的训练过程中,可能会出现训练不足或“过度训练”的情况。所谓过度训练,即出现训练中训练误差继续减小,但是验证误差逐渐增大。此时可以通过“提前终止”的方法来寻求最佳训练次数,以此来提高它的泛化能力。

网络的训练

通过文献查阅及实验测定的方式获取黏度样本为1774个。用于BP神经网络训练样本的温度及成分范围如表1所示。由表1可看出,样本的温度、成分及二元碱度范围较广,这有利于提高本预测模型的泛化能力。应用上述模型对1774个黏度样本进行初始化并训练,训练误差变化曲线如图1所示。由图1可看出,黏度训练误差收敛需要518步。神经网络均方误差函数为本模型模拟下的均方误差为mse=3.3775×10-4。由此看出,该模型收敛性良好。

黏度测定与模型预测分析

1黏度测定

通过RTW-10型熔体物性综合测定仪测定国内某3个厂的4种高炉渣,实验用渣的主要化学成分如表2所示,测定黏度与温度的关系如图2所示。由图2可看出,高炉渣黏度随温度的降低而升高,黏度曲线符合碱性渣的特性要求。

2模型预测分析

以图2中4条曲线较均匀地取93个实验数据点作为验证集,用于在神经网络训练的同时监控网络的训练过程。通过对高炉渣作仿真预测,得到高炉渣黏度的预测值。预测误差范围如表3所示,高炉渣黏度预测值与测量值的数据对比如图3所示。由表3和图3可看出,采用BP神经网络模型对4种高炉渣黏度预测的最大相对误差分别为9.87%、13.92%、5.20%和9.54%,它们的平均相对误差分别为2.75%、2.83%、1.31%和3.02%,总平均误差为2.36%,误差均控制在一个很好的水平以内。因此,BP神经网络模型对黏度的预报值有着较高的准确性。

结论

篇6

安全评价的关键与基础是选取与确立评价的指标体系,它对评价的结果是否符合实际情况至关重要。化工企业安全评价指标体系应尽可能反映化工企业的主要特征和基本状况。评价过程中指标体系的要素组成非常关键,如果选取的要素太多,有可能使评价指标体系更加庞大和冗杂,从而增加评价的困难程度,甚至会使一些重要因素被忽略;如果指标因素太少,则难以较完整地反映被评价系统的客观实际情况。•33•通过查阅研究某大型炼油化工企业的相关文献和资料[4],由人、机和环境3个方面构成的系统模型出发,把生产系统所有重要环节包含其中,从而建立出化工企业的安全评价指标体系如图1和表1至表4所示。

2化工企业的遗传神经网络安全评价模型

2.1遗传神经网络遗传算法优化神经网络的方法主要有2种:对神经网络的初始权值和阈值进行优化;对神经网络的结构进行优化[5]。本文在保持神经网络的结构不变的情况下,用遗传算法对BP神经网络初始权值和阈值进行优化。

2.2遗传神经网络评价模型遗传神经网络优化的数学模型[6]如下:本文构建的遗传神经网络模型的运行过程如下:(1)初始化BP神经网络。(2)把BP神经网络的全部权值与阈值实数编码,确定其长度l,确定其为遗传算法的初始种群个体。(3)设置遗传算法的相关参数以及终止条件,执行遗传算法;遗传算法包括对群体中个体适应度进行评价,执行选择、交叉、变异遗传操作,进化生成新的群体;反复操作至设定的进化代数,最终取得最佳染色体个体。(4)把最佳染色体个体解码,分解为BP网络对应的权值、阈值,输入训练样本,利用BP网络进行训练。(5)得到训练好的BP神经网络,则可输入实例样本进行评价。

3遗传神经网络评价模型在化工企业的应用

3.1学习样本的准备根据前文所确定的评价指标体系和对某大型炼油化工有限公司成氨分厂提供的空气分离、渣油气化、碳黑回收、一氧化碳变换、甲醇洗涤、液氮洗涤等工序的安全原始数据,参考文献中化工企业安全评价指标取值标准,进行分析和整理,得出11个实例样本,如表5所示。选择10个样本作为遗传神经网络的训练样本,1个样本作为测试样本。

