生物燃料范文

时间:2023-03-17 17:31:29

导语:如何才能写好一篇生物燃料,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生物燃料

篇1

而专家们也认为,利用麻疯果和甜高粮等非粮食作物制造生物燃料不会带来与人争粮的风险。

在此背景下,我国生物燃料乙醇发展秉持“少与人争粮,不与粮争地”的原则,由几年前大面积发展玉米乙醇,转向支持发展以木薯、红薯、甜高粱等非粮作物制乙醇,并且积极推进纤维素制乙醇的试点工作。

生物燃料乙醇的前世今生

迄今为止,燃料乙醇的发展经历了两个阶段。第一阶段是以玉米、小麦为原料,发展燃料乙醇的初始阶段。这是一个过渡期,可以为纤维素乙醇打下基础。第二阶段是非粮燃料乙醇阶段,以薯类、甜高粱等为原料。

按照《可再生能源中长期发展规划》,到2010年,中国将增加非粮原料燃料乙醇年利用量200万吨,总利用量为300万吨。到2020年,生物燃料乙醇年利用量将达到1000万吨。

国家发改委能源研究所可再生能源发展中心副主任任东明指出,生物质能(太阳能以化学能形式贮存在动植物和微生物中的能量形式)的发展方向之一就是重点发展生物液体燃料。“近中期,国家将积极稳妥开发利用边际土地种植非粮原料作物、生产燃料乙醇和生物柴油以补充车用燃料。”任东明说,“目前全国有4家燃料乙醇生产企业,产业才刚刚起步。”

目前,中国是处于美国和巴西之后的世界第三大乙醇生产国,年产约10亿加仑。

在此必须提及麻疯果。麻疯树是一种不能食用的植物,可用来做篱笆。几个世纪以前,葡萄牙的水手将这种植物带到了世界各地。麻疯树在干旱的土壤中可以全年生长,其果实不能食用,所以不会造成食物价格的通胀,也不会占用宝贵的庄稼地。

而且,麻疯树的投入很少。它可以在其他植物不能生长的地方存活。在赤道南北纬25度的区域,麻疯树生长得最好。

另外,麻疯树油在3年的种植期内就能实现商业化生产,而棕榈油需要7年。而且,麻疯树是一种生物屏障,可以圈住牲畜,抵挡沙土,可以生存50年。只要有足够的肥料和水,麻疯树籽自重的40%可生成油,甚至在灌木丛林地带生长的树籽也有30%的含油量,大大超过大豆的18%。

但从麻疯树果实中加工树油用作能源还是最近的事,且目前的产量还很小。麻疯树在生物柴油燃料中的比例只有不到1%。

据了解,在中国生长的麻疯树果实含油率50%~80%,经改性后的麻疯树油可适用于各种柴油发动机。目前,中国野生麻疯树的干果产量为300~800kg/亩,平均产量约660kg/亩。

第二代生物燃料投资趋热

在能源产品获利颇丰的年代,千百年来在野地里自生自灭的麻疯树在过去两年内成为各路资本的宠儿。

四川攀枝花是最适合麻疯树生长的地区之一。作为国内麻疯树最适合生长的地区,攀枝花成为国内麻疯树投资最为集中的地带。据攀枝花林业局人士介绍,早在2005年,美国贝克生物燃料公司就开始在攀枝花进行麻疯树种植。“他们曾经计划在几年内投资20亿美元,建成世界上最大的生物能源基地,年产近40万吨生物柴油。”可惜此事之后却没有下文了,人们猜测应该是受到金融危机的影响。

另一家生物能源公司英国阳光集团,在2005年也与四川凉山州人民政府签订了生物质能源项目合作协议,计划投资40亿元人民币,在攀西地区种植100万亩麻疯树炼生物柴油。

紧随其后的是中石油、中石化、中海油这样的能源巨头。仅仅在四川攀枝花以西地区,三大巨头公布的投资计划就超过200亿元人民币。其中中海油前期决定投资24亿元,麻疯树种植面积超过50万亩,年产量10万吨。而中石油和中石化也在攀西地区重兵投入。在麻疯树投资方面,中石油走在了三巨头的前面。据中石油西南油气公司的人士介绍,根据此前中石油和国家林业局签订的协议,从2007年开始,中石油在四川和云南建设第一批林业生物质能源基地,面积将达到60多万亩。

而作为燃料乙醇的另一种原料,甜高粱在《可再生能源发展“十一五”规划》中,被列为生物液体燃料的第一来源。这源于甜高粱杆在众多的乙醇生产原料中,成本最低。

中国可再生能源学会副理事长王孟杰透露,甜高粱的乙醇亩产量很高,每亩甜高粱每天合成的碳水化含物可产3.2升酒精,而玉米只有1升,小麦为0.5升,粮用高粱为0.6升。

据公开资料显示,2007年春天,中粮集团、BP公司曾召集山东省阳信、河北省黄骅市、内蒙古五原县的相关人士召开了“中粮-BP公司甜高粱制生物乙醇项目农艺试验落实及技术培训会”,同时在内蒙古投资130万元做甜高粱的固态发酵试验。

中粮拟投资15亿元的河北衡水燃料乙醇项目因粮食燃料乙醇被叫停后,将目光投向河北黄骅的甜高粱作物。

此外,2007年,中粮在广西北海投资达13亿元的年产20万吨燃料乙醇项目已经投产,该厂以木薯为主要原料。

广西继河南、黑龙江、辽宁等之后,成为全国第6个全封闭使用燃料乙醇的省份,中粮北海燃料乙醇厂也是目前全国唯一的非粮燃料乙醇项目,在投产后基本处在满负荷生产的状态。

同时,早在2006年4月,中粮集团就与丹麦诺维信公司合作,在黑龙江肇东建立了年产500吨的纤维素乙醇中试装置,目前这个装置运行良好。中粮透露:“2008年年底开工建设年产1万吨的工业设施,如果效果良好,未来打算扩大生产规模。”

事实上,除中粮集团在黑龙江肇东的纤维素制乙醇试点外,中粮旗下的丰原生化、吉林燃料乙醇公司以及由中石油控股的河南天冠燃料乙醇有限公司,都纷纷在进行纤维素制乙醇的试验工作,目前均已有所进展。

其中,2008年5月8日,河南天冠集团研制建成了中国首条年产5000吨纤维乙醇项目产业化生产线,并且顺利产出了第一批纤维乙醇。通过生物发酵,每年它可以将3万多吨的农作物秸杆转化为绿色燃料乙醇。目前,天冠已掌握并拥有了完整系统的、具有多项自主知识产权的纤维乙醇生产技术。

2006年,总书记曾视察天冠集团,在得知天冠在纤维乙醇方面的核心技术都是自主知识产权时,他高兴地表示:“核心技术的知识产权是最重要的,希望你们带个好头,争取尽快获得成功!”

乐观前景下的现实困难

第一代生物燃料乙醇也就是玉米等陈化粮制乙醇,并没有多大的技术含量。即使现在,用木薯、红薯等作物制燃料乙醇,也只能算是一代半,在技术上并无核心突破。而现在开始的第二代生物燃料乙醇“竞赛”,已是真正以技术实力进行比拼了。

总体而言,整个生物质技术是我国与世界先进水平差距最小的高技术领域之一,研发差距在5年以内。

中粮集团、河南天冠作为我国生物燃料乙醇的核心企业,都在不遗余力地进行核心技术创新,以期加快纤维素制乙醇的商业化步伐。

但是,现在以纤维素生产燃料乙醇,相对于现在的汽油和玉米生产燃料乙醇,成本相差比较大,目前还不具备大规模商业化的条件技术。未来发展的难点就在于技术的突破,其技术进步的核心是降低成本。

首当其冲的是,纤维素燃料乙醇的建厂成本比玉米乙醇厂要高出1.5倍到10倍。同时,虽然说将纤维素制成燃料乙醇的技术早在20年前就已有人完成了,但大规模种植后的实际效果尚有待观察。

比如,中石油吉林燃料乙醇有限公司此前种了五六百亩甜高粱,2007年12月试生产了几吨,结果只得到乙醇含量为20%多的淡酒。2008年又多种了几百亩,计划再试一次。

达标的燃料乙醇酒精的含量应为99.5%。据了解,每3.2吨粮食可产1吨乙醇,而同样的乙醇却需要18吨甜高粱秆,运输量很大。

一位经营甜高粱燃料乙醇工厂的业内人士认为,“经营甜高粱项目要与农民打交道,意味着要指导农民种甜高梁,再从他们手里收购。大国企不善此道。”

业内人士表示,搞生物能源,成本大、收益慢,政府应给予相应的补贴和税收优惠,包括怎么补贴,是补贴基地还是补贴农户,加工过后如何上市,上市谁来销售,销售的价格和标准等,都应该作出明确的规定,同时国家必须强制推行,不然就无法执行。

民营企业对此体会尤为深刻。

“如果有政策,我都已经赚回一个工厂了。”一位在甜高粱项目投资4000万元的民企老板说。他投资甜高粱燃料乙醇已有5个年头了,虽然他的工厂早就能生产出纯度为95%以上的乙醇,但至今也没有正式开工。

原因在于,每生产1吨乙醇,这位老板就要赔500元至1000元人民币。“我们没有国家发放的生产配额,中石油中石化是不会收购的。一旦生产我们只能卖出食用乙醇的市场价,4500元钱一吨,而我们所需的甜高粱秆就要花掉4000多元钱。”该民企老板称。

据了解,现在具备甜高粱燃料乙醇生产能力的企业全国不到3家,都在停产待工。“如果一两年内公司不能入围国家的配额,那我只有两个选择:封厂或者改为食用酒精厂,”这位民企老板已经有些灰心,“我们现在的愿望是,只要国家给我们配额,让我们卖出燃料乙醇的价格,加上副产品的收入就能赢利,但我们看不到希望啊。”

篇2

微生物燃料电池并不是新兴的东西,利用微生物作为电池中的催化剂这一概念从上个世纪70年代就已存在,并且使用微生物燃料电池处理家庭污水的设想也于1991年实现。但是,经过提升能量输出的微生物燃料电池则是新生的,为这一事物的实际应用提供了可能的机会。

MFCs将可以被生物降解的物质中可利用的能量直接转化成为电能。要达到这一目的,只需要使细菌从利用它的天然电子传递受体,例如氧或者氮,转化为利用不溶性的受体,比如MFC的阳极。这一转换可以通过使用膜联组分或者可溶性电子穿梭体来实现。然后电子经由一个电阻器流向阴极,在那里电子受体被还原。与厌氧性消化作用相比,MFC能产生电流,并且生成了以二氧化碳为主的废气。

与现有的其它利用有机物产能的技术相比,MFCs具有操作上和功能上的优势。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的所有生物能处理,MFCs在常温,甚至是低温的环境条件下都能够有效运作。第三,MFC不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,一般条件下不具有可再利用的能量。第四,MFCs不需要能量输入,因为仅需通风就可以被动的补充阴极气体。第五,在缺乏电力基础设施的局部地区,MFCs具有广泛应用的潜力,同时也扩大了用来满足我们对能源需求的燃料的多样性。

微生物燃料电池中的代谢

为了衡量细菌的发电能力,控制微生物电子和质子流的代谢途径必须要确定下来。除去底物的影响之外,电池阳极的势能也将决定细菌的代谢。增加MFC的电流会降低阳极电势,导致细菌将电子传递给更具还原性的复合物。因此阳极电势将决定细菌最终电子穿梭的氧化还原电势,同时也决定了代谢的类型。根据阳极势能的不同能够区分一些不同的代谢途径:高氧化还原氧化代谢,中氧化还原到低氧化还原的代谢,以及发酵。因此,目前报道过的MFCs中的生物从好氧型、兼性厌氧型到严格厌氧型的都有分布。

在高阳极电势的情况下,细菌在氧化代谢时能够使用呼吸链。电子及其相伴随的质子传递需要通过NADH脱氢酶、泛醌、辅酶Q或细胞色素。Kim等研究了这条通路的利用情况。他们观察到MFC中电流的产生能够被多种电子呼吸链的抑制剂所阻断。在他们所使用的MFC中,电子传递系统利用NADH脱氢酶,Fe/S(铁/硫)蛋白以及醌作为电子载体,而不使用电子传递链的2号位点或者末端氧化酶。通常观察到,在MFCs的传递过程中需要利用氧化磷酸化作用,导致其能量转化效率高达65%。常见的实例包括假单胞菌(Pseudomonasaeruginosa),微肠球菌(Enterococcusfaecium)以及Rhodoferaxferrireducens。

如果存在其它可替代的电子受体,如硫酸盐,会导致阳极电势降低,电子则易于沉积在这些组分上。当使用厌氧淤泥作为接种体时,可以重复性的观察到沼气的产生,提示在这种情况下细菌并未使用阳极。如果没有硫酸盐、硝酸盐或者其它电子受体的存在,如果阳极持续维持低电势则发酵就成为此时的主要代谢过程。例如,在葡萄糖的发酵过程中,涉及到的可能的反应是:C6H12O6+2H2O=4H2+2CO2+2C2H4O2或6H12O6=2H2+2CO2+C4H8O2。它表明,从理论上说,六碳底物中最多有三分之一的电子能够用来产生电流,而其它三分之二的电子则保存在产生的发酵产物中,如乙酸和丁酸盐。总电子量的三分之一用来发电的原因在于氢化酶的性质,它通常使用这些电子产生氢气,氢化酶一般位于膜的表面以便于与膜外的可活动的电子穿梭体相接触,或者直接接触在电极上。同重复观察到的现象一致,这一代谢类型也预示着高的乙酸和丁酸盐的产生。一些已知的制造发酵产物的微生物分属于以下几类:梭菌属(Clostridium),产碱菌(Alcaligenes),肠球菌(Enterococcus),都已经从MFCs中分离出来。此外,在独立发酵实验中,观察到在无氧条件下MFC富集培养时,有丰富的氢气产生,这一现象也进一步的支持和验证这一通路。

发酵的产物,如乙酸,在低阳极电势的情况下也能够被诸如泥菌属等厌氧菌氧化,它们能够在MFC的环境中夺取乙酸中的电子。

代谢途径的差异与已观测到的氧化还原电势的数据一起,为我们一窥微生物电动力学提供了一个深入的窗口。一个在外部电阻很低的情况下运转的MFC,在刚开始在生物量积累时期只产生很低的电流,因此具有高的阳极电势(即低的MFC电池电势)。这是对于兼性好氧菌和厌氧菌的选择的结果。经过培养生长,它的代谢转换率,体现为电流水平,将升高。所产生的这种适中的阳极电势水平将有利于那些适应低氧化的兼性厌氧微生物生长。然而此时,专性厌氧型微生物仍然会受到阳极仓内存在的氧化电势,同时也可能受到跨膜渗透过来的氧气影响,而处于生长受抑的状态。如果外部使用高电阻时,阳极电势将会变低,甚至只维持微弱的电流水平。在那种情况下,将只能选择适应低氧化的兼性厌氧微生物以及专性厌氧微生物,使对细菌种类的选择的可能性被局限了。

