工程热力学概念范文

时间:2024-01-24 17:46:02

导语:如何才能写好一篇工程热力学概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

工程热力学概念

篇1

关键词:数学物理;工程热力学;教学

作者简介:高蓬辉(1979-),男,山西兴县人,中国矿业大学力学与建筑工程学院,副教授;张东海(1977-),男,江苏徐州人,中国矿业大学力学与建筑工程学院,副教授。(江苏 徐州 221116)

基金项目:本文系中国矿业大学青年教师教学改革资助项目(项目编号:2001207)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)22-0087-02

“工程热力学”为能源工程、机械工程、化学工程、材料工程以及航空航天工程等多门学科的发展奠定了基础,热工理论的研究与应用直接决定能源转化效率、节能技术及环境保护实施的成效,对于人类社会的可持续发展具有重大意义。因此,作为高校工科专业的重要基础课,加强“工程热力学”的教学效果就尤为重要。我国近两百所高校开设建筑环境与能源应用工程专业,全部将“工程热力学”课程设置为主干专业基础课之一。“工程热力学”课程不仅是后续专业课程学习的理论基础,同时直接为学生今后的科研和工作实践提供理论指导,具有重要的学习意义和实际应用价值。[1]

笔者根据自身在“工程热力学”课程教学过程中的切身体会和经验,指出应注重将基础数学、物理理论知识融会于“工程热力学”课程讲授过程中,促进学生对热力学中抽象概念和过程的深入理解,达到提高和改善教学效果的重要作用和目的。

一、基础数学物理知识在热力学理论中的体现

热力学的先修课程主要有高等数学和普通物理等课程,在教学中发现许多学生高等数学知识薄弱,需要在课堂教学中讲解大量的高等数学知识,才能使课堂教学质量得到保证,然而却浪费了“工程热力学”课程自身的教学时数,因此探索基础数学、物理知识体系与热力学之间合理的联系以及有机过渡的教学方法成为热力学教学中必须重视的问题之一。

热力学作为一门非常系统且抽象的学科,其科学性、严谨性主要是通过各个章节中贯穿其中的数学体系来构建而成的。如何科学、深入理解这些繁杂这些概念和数学结论,成为课堂教学活动中非常关键的一环。以下我们将例举热力学中非常重要的一些基于数理知识的基本概念和理论推导过程。

1.状态参数

在热力学的教学过程中,我们把系统中瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。[2]热力状态反映了工质大量分子热运动的平均特性,描述工质状态特性的各种物理量称为工质的状态参数。而状态参数是热力系统状态的单值函数,与热力过程无关,状态参数的这一特性的数学特征为点函数,表示为:

(1)

循环积分为:

(2)

在教学活动中,应将微分的理念融入到状态参数概念的讲解中,并通过全微分将热力系统状态参数为点函数的特性进一步阐述,使学生深入理解热力状态参数的特殊性。

2.微变量dh与变化量h的区别

在热力学第一定律的学习过程中,对于焓有两个非常相似的公式:

(3)

(4)

上式(3)和(4),从外形来看,非常相似,且学生在学习过程中,也容易忽视其细微差别。从数学角度来看,在教学过程中应对其进行区分。式(3)为焓的微分计算表达式,dh为焓的微变量值;式(4)为焓的改变量计算表达式,h为焓的变化量,即式(4)是通过对式(3)进行积分后得到的。这些细微概念上的差别,带来完全不同的热力学分析。通过上述的详细讲解和区别,可以加深学生对热力学中相关公式和计算过程的理解。

3.卡诺循环与极限的概念

卡诺循环解决了在一定的高温热源T1和低温热源T2间,热功转换最大效率的问题。由于卡诺循环是典型的可逆循环,在整个热力转换过程中,没有熵产,即没有不可逆因素所引起的做功能力的损失,因此,该循环热效率ηtc=1-T2/T1成为两热源T1、T2之间工作热机的最大循环热效率。

在课堂讲解中,联系实际工业生产和生活中的热力机械,指出实际热力机械的热功转换效率都低于卡诺循环热效率ηtc,原因在于卡诺循环作为可逆循环,是一理想热力循环,其热效率为实际生产、生活中热力循环效率的极限。[3]因此,实际生产和生活中的热力循环效率只能小于卡诺循环的热效率,不可能大于卡诺循环的热效率。这样从数学极限的角度也解释了为什么卡诺循环效率是一定高、低温热源间工作热机的最大效率的问题,使学生更加容易理解卡诺循环这节的相关概念和理论。

4.音速

研究流体在管道内流动时,我们提出了音速α,并且对定熵流动中音速用下面的公式进行计算:

(5)

在得到音速与温度之间的函数关系时,指出理想气体定熵过程方程式:

(6)

对式(6)进行变形,得到 (7)

在将式(7)代入式(5)时,遇到与是否等效的问题,从形式看,一为偏微分关系,另一为全微分关系。但从变量与因变量的角度来看,同样反映出变量与因变量间的函数变化关系,在课堂教学过程中,需要对这一细微差别进行讲解,以促进学生对物理过程以及数学关系的理解,不可一带而过,从而造成学生概念以及数学关系理解上的断层和缺失。