3.2BP网络结构的确定BP网络拓扑结构一般是由网络层数、输入层节点数、隐含层节点数、隐含层数以及输出层节点数等来确定。本文建立的遗传神经网络模型是根据经验来确定神经网络的层数,一般选取BP神经网络的层数为3层[7]。通过化工企业安全评价指标的分析,得出BP神经网络输入层神经元数目为评价指标的总数12+6+8+5=31。模型最后输出的结果为综合安全评价结果,因此,神经网络的输出层节点数确定为1。隐含层中节点数的范围通过经验公式来确定,本文在其确定范围内选12。依据训练样本的规模,设定学习率为0.1,最大训练误差值设为10-5,循环学习次数为1000次。网络输出层为1个节点,即化工企业的安全评价结果。化工企业安全等级一般分为5级[7],如表6所示。

3.3遗传算法优化遗传算法中,参数设定如下:种群规模设为300,交叉概率设为0.7,进化代数设为100,变异率设为0.05。本文运用MATLAB软件中的遗传算法工具箱gads,在GUI操作界面中输入以上参数,并输入适应度函数,对神经网络的权阈值进行优化。经过遗传操作后,运行遗传算法工具箱,则可得出最佳适应度曲线图和最佳个体图(图2),得到最佳适应度个体,将其进行解码,作为该网络的初始权值和阈值赋给BP神经网络。

3.4GA-BP神经网络训练在MATLAB界面中编程语言,得到输出向量和网络均方差变化图。训练结果与期望输出见表7,BP网络训练过程如图3所示。从训练结果可以看出,该网络的误差值不超过10-5,满足设定要求。用该网络对实例样本进行安全评价,得到结果为3.9956,对照安全评价输出结果等级表为较安全,与目标值吻合。从而训练后的网络稳定性得到验证,可以用于化工企业安全评价。

4结论

篇7

关键词:毕业设计(论文) 成绩评定 离散Hopfield网络评定模型

中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(a)-0228-03

Evaluation method of comprehensive performance for undergraduate in the graduation design (thesis)

HE Min ZHU YaLin

(School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei,Anhui,230009,China)

Abstract:In this paper, according to the more important ten evaluation indicators, the five grades ideal evaluation is established corresponding to the level of comprehensive performance of twenty undergraduates. Combined with associative memory capacity of discrete Hopfield neural networks, a new evaluation method of comprehensive performance for undergraduate in the graduation design (thesis) is presented. In order to evaluate the effectiveness of the assessment model, five undergraduates are assessed by the model, the network connection weights is obtained by iterative learning using the outer product method. The simulation results show that the comprehensive performance assessment model of undergraduates based on discrete Hopfield neural networks can assess the comprehensive performance of undergraduates fast, accurately and intuitively.

Key words:graduation design(thesis) performance evaluation DHNN evaluation model

毕业设计(论文)是高校教学实践中实现培养目标的最后一个综合性环节。学生在各自老师指导下,按照教学计划要求,独立撰写完成毕业设计(论文)。毕业设计(论文)是大学生在校期间所学知识、理论等各种能力的综合应用、升华,创新潜能得到了充分激发,并且对专业教学目标、教学过程、教学管理以及教学效果进行全面检验。

毕业设计(论文)成绩不仅影响到学生评优和学士学位的获取,也使得他们在做毕业设计(论文)过程中,清楚认识到自身在哪些方面存在不足。因此对于本科毕业设计(论文)综合成绩的评定,一定要公正、合理。目前我校毕业设计综合成绩评定分成三部分:首先是指导教师评阅,给出建议成绩;其次在答辩前,专业教研室组织本学科教师进行交叉评阅,给出建议成绩;最后由答辩委员根据学生答辩情况,并参考指导教师、评阅人所建议的成绩给出最终的毕业设计(论文)成绩。这种评定方法存在评价指标缺乏定量的评定标准、工作繁琐、时间滞后,人为主观因素对评价结果影响很大。因此如何快速、准确地对众多学生的毕业设计(论文)进行客观、公正评价,是一项很有意义的工作。

目前应用于毕业设计(论文)综合成绩评定的方法有模糊评价法[2]、层次分析法等,该文尝试选用我校毕业设计毕业过程中较为重要的10个评价指标的数据,结合离散Hopfield神经网络(DHNN)的联想记忆能力,建立离散Hopfield评定模型;将待评定的学生等级评价指标编码作为该模型的输入,利用外积法对网络连接权值进行迭代学习,数值仿真结果表明,此种方法能够快速、准确、直观地得到众多学生综合成绩的评定结果。