MFC中的阳极电子传递机制

电子向电极的传递需要一个物理性的传递系统以完成电池外部的电子转移。这一目的既可以通过使用可溶性的电子穿梭体,也可以通过膜结合的电子穿梭复合体。

氧化性的、膜结合的电子传递被认为是通过组成呼吸链的复合体完成的。已知细菌利用这一通路的例子有Geobactermetallireducens、嗜水气单胞菌(Aeromonashydrophila)以及Rhodoferaxferrireducens。决定一个组分是否能发挥类似电子门控通道的主要要求在于,它的原子空间结构相位的易接近性(即物理上能与电子供体和受体发生相互作用)。门控的势能与阳极的高低关系则将决定实际上是否能够使用这一门控(电子不能传递给一个更还原的电极)。

MFCs中鉴定出的许多发酵性的微生物都具有某一种氢化酶,例如布氏梭菌和微肠球菌。氢化酶可能直接参加了电子向电极的转移过程。最近,这一关于电子传递方法的设想由McKinlay和Zeikus提出,但是它必须结合可移动的氧化穿梭体。它们展示了氢化酶在还原细菌表面的中性红的过程中扮演了某一角色。

细菌可以使用可溶性的组分将电子从一个细胞(内)的化合物转移到电极的表面,同时伴随着这一化合物的氧化。在很多研究中,都向反应器中添加氧化型中间体比如中性红,劳氏紫(thionin)和甲基紫萝碱(viologen)。经验表明这些中间体的添加通常都是很关键的。但是,细菌也能够自己制造这些氧化中间体,通过两种途径:通过制造有机的、可以被可逆的还原化合物(次级代谢物),和通过制造可以被氧化的代谢中间物(初级代谢物)。

第一种途径体现在很多种类的细菌中,例如腐败谢瓦纳拉菌(Shewanellaputrefaciens)以及铜绿假单胞菌(Pseudomonasaeruginosa)。近期的研究表明这些微生物的代谢中间物影响着MFCs的性能,甚至普遍干扰了胞外电子的传递过程。失活铜绿假单胞菌的MFC中的这些与代谢中间体产生相关的基因,可以将产生的电流单独降低到原来的二十分之一。由一种细菌制造的氧化型代谢中间体也能够被其他种类的细菌在向电极传递电子的过程中所利用。

通过第二种途径细菌能够制造还原型的代谢中间体——但还是需要利用初级代谢中间物——使用代谢中间物如Ha或者HgS作为媒介。Schroder等利用E.coliK12产生氢气,并将浸泡在生物反应器中的由聚苯胺保护的铂催化电极处进行再氧化。通过这种方法他们获得了高达1.5mA/cm2(A,安培)的电流密度,这在之前是做不到。相似的,Straub和Schink发表了利用Sulfurospirillumdeleyianum将硫还原至硫化物,然后再由铁重氧化为氧化程度更高的中间物。评价MFCs性能的参数

使用微生物燃料电池产生的功率大小依赖于生物和电化学这两方面的过程。

底物转化的速率

受到如下因素的影响,包括细菌细胞的总量,反应器中混合和质量传递的现象,细菌的动力学(p-max——细菌的种属特异性最大生长速率,Ks——细菌对于底物的亲和常数),生物量的有机负荷速率(每天每克生物量中的底物克数),质子转运中的质子跨膜效率,以及MFC的总电势。

阳极的超极化

一般而言,测量MFCs的开放电路电势(OCP)的值从750mV~798mV。影响超极化的参数包括电极表面,电极的电化学性质,电极电势,电极动力学以及MFC中电子传递和电流的机制。

阴极的超极化

与在阳极观测到的现象相似,阴极也具有显著的电势损失。为了纠正这一点,一些研究者们使用了赤血盐(hexacyanoferrate)溶液。但是,赤血盐并不是被空气中的氧气完全重氧化的,所以应该认为它是一个电子受体更甚于作为媒介。如果要达到可持续状态,MFC阴极最好是开放性的阴极。

质子跨膜转运的性能

目前大部分的MFCs研究都使用Nafion—质子转换膜(PEMs)。然而,Nafion—膜对于(生物)污染是很敏感的,例如铵。而目前最好的结果来自于使用Ultrex阳离子交换膜。Liu等不用使用膜,而转用碳纸作为隔离物。虽然这样做显著降低了MFC的内在电阻,但是,在有阳极电解液组分存在的情况下,这一类型的隔离物会刺激阴极电极的生长,并且对于阴极的催化剂具有毒性。而且目前尚没有可信的,关于这些碳纸-阴极系统在一段时期而不是短短几天内的稳定性方面的数据。

MFC的内在电阻

这一参数既依赖于电极之间的电解液的电阻值,也决定于膜电阻的阻值(Nafion—具有最低的电阻)。对于最优化的运转条件,阳极和阴极需要尽可能的相互接近。虽然质子的迁移会显著的影响与电阻相关的损失,但是充分的混合将使这些损失最小化。

性能的相关数据

在平均阳极表面的功率和平均MFC反应器容积单位的功率之间,存在着明显的差异。表2提供了目前为止报道过的与MFCs相关的最重要的的结果。大部分的研究结果都以电极表面的mA/m以及mW/m2两种形式表示功率输出的值,是根据传统的催化燃料电池的描述格式衍生而来的。其中后一种格式对于描述化学燃料电池而言可能已经是充分的,但是MFCs与化学燃料电池具有本质上的差异,因为它所使用的催化剂(细菌)具有特殊的条件要求,并且占据了反应器定的体积,因此减少了其中的自由空间和孔隙的大小。每一个研究都参照了以下参数的特定的组合:包括反应器容积、质子交换膜、电解液、有机负荷速率以及阳极表面。但仅从这一点出发要对这些数据作出横向比较很困难。从技术的角度来看,以阳极仓内容积(液体)所产生的瓦特/立方米(Watts/m3)为单位的形式,作为反应器的性能比较的一个基准还是有帮助的。这一单位使我们能够横向比较所有测试过的反应器,而且不仅仅局限于已有的研究,还可以拓展到其它已知的生物转化技术。

此外,在反应器的库仑效率和能量效率之间也存在着显著的差异。库仑效率是基于底物实际传递的电子的总量与理论上底物应该传递的电子的总量之间的比值来计算。能量效率也是电子传递的能量的提示,并结合考虑了电压和电流。如表2中所见,MFC中的电流和功率之间的关系并非总是明确的。需要强调的是在特定电势的条件下电子的传递速率,以及操作参数,譬如电阻的调整。如果综合考虑这些参数的问题的话,必须要确定是最大库仑效率(如对于废水处理)还是最大能量效率(如对于小型电池)才是最终目标。目前观测到的电极表面功率输出从mW/m2~w/m2都有分布。

优化

生物优化提示我们应该选择合适的细菌组合,以及促使细菌适应反应器内优化过的环境条件。虽然对细菌种子的选择将很大程度上决定细菌增殖的速率,但是它并不决定这一过程产生的最终结构。使用混合的厌氧-好氧型淤泥接种,并以葡萄糖作为营养源,可以观察到经过三个月的微生物适应和选择之后,细菌在将底物转换为电流的速率上有7倍的增长。如果提供更大的阳极表面供细菌生长的话,增长会更快。

批处理系统使能够制造可溶性的氧化型中间体的微生物的积累成为了可能。持续的系统性选择能形成生物被膜的种类,它们或者能够直接的生长在电极上,或者能够通过生物被膜的基质使用可移动的穿梭分子来传递电子。

通过向批次处理的阳极中加入可溶性的氧化中间体也能达到技术上的优化:MFCs中加入氧化型代谢中间体能够持续的改善电子传递。对这些代谢中间体的选择到目前为止还仅仅是出于经验性的,而且通常只有低的中间体电势,在数值约为300mV或者还原性更高的时候,才认为是值得考虑的。应该选择那些具有足够高的电势的氧化中间体,才能够使细菌对于电极而言具有足够高的流通速率,同时还需参考是以高库仑效率还是以高能量效率为主要目标。

一些研究工作者们已经开发了改进型的阳极材料,是通过将化学催化剂渗透进原始材料制成的。Park和Zeikus使用锰修饰过的高岭土电极,产生了高达788mW/m2的输出功率。而增加阳极的特殊表面将导致产生更低的电流密度(因此反过来降低了活化超极化)和更多的生物薄膜表面。然而,这种方法存在一个明显的局限,微小的孔洞很容易被被细菌迅速堵塞。被切断食物供应的细菌会死亡,因此在它溶解前反而降低了电极的活化表面。总之,降低活化超极化和内源性电阻值将是影响功率输出的最主要因素。

IVIFC:支柱性核心技术

污物驱动的应用在于能够显著的移除废弃的底物。目前,使用传统的好氧处理时,氧化每千克碳水化合物就需要消耗1kWh的能量。例如,生活污水的处理每立方米需要消耗0.5kWh的能量,折算后在这一项上每人每年需要消耗的能源约为30kWh。为了解决这一问题,需要开发一些技术,特别是针对高强度的废水。在这一领域中常用的是UpflowAnaerobicSludgeBlanket反应器,它产生沼气,特别是在处理浓缩的工业废水时。UASB反应器通常以每立方米反应器每天10~20kg化学需氧量的负荷速率处理高度可降解性的废水,并且具有(带有一个燃烧引擎作为转换器)35%的总电力效率,意味着反应器功率输出为0.5~1kW/m3。它的效率主要决定于燃烧沼气时损失的能量。未来如果发展了比现有的能更有效的氧化沼气的化学染料电池的话,很可能能够获得更高的效率。

能够转化具有积极市场价值的某种定性底物的电池,譬如葡萄糖,将以具有高能量效率作为首要目标。虽然MFCs的功率密度与诸如甲醇驱动的FCs相比是相当低的,但是对于这项技术而言,以底物安全性为代表的多功能性是它的一个重要优势。

篇3

“绿色航空”势在必行

航空界对替代能源的渴求,从未像现在这样强烈过。从莱特兄弟发明飞机以来,飞机就与石油消耗如影随形般联系在一起,并因此成为“高碳”俱乐部重要成员之一。国际权威数据显示,当前全球航空运输业每年消耗15亿17亿桶航空煤油,2008年全球航空运输业排放的二氧化碳高达6.77亿吨,尽管仅占全球总排放量的2%。但是由于高空飞行的飞机直接将二氧化碳排放在1万米左右的平流层,所产生的实际温室影响要比地面排放大4倍左右,对全球变暖的影响更直接、更明显。此外,飞机在飞行过程中还排放出大量氮氧化物、水蒸气,都对全球变暖有重要影响。

从上世纪70年代以来,尽管由机和引擎技术的不断提高,飞机发动机的燃烧效率在过去40年已经提高了70%,但这些进步被同一时期航空业的快速发展所抵消。飞机绝对排放量不仅没有下降,反而还在迅速上升。根据欧盟的统计,欧盟境内二氧化碳排放在20世纪90年代整体下降5.5%,而其成员国国际航空温室气体的排放在这段时间增加73%,且预计到2012年将增加150%。与此同时,石油等不可再生石化能源资源的日趋枯竭,进一步给航空运输业未来的可持续发展蒙上了一层阴影。

面对能源危机和气候变化的双重挑战,仅凭飞机燃烧效率和航空公司营运效率的提高,无法确保能源的可持续,也无法从根本上实现碳减排。寻找新的替代能源,实现更绿色的飞行,成为航空运输业的当务之急。由行器自身原因和安全因素,风能、水利、核燃料和太阳能等可替代能源目前均不能满足航空业的需要,可再生的生物能源成为最佳的替代选择。

古老能源的新生

生物能源,是指从生物质得到的能源,它是通过植物光合作用,将二氧化碳转化为其它形态的含碳化合物,这些物质通过燃烧可以释放能量。因此,生物能源的形成实质是生物质同化、固定阳光能和大气中二氧化碳的结果。生物质具体的种类很多,植物类中最主要也是我们经常见到的有木本植物、农作物(秸秆、稻草、谷壳等)、杂草、藻类等。非植物类中主要有动物粪便、动物尸体、废水中的有机成分、垃圾中的有机成分等。

从能量的形成过程来讲,生物能源与化石能源在本质是一样的,二者的内部结构和特性也相似,可以采用相同或相近的技术进行处理和利用。不同的是,地球上的化石能源是自然生态系统经过几十亿年的漫长进化,才将巨量的碳通过光合作用以化石能源的方式固化封存于地下,从而使大气中的二氧化碳的浓度降到适合人类生存。但近几百年来,煤炭、石油等化石能源的大规模开发,使这些封存的碳被集中、快速地释放出来。如同打开了“潘多拉魔盒”,必然极大破坏生态平衡。生物燃料尽管在燃烧释放能量的同时也会释放二氧化碳,但它在成长过程中会从大气中吸收等量的二氧化碳,形成一个良性循环,理论上二氧化碳的净排放为零,能够实现“碳中性”。此外,生物能源是一种取之不尽、用之不竭的可再生能源,地球每年通过光合作用可生产1400-1800亿吨生物质,其中蕴含的能量相当于全世界能耗总量的10-20倍。

生物燃料是人类最早利用的能源。古人钻木取火、伐薪烧炭,实际上就是在使用生物能源。但是通过生物质直接燃烧获得能量是低效而不经济的。化石能源的大规模使用,使生物燃料受到冷落。从上世纪70年代以来,日益显露的环境问题让人类的目光再次投向生物能源,随着生物燃料转化技术的不断发展,古老的能源获得了新生机。

到目前为止,生物燃料的发展已经历了三个阶段。第一代生物燃料主要是以玉米、甘蔗、大豆和蓖麻等粮食作物和油料作物为原料,因其存在“与民争食”的特点而饱受非议,同时还面临原料供给的瓶颈,目前已逐步被以麦秆、草和木材等农林废弃物和贫瘠土地上生长的木本植物作为原料的第二代生物燃料和以微藻为原料的第三代生物原料所替代。第二、三代生物燃料可以不消耗粮食,不造成污染,节约大量耕地和水,发展前景被业界普遍看好,因此也被称为可持续性生物燃料。目前,生物燃料已成为人类可再生能源最重要的组成部分,约占全球可再生能源消费的74%左右。

助飞航空业的绿色能源

由于民航客机要在1万米之上高空飞行,其发动机必须适应高空缺氧、气温气压较低的恶劣环境。因而要求航空煤油有较好的低温性、安定性、蒸发性、性以及无腐蚀性、不易起静电及着火危险性小等特点。目前适用于航空业的生物燃料主要是麻风树、亚麻荠、微藻和盐土植物。其中最具代表性的是麻风树和微藻。

麻风树是一种广泛分布于亚热带及干热河谷地区的热带常绿树或大型灌木,其果实称为小桐子,果实的含油率35%至41%,野生麻风树果实的最高含油量约为60%。在我国,野生麻风树主要分布于两广、琼、云、贵、川等地。麻风树生长迅速,生命力强,在部分地方可以形成连片的森林群落。3年可挂果投产,5年进入盛果期。麻风树的干果产量为300-800公斤/亩,平均产量约660公斤/亩,果实采摘期长达50年,每3.5吨小桐子可提炼出约1吨生物柴油,经过进一步精炼之后,可生成约0.15吨航空煤油。