1 外积法设计DHNN网络

离散Hopfield神经网络这种全连接型网络可以模拟生物神经网络的记忆功能,由美国物理学家J.J Hopfield在1982年首先提出。Hopfield网络目前主要应用于联想记忆和优化计算等问题。其中的联想记忆原理是:当某个矢量输入网络后,经过反馈计算,最后达到稳定状态,在Hopfield网络输出端得到另一矢量,此输出量是网络从初始输入量联想得到的稳定记忆,即Hopfield网络的一个平衡点。

离散Hopfield神经网络(DHNN)是二值型网络,神经元输出取值1或者-1,1表示神经元被激活的状态,而-1表示神经元被抑制的状态。一个三神经元组成的离散Hopfield神经网络,其网络结构如图1所示。

图1中,第0层是网络输入,第1层的神经元执行对输入信息与权系数的乘积,并且求累加和,经过非线性函数处理后,产生神经元的输出信息。是一个简单阈值函数,如果神经元的输出信息大于阈值,则神经元输出取值1;而神经元的输出信息小于阈值,则神经元输出取值-1。二值神经元的计算如公式(1)所示

(1)

式中,为外部输入,并且有公式(2):

(2)

离散DHNN网络是输出神经元信息的一个集合,DHNN网络(输出层是个神经元)在 时刻的状态为公式(3)所示的维向量:

(3)

采用外积法设计离散Hopfield网络的权系数矩阵。给定需记忆的样本向量,如果的状态是1或者-1,则连接权值的学习利用外积规则,即:

(4)

利用外积法设计离散Hopfield神经网络步骤如下:

第一步,根据需要记忆的样本,按公式(4)计算权系数矩阵;

第二步,令测试样本为网络输出初始值,设定迭代次数;

第三步,进行迭代计算,

第四步,当达到最大迭代次数,或者神经元输出状态保持不变时,迭代终止;否则返回第三步继续迭代,直至满足条件为止。

2 大学生毕业设计综合成绩评定模型

影响本科生毕业设计综合成绩的因素有很多,本文仅以较为重要的10个影响因素作为评价指标:科技论文翻译(X1)、查阅资料及学习能力(X2)、出勤率(X3)、毕业设计过程中小组检查情况(X4)、毕业设计过程中院校督导组检查情况(X5)、电算模型/程序(X6)、计算书整理(X7)、施工图绘制(X8)、评阅人评阅(X9)、答辩过程表现(X10)。

参照合肥工业大学毕业设计(论文)工作实施细则,学生综合成绩可分为四五个等级:优秀(I)、良好(II)、中等(III)、及格(IV)和不及格(V)。换算成百分制,优秀在85~100分之间,良好在75~84分之间,中等在66~74分之间,及格在60~65分之间,不及格在0~59分之间。毕业设计(论文)综合成绩评定模型建立流程如图2所示的五个步骤。

该文列举出20个学生的毕业设计(论文)综合成绩评定等级与10个评价指标之间的关系,各评价指标采用百分制,如表1所示。将各个等级的样本对应的个评价指标平均值作为各个等级理想评价指标,即作为Hopfield神经网络的平衡点,如表2所示。

离散型Hopfield神经网络神经元的状态只有1和-1两种情况,当评价指标映射为神经元状态时,需要将其进行编码。编码规则为:当大于或者等于某个等级的指标时,对应的神经元状态设为1,否则设为-1。理想的5个等级评价指标编码如图3所示,其中表示神经元状态为1,即大于或等于对应的理想评价指标值;如果小于理想评价指标值,则用表示。

5个待评定的学生等级评价指标如表3所示,由前面所述的编码原则得到这5个毕业设计(论文)综合成绩待评定学生的评价指标编码,如图4所示。在Matlab软件中利用自带的人工神经网络工具箱,创建基于离散型Hopfield的综合成绩评定模型,再确定待评定的5个学生等级评价指标的编码,并且将其作为评定模型的输入,经过一定次数的学习,最终得到学生综合成绩评价的输出结果。

为了直观显示结果,以图形的形式显示仿真结果,如图5所示,其中第1个学生评定等级为第II级,第2个学生评定等级为第III级,第3个学生评定等级为第I级,第4个学生评定等级为第IV级,第5个学生评定等级为第V级。