藻类是最原始的生物之一,按大小通常分为大藻(海带、紫菜等)和微藻(直径小于1mm单细胞或丝状体)。其中用于制备生物燃料的是微藻。利用微藻发展生物能源有许多其它陆地植物不具备的优势。第一,生长环境要求简单。微藻几乎能适应各种生长环境。不管是海水、淡水、工业污废水、荒芜的滩涂盐碱地、废弃的沼泽、鱼塘,甚至下水道都可以种植微藻。第二,微藻产量非常高。一般陆地能源植物一年只能收获一到两季,而微藻几天就可收获一代,微藻单位面积的产率高出高等植物数十倍。第三,产油率极高。脂类含量比其它油料作物如玉米、油菜、麻风树等要高很多,一般含有30%-50%左右脂类,有的甚至高达80%。第四,利于环境保护。每年由微藻光合作用吸收固化的二氧化碳占全球二氧化碳固定量40%以上。微藻现今被看作是最有前景的生物燃料来源,被称为下一个“能源巨人”。

由麻风树和微藻所生成的生物煤油由于具备良好的燃料性能,能与化石燃料兼容,又可直接应用于传统发动机;与现有飞机的兼容性非常好,既能和传统的航空煤油混合, 也可完全代替传统的航空煤油,直接为飞机提供能量。此外,它比传统航空燃料的凝结点更低,燃料的每加仑能量值更高。燃烧过程中二氧化硫、氮氧化合物、碳氢化合物的排放较少,造成空气污染和酸雨现象会明显降低。由于生物燃料在运输和制造过程中会有一定的碳排放,绝对的碳中性是不存在的。不过即使考虑到这些因素,与石油燃料相比,生物燃料依然能够实现60%-80%的碳减排。

绿色飞行不再遥远

正是由于生物燃料对航空业未来发展的革命性效应,近年来,包括飞机制造商、航空公司、发动机生产商在内的航空产业链成员们以及能源和学术界领导者间的通力合作,加快了生物燃料的开发与应用的推进步伐。

自2008年2月24日波音公司与维珍航空合作完成了人类历史上首次采用添加50%生物燃料的混合燃油为动力的飞行试验以来,新西兰航空、法航、日航、美国大陆航空公司等多家航空公司先后进行了一系列类似生物燃料的试飞,证明了使用可持续性生物燃料与煤油的混合燃料的技术可行性。2010年6月,空中客车公司成功完成了以微藻为原料的纯生物燃料飞行,表明生物燃料完全可以独立为飞机的飞行提供能量。按照国际航协的计划,在完成相关安全性测试和认证后,生物燃料在2012年开始正式进入商用领域,到2020年生物燃料占航空燃油的比例将达到15%,2030年达到30%,2040年达到50%,并希望在2050年实现整个行业总量减排50%的目标。

目前,我国航空生物燃料的试验和开发工作已全面展开。2010年5月26日,中国航空集团公司与中石油、波音公司、霍尼韦尔UOP公司合作,正式启动了中国民航可持续航空生物燃料验证试飞项目。初步确定2011年年中,国航将使用一架波音747-400飞机在不同的高度和操作环境下进行不超过2小时的飞行试验。届时,该飞机的一台发动机将按1:1的比例,加注生物燃料和传统航油混合燃油。所用燃油的原料来自中石油在中国的原料基地应用UOP公司精炼加工技术转化的航空生物燃料。这次试飞将是全球首次在一个国家完成原料种植、生物燃油提炼与混合、验证飞行的全链条验证。

中科院青岛生物能源与过程研究所和美国波音公司研发中心已签署推进藻类可持续航空生物燃料合作备忘录,将在青岛组建可持续航空生物燃料联合实验室,启动微藻航空生物燃油这一能源技术的大规模研发。预计5年左右实现关键技术重大突破,形成几千吨的规模性示范,10年左右实现产业化。

生物原料的规模化种植也已启动。根据规划,我国麻风树主要分布区为西南云贵川三省,从2006年开始利用荒山荒地大规模人工种植麻风林,目前人工种植规模已达15万公顷,占中国人工种植麻风树面积的95%以上。今后几年种植规模将进一步扩大,到2020年将有7500万亩中国的荒地用于种植麻风树,其中仅四川省就将有3000万亩荒地成为麻风树种植基地。如能完成种植目标,届时产自中国的原材料所生产的生物燃料可取代全球航空运输业现有40%的石化燃料。

从现在的实验情况来看,生物燃油应用到航空业来,技术已经不是最大困难。现阶段,航空生物燃料成本还很昂贵,约为传统航空煤油的3-4倍。但随着技术进步、工艺优化和生产规模不断扩大,成本肯定会降下来,甚至比石油燃料更低。而且,生物燃油的价格要比深受地缘政治和国际游资双重影响的石油更易控制,可以帮助航空公司控制成本,减少意外开支。可以预见,使用生物燃油作为可持续航空燃油,将成为民航业发展新趋势。

把握机遇低碳领航

我国发展生物能源的空间和潜力十分巨大。据统计,全国有4600多万公顷宜林地,还有约1亿公顷不宜发展农业的废弃土地资源,可以结合生态建设种植能源植物。我国的渤海、黄海、东海、南海,按自然疆界可达473万平方公里,盐碱地面积达1.5亿亩,可供开发的微藻资源潜力巨大。近几年,我国生物能源科研技术水平进步显著,在某些领域基本与发达国家处在相近的起跑线上。面对新能源革命的浪潮,应从战略层面高度重视,抓住机遇,顺势而上,借鉴发达国家经验,加大生物能源发展的推进力度,确保在低碳经济时代占有一席之地。

强化生物能源的战略推进。国家“十二五”能源发展规划已将生物能源发展列入七大重点能源领域。要进一步细化国家层面的协调和引导,尽快建立具体、科学的产业发展路线图。做好盐碱、沼泽、山坡、半沙漠化等不宜发展农业的废弃土地资源以及海洋、河滩等资源的生物燃料开发规划,加强对生物能源产业扶持、消费补贴或金融支持力度。选择有雄厚技术积累和资金实力的生物能源生产企业,建立产业化示范基地,增强规模化生产能力。

篇4

须考虑代用燃料的发展问题.汽车使用醇类燃料作为石油的替代燃料,也许是一个解决能源消耗和尾气排放的手段之一.其中,丁醇是一种极具潜力的新型生物燃料,被称为第二代生物燃料,可以用来完全或者部分替代化石燃料,从而缓解石油危机.

1 丁醇性能的优缺点

丁醇可作为汽油的代用燃料.丁醇与其它普通醇类燃料如乙醇和甲醇相比,具有很多优点.丁醇的热值大约是汽油的83%,乙醇和甲醇的热值分别只有汽油的65%和48%,丁醇的热值比乙醇要高30%左右,因此相同质量的丁醇可比乙醇多输出约1/3的动力;丁醇的挥发性远低于乙醇,只有乙醇的1/6左右,丁醇的吸湿性远小于甲醇、乙醇和丙醇;这些低碳醇能与水完全互溶,而丁醇则具有适度的水溶性,丁醇的这一特性使它在纯化阶段降低了能源消耗;丁醇比乙醇的腐蚀性低,能够利用现有管道运输,同时由于比其它低碳醇具有相对较高的沸点和闪点,其安全性更高;此外,丁醇与汽油、柴油的互溶性较好,因此可以不必对现有的发动机结构作大的改动,而且可以使用体积分数几乎为100%的丁醇燃料.



尽管作为发动机燃料丁醇比其它低碳醇具有更多的优势,但将丁醇直接应用到发动机中仍然存在一些潜在的问题,例如:① 与发动机性能的匹配性.尽管丁醇与甲醇、乙醇相比具有更高的能量,但它的热值仍然比传统的汽油或柴油燃料低,因此,汽油或柴油发动机利用丁醇作为替代燃料需要增加燃油供给量.② 尽管甲醇、乙醇的密度比丁醇低,但它们较高的辛烷值允许发动机有更高的压缩比和燃烧效率,较高的燃烧效率减少了温室气体的排放量.③ 丁醇比乙醇、甲醇的黏度高,这使得丁醇应用在柴油发动机中不会产生燃油泵内不足和潜在的磨损问题.然而将丁醇应用于火花点火式发动机(简称SI发动机)时,较高的黏度将产生潜在的沉积或腐蚀等问题.

2 丁醇生产的发展过程

2.1 丁醇生产的历史

Wirtz在1852年发现正丁醇可以作为一种常规的燃料组成部分.十年之后,Pasteur于1862年通过试验得出结论,丁醇是厌氧转化乳酸和乳酸钙的直接产物.1876—1910年,许多学者研究了丙酮-丁醇的生产方法和有关的溶剂[1].

通过ABE(丙酮、丁醇、乙醇)发酵法工业生产丁醇和丙酮始于1912—1916年,这是已知最早的工业发酵法之一,在生产规模上排名第二,仅次于通过酵母发酵法生产乙醇的规模,而且它是已知的最大型的生物技术工艺流程[2-3].在发酵过程中主要有三类典型的产物:① 溶剂(丙酮、丁醇、乙醇);② 有机酸(乙酸、乳酸、丁酸);③ 气体(二氧化碳、氢).生物合成的丙酮、丁醇、乙醇共享相同的代谢途径,即从葡萄糖到乙酰辅酶A(acetylCoA),但随后的分支进入不同的途径.通过发酵法生产的丁醇皆是生物丁醇,自从19世纪60年代通过ABE发酵法生产丁醇的产量持续下降,几乎所有的丁醇都是通过石油化工方法生产的.发酵法生产丁醇的产量下降,主要是因为石油化工原料的价格比淀粉糖基如谷物、糖蜜的价格低,因此用石油燃料生产丁醇越来越受到欢迎,在这个阶段ABE发酵法被使用得越来越少.

19世纪80年代,石油危机促进了生物燃料的发展.那时人们最关注的代用燃料是乙醇,人们虽然熟悉乙醇的生产,但并没有认识到为了将乙醇与汽油混合,进行脱水这一非常消耗能源的步骤是必要的,同时也没有认识到运输乙醇-汽油燃料的困难性,因为乙醇-汽油燃料不能利用现有的管道运输,任何浓度的乙醇-汽油燃料都会对橡胶密封产生腐蚀和损害.尽管乙醇是一种能量等级较低的醇类物质,而且具有腐蚀性、难于提纯、易挥发、有爆炸危险性等缺点,但它较高的产量使得乙醇成为主要应用的生物燃料.过去的30年中,能源密集型的乙醇生产仍然不能满足人们对燃料、能源、清洁空气的需求.近年来,为了应对石油化工产品和污染治理成本的上升,且生产乙醇的技术、设备稍作调整就可以直接用于生产丁醇,因此,许多国家开始重新关注丁醇.

2.2 利用非粮食生物质提高丁醇生产能力

生物丁醇可通过发酵法利用淀粉或糖类制取,然而,由于成本高、产量相对较低、发酵时间长等原因,使得用ABE发酵法生产丁醇无法在工业规模上与采用合成法生产丁醇进行竞争.随着人们对丁醇这一代用燃料越来越关注,许多公司纷纷研究新方法代替传统ABE发酵法,从而使生物丁醇的生产可达到工业规模.基于生物化学转换非粮食木质纤维素的第二代生物丁醇生产相比现有的能源密集型生物丁醇生产具有一些潜在优势.

有研究表明,改良菌株具有更高的利用淀粉的能力,同时能在发酵培养液中积累较高浓度的丁醇(17~21 g•L-1)[2].除了使用玉米,丙酮-丁醇生产还使用了液化玉米粉和玉米浆,60 g•L-1的液化玉米粉和玉米浆产生约26 g•L-1的溶剂.由于发酵酶作用物的成本对丁醇价格影响最大,利用其它可再生能源和经济上可行的基材例如淀粉基包装材料、玉米纤维水解物、大豆蜜糖、水果加工工业废料等进行丁醇发酵,从这些替代性可再生资源中生产的溶剂总量为14.8~30.1 g•L-1[3].在关于多糖的研究中,其焦点是纤维素和半纤维素,它们是地球上最丰富的可再生利用资源.大量糖类已用于生产丁醇,使用改良菌株进行分批发酵,可以提高丁醇的产量.

小麦麸是小麦制粉工业的副产品,主要包括半纤维素、淀粉和蛋白质.经稀硫酸水解的小麦麸皮水解产物中含有53.1 g•L-1的总还原糖、21.3 g•L-1的葡萄糖、17.4 g•L-1木糖和10.6 g•L-1的阿拉伯糖[4].一种工业酶作用物液化玉米淀粉(LCS)已经被成功用于ABE生产,分批发酵LCS(60 g•L-1)过程中产生18.4 g•L-1的ABE产品,与葡萄糖相当.如果向分批发酵反应器放入糖化的液化玉米淀粉(SLCS),通过气体剥离重新获得ABE,此法可以得到81.3 g•L-1的ABE[5].

同时,随着丁醇制备技术的不断成熟,丁醇的生产成本也逐渐下降.美国ButylFuel公司的成果表明,使 用微生物发酵法可以由1 L玉米制备0.27 L丁醇,其成本仅为0.317美元•L-1,远低于利用石油化工方法制备丁醇的成本1.350美元•L-1.而如果使用饲料等废弃物代替玉米,此生产成本可进一步下降[6].

3 丁醇作为生物燃料应用的进展

如前所述,丁醇和其它低碳醇相比具有许多优势,并且大量新技术的使用也可提高丁醇的产量.另外许多因素都促进了生物燃料的发展,例如不确定的石油价格、温室气体排放、提高能源安全和能源多样性的需要等.目前很多研究团队已将丁醇作为一种替代生物燃料进行研究,将丁醇与汽油或柴油混合应用在发动机上,或应用在一些基本的燃烧反应器中.

3.1 丁醇的基础燃烧试验

在丁醇的基础燃烧试验中,研究人员测量了层流层的燃烧速度,同时还研究了在预混和燃烧或扩散燃烧中形成的中间物质.利用这些试验数据开发了丁醇的化学反应动力学模型.这些预测模型可以提供对丁醇燃烧特性更好的理解,并可以解释通过石油衍生原料和其它生物原料获取的丁醇在燃烧特性方面的差异.Sarathy等[7]的试验结果表明,丁醇的层流燃烧速度在当量比介于0.8和1.1之间时增加,相对应的最大燃烧速度为47.7 cm•s-1,随后在达到较高的当量比时燃烧速度下降.

一个早期的关于静态反应器的研究指出,丁醇的热解是通过C3H7-CH2OH键的裂变开始的,产生了正丙基自由基和羟甲基自由基.羟甲基自由基进一步分解为甲醛和氢自由基,而正丙基自由基分解为乙烯和甲基自由基[8].有学者研究了丁醇的燃烧速度,因为燃烧速度是决定传播和稳定预混火焰的关键参数之一.Roberts使用火焰锥的阴影图像测量了丁醇的燃烧速度,结果表明,丁醇的最大燃烧速度和正丙醇、异戊醇是类似的,约为46 cm•s-1[9].

3.2 在可变操作参数单缸发动机(CFR发动机)中使用丁醇作为混合燃料的研究

Yacoub等[10]多次进行了关于应用直链醇C1-C5(甲醇-正戊醇)与汽油混合使用在CFR发动机上的研究,试验条件为:空气和燃料按化学计量比混合,转速为1 000 r•min-1.对发动机的工作条件进行了优化,使混合燃料中氧的质量分数分别为2.5%和5.0%,相应丁醇的体积分数分别为11%和22%.研究结果表明:丁醇比无铅汽油容易产生燃烧爆震,所有醇-汽油混合燃料的试验均显示CO排放减少,总的HC排放也减少.尽管如此,所有混合燃料与汽油相比未燃烧醇排放较高,醇含量越高未燃烧醇的含量也越高;所有混合燃料的醛排放较高,甲醛是主要成分;NOx排放可能增加也可能降低,取决于不同的操作条件.

Gautam等[11-12]在900 r•min-1、空气和燃料为化学计量比的试验条件下,使用6种醇-汽油混合燃料在 CFR发动机上进行试验,每种混合燃料由体积比为9∶1的汽油和醇组成,混合用的醇包括甲醇、乙醇、丙醇、丁醇和戊醇.试验结果表明,混合燃料中氧含量越高,抗爆震性能越高,火焰速度越快.在最大功率工况条件下,排放试验结果表明,醇-汽油混合燃料比纯汽油的排放明显降低,CO排放降低16%~20%,CO2排放降低18%~23%,NOx排放降低5%~11%,总的HC排放降低17%~23%.这是因为混合燃料有更好的抗爆震性能,允许更高的压缩比,从而提高发动机的输出能量.醇-汽油混合燃料与纯汽油相比,循环燃料消耗量高3%~5%,但比油耗低15%~19% .

Szwaja等[13]在一台单缸CFR发动机上通过改变点火提前角研究了丁醇的燃烧特性,丁醇的体积分数为0%~100%,压缩比为8~10,转速为900 r•min-1,空气和燃料为化学计量比.试验结果表明,最高峰值压力随丁醇体积分数的增加而提高.因此,混合燃料最佳点火正时应延迟.通过试验,研究人员从燃烧、能量密度以及理化性能等角度证明了丁醇可代替汽油作为纯燃料或燃料混合物.

3.3 在SI发动机中使用丁醇作为混合燃料的研究

目前关于SI发动机中使用丁醇的研究非常广泛,但关于丁醇-汽油混合燃料燃烧和丁醇燃料发动机的研究还很少.几乎所有关于丁醇-汽油混合燃料的研究都集中在不同运行工况下对发动机的性能评价、燃料消耗量和排放物方面.研究表明,与纯汽油相比,在保证发动机性能不变的条件下,向汽油中添加体积为20%~40%的丁醇能使发动机在更稀的混合气状态下工作.丁醇体积分数为20%~40%的丁醇-汽油混合燃料未燃HC排放与无铅汽油类似,但随着丁醇体积分数的增加,未燃HC排放也会增加.丁醇体积分数为20%的丁醇-汽油混合燃料与纯汽油相比,NOx排放物降低到较低的水平.随着丁醇体积分数的提高,燃油消耗率轻微增加,这与混合燃料的热值下降有关.例如,丁醇体积分数为40%的丁醇-汽油混合燃料比汽油的热值低10%,燃油消耗率增加10%[14].

研究人员研究了基于不同混合比的丁醇-汽油混合燃料的汽油发动机的性能,结果显示:丁醇是一种非常有前景的代用燃料,在节能方面具有很大的潜力;丁醇可降低14%的制动燃油消耗率并减少排放[15].

Dernotte等[15]研究了丁醇-汽油混合燃料的燃烧和排放特性,结果表明,BU40(丁醇体积分数为40%)的HC排放达到最低值,除了BU80(丁醇体积分数为80%),NOx排放没有明显变化.通过指示平均有效压力(IMEP)的变化发现加入正丁醇提高了燃烧的稳定性,同时减少了点火延迟.

Wallner等[16]用一台四缸直喷SI发动机研究了纯汽油、E10(乙醇体积分数为10%的乙醇汽油)和BU10(丁醇体积分数为10%)的燃烧和排放性能,发动机转速从1 000~4 000 r•min-1,负载从0 Nm升至150 Nm.结果显示,BU10燃烧速度比E10和纯汽油的高,三种燃料的燃烧稳定性没有明显不同,在发动机整个工作范围内IMEP小于3%.相比于E10,BU10和纯汽油在高负载时更容易爆震.相比于纯汽油,BU10的油耗大约增加3.4%,E10的油耗大约增加4.2%,而三种燃料的制动热效率非常类似.在纯汽油和两种混合燃料之间,CO和HC排放没有显著的差异,NOx排放BU10最低.由于丁醇的辛烷值低,在高负载的条件下需要推迟点火时间.根据试验结果,BU10代替E10能够改善燃油经济性并且保证排放性和燃烧稳定性不下降.

目前国外关于丁醇的研究热点之一是丁醇的低温燃烧特性.Oliver等[17]给出了丁醇两种同分异构体在低温(550~700 K)条件下的燃烧氧化反 应路径.Subram[18]通过试验和仿真给出了正丁醇在750~850 K下详细化学反应动力学机理,几乎100%的燃料消耗是通过脱氢反应完成的,其中62%的原始燃料转化成乙醛等物质,其它38%转化成C3H7CHO等物质.

4 结 论 

丁醇、丁醇-汽油混合燃料的燃烧持续期与汽油相当,混合燃料与汽油相比减少了点火延迟.当使用正丁醇-汽油混合燃料时,由于燃烧加快,为了获得最大输出转矩,需要延迟火花点火正时.通过测算IMEP,正丁醇、正丁醇-汽油混合燃料的燃烧稳定性并没有明显变化.

截至目前,研究使用的发动机有CFR发动机、光学引擎发动机、单缸或多缸发动机.其中一些发动机使用了涡轮增压、可变气门、直喷等先进技术.从现有的研究中可以总结如下:

(1) 丁醇在混合燃料中体积分数小于20%时,不需要调整发动机就可以获得和汽油燃料相同的发动机功率;当丁醇体积分数达到30%时,发动机最大功率开始下降;随着丁醇体积分数的增加,燃料消耗量增加。这是由于和汽油相比,混合燃料的能量密度降低.丁醇-汽油混合燃料和乙醇-汽油混合燃料相比热值高,试验中燃料消耗量低.

(2) CO、HC、NOx排放的减少或增加取决于具体的发动机(如点喷或直喷)、操作条件、丁醇-汽油的混合比等.混合燃料与纯汽油相比,未燃烧醇的排放增加,而且丁醇的占比越高,未燃烧醇的排放越高.混合燃料的排放物中醛类物质较高,其中甲醛是主要成份.和乙醇、醇汽油相比,随着丁醇体积分数的增加,苯类物质排放增加,因此直喷点燃式发动机燃烧丁醇-汽油混合燃料会排放较多的碳烟.

参考文献:

[1] VOLESKY B,SZCZESNY T.Bacterial conversion of pentose sugars to acetone and butanol[J].Advances in Biochemical Engineering/Biotechnology,1983,27:101-108.

[2] 陈丽杰,辛程勋,邓攀,等.丙酮丁醇梭菌发酵菊芋汁生产丁醇[J].生物工程学报,2010,26(7):991-996.

[3] EZEJI T C,QURESHI N,BLASCHEK H P.Butanol fermentation research:upstream and downstream manipulations[J].The Chemical Record,2004,4(5):305-314.

[4] LIU Z Y,YING Y,LI F L,et al.Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran[J].Journal of Industrial Microbiology & Biotechnology,2010,37(5):495-501.

[5] EZEJI T C,QYRESSHI N,BLASCHEK H P.Production of acetone butanol (AB) from liquefied corn starch,a commercial substrate,using Clostridium beijerinckii coupled with product recovery by gas stripping[J].Journal of Industrial Microbiology & Biotechnology,2007,34(12):771-777.

[6] 曾现军,邓建,孔华,等.丁醇作为车用替代燃料的研究进展[J].小型内燃机与摩托车,2012,41(1):76-80.

[7] SARATHY S M,THOMSON M J,TOGBE C,et al.An experimental and kinetic modeling study of nbutanol combustion[J].Combustion and Flame,2009,156(4):852-864.

篇5

【关键词】生物质颗粒;燃烧特性;排放

0.前言

人类利用生物质能源已有几十万年之久,其应用之早,是最直接的一种燃料能源。然而却因为生物质自身存在的诸多问题,而不能得到广泛的利用。例如:生物质的热值比较低、缺少专用的燃烧设备、运输及存储不便等。在我国,经济社会的发展是以能源的消耗作为重要前提的,经济发展的越快,能源减少的越多。这样我们所面临的两个显著问题是:环境污染趋于严重化;另一个是能源燃料的紧缺。因此,研究燃用生物质颗粒燃料锅炉的机理,探究其燃烧及排放特性,妥善处理能源燃料紧缺问题,对提升环境质量,改善人民生活环境具有重要的指导意义。

1.燃用生物质颗粒燃料锅炉简介

生物质颗粒燃料锅炉主要采用三室的燃烧结构:即气相燃烧室、固相燃烧室和燃烬除尘室。固相燃烧室的主要作用是为生物质颗粒燃料供应大量热解的气化热量,从而产生大量的生物质燃气。这部分生物质燃气通过底部的吸式结构过滤净化,并最终被导入气相燃烧室中从而实现均相的动力燃烧。气相燃烧室的尾部主要采用旋流结构制造,这样可以让燃气的火焰进行充分的扰流,进而促进燃气的完全燃烧。而燃烬除尘室一般采用降尘、燃烬、凝渣以及辐射传热等组合结构,从而可以实现洁净燃烧和辐射换热等多重效果。下面我们给出了一个生物质颗粒燃料锅炉的简化图。

图1 生物质颗粒燃料锅炉简化图

2.生物质燃料锅炉的燃烧及排放特性

2.1生物质颗粒燃料锅炉的燃烧特性

生物质颗粒燃料一般都是经过超高压压缩形成的微粒状燃料,密度较原生物质要大的多,这样的结构和组织特征使其可以很大程度上降低其的逸出速度和传热速度。该种燃料的点火温度也比较高,但是点火性能存在一定程度的下降,不过仍然要好于煤的点火性能。

生物质颗粒燃料锅炉在燃烧开始阶段会慢慢进行分解,此时的燃烧主要处于动力区,但是随着燃烧进入过渡区和扩散区,燃烧的速度降低,就可以将大部分的热量挥发传递到受热面,从而使排烟的热损失大大降低。同时,挥发燃烧需要的氧气和外界扩散的氧气比例适中,从而实现充分的燃烧,并进一步减少了气体不完全燃烧造成的损失和排烟造成的热损失。

燃烧充分完成以后,留下的焦炭骨架的结构非常紧密,流动的气流无法分解骨架,从而使得骨架炭仍然能够保持完好的层状燃烧,并形成层状的燃烧核心。此时炭的燃烧比较稳定,炉温也相对较高,可以很大程度上减少固体和排烟的热损失。

2.2生物质颗粒燃料锅炉的排放特性

2.2.1清灰装置设置

生物质颗粒燃料锅炉排放过程中的清灰装置主要采用机械刮除式以及机械振动式两种主要方式。并且,在有些燃烧锅炉中配备相应的灰分压缩机,这样就可以满足进行长时间自动运行的要求。如果设计工艺良好,那么该锅炉的维护保养都会很有限,不需要进行特殊的清理。

2.2.2相关污染物排放

生物质颗粒燃料锅炉排放的烟气中包含有多种不同的物质。其中,主要的污染物有没有完全燃烧的颗粒CxHy和有害的气体CO,这些都是由于燃料的未充分燃烧而形成的,同时,也可能和生物质颗粒燃料的组成成分有关系。不过,锅炉的污染物气排放量相当低,并且由于生物质燃料中N、S等元素较少,所以最终排放的有毒气体,如NOx、SOx较燃煤排放的要低的多。

3.生物质颗粒燃烧锅炉的环境影响分析

生物质颗粒燃烧锅炉排放的污染物很少,只包括少量的大气污染物以及固体废弃物。

3.1大气污染物

生物质颗粒燃料的纤维素含量比较高,而硫的含量则比较低,因此,燃烧所长盛的大气污染物较燃煤而言要少得多。另外,生物质颗粒燃料的密度比较大,非常便于运输和储存,而热值也基本和燃煤相当,燃烧锅炉的燃烧速度要比煤快,燃烧充分且黑烟较少、形成的灰分也比较低,尤其是在采取相配套的脱硫除尘设备之后,大气的污染物排放就会大幅度减少。根据大量的数据分析可以认为,使用生物质燃料锅炉进行燃烧后所释放的大气污染物浓度要远远低于相应的国家标准。

3.2固体废弃物

生物质燃料锅炉燃烧后形成的固体废弃物主要是燃烧完后形成的灰分,这部分废弃物可以被充分的回收利用。最主要的应用就是将灰分进行回收用作农田钾肥,这样可以达到资源充分进行综合利用的目的。

生物质颗粒燃烧锅炉排放的污染物很少,对环境的污染影响极低。不仅如此,该种工艺在很多方面还有及其显著的生态环境效益,例如代替煤炭资源,不经可以减少环境的污染,还解决了日益严峻的能源问题。另外,就是将燃烧后形成的固体废物回收用做钾肥,实现经济效益和环境效益的有效循环,实现我国环境事业的可持续发展。做到了变废为宝,节约资源又保护环境的目的。

4.结论

生物质颗粒燃烧锅炉主要利用废弃的农作物资源作为燃料,因此燃料资源丰富,经济环保,不仅降低了我国农业废弃物的运输成本问题和运输过程中的污染问题,还具有节约资源、保护环境、防止环境污染的作用。生物质颗粒燃烧锅炉的推广和使用符合我国建设节约型社会的基本要求和实现可持续发展战略的基本国策,具有十分突出的经济效益、社会效益和环境效益,为缓解我国以及世界范围内的能源紧张问题和环境污染问题提供了解决的思路和方法,对于环境的保护和资源的有效利用具有重要的意义。

【参考文献】

[1]王翠苹,李定凯等.生物质成型颗粒燃料燃烧特性的试验研究[J].农业工程学报,2006(10).

[2]岳峰,雷霆宙,朱金陵等.家用生物质颗粒燃料炉的研制[J].可再生能源,2005(6).