3 结语

基于Hopfield人工神经网络,建立工科本科生毕业设计(论文)综合成绩评定模型,并对5个学生的成绩进行评定,得到如下结论。

(1)设计的Hopfield神经网络综合成绩评定模型可以快速、直观地对工科本科生的毕业设计(状况)进行进行评定,方法简单易行,并能有效保证评定结果的准确性,避免打分过程中的各种人为主观因素,体现成绩评定过程中的规范性和科学性。

(2)在我校现有的毕业设计(论文)评定方法基础上,尝试对每个学生的毕业设计(论文) 按照上述方法再进行一次评定,比较两次结果是否一致。对两次的成绩评定结果,再按照加权算术平均法确定最终的毕业设计(论文)成绩。

参考文献

[1] 张志英.模糊评价法在本科毕业设计成绩评定中的应用[J].浙江理工大学学报, 2011,28(3):467-470.

[2] 李瑞兰.层次分析法在毕业设计(论文) 成绩评定中的应用[J].长春工程学院学报(社会科学版),2011,12(4):156-158.

[3] Hopfield, J. J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79: 2554-2558.

篇8

Abstract: This paper presented a professional title forecast model implemented by gray relational analysis combined with BP neural network, using gray relational analysis to find out potential relationship between impact factor and professional title promotion,to provide screening function of the input factors for the BP neural network, and finally through the training of BP neural network to achieve the forecast. Taking 46 teachers’promotion to associate professor in the Institution in 2012 as assessment sample,6-8-2 network model was simplified to5-8-2 network model.The result showed that the results obtained by the established assessment model were completely consistent with the results obtained by the established assessment model were completely consistent with the simulation results based on artificial neural net-work,the training efficiency of the model is raised greatly,so the model has a value to be applied in certain extent.

关键词: 职称评审;灰关联分析;BP网络

Key words: professonal titles evaluation;GRAY;BP network

中图分类号:TP183 文献标识码:A 文章编号:1006-4311(2013)06-0170-02

0 引言

职称评审涉及到教师的切身利益,客观、公正、透明的职称评审工作对教师做好教学、科研和管理工作具有权威的导向性和指导性。职称系统是具有评审因素多,因素间相关性模糊、不确定,非线性、时变性等特点的复杂系统,其评审属于多因素综合评审范畴。

神经网络可以很好地解决职称系统评审的非线性问题,然而评审因素间相关性,会使得网络陷入局部最小点,导致评审结果存在很大的偏差。灰关联分析方法可在不完全的信息中,通过一定的数据处理,找出评审因素的关联性,发现主要矛盾,找到主要特性和主要影响因素[1-2]。因此将灰关联分析与神经网络相结合建立评审模型,神经网络解决职称系统评审对于非线性系统的支持,灰关联分析帮助神经网络找出主要的影响因子。

1 高校教师职称影响因子的灰色关联分析

1.1 高校教师职称评审影响因子的确定 依据某高校历年教师职称的评定标准,主要是从论文的级别数量、科教成果获奖(市级以上),是否承担科研科教项目等方面来综合评定教师职称的获得。针对该高校2012年数据中46名教师在承担科研科教项目都满足,而在有科教成果获奖(市级以上)上只有个别的教师有,所以本文考虑,以论文级别数量构建6个评定指标:SCI/EI篇数x1,一级核心论文篇数x2,二级核心论文篇数x3,三级核心论文篇数x4,一般期刊论文篇数x5,论文总篇数x6。

1.2 灰关联系数和关联度的计算 灰色关联分析是一种重要的灰色系统理论分析方法,其基本原理是通过序列的曲线几何形状的相似程度来判断序列的联系是否紧密,其紧密程度用关联度量化,曲线越紧密,其关联度越大,反之就越小[3-4]。

灰色关联分析的计算分析步骤:

(1)将该高校职称专家评审结果作为参考序列x0(k),k=1,…,46,晋级职称的x0=1,被淘汰的x0=0,6个影响因子作为比较因素序列xi(k),i=1,…,6;k=1,…,46。

(2)根据表1求出Δ■(k)=y■(k)-y■(k),并找出Δ■=0,Δ■=27,由灰关联系数公式ξy■(k),y■(k)=■其中分辨系数ρ取值0.5,计算出6个影响因子与高校教师职称评审在46个样本点上的灰关联系数,如表2。