篇6

航空燃油的价格也是航空公司难以承受的包袱。2008年,当石油价格飙升至140美元/桶时,航空公司耗费在燃油上的成本占所有运营成本的70%左右,导致很多中小型航空公司难以为继。今年,即便受到金融危机影响,石油价格大幅下挫,燃油成本仍占航空成本的30%~40%。

面对环境与成本的双重困局,航空公司如何突围?希望落在生物燃料上。

三次试飞

在大多数人眼里,生物燃料的好处非常明显:既环保,又可再生。2008年底到2009年初,三家航空公司在一个月内分别进行了三次生物燃料试飞试验,更是昭显了航空界进军生物燃料领域的决心。

2008年12月30日,新西兰航空公司试飞波音747-400飞机,为飞机提供动力的是麻枫树油及标准航空燃油各占50%的混合燃料。

2009年1月7日,美国大陆航空公司以海藻油与麻枫树油的混合物为燃料,成功试飞波音737-800飞机。这次试飞是海藻油在航空领域的首次应用。相对于麻枫树油,海藻油似乎是一种更为物美价廉的替代品。

1月30日,日本航空公司也展开试飞试验。他们的试飞机型是波音747-300飞机,生物燃料由3种植物油混合而成:亚麻荠油、麻枫树油和海藻油。其中亚麻荠油是主要成分,比例高达84%。

试飞试验的结果几乎让所有人都感到惊喜。美国大陆航空公司在自己的官网上宣布,试飞试验中,相对于标准航空燃油,生物燃料的能效提高了1.1%,而二氧化碳的减排量更是达到惊人的60%~80%。

与此同时,美国波音民用飞机集团也在全球寻找合作伙伴,积极开发并促进生物燃料的商业化生产,从而减少温室气体的排放,并降低民航业受油价波动的影响和对化石燃料的依赖。

看上去,生物燃料已然成为航空业的“救世主”。

碳排量争议

但航空公司公布的试飞结果引起了一些科学家的质疑。

美国斯坦福大学环境工程学教授马克・雅各布森(Mark Jacobson)认为,美国大陆航空公司公布的试验数据的可靠性值得怀疑。他怀疑航空公司试验数据可靠性的主要原因在于:航空公司在计算碳排放量时,“并未把生物燃料整个‘生命周期’的排放量都考虑进来,导致计算出的减排量偏高”。

不过,面对科学家的质疑,美国大陆航空公司却显得底气十足。该公司全球环境事务总监李・雷尼(Leah Raney)告诉记者:“在得出最终结果前,我们考虑了生物燃料在整个生命周期内产生的温室气体排放量,因此对于这个结果,我们感到非常满意,并希望这些燃料能在不久的将来投入商业生产。”

航空试验的结果也得到了中国科学家的支持。四川大学生命科学学院院长陈放教授近年来一直致力于生物质能源的研究,他向记者表示:“据我所知,麻枫树油等燃料的确能减少50%~60%的二氧化碳排放量。”而在石元春院士眼里,“生物燃料能否减少二氧化碳排放量的问题根本用不着讨论――答案是肯定的,这已经是一个定论”。

发展中的障碍

抛开碳排放问题不谈,航空生物燃料的发展也面临诸多障碍。

2007年,由于第一代生物燃料玉米乙醇“与人争粮”,生物燃料受到广泛质疑,因此在开发第二代生物燃料时,不管是科学家还是航空公司,都显得非常谨慎。

美国波音民用飞机集团总裁斯科特・卡森(Scott Carson)告诉记者,他们与合作单位开发生物燃料时,用于生产的植物来源必须满足五个条件:不得与粮食竞争;不应威胁饮用水的供应;与石油来源的航空燃料相比,在植物生长、收获、加工及最终使用的整个生命周期内,温室气体的排放量应明显降低;不得破坏种植地区的原生态系统;在发展中国家,开发项目的相关规定或成果应能提高当地农民的社会经济条件。

还有一些重要的限制性条件来自于技术层面。燃油必须在300℃以上、-60℃以下都能正常燃烧。另外,生物燃油还得具有“即用性”。

在如此多的限制条件下,可供选择的用于生产航空生物燃料的原料很有限。目前,生产航空生物燃料的主要原料是麻枫树、亚麻荠等,但由于不能与人争地、争水,人们只能把这些作物种植在无法播种粮食作物的贫瘠土地或荒地上。

篇7

【关键词】 生物质燃料 估算低位热值 收购燃料 合理定价 燃料有效利用

随着世界能源结构多元化、高效化、清洁化的开发和利用,生物质以其低碳、可再生的特点受到人们的重视,以生物质能源为燃料的锅炉也应运而生。

燃料的发热量是燃料的一个很重要的特性,它是单位质量的燃料完全燃烧时所能释放出的最大发热量,发热量的高低取决于其化学组成以及可燃成分的多少,并与燃烧条件有关,发热量是衡定燃料质量的重要指标。

生物质是由纤维素、粗纤维素、木质素的碳水化合物、粗蛋白、蛋白酶、以及与微量元素等共同组成多种复杂 高分子有机化合物的复合体。自然环境下生物质燃料都含有一定量的水分,因种类的不同而变化。生物质中的水分以不同的形态存在, 即化合结晶水、内在水分和外在水分。化合结晶水用于生物质的合成。内在水分以物理化学结合力被吸附在 生物质内部的毛细管中,其含量比较稳定,一般5%左右;由于内在水分所处的位置结构其水分的蒸汽压力小于同温度下纯水的蒸汽压力,所以在常温下很难除去,必须在105℃至110℃下用加热干燥设备才能除去,是一个较为恒定值。生物质的外在水分以机械吸附携带方式存在于生物质的表面、结构间隙以及较大毛细孔中,与其运输和储存紧密相关。外在水分可用自然干燥法除去,在自然环境条件下,生物质燃料的外在水分不断蒸发,直到外在水分的蒸汽压力与空气的水蒸汽压力相同时,达到气液两相平衡,此时失去的水分是外在 水分,但失去水分的多少决定于相伴空气的 温度和空气的相对湿度,随自然环境的变化是一个相对的变量,所以外在水分是一个相对值而不是一个绝对值。一般来讲,水分是生物质燃料中的杂质,它即增加了运输和设备运行与检修中的费用、又降低生物质燃料的热值等。

燃料热值的高低取决于燃料中含有可燃成分的多少,但是,燃料的发热量(热值)并不等于可燃组成的C、H、S发热量的代数和。因为它们是在生长过程中通过光合作用等有机合成的产物,并于生物质的种属,植物的部位、生长地域、环境条件等有关。对于生物质燃料高位热值的测定通过常用的元素分析法不仅十分繁琐而且设备复杂,必须有专业的化学实验室来完成。在实际操作中,对于工厂技术人员,用门捷列夫经验公式估算和氧弹量热器来测定燃料热值并不实用,又没有较为成熟的经验公式。

燃料的热值分为高位热值HHVdaf由专业化实验室测得和低位热值(净热值)LHV。HHVdaf是燃料实际最大可能发热量,它是挥发份和固定碳的燃烧反应热之和。燃料燃烧后烟气中的水蒸汽包含了燃料中元素H在燃烧时与氧气反应生成的水蒸汽、燃烧过程中燃料的内在水分和外在水分形成气相的水蒸汽、冷空气中的过热水蒸汽。实际应用中燃料在燃烧设备燃烧后产生的高温烟气,通过尾部换热面时的温度仍相当高,一般都在100℃以上,,而且水蒸汽在烟气中的分压力又比大气压力低,所以此时燃烧反应产物中的水和燃料中携带的全水份仍然都是气相的饱和蒸汽或过热蒸汽,不能凝结成液相的水。为了有效地防止低温腐蚀,这部分汽化潜热就无法利用,而被排入大气,燃料的实际可利用热值就减小,所以从燃料高位热值HHVdaf中扣除掉这部分水蒸汽的汽化潜热,再减去灰渣热焓(无冷渣系统)后,就得到所能利用的净热值LHV。

由于生物质各种属燃料的有机物物质成分变化范围较小,工业分析中只要查出专业实验室对各种生物质燃料的高位热值HHVdaf(见表)的测定值,再测定出生物质燃料的全水分、全灰分、知道灰分的比热容,就可较准确地估算出单位质量的生物质燃料可利用的低位热值LHV,生物质的低位热值可以用以下公式进行估算:

LHV=HHVdaf(100%-Mar-Aar)-25M`ar-Am×C×Δt

式中:HHVdaf―生物质燃料的高位热值 kJ/kg

Mar―水分收到基质量分数%、

Aar―灰分收到基质量分数%

Am―每公斤生物质燃料含灰分质量 Kg

C ―灰分的比热容 kJ/kg℃

Δt―灰渣温度与环境温度的温差 ℃

M`ar―水分收到基百分数 %

25M'ar-1大气压下水分收到基转化蒸汽热焓KJ/Kg燃料

几种主要生物质燃料的高位热值 单位KJ/Kg(如表1)

灰分的比热容 C

干泥土 0.879 kJ/kg℃ 砂石0.921kJ/kg℃

影响生物质的燃烧特性因素.有挥发份V固定碳C水分M

灰分A等;燃料的(燃烧热)热值来源于挥发份、固定碳的燃烧反应热;其燃烧机理基本与煤相同,不同之处生物质固定碳燃烧多为剥落性燃烧。灰分视为生物质中不能燃烧的矿物杂质,它可分为两种即生物质自身结构的矿物质和在采取、运输、储存过程中的生物质所携带的外部杂质。灰渣是在生物质燃烧或在空气中经过一系列的分解,化合等复杂反应后所剩余的残渣。在生物质的燃烧过程中,少量的飞灰对燃烧有催化作用(石英砂除外),有助于加强有焰燃烧与相间的能量传输;但随着灰分含量的增大,使单位质量的可燃物质的含量相对减少很多,相应燃料的热值减少就越多,并降低燃烧温度,阻碍燃烧过程中的辐射传热,降低燃烧速度,包裹焦炭颗粒,阻碍氧气向焦炭内部扩散,增大机械不完全燃烧热损失;并在燃烧过程中的热泳、惯性碰撞、以及烟道、尾部换热面的凝结,化学反应过程中,增加受热面与换热面的积灰、磨损和腐蚀,使排烟飞灰热焓增大等。所以一般视灰分为生物质燃料中的渣质,增加运行费用。

在生物质燃烧的热解过程中分为水分析出阶段、分子断链热分解阶段和缩聚阶段(焦炭降解阶段)三个阶段。由于高分子有机化合物的失水,化学键断裂,自由基的形成以及重组反应,形成挥发分而完成相变过程,后期缩聚阶段形成残碳。在整个燃烧过程中伴随着同相燃烧和异相燃烧,在挥发分开始燃烧时,按照链式反应的机理,H和水蒸气对CO的燃烧反应具有触媒作用,少量2%(空气干燥后的燃料中所含内在水分的质量百分数远远超过此临界值)的水蒸气可以减小生物质燃烧的活化能、降低可燃质燃烧着火点、便于低温燃烧,改善生物质燃烧后期焦碳燃烧的温度场,加快燃烧速度,并影响烟气中NOx的排放量。但随着内外在水分的增加,在层燃锅炉中,质地较软的生物质燃料会在加热过程中出现软化黏结以及布风不均现象,这种现象产生了一定的后果,例如:造成燃料的料层与通风间隙不均和单位质量可燃质的燃烧面积缩减,降低炉膛内燃料反应温度与化学反应速度,延长固态可燃质在推动或转动机械式燃烧设备上的停留时间,增加物理不完全燃烧热损失,削弱炉膛火焰充满度,减少炉膛的容积热强度、壁面热强度、截面热强度,加大烟气过剩空气系数,降低锅炉出力。在燃料燃烧的过程中因水分蒸发汽化以及过热要消耗大量的热量,(无论是层燃或流化燃烧,水蒸气导致可燃物质与氧气的浓度场减弱、炉膛燃烧温度场的温度降低,影响化学反应速度),烟气体积增大,随之烟气带走的热量损失增多,伴随引风机电耗加大,厂用电率增高等,经济效率下降。化学燃烧反应虽然是放热反应,然而水分子蒸发与过热却要吸收热量,因此大多数生物质燃烧自维持燃烧时,要求其水分不大于65%,超过此数值则需加入辅助燃料来助燃。

为了确保证生物质燃料的经济价值、发挥其潜力,在生物质的采获、晾晒、运输、储存的过程中应避免外在水分和机械携带水分的混入。根据盖斯定律可知,防止微生物发酵、腐烂是保证生物质燃烧热值不致降低的有效措施。因此对生物质燃料的低位热值进行估算,控制水分、灰分,为收购燃料、合理定价以及生物质燃料的有效利用,使之发挥较好的经济效益而提供参考。

参考文献:

[1]杨勇平,董长青,张俊娇 编著.《生物质发电技术》.

[2]西北农学院编.《饲料与营养》教材.

[3]张全国,张百良,黄德仁 编.《燃烧学》河南农业大学工程系.

[4]范从振,编著.《锅炉原理》东南大学.

[5]沈维道,郑佩芝,蒋淡安,编.《工程热力学》(第二版).

Reference data:

[1]The biomass power generation technology "YangYongPing DongChangQing handsome, charming.

[2]The feed and nutrition of northwest agricultural college textbooks compiled.

[3]"combustion" henan agricultural university department of electrical engineering ZhangQuanGuo ZhangBaiLiang HuangDeRen knitting.

篇8

4月中旬,政府出台了针对玉米深加工的新一轮调控政策。涉及两方面的内容,一是下调生物燃料乙醇财政补贴标准。二是提高部分玉米深加工产品增值税税率,将玉米浆、玉米皮、玉米纤维和玉米蛋白粉等玉米深加工产品的增值税税率由13%提高至17%。实际上再往前追溯一点,去年10月份,政府就发文恢复征收以粮食为原料生产用于调配车用乙醇汽油的变性燃料乙醇消费税。

显然,政府降低玉米深加工产品的补贴水平,减少对玉米深加工的税收优惠,目的是为了抑制玉米深加工产能,从而减少玉米深加工消费。实际上,这不是第一次降低燃料乙醇补贴标准,从2009年算起,政府已经连续4年调低燃料乙醇补贴标准。燃料乙醇补贴从2009年的2056元/吨下调到如今的500元/吨,降幅达76%。

燃料乙醇补贴政策始于2004年。政策出台的初衷有两个:一是为了推进可再生能源与新能源的发展,二是为了拉动玉米消费、解决农民卖粮难问题。但是世易时移,两个初衷均发生了重大变化。越来越多的证据表明,燃料乙醇的生产并不能节约能源,反而浪费能源。燃料乙醇燃烧的时候虽然不产生污染,但是燃料乙醇生产过程却会破坏环境。而近年来随着玉米价格连年上涨,食品特别是肉禽蛋奶价格猛涨,政府调控目标开始转向抑制玉米需求。毕竟,在“人车争粮”面前,政府首先要保证的是前者的需求。这样的话,逐步降低乃至最终取消燃料乙醇补贴将是大势所趋了。但是由于当前政府只是降低而没有取消补贴,生产燃料乙醇还是有利可图的。既然短期内降低补贴对玉米燃料乙醇的产量没有影响,那么短期内自然对玉米的价格影响也不大。因此,即使限制燃料乙醇的生产,也不能有效阻止玉米价格的上涨。

由于燃料乙醇生产本身并不盈利,因此只要政府停止了补贴,燃料乙醇的生产就断了奶,必然无法活下去。真正应该担心的是其他玉米深加工需求。不依赖政府补贴和优惠政策而生存的玉米深加工产品本身是在为社会创造财富,虽然这部分需求客观上拉动了玉米的价格,对食品价格上涨起了推动作用。但是从另外一个角度看,食品需求是一种需求,深加工产品也是一种需求,特别是许多深加工产品还是用于医疗的目的,很难说,哪种需求更应摆到优先的位置。压制玉米深加工固然有利于控制食品价格,但却导致深加工产品价格上涨,损害了深加工产品消费者,这是不公平的。政府的最佳做法是既不要用各种优惠政策补贴玉米深加工,也不要动用行政手段去强行压制,而是让市场去选择。