(3)计算关联度

由公式ry■,y■=■ω■ξy■(k),y■(k),取ω■=ω■…=ω■=■,及根据表2求得比较因素xi和参考因素x0的关联度,依次为r1=0.9345,r2=0.9625,r3=0.8360,r4=0.9108,r5=0.6545,r6=0.4984。

关联度排序:r2>r1>r4>r3>r5>r6

这一关联序直接反映了比较因素xi对参考因素x0的相关性强弱的顺序,即各影响因子与高校教师职称评审的接近程度,同时也说明了这6个影响因子对高校教师职称评审影响程度由大到小的顺序—关联序。

由以上关联排序我们可知:一级核心论文篇数x2,SCI/EI篇数x1,三级核心论文篇数x4对高校教师职称评审影响程度最大,关联度值都在0.9108以上,如果我们能在这三类级别的期刊上多,就可以大大提高通过职称评审几率。我们如在一级核心,SCI/EI上感觉发表困难的话,可把重点放在较容易发表的三级核心上,同样有效。二级核心论文篇数x3对高校教师职称评审影响程度也很大,关联度值为0.8360,论文总篇数x6对高校教师职称评审影响程度最小,关联度值只有0.4984。

2 基于灰色BP神经网络的高校教师职称评审预测

BP神经网络模型的建立:表1归一化的46组数据作为BP神经网络的样本,任取前37个样本用于网络学习训练,另外的9个作为网络训练完毕后的预测样本。

为了验证本文灰色BP预测模型的有效性,实验中与单一采用BP的模型,在网络训练效率方面、网络预测的准确上分别进行比较。

灰色BP预测模型:根据上文对高校教师职称评审影响因子的分析,选用上述的关联度值在0.4984以上的5个影响因子作为输入变量,高校教师职称专家评审作为输出数据,将职称晋级(1)、淘汰(0),分别用“1 0;0 1”表示。隐含层经训练,结果表明:当隐含层单元的个数为8时,网络模型稳定且获得较理想结果,这样网络结构即可确定为5-8-2。训练函数采用trainlm,输入层与隐层、隐含层与输出层之间的传递函数选为tansig,logsig函数。训练次数最大设置为100次,网络收敛误差为0.001。

BP预测模型:表1归一化的数据作为BP网络的输入。BP输入节点为6个指标数值,BP网络输出节点为2,中间层的节点数选8,网络结构即可确定为6-8-2,其它参数设置同上。

从图1、2可以看出,灰色BP网络的训练只经过13步就达到了最小误差,这说明,选择与高校教师职称评审有较大关联度的5个影响因子作为网络输入,提高了网络训练的效率。

从表3中可以看出,在建立预测模型前未经过任何数据预处理的BP模型,预测准确率低,判错了2个,准确率77.77%,本文的基于灰色BP预测模型,判错1个,准确率提高到88.9%,预测结果与专家评审基本吻合。

3 结论

本文针对某高校2012年教师职称评审实际数据,利用灰色关联分析方法探讨了各个影响因子对教师职称评审的影响程度;采用基于BP神经网络模型对教师职称评审进行预测,得出结论:

(1)利用灰色关联分析方法能够考虑影响教师职称评审的主要因素,灰色关联分析表达出各个影响因子的影响程度,为高校教师职称的晋级提供指导参考。

(2)与目前我国高校教师职称采取的定性分析评审相比,基于灰色神经网络评审模型实际操作简单、客观,这些使得评审结果更加趋于合理。

(3)利用灰色关联分析帅选了其中5个指标的本文BP神经网络预测模型,与未经过任何数据预处理的BP预测模型相比,提高了网络的训练速率和网络预测精度。

参考文献:

[1]张吉刚,梁娜.消费者网上购物意向的灰色神经网络预测模型[J].统计与决策,2007(22):133-135.

[2]孙莉.基于灰色BP神经网络的服装面料规格参数预测[J].计算机应用与软件,2012(7):154-157.

[3]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].5版.科学出版社,2010:62-90,211-213.

[4]肖新平,宋中民等.灰技术基础及其应用[M].北京:科学出版社,2005.8.

[5]刘军奎.高校职称评审制度的社会学思考[J].前沿,2011(05).