篇9

【关键词】 生物燃料 全球变化 多边 治理框架

各国政府均认同生物燃料是一种有潜力的化石燃料替代选择,其产业发展与减缓气候变化、繁荣农村经济、缓解全球和国家能源安全的联系已促动了主要国家在领域纷纷展开行动。但是,产量和贸易的迅速膨胀引起了许多环境和社会经济问题的争论。因此,检讨生物燃料产业发展的本质,探寻治理途径时不待我。

1. 生物燃料产业扩张:一种新的全球性变化

全球生物燃料生产从2000年到2009年已经翻了20倍,生产国从巴西一枝独秀扩展至美国、欧盟、中国等主要农业国,俨然成为了新能源产业中最具潜力、最重要的化石能源替代产品。尽管这番蓬勃景象一方面归功于生产效率的提高,原料作物种植扩张也“功不可没”,有越来越多的作物用于该产业生产。产业扩张带来了以下巨大影响:

1.1由生物燃料产业扩张引起的生态变化

对环境的影响是复杂的:生物燃料替代化石燃料、减少温室气体排放是快速扩张的根本动力。但是,仍要对生物燃料整个生命周期排放做出全面评估。比如,原料作物的生产使用化肥、杀虫剂,最后就在减少温室气体排放的同时消耗化石燃料。机器化大生产带来更多甲烷气体,而甲烷对全球变暖的作用远远大于二氧化碳。另外,土地使用目的的转变可能导致大量的温室气体排放。因此,关于排放平衡必须考虑整个生命周期。

单一种植原料作物带来生物多样性丧失、土壤质量下降、给水资源质量带来冲击,即使大多数作物可依靠降雨生长,但是当提高生产率成为优先选择的话,灌溉则会成为首选。最后,生物燃料生产有外来物种侵害原有生态的风险。

1.2由生物燃料产业扩张引起的社会经济变化

对农村经济的影响体现在包括国家、区域和全球的各个层面:

国家对该产业利润的保证使大量投资涌入种植业,尤其是以农业为主要支撑的发展中国家。这就促使农民成为农业工人,丧失对土地的传统控制权。虽然产业扩张确实增加了农村人口就业机会,但是劳动条件却不尽人意,劳动安全难以保证。

除了对农村本地的影响,生物燃料生产也打乱了粮食生产和供应。因为主要粮食作物既可以供人食用也可成为生产原料,因此全球粮食价格随需求大增而屡创新高。生产者虽可从中获利,但那些农村和城市的低收入者无法负担充足食物费用,恶化了全球粮食安全状态。

1.3由生物燃料产业扩张引起的南北关系变化

发展中国家相对发达国家可获土地数量较高、原料价格较低、劳动力成本低廉,被认为是最有潜力生产生物燃料。主要消费者却是发达国家,即便全球产量不断提高也无法满足发达国家的消费目标,进口需求便产生了。于是发达国家和发展中国家签订了许多相关贸易协定。这种供求关系的发生本应带来全球双赢局面,但是发展中国家生产大规模扩张却给自身带来了巨大挑战,包括森林退化、土地冲突、传统耕种方式的遗失等等。

发展中国家是该产业发展负面影响的主要承受者,但却没有充分机会参与全球治理议程。即使参与,也只是该国的大企业,而不是那些受实际影响的大多数人,这无疑增加了北方对南方国家的控制力。

2. 生物燃料治理框架现状与评价

2.1生物燃料治理现状

国家、区域、国际已出现了应对生物燃料影响并促进其可持续发展的政策和治理结构。

2.1.1国家生物燃料治理议程:以主要生产国为例

随着气候变化成为全球议程中的重大问题,许多国家构建了可再生能源战略,其中就包括生物燃料。使用生物燃料不仅能替代化石燃料和提高能源安全,更重要的是还可以扩大农产品的出路和收益。在此促动下,各国普遍采用的政策是颁布燃料混合国家命令、税收豁免、对农民或生产者直接支付、对进口产品适用关税壁垒。除此之外,主要生产国美国和巴西面对负面影响,也采取了有限的政策调整。

美国玉米业已饱受诟病,尤其是玉米乙醇生产:减排水平低;超大型农业公司的控制使小生产经营者无利可图;由于美国是世界玉米的主要供应者,对生物燃料的加大投入引起全球大宗食品的价格动荡。即便是这样,美国仍然一再提高燃料使用比例,要求到2017年生物燃料替代汽油消费达到20%,对加工商提供每加仑0.51美元的补贴,对进口燃料乙醇适用每加仑0.54美元的进口关税。虽然,新能源计划提倡木质纤维素乙醇技术的发展,但是美国近期对生物燃料的需求增长仍不可避免从传统生产中获得。

巴西是世界第二大生物燃料生产国。甘蔗乙醇转化率比玉米乙醇高。但种植园的迅猛扩张对亚马逊森林造成了负面影响;甘蔗乙醇的生产对水需求量较大;单一种植扩张也带来了严重的土地冲突。但巴西政府仍决定每年新建25个甘蔗乙醇生产厂。尽管计划逐年有所微调,但传统大型甘蔗生产仍然占据主要地位。

由此可见,可持续关注在美巴两国并不是最优先考虑事项。但是生物燃料净进口国和地区却对生产的可持续性进行了更为积极的应对,主要体现在欧盟及成员国。

2.1.2区域生物燃料治理议程

欧盟生物燃料治理分为成员国个别要求和欧盟共同要求。就成员国而言,英国和荷兰生物燃料标准最为典型,因此将从英、荷、欧三个方面分析区域治理工具。

生物燃料可持续性争议包括减缓气候变化,生物多样性保护,水、土壤、空气保护,土地所有权保护,劳工标准,社会经济发展和粮食安全7个方面。

关于减缓气候变化,三者要求类似:首先都禁止将高碳封存土地用于原料作物的种植。英国要求温室气体减排至少为40%,每年增加5%,但性质是建议式的;荷兰规定了最低30%的强制减排,到2017年逐步增加到80%-90%;欧盟强制性要求将最低减排量提高到35%。

关于生物多样性,荷兰和欧盟都禁止将具有高生物多样性区域用于生物燃料生产;英国禁止生产毁损以上区域即允许合法生产。荷兰要求要远离高生物多样性区域5公里以上。

关于水、土壤和空气保护,三者具有区别。英国要求没有土壤退化、污染或水资源耗尽或空气污染。荷兰要求实行最佳保护实践;遵守《斯德哥尔摩农药使用公约》或国内法;禁止生产焚烧。欧盟除了就国家保护措施进行年度报告外,无具体要求。

关于土地所有权,英国要求对土地权和当地社会关系没有负面影响。荷兰要求在土地原始使用者同意下谨慎使用土地;尊重原主人传统制度。欧盟仅要求进行年度报告。

关于劳工标准,英国要求对劳工权利和工作关系没有负面影响。荷兰要求遵守《普遍人权宣言》和关于跨国公司及社会政策的国际劳工原则。欧盟除了就《国际劳工公约》的国家授权和执行进行年度报告外,没有具体的要求。

关于社会经济发展,英国和欧盟仅要求就此履行年度报告义务。荷兰要求生物燃料生产必须利于当地繁荣;要求就生产影响当地人口和利于当地经济发展进行报告。

关于粮食安全,英国仅要求检测对粮食价格的间接影响。荷兰和欧盟除了就土地使用改变形式、土地和粮食价格影响进行报告外没有具体要求。

只有满足上述标准的产品才能计入欧盟2020年运输领域可再生能源10%的强制性目标,进而才会获得市场准入好处和税收豁免、直接支付等利益。欧盟在证明产品是否符合标准的问题上采取灵活做法,即权力下放到欧委会认可的自愿性生物燃料认证制度,认可时效为五年。可见,就世界最大的生物燃料进口市场的准入而言,得到具有资格的认证制度的认证是关键。截止2011年7月,有2BSvs、Bonsucro、Greenergy、ISCC、RBSA、RSB、RTRS七个生物燃料认证制度得到了欧委会的认可,此外还有18个认证机会等待欧委会的批准。

2.1.3国际生物燃料治理议程

和生物燃料多少相关的国际协定在各个领域早已出现,例如气候、能源领域。目前虽没有针对全球生物燃料挑战专门国际协定,但国际社会已开始以以下形式展开努力:

首先,联合国开发计划署(UNDP)、联合国环境规划署(UNEP)、联合国粮农组织(FAO)、联合国能源机制(UN-Energy interagency),在其报告和研究中均已提出生物燃料问题。但是,他们的行动大多仅局限于分析和建议,并没有就其各自的领域达成国际协定。国际能源署(IEA)以及经合组织(OECD)发挥了更为积极的作用,通过IEA生物能源部的第40工作组为生物燃料贸易认证构建了可持续性标准。

其次,新近建立的论坛和伙伴关系开始在生物燃料全球可持续发展崭露头角。最为典型的就是2005年发起的全球可再生能源伙伴关系。该制度目的是促进可再生能源的继续发展和商业化,支持更广泛的、符合成本效益的生物质和生物能源发展尤其是发展中国家。生物燃料国际贸易大幅增加,2007年巴西、美国、中国、欧委会等建立了国际生物燃料论坛。

最后就是专门针对生物燃料可持续性问题成立的、新的国际倡议,采取的形式是多利益攸关方组成的圆桌会议,讨论和构建可持续性环境和社会经济标准。但覆盖产品范围各有不同,例如责任大豆圆桌会议以及意图进行普遍适用的可持续生物燃料圆桌会议(RSB)。

2.2对目前治理框架的评价

随着全球生物燃料贸易的提高,作为主要进口者的欧盟国家生物燃料治理议程对市场准入和不同可持续性产品的竞争力影响在逐步提高,甚至成为了全球治理生物燃料的风向标。但是,从欧盟和成员的可持续性标准来看,主要局限于对生态环境的要求;像是当地经济发展、公平正义以及粮食安全等与发展中国家紧密相关的社会经济问题关注不够。而间接土地使用转化问题也被忽略掉,甚至都不存在报告制度。值得注意的是这些标准既适用于外国生产者也适用于欧盟国家,但制定决策时却没有主要供应国——发展中国家的参与,也就是发展中国家的观点和他们的关注没有得到体现。

似乎国际治理议程给参与性带来了一些新的变化,但也有自身弱点:

首先,不同国际生物燃料治理议程仍局限在自己业务范围内处理环境和社会经济影响。国家合作多集中于研究和技术发展,而不是应对扩张带来的更为严重的粮食安全影响。

其次,通过给当地提供能源生产和供给的方式来促进当地发展,这种生物燃料发展的替代模式几乎被这些治理议程所忽略,即他们主要以生物燃料贸易为预设前提而展开谈判。

第三,有些国际议程如IEA、OECD具有明显的发达国家倾向,当然会以它们的能源需求为优先考虑,因而主要关注发展中国家的出口为导向的生产,而不是发展中国家的当地需求。而全球生物能源伙伴关系也代表主要国家团体利益。甚至像RSB由多利益有关方组成的圆桌会议也不对称地给来自工业部门和发达国家的参与者更多的关注和投票权。21位RSB发起委员中仅有5位来自发展中国家,而这5位代表中有3位代表了像巴西的甘蔗联盟这样的工业团体利益。很明显利益受到主要影响的大多数人并没有能充分表达意见。

最后,现有的国际行动没有形成多层次、协调统一、相互支持、相互影响的治理方式。许多国际倡议或国际行动虽然博兴,但十分分散,关注自己覆盖的争议领域,并在其框架下的国家行动仍被符合本国利益的议程所主导。这种情形实际导致生物燃料问题仍然是“无治理领域”,试想有各自利益的国家和企业一旦发生纷争,将如何公正、合理的解决争议?

3. 新多边生物燃料治理框架愿景

3.1建立新多边生物燃料治理框架的原因

目前生物燃料治理制度无论从国内还是从国际层面都无法满足治理需求,建立新多边治理框架的迫切需求和原因有以下几点:

第一,该产业发展的主要推动力均具有重要的全球要素和关联。可再生能源替代化石燃料就是由《联合国气候变化框架公约》促动的。化石燃料的可用竭性是一个全球难题,而动荡的国际关系又是国家追求能源安全的巨大障碍。生物燃料农业尤其在发展中国家又是由发达国家的消费目标促发的出口繁荣所驱动的。以上每个环节都具有“全球烙印”。

第二,生物燃料生产带来的环境影响是无法依靠个别国家得以解决的。该产业对气候变化、对水等自然资源的需求以及对土地使用改变的累积作用都具有明显的全球关联。

第三,个别国家解决生物燃料扩张带来的社会经济影响能力有限,比如对农产品市场和全球粮食安全的影响。

第四,生物燃料的争论从一开始出现就具有南北关系的特性,是以一方的主要社会、政治和环境利益为代价而使另一方获利的问题。

第五,关于生物燃料生产存在许多相互冲突的观点和看法,因此不仅需要有效的治理框架,更需要体现公平、合法性、责任性、代表性的统一治理制度。

以上各个方面均体现了建立全球生物燃料治理框架的必要性,但这里的全球性并不意味着所有国家都就此进行谈判,但至少是一个与现有治理框架不同且能够反映生物燃料产业核问题的不同视角,能通过多边平台包括国家和非国家参与者构建的负责而合法的方式进行治理和调控。那么,这种新多边治理框架究竟应该具备怎样的条件和内核呢?