[6]朱霁.我国高校教师职称评审程序的弊端及完善[J].中南林业科技大学学报(社会科学版),2011(02).

[7]王勇强.关于高校教师职称制度改革的思考[J].中国高校师资研究,2011(02).

篇9

论文关键词:个股投资,项目风险度量,BP神经网络算法:实证分析

 

BP神经网络算法在个股投资项目风险度量中的应用研究

摘要:度量个股投资项目风险是一个复杂的过程,目前的大部分研究方法都没有考虑个股投资项目风险的非线性复杂特点。本文通过BP神经网络算法,对个股投资项目进行实证分析。结果显示,利用BP算法具有很好的预测精度,能有效地提高个股投资项目风险度量的准确性。

关键字:个股投资;项目风险度量; BP神经网络算法:实证分析

1引言

Eugene F.Fama(1970)的有效市场假说(Efficient Market Hypothesis)认为,如果证券市场在价格形成中充分而准确地反映全部相关信息,则称该市场是有效率的。但现实情况恰恰相反,由于股票行市受市场层次、行业层次和公司微观层次等因素影响,其内部规律非常复杂,周期变化无序。同时我国资本市场个人投资者的比例高,相对于机构投资者而言,投资者个人心理状态不同毕业论文提纲,风险承受能力差,专业水平低,尤其是非职业股民由于受时间、空间上的限制,往往无法长期关注股市动态和发展,同时出于追逐利益的目的以及本身缺乏风险意识以及缺少信息的原因,使得投资者普遍抱持着投机心理,产生了跟庄行为,由此导致“羊群效应”的发生。“羊群效应”是行为金融学的一个重要概念,是指在一定时期,当采取相同策略(买或卖)交易特定资产的行为主体达到或超过一定数量。这种投资者结构以及投资者行为的特点使得中国股票市场的股票行为具有了不同于成熟市场的特点论文提纲格式。所有这些给股票风险分析提出了新的课题。目前的诸多相关研究,其融合了诸多学科中的理论精华,并结合现代个股投资项目风险的特点,迄今在业界已经取得了不少成就,如主成分分析法、多元回归方法等,但这些方法大都没有考虑个股投资项目风险非线性复杂特点。

因此,本文从个股投资项目风险度量建模的具体情况出发,采用神经网络算法,应用MATLAB仿真软件进行了实证分析。并且通过与多元回归方法对比得到了,在具有复杂特点的个股投资项目风险管理中,BP神经网络算法具有很好的预测精度,能有效地提高个股投资项目风险度量的准确性。

2 BP神经网络

BP(backpropagation)神经网络是前馈型神经网络的一种,其是建立在梯度下降法的基础上的,学习过程(训练)由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出毕业论文提纲,则转入反向传播,逐层递归地计算实际输入与期望输入的差(即误差)。将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

图1:三层神经网络模型

在图1中,输入向量为;隐层输出向量为;输出层输出向量为;期望输出向量为。输入层到隐层之间的权值矩阵用V表示,,其中列向量为隐层第j个神经元对应的权向量;隐层到输出层之间的权值矩阵用W表示,,其中列向量为输出层第k个神经元对应的权向量。各层信号之间的数学关系如下:

对于输出层,有

k=(2﹒1)

k=(2﹒2)

对于隐层,有

j=(2﹒3)

j=(2﹒4)

由于标准BP算法存在一些缺陷:

(1)易形成局部最小而得不到全局最优;

(2)训练次数多使学习效率低,收敛速度慢;

(3) 学习过程出现假饱和。

另外,网络隐含层数及隐节点的选取缺乏理论指导,网络训练时学习新样本有遗忘旧样本的趋势。因此,我们采取如下措施进行改进:

(1)增加动量项

令,称为动量系数,一般有。

(2)输入数据处理

在输入数据的标准化方面,输入数据太大,容易导致模型无法收敛,所以将输入数据变换为[0,1]区间的值,其公式如下

其中,代表输入数据,代表数据变化范围的最小值,代表数据变化范围的最大值。

(3)学习速率的调整

K为训练次数,为网络均方根误差毕业论文提纲,这样保证一个近最优的学习速率,从而得到比标准BP算法更快的收敛速度论文提纲格式。

3实证分析

本文数据来源于和讯网国内工业运输行业个股投资价值财务得分表,数据截止到2009.12.18(hexun.com/quote.hexun.com/stock/icb.aspx?code=2770&name=工业运输)部分情况见表1。