3.2新多边生物燃料治理框架的建构

3.2.1多边生物燃料治理框架应具备的基本特征:多部门、多层次和多参与者治理

生物燃料产业发展并不仅是一种能源战略,它和粮食、农业、贸易、气候和生态保护等多方面都具有重大关联,而这些领域都有各自的政策制度。因此气候谈判、可再生能源议程、全球贸易和农业发展、保护生物多样性和生态系统战略均涉及到了生物燃料问题。以上不同领域的各自政策必须避免冲突、寻求协调,这就需要多部门协调来应对生物燃料治理。

其次,生物燃料治理需要多层次协调。如果没有国家、当地政府以及当地生产者的协助多边框架很难成功,这也是目前国际相关治理制度的欠缺。这种协调既要体现在国际政策的成功执行上,比如认证计划的实施,也要体现在不同层面的规制活动上。

第三,不同参与者和平行决策体系间的协调也是必要的。这会减少重复劳动、避免政策冲突,比如生物燃料治理政策和WTO规则之间的冲突,多参与者治理意味着允许各种主体使用有效参与资源。

3.2.2新多边生物燃料治理框架的制度设计:趋利避害

虽然需要进一步协调不同产业部门、参与者和治理层次,但是何种制度设计才能最好发挥功能却是一个大问题。从实现的可能性出发,有两种路径可以选择:

第一种,在某一类宽泛的领域建设治理制度,能源和农业领域可供选择。

在能源领域探讨生物燃料治理制度的优势是能够很容易地将该问题并入可再生能源政策;能够让业界对照其他生物能源对液态生物燃料做出评估。弱点是由于目前与能源相关的、行之有效的政策制度本身就十分分散,加之联合国相关机制治理权力也十分有限,新建立的国际可再生能源机构(IRENA)固然令人欣慰,但是像巴西、中国等这些主要生产国尚未加入,因此治理很难从全球能源制度中获得有益的制度支持;加之,如果国家将生物燃料单纯看作是国家能源安全问题,由于敏感性,将会使多边谈判变得异常艰难;最后由于生物燃料是由许多作物提炼而来,因此对农业部门的影响也举足轻重,将其作为能源问题处理自然会导致对粮食安全、农村地区和土地政策的影响关注不够。

在农业领域处理生物燃料问题最大的优势是可以借助FAO现有的各种制度;可使业界更加关注粮食和农村发展问题;也会从国际农业协定中最终获利。但是国际农业贸易谈判频频陷入僵局,这必将阻碍该产业的可持续发展;也会割裂生物燃料与可再生能源政策的联系。

第二种不同的制度设计路径就是将生物燃料作为独立的焦点问题进行制度设计,而此种方式根据所设计的制度框架以生物燃料问题的一个方面还是多个方面为治理对象分为单一框架和复合并行框架。不论是单一政策框架还是符合政策框架同样各具优、缺点:

在有效性方面,复合型平行框架更有利于不同政策工具的创新、彼此竞争和实践检验;在公平性和权力分配方面,复合平行框架更易于禁止权力集中,并且在一定程度上会增加发展中国家在决策中的影响力。缺点就是遵守和执行成本较高。

而单一框架由于设定的制度具有很强的针对性和局限性,因此遵守和执行成本较低;所设定的单一规则更容易和像WTO这样的现有国际规则协调一致;也更易于吸收多参与者的集中关注并利用他们可提供的资源。缺点是过分支持某类参与者的风险过高;灵活性和调节性较差;由于会吸引更多的参与者,因此达成一致意见就更为困难。

综上,新多边生物燃料治理框架是一个开放性议题,只有把握住合理合法内核,比较各种选择路径的优缺点,在实践中逐步探索。

参考文献:

[1] Patrick Lamers. International Bioenergy

Trade-A Review of Past Developments in the Liquid Biofuel Market[J].Renewable and Sustainable Energy Reviews, 2011(11):2655-2676.

[2] Thomas Vogelpohl. The Institutional sus-

tainability of Public-private Governance Arrangements-the Case of EU Biofuels Sustainability Regulation[C].The Lund Conference on Earth System Governance, Berlin 2012.

篇10

生物燃料主要是指以生物质为原料制取的燃料乙醇和生物柴油。生物燃料的发展动因,一是源于国家石油安全的需求,即作为汽油和柴油的替代能源,以达到缓解石油过度依赖进口的危机;二是源于国家环境保护的需要,利用生物燃料的清洁性降低机动车污染物排放。燃料乙醇是指用玉米、木薯、甘蔗、甜高梁以及农作物秸秆等生物纤维制取的液体燃料;生物柴油是指用废食用油、油料植物(麻疯树、黄连木等)和油料水生植物(藻类)等为原料制取的液体燃料。生物燃料可直接与汽油或柴油按一定比例混合后作为汽车动力燃油使用,起到替代汽油和柴油的作用。而汽车用汽油和柴油在我国交通部门油品消费中占很大比例,因此,生物燃料替代潜力的分析和研究将主要围绕汽车用油展开。

燃料乙醇(俗称酒精),以玉米等农作物或秸秆为原料,经发酵、蒸馏而制成,生产工艺技术成熟。燃料乙醇以10%比例与汽油搀和作为汽车动力燃料(E10),在减少汽油消耗的同时,还能有效改善油品的使用性能和降低汽车尾气污染。国家汽车研究中心的实验结果表明,汽车使用燃料乙醇汽油,其动力性能基本不变。从机理上讲,汽油加入10%燃料乙醇后热值降低3%,但含氧量增加3.5%,可将原汽油不能完全燃烧的部分充分燃烧,从而保证其动力性能,使总体油耗持平。美国的研究结果表明,E85高比例燃料乙醇汽油与传统汽油相比,前者辛烷含量低28%,但能源利用率高于后者;前者每公里耗油量是后者的85%,温室效应排放量只是后者的75%,每升造价也低于后者近0.80美元。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种。我国生产普遍采用化学法,即利用酯交换反应,通过去掉植物或动物脂肪中的甘油分子制取生物柴油。一旦甘油分子从植物油或动物脂肪中除去后,生物柴油的分子成分与石油柴油相似,可以直接用于任何柴油发动机,而不需要对发动机作任何更改。江苏工业学院精细化工重点实验室研究了生物柴油与O#柴油的调和油性质,结果表明,生物柴油与我国僻柴油的主要性能指标相接近(除闪点外)。美国科学家的大量试验结果显示:生物柴油作为车用替代燃料,其排放指标可满足欧洲Ⅱ和Ⅲ排放标准。英国能源技术支持单位(ETSU)还对生物柴油与柴油进行全生命周期的C02排放研究,结果表明,生物柴油的全生命周期CO2排放仅仅为柴油的1/5左右。燃料乙醇汽油与纯汽油的全生命周期排放比较结果是:燃料乙醇在CO、CO2的排放方面低于汽油,而Nox、CH4排放相当于或略高于汽油。由此可看出生物燃料的清洁性。

二、国内外生物燃料开发利用的现状

生物燃料生产和应用在国际上已呈高速发展趋势,发展燃料乙醇产业已成为各国政府调控农产品供需矛盾、解决石油资源短缺以及保护城市大气环境质量的重要措施。巴西始终处于燃料乙醇发展的领先地位。目前巴西国内有400万辆汽车使用纯燃料乙醇,其他车辆使用25%的乙醇汽油。美国1/3汽油中掺100k的燃料乙醇,美国总统布什希望到2025年用燃料乙醇取代3/4的进口石油,2030年燃料乙醇将占美国运输燃油消费总量的20%。法国自2006年秋季开始使用B30乙醇汽油车辆,2007年E85高级乙醇汽油正式面市,目前生物燃料占所有燃料的比重只有1.25%。法国政府的目标是,2008年使生物燃料比重提高到5.75%,2010年达到7%,2015年达到10%。印度政府规划,2011-2012年间,实现生物柴油替代20%的石油柴油。美国每年销售20亿加仑的生物柴油,占普通柴油消耗量的8%。由于生物柴油更容易与柴油混合,因此随着柴油车的发展,生物柴油将有更大的应用规模。目前德国1/3的新增汽车为柴油车,几乎所有的出租车都是柴油车。奥地利则接近50%。欧洲每两部新增车辆中有一辆柴油车。目前德国大众和奔驰汽车等多家公司,已经在巴西和美国等国家推出多种利用生物燃料的车型,以迎合市场的需求。

我国目前已成为全球第三大燃料乙醇生产国,排名第一和第二的分别是巴西和美国。我国政府批准建设的四家以消化玉米陈化粮为主的燃料乙醇生产企业,2006年生产能力达163万吨。车用燃料乙醇汽油扩大试点工作在9个省的27个地市开展,车用燃料乙醇汽油销量达到1000万吨左右,占全国汽油消费量的20%左右。广东首条以木薯作原料的燃料乙醇生产线也在清远落户,而盛产糖蜜和木薯的广西也正计划在南宁和贵港兴建两个乙醇燃料生产基地。此外河南天冠集团年产3000吨的生物质纤维乙醇生产项目已在镇平县奠基,这是国内首条千吨级利用生物质纤维生产燃料乙醇的产业化试验生产线。但是要实现大规模的工业化生产,还有很长一段路要走。

此外,我国生物柴油也开始进入了准备推广阶段。海南正和公司在河北已开发了11万亩黄连木种植基地,每年可产果实2-3万吨,可获得生物柴油原料8000-12000吨。该公司计划在此基础上建立年产生物柴油5-20万吨的炼油化工厂。海南正和公司在河北邯郸建成年产l万吨的生物柴油工厂。四川古杉集团建成年产3万吨生物柴油工厂。福建源华公司建成年产3万吨的生物柴油工厂。北京等省市也已经建成一定规模的生产线。上述这些生产线目前均是利用垃圾油或植物油脚、餐饮废油等为原料生产生物柴油。2005年我国的生物柴油生产关键技术研究取得重大进展,产品各项指标达到美国ASTM6751标准,使用性能良好,完全能够作为柴油内燃机燃料。在今后5年内,我国将建成年产2-5万吨规模的生物柴油产业化示范工程。

我国政府非常重视替代能源问题,《可再生能源法》中明确指出国家鼓励生产和利用生物质液体燃料。国家发展改革委、财政部关于加强生物燃料的通知中强调:发展生物燃料涉及原料供应、生产、混配、储运、销售以及相关配套政策、标准、法规的制定等各个方面,业务跨多个部门,是一项复杂的系统工程。因此,应按照系统工程的要求统筹规划。根据国情,政府要求积极稳妥地推进生物燃料产业的发展,走“非粮”路线,不与农业争地。生物燃料发展在我国不仅具有石油替代作用,而且对解决粮食深加工转化、稳定粮价和提高农民收入以及减少环境污染、保持生态平衡等诸多方面都具有十分重要的意义,还能创造许多新的就业机会。因此,推广使用生物燃料必将成为中国可持续发展的一项长期战略。

生物燃料作为替代燃油具有节能、环保的优势,但是要积极稳妥地发展生物燃料,许多问题仍值得深入研究和探讨。需要关注最多的问题是:未来我国生物燃料究竟有多大发展潜力,发展生物燃料的资源保障性如何,生产的技术经济性如何,以及汽车利用这种替代燃油的技术适应性和社会需求性如何。针对这些重要问题,本研究利用中国能源环境综合政策评价模型的

技术模型(IPAC-AIM),从我国社会发展、能源需求以及环境制约条件下对生物燃料的需求端,以及从生物燃料生产的资源开发和制取技术的生产供应端,全面分析生物燃料作为车用替代燃油的发展潜力问题。

三、对生物燃料开发利用的评价

1、生物燃料开发的资源保障性评价

我国生物质资源非常丰富,可供生物燃料制取的资源种类将随着今后不同的生产阶段而改变。目前,我国燃料乙醇处于小规模生产阶段,主要利用玉米陈化粮为原料。若按10%乙醇汽油计,我国年燃料乙醇需求量在480万吨左右,根据1吨酒精消耗3.2吨玉米量估算,需用玉米量约1536万吨,可是我国每年大约只有400-600万吨玉米陈粮。由此看来,玉米燃料乙醇的发展因受玉米陈化粮资源的限制而不能持续。当陈化粮用完后,燃料乙醇生产将逐步转向利用其他经济作物,如甜高梁、木薯等作原料,并且作为调节粮食市场供求的一种手段,将燃料乙醇生产纳入到饲料生产中。因为燃料乙醇在生产过程中只消耗粮食中的淀粉,同时对蛋白质等其它营养物质是一个浓缩过程,也就是说,是优质高蛋白饲料(DDGS)的生产过程。国家可以通过宏观调控和市场机制,将部分饲料粮先生产燃料乙醇,然后将其副产品(优质高蛋白饲料)放回饲料市场。

粗略估算,我国每年饲料用玉米大约有8000-10000万吨,其中加工成现代混合饲料的玉米用量占50%(周立三,2000)。如有计划地从饲料粮中拿出15%,先生产500万吨燃料乙醇,同时联产500万吨DDGS饲料投放饲料市场,它的饲养价值(优质蛋白质总量)与1500万吨粮食相比,不但不会减少,反而得以增加。这种将燃料乙醇生产与饲料生产综合利用的协调发展形式,扩大了燃料乙醇的资源潜力。另外,积极种植不与口粮争地、争水的高产、耐旱、耐盐碱的经济作物,如甜高粱、木薯、甘蔗等,也可为生产燃料乙醇开发更多的原料资源。有专家估计,利用易改造的盐碱地种植甜高梁,可以提供年产4000万吨燃料乙醇的原料。在不远的将来,通过生物质纤维(秸秆和薪柴等)生产燃料乙醇技术,可以为大规模燃料乙醇生产提供取之不尽的生物质资源。根据粗略估算,我国每年来自农业废弃物的秸秆可利用量约6亿吨,如果利用其中的50%制取燃料乙醇,按照7-8吨秸秆生产1吨燃料乙醇计,可以提供年产3700万吨燃料乙醇的原料。

从我国生产生物柴油的资源情况看,由于受原材料价格的影响,现阶段较适合作为制取生物柴油的原料主要有酸化油、地沟油和泔水油。有关资料显示,我国每年消耗植物油1200万吨,直接产生油脚酸化油250万吨,大中城市餐饮业产生地沟油200多万吨,这些油品的价格基本在2000-3000元/吨左右,是目前我国生物柴油生产的主要原料。价格高于4500元/吨的原料油如菜籽油、棉籽油、大豆油基本不在现阶段考虑之内。木本油脂植物如麻疯树、黄连木、文冠果等,尚处于试点培育阶段,只能作为未来几年后的生物柴油原料。粗略估计,如果利用非农业和林业规划用地的无林地和退耕还林地(约6700万公顷)种植油脂植物,按种植黄连木或麻疯树计算,以每公顷油料林出油1-5吨计,则可生产生物柴油近亿吨。此外,我国约有5000万亩可开垦的海岸滩涂和大量的内陆水域可以发展工程藻类资源。按照美国可再生能源实验室运用基因工程等现代生物技术开发出含油量超过60%的工程藻类,若按每亩生产2吨以上生物柴油计算,我国未来的工程藻类也可提供制取数千万吨的生物柴油原料。

综上所述,我国未来的资源潜力可提供5000-8000万吨左右的燃料乙醇。燃料乙醇原料的利用路线为:近期利用玉米陈化粮,之后开发经济作物,中远期则利用农林生物质资源。生物柴油原料的利用路线为:近期利用废油,中期开发油料植物,远期则发展工程藻类。总体看,我国生物燃料资源可以满足未来大规模开发利用生物燃料的需求。

2、生物燃料生产的技术经济性评价

从以玉米为原料制取燃料乙醇的技术经济性看,由于玉米原料价格偏高,生产1吨燃料乙醇需3.3吨玉米,仅原料成本就达4620元(1吨玉米价格1400元左右),企业在国家每吨补贴1600元基础上可保本获微利。需要提及的是,国家对燃料乙醇的补贴是一种多赢之举。因为,加入WYO后,我国政府将粮食出口补贴改为对粮食加工生产企业的补贴,因此,对燃料乙醇的补贴不但是国家对燃料乙醇产业的支持,也是国家带动粮食生产和农民增收,同时创造大量就业机会的措施。有专家估算,按我国每年生产400万吨燃料乙醇推算,可拉动160亿元以上的直接消费,创造约50万个就业岗位,在生产、流通、就业等相关环节都可以给国家创造收入。以木薯等代粮作物为原料制取燃料乙醇技术正在研发阶段,其经济性好于玉米燃料乙醇,直接成本可控制在2500元/吨范围内。从长远看,燃料乙醇生产应以农林废弃物纤维质为原料。从上海奉贤2005年的“纤维素废弃物制取燃料乙醇技术”项目看,已完成的年产600吨乙醇中试示范生产线,按每7-8吨秸秆生产1吨燃料乙醇计,每吨燃料乙醇的生产成本在4300-5500元左右。从安徽丰原已经运行的秸秆燃料乙醇项目看,生产规模为5万吨/年,秸秆原料成本2100元/吨(约6吨玉米秸秆生产1吨乙醇,秸秆按350元/吨计);其他成本3800元/吨(包括酶制剂、耗水电和蒸汽及其他加工费等),总生产成本约5900元/吨。虽然目前利用秸秆纤维素制取燃料乙醇的成本高于玉米燃料乙醇,但随着技术的逐步成熟,其生产成本将会降低。另外,由于燃料乙醇具有与MTBE汽油添加剂同样的作用,所以,如果考虑到燃料乙醇的这一作用,对燃料乙醇的定位和定价来说都还有较大空间。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种,化学法是我国目前的常用方法。据不完全统计,我国万吨以下生物柴油产业化制备技术大部分采用酸碱催化间歇式化学法。由于投资少、上马快,投资回收期短,普遍为我国中小企业所接受。化学法生产中使用碱性催化剂,要求原料必须是毛油,比如未经提炼的菜籽油和豆油,原料成本将占总成本的75%。因此,采用廉价原料降低成本是生物柴油能否市场化的关键。正和公司以食用油废渣为原料制取生物柴油的经济性表明,每1.2吨食用油废渣生产1吨生物柴油,同时获得甘油50-80公斤,按当时的生物柴油售价为2300-2500元/吨估算,每生产1吨生物柴油获利为300-500元,现在,柴油价格涨到4900元/吨,更显现出生物柴油的市场竞争力。贵州省利用麻疯树果实生产的生物柴油,通过自有核心技术建设的首条年产300吨麻疯树生物柴油中试生产线,通过国家质检部门和国外大型汽车公司的指标检测,其关键指标均优于国内零号柴油,达到欧Ⅱ排放标准。

但是,上述的这些利用化学法合成生物柴油技术

还存在能耗高、生产过程产生大量废水和废碱(酸)等污染问题。为解决上述问题,人们开始研究用生物酶合成法制取生物柴油。2005年清华大学用生物酶法制取生物柴油中试成功,生物柴油产率达90%以上。生物酶法的无污染排放优点已日益受到重视,但是如何降低反应成分对酶的毒性是亟待解决的问题。工程微藻法是以富油的工程藻类为原料的生产方法。藻类的高脂肪含量可降低生物柴油的生产成本,生产的生物柴油不含硫,燃烧时不排放有毒害气体,排入环境中也可被微生物降解,不污染环境。专家评价,利用工程微藻生产生物柴油是未来发展技术的一大趋势。

由此可见,在一些具有经济性的生物燃料制取技术得到广泛应用的同时,更多的正在孕育发展的高新技术层出不穷,这种发展势头预示着我国生物燃料生产技术和产业将迎来更好的发展前景。

3、现代汽车技术利用生物燃料的可能性评价

目前,我国汽车利用燃料乙醇多采用混合燃料方式,即在不改动汽车发动机情况下以小比例与汽油混合,如燃料乙醇汽油E10(90%汽油,10%燃料乙醇)。其他利用方式有在线混合方式和双燃料方式,在线混合方式可以根据汽车发动机的工况调节燃料乙醇的比例,但需要改造汽车发动机;双燃料方式具有突出的高替代率、高热效率和高净化碳烟效果,但目前尚有问题需要解决。生物柴油与燃料乙醇一起混入车用柴油的方法,可以形成更理想的高比例含氧燃料,大幅度降低汽车的碳烟和微粒排放。由此可知,生物燃料作为替代燃料应用于汽车的关键问题,还在于混合动力汽车技术和先进柴油汽车技术的发展。

目前,采用生物混合燃料技术、具备较高燃油经济性以及低排放特性的混合动力新车型有若干多种,目前全球使用生物燃料的主要车型有:Ford FocusBioflex型;Ford Focus C-Max Bioflex型;Saab 9/5berline 2.0t Bio-Power型;Saab 9/5 break 2.0t Bio-Power型;Volvo C30 Flexifuel型;Volvo S40 Flexifuel型;Volvo S50 Flexifuel型。主要包括E85燃油混合动力车、燃料乙醇与电力混合动力车、纯燃料乙醇E100的运动概念车、满足欧4排放标准的现代柴油车技术以及在降低排放和降低油耗上有高效率的均质压燃混合动力车发动机技术,等等。虽然这些汽车技术目前在我国以及外国仍处于研发和示范阶段,但在不久的将来都将成为交通行业高效、经济、有益环保、面向未来的新型汽车技术。混合动力汽车和先进柴油车技术与生物燃料结合,是我国未来公路交通满足节能、环保需求的最佳技术选择。

四、生物燃料作为替代燃料的发展情景

1、社会经济发展对生物替代燃料的需求

伴随着国民经济的持续快速发展和居民收入水平的稳步提高,我国已进入汽车大众消费的成长期。在未来较长的成长期阶段,汽车保有量的持续快速增长,使车用燃油消耗成为我国石油消费中增长最快的部分。相比石油消费的快速增长趋势,我国的石油供应,在探明储量没有重大突破的情况下,仅能保持低速增长,无法满足国内需求的状态已成定局,并且依赖国际石油供应的比例将逐步加大,对我国石油供应和石油安全造成极大的挑战。解决这一严峻问题的战略措施是加强节能和发展替代能源,在众多车用替代能源中,生物燃料以其清洁、可再生以及低污染的优势具有很好的发展前景。

影响我国未来公路交通油品需求的主要因素包括人口发展趋势、经济发展趋势、汽车车辆和周转量增长趋势、公路交通的发展模式等等,这些因素之间的相互关系在模型中被一一构建,主要参数的设置简单叙述如下。

GDP和人口是交通运输需求的主要驱动因素。按照目前我国经济发展势头估计,将2010-2020年GDP的增长速度设置为8%。人口数2010年为13.93亿人,2020年为14.72亿人(社科院人口所)。

车辆周转量是反映公路交通需求的重要基础参数。伴随着我国经济的持续快速发展、人均收入水平的提高以及城市化的快速推进,预计在2010-2020年间,我国汽车保有量将以12%-15%的增长速度转向10%的增长速度发展,汽车保有量将比现在增长4倍。其中轿车的发展速度将高于汽车平均发展速度,估计2020年,我国人均轿车保有量约每千人75辆(接近目前世界人均水平)。依据国家交通发展规划和经济建设对公路交通服务量的需求,对公路交通周转量的预测主要考虑了车辆拥有量、车辆负荷率以及每年的运行距离等因素。预计2010年、2020年和2030年的公路交通周转量分别比2005年增长3倍、6倍和9倍。如此大的周转量增长,将导致巨大的交通油品需求量。

未来公路交通发展模式是预测未来交通油品需求量的重要参数。关于未来交通模式的设置,本研究选择了25种汽车技术,除一些正在应用的普通汽柴油客货车外,充分考虑了新型汽车技术如混合动力车、清洁燃料车、先进柴油车、电动车和地铁等技术的广泛推广应用。通过在不同情景中,对未来各种类型车辆在公路交通中所占份额以及这些车辆所消耗油品比例等重要参数的设置,作为预测未来公路交通油品需求量的重要参数。由于篇幅所限,25种公路汽车技术的市场份额设置就不一一列出。其结果是,在常规燃油发展情景中,先进的汽油车,特别是先进柴油车得到大力发展,其保有量比例将由目前的4%提高到17%;在生物燃料替代情景中,除先进的汽油车和柴油车得到大力发展外(保有量比例提高到27%),混合动力车也得到快速发展,在我国汽车保有量比例将由目前的7%增加到52%,其中,生物燃料的混合动力车将占很大比例。

2、展望生物燃料未来的发展情景

为分析我国未来社会发展中汽车对油品的需求,研究中设定了两个发展情景,即常规燃油发展情景和生物燃料替代情景,通过比较两个情景中油品的消费状况,展望未来生物燃料的发展情景。两种发展情景的定义如下。

(1)常规燃油发展情景。在此发展情景中主要考虑目前国家已有的交通节能和环境政策,如发展清洁车辆,施行欧洲汽车排放标准;发展公共交通,2020年公共交通将占公路机动车客运周转量的40%;促进柴油车发展,满足未来交通运输中客运和货运大容量的需求等;执行国家现有的生物液体燃料鼓励政策,参照车用燃料乙醇E10在我国的推广历程以及生物燃油制取技术的常规发展速度,估计生物燃料开发应用的发展趋势。即2010年燃料乙醇汽车仍处于区域化推广应用阶段,从目前的9个省市推广应用到15个省市,即全国有50%的车辆使用E10燃料;生物柴油处于技术准备阶段。2020年,继续推广E10车用燃料,车辆使用E10燃料的比例达到80%。生物柴油进入小规模应用阶段。

(2)生物燃料替代情景。此情景是在常规燃油发展

情景基础上,为满足我国能源供应安全需求、环保和气候变化需求以及可持续社会经济发展需求,在国家采取节能降耗和发展替代燃料的战略举措指导下,达到降低汽车油品需求量的目的。一方面,在发展汽车工业的同时,要降低能耗和保护环境,尽快引进新一代先进汽车;加速推广低能耗汽油汽车、低能耗柴油小汽车、混合动力汽车、清洁燃料汽车;扩大公共交通的承载比例,在轨道交通和公共交通体系完善的情况下,提高车辆运行效率,减少交通需求。另一方面,要强化推行车用生物燃料替代的扶持政策,考虑了国家可再生能源发展规划以及相关政策对车用替代燃料所产生的影响,加大投资力度,大幅度提高生物燃料的开发利用进程。对于燃料乙醇,2010年E10车用燃料在全国范围推广使用,即全国有90%-100%的车辆使用E10燃料。2020年,在使用E10燃料比例达100%基础上,进一步在使用E10燃料条件较好的省市推广使用E25车用燃料,使E25燃料车占汽油车的比例达到30%,在东北三省以及北京、天津、河北、河南、山东、江苏等连接而成的大区域内推广使用。对于生物柴油,2010年按照国家鼓励发展节能型轿车和柴油车的政策,在上海等省市示范推广使用柴油出租车和公共汽车,并要求新增的车辆也使用现代柴油车;2020年在上海、北京、广州等大城市推广使用柴油出租车、公共汽车和小轿车,并且这些车的车用燃料均使用搀和10%-20%的生物柴油的混合燃料。基于我国社会发展预测,特别是公路交通发展预测基础之上,根据对上述情景量化为模型参数的设置,应用IPAC模型对汽车油品需求量得到以下预测结果(见下表)。

在常规燃料发展情景中,未来20年,我国汽车的油品需求总量分别是2010年1.2亿吨,2020年2.2亿吨和2030年2.9亿吨。汽车以汽油和柴油为主要燃料将一直持续下去,到2030年,汽车消耗的汽、柴油占交通油品需求总量的比例仍在95%以上。因此,提高传统汽油和柴油车辆的效率和环保性能,以及提高油品质量是公路交通能源问题的重点。在2010-2020年期间,先进柴油车从早期发展阶段到推广示范阶段,柴油车辆将不断增加,柴油需求量快速增长,柴油占公路交通油品消费的比例将从45%提高到59%,需求量将达到1.7亿吨。另一方面,在国家对生物燃料的鼓励政策支持下,生物燃料在资源丰富地区得到示范和推广应用。从生物燃料总体的替代能力看,2010年至2030年在我国公路交通的油品消耗中,生物燃料的替代能力将从3%提高到5%,替代作用不十分明显。

在生物燃料替代情景中,未来20年,我国汽车的燃油需求总量分别是2010年1.1亿吨,2020年2.1亿吨,2030年2.7亿吨。在国家鼓励发展节能型轿车和柴油车政策支持下,燃油经济性高的先进汽车技术被广泛推广使用,预计2010-2020年的汽车平均百公里油耗将比2000年降低20%-40%,2010年我国乘用车的油耗量将比目前水平降低15%左右,从而使汽车油品需求总量减少。虽然汽车仍以汽油和柴油为主要燃料;但是,汽柴油的比例在逐步减小,由2010年的93%降低到2020年的89%和2030年的85%。特别是低能耗的混合动力车(包括生物燃料)的广泛推广和使用,其车辆的市场份额从2005年的7%提高到2020年的30%和2030年的52%,使石油油品消耗量逐步降低,而生物燃料比重逐步增加。由于国家鼓励开发利用可再生能源液体燃料的政策得以充分实施,2010年在全国范围内100%推广使用E10车用燃料,燃料乙醇的需求量达到670万吨;2020年,使用E25燃料车比例占汽油车的30%,燃料乙醇的需求量达到1670万吨。随着先进柴油车和柴油小轿车的推广使用,这些柴油车的车用燃料均使用搀和10%-20%的生物柴油,届时生物柴油在公路交通中替代柴油的比例将从2010年的2%增加到2020年的6%和2030年的11%。从生物燃料总体的替代能力看,2010年至2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,具有相当明显的替代作用。

3、生物燃料具有相当明显的车用燃料替代潜力

综上所述,本研究利用能源研究所构建的中国能源环境综合政策评价模型中的技术模型,重点对我国未来公路交通行业的生物燃料替代问题进行了分析。在今后的10-20年中,我国快速的经济建设,对公路交通汽车拥有量以及客货运周转量有巨大的需求,从而导致成倍增长的汽车油品消耗量,对我国本已薄弱的石油供应问题造成更严重的威胁。因此,节能降耗和发展替代燃料是降低我国公路交通油品消耗量的重要战略选择。生物燃料替代情景的研究结果表明,生物燃料在我国未来公路交通中将逐步展现出很强的燃料替代能力。这种替代能力,一方面来自于完全满足大规模生物燃料生产的资源潜力,以及层出不穷的生物燃料制取的高新技术潜力;另一方面来自于先进的混合动力汽车技术,特别是生物燃料混合动力技术在我国的推广应用前景。除此之外,更重要的是,这种替代能力源于国家能源战略和可持续发展的需要。展望未来,国家鼓励开发和利用生物液体燃料的政策得以充分实施,新型生物燃料混合动力技术逐步成熟,成为高效、经济、有益环保的普遍应用汽车技术。届时,在我国公路交通中,生物燃料将发挥非常显著的燃料替代作用。本研究表明,从生物燃料总体的替代能力看,2010-2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,替代车用油品的数量为700万吨(2010年)、2300万吨(2020年)和4000万吨(2030年),具有相当明显的替代能力。

五、我国生物燃料未来发展有明确的政策支持

我国政府十分重视生物替代燃料的发展,针对我国生物燃料初期发展所面临的问题,国家发改委组织相关部门研究和制定专项发展规划和一系列指导性政策,如《生物燃料乙醇产业发展政策》和《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,财政部也在制定生物燃料的财税扶持政策。这些政策对我国生物燃料未来的发展将产生有力的支持。