表1:个股投资项目指标体系

 

一级指标

二级指标

成长性指标

净利润增长率

资产增长率

资本增长率

每股收益增长率

财务能力指标

资产负债率

债务资本率

股东权益比率

偿债能力指标

流动比率

速动比率

长期资产适合率

现金流指标

每股现金流量

经营现金流与负债比

现金流量比率

净利润现金含量

经营能力指标

销售收入增长率

应收帐款周转率

存货增长率

营业周期

盈利能力指标

总利润率

净利润率

篇10

【关键词】BP神经网络;隐层节点自动筛选;温度预测

0 引言

微波加热过程中温度的预测,一般采用数值模拟的方法,其中刘长军等采用时域有限差分求解方程组的方法来模拟媒质温度随时间变化的规律[1]。赵翔等采用矩量法、半解析法分别求解电磁场方程和热传导方程的方法来模拟温度空间随时间的变化规律[2]。此类数值模拟的方法,存在数值计算复杂,考虑因素不齐全等问题。而直接用温度传感器测量所导致的问题有:需对腔体开孔易造成微波泄漏;微波对传感器辐射,易造成测量不准确和损坏;传感器测量存在时延,不利于实时控制。而用微波功率计对反射功率的测量比温度测量容易,且精度较高。因此本论文用反射功率、时间、初始温度等对温升产生影响的因素,结合 BP 算法对加热的温度进行预测。

1 BP神经网络算法的数学模型

2 隐含层节点数的研究

隐含层节点数量对网络性能有很大影响,节点数越多,网络性能越好,但可能导致训练时间较长,且网络学习后的网络泛化能力会降低,节点数目太少,则不能产生供样本数据学习的连接权值组合,导致学习不收敛,最终训练网络不能达到预期的预测效果。

2.1 隐含层节点数范围的确定

对于神经网络中隐含层节点数目的确定,目前仍没找到确定表达式,以往一直采用经验和不断试验来确定一个近似的隐含层节点数,而这类方法工作量比较大,预测的精度以及网络模型的质量都不能保证。

其中,m是输入层节点数,n是输出层节点数,ξ是整数,取值范围为1~10。估算出i的取值范围3~12。

2.2 隐含层节点数自动筛选的设计

本文通过设置For循环,对隐含层取值范围内的数进行一一对比测试数据样本对应的输出数据的累计误差和,本科论文选取累计误差和最小的隐含层数作为最优隐含层节点数。在筛选中,选用2层For循环,外层For循环用于设置隐含层节点数范围,即3~12,内层For循环用于计算误差和,其实现步骤为:(1)选取隐含层节点数为NodeNum=L(i),创建网络。(2)对样本数据进行网络训练。(3)用测试样本数据对训练好的网络进行测试,计算测试样本数据与目标输出间的误差矩阵。(4)对误差矩阵进行求和,求出当前隐含层节点下的误差和sumerror。(5)比较误差和,筛选出误差和最小的隐层节点数目。

3 BP算法的MATLAB仿真实现

本文仿真在MATLAB平台上完成,采用自动筛选隐含层节点数的BP算法对微波腔体中媒质的温度进行预测[6]。

3.1 预处理

实验将100ml的水在室温20.9℃下采用不同恒定功率下加热,记录时间、温度和反射功率,温度到达50摄氏度,停止加热。

4 BP模型温度预测结果分析

采用手动和自动筛选隐含层节点数目的网络结构如图3所示:

5 结论

本文利用在实验中收集的相关数据,采用可自动筛选节点的BP神经网络算法对媒质水的温度进行预测。在微波加热温度可控的工程应用中,本论文具有重要的应用价值。

【参考文献】

[1]刘长军,闫丽萍,黄卡玛.微波加热中“热失控”的一维数值模拟[C]//2005年全国毫米波会议论文集,2005:1040-1043.

[2]赵翔,黄卡玛,闫丽萍,姚远.数值模拟微波加热化学反应过程的初步研究及热点和热失控现象讨论[J].中国科学Q辑:物理学 力学 天文学,2009,39(4):501-511.

[3]陈明,等,编.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.

[4]傅荟璇,等.Matlab神经网络应用设计[M].北京:机械工业出版社,2010.