二、构筑基础数理知识与“工程热力学”课程有机结合的教学方法

“工程热力学”课程的一个重要特点是基本理论多,基本概念抽象。为此,在课堂教学中针对基本理论部分,把讲解重点放在基本理论和基本概念的深入理解上,如状态参数、可逆过程、热功转换、热力学第一、二定律、卡诺循环、卡诺定律、熵等,这些一定要详细讲解、分析透彻。特别是热力学第二定律的课堂教学中,因为该部分内容概念抽象、原理费解,又不能用实验来演示,所以学生学习非常困难,但热力学第二定律作为“工程热力学”课程的核心内容之一,非常重要。凡此种种,笔者作为“工程热力学”课程的讲授教师,在教学活动中,认为通过将基础数理知识与“工程热力学”课程有机结合的教学方法,可以提高和改善课堂教学效果,促进学生对“工程热力学”课程内容的掌握和理解。教学活动中可以采取以下的方法,以实现将基础数理知识与“工程热力学”课程结合的教学:

1.课程准备阶段

在“工程热力学”课程的备课阶段,先将本章节内容难以理解的概念、定理以及公式推导过程摘出来,同时考虑这些部分与哪些基础数学、物理知识相关,并将这部分数理知识作为课堂讲授内容的铺垫部分准备到“工程热力学”课程的课堂教学活动中,即将这部分基础数理知识写入课堂讲义、PPT教学幻灯片中。

2.课堂讲授阶段

在“工程热力学”课程的课堂讲授过程中,将热力学基本概念、原理和公式的推导与基础数理知识结合起来,在讲授过程中,实现热力学本身内容与基础数学、物理知识的互动讲解,从而达到改善教学效果、使学生易于理解和掌握的教学目的,实现学生对复杂、难懂内容的系统把握和理解。

3.课后反馈阶段

课后可以与学生围绕课程教学内容进行沟通,对课堂教学不足之处进行查漏补缺,一方面可以掌握学生的掌握情况,另一方面可以对教学方法不断改进,起到再次升华的作用。

三、结论

“工程热力学”作为能源、机械和化工等众多学科领域方面的一门基础专业课,其重要性不言而喻。如何改进已有的教学方法,改善和提高现有的课堂教学效果,成为各高校“工程热力学”课程教师所共同关注的关键问题之一。本文从笔者自身的教学体会出发,根据“工程热力学”课程内容的特点,提出将基础数理知识融入到“工程热力学”的教学活动中,并给出了实现将基础数理知识与“工程热力学”课程结合的教学方法和途径,为“工程热力学”课程的讲授提供了新的思路和方法,对其他课程的教学改革也有一定的借鉴意义。

参考文献:

[1]欧阳琴,寇广孝.建筑环境与设备工程专业“工程热力学”课程改革探索[J].教育教学研究,2011,(12):191-192.

篇2

关键词:工程热力学与传热学;安全工程专业;教学改革

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)23-0041-03

“工程热力学与传热学”是一门与工程实际联系紧密、应用性很强的热科学基础课,它源于矿业、石油、冶金、化工、机械、环境、航空航天等工程领域中的实际工程问题,也发展、应用于解决实际工程问题,在理工科本科生教育中占有重要地位,为理工科专业技术课的学习提供重要的理论基础。近年来,随着人类社会的进步和科学技术水平的提高,实际工程领域所面临的热科学问题更加复杂,这使得“工程热力学与传热学”课程传统的教学模式及授课内容已面临社会发展和学科发展的严峻挑战,存在较多问题和不足。[1]作为中国矿业大学(北京)(以下简称“我校”)“工程热力学与传热学”课程的主讲团队,笔者结合近年来科研工作中关于热力学与传热学的问题和多年对该课程的教学经验,对该课程在安全工程专业本科教育中的课程改革和教学实践进行了一些探索,并得到了一些粗浅的体会和认识。

一、安全工程专业“工程热力学与传热学”课程教学改革的必要性

1.该课程对安全工程专业本科教育的重要性

安全工程专业是一个涉及理、工、文、法、管等学科的综合交叉工科专业,目前国内开办安全工程专业的高等院校的类型很多,有矿业、石油、化工、军工、土木、交通、环境、经济等。“工程热力学与传热学”是安全工程专业必修的一门专业基础课程,在安全工程专业的培养计划中有非常重要的地位。根据安全科学基本理论,事故是能量失去控制而意外释放所造成的,而“工程热力学与传热学”正是研究能量转化与传递过程的基本规律,由此可见该课程对安全工程专业本科生培养的重要性,其教学水平直接影响安全工程专业本科生的培养质量。

2.目前该课程教学中存在的问题和难点

(1)教学学时少,但教学内容多,造成教与学矛盾。随着21世纪国家人才培养战略逐渐向拓宽专业口径、培养复合型人才方向发展,安全工程专业本科教育的培养计划和培养目标也不断调整,更加重视大安全“通才”教育。为满足安全工程专业培养计划改革和课程体系设置需要,我国多数高校对“工程热力学与传热学”课程学时都进行了缩减。比如我校,由起初64学时调整为48学时,虽然学时减少,但主体教学内容并未删减,这导致教学进度不得不加快。然而热力学和传热学理论性、专业性强,因为教学进程加快,使得学生不能深入透彻理解重要知识点,造成教学效果较差,引起教与学的矛盾。

(2)课程概念多、公式多、理论性强,降低了学生学习兴趣。“工程热力学与传热学”课程概念多、公式多、图表多,尽管有些概念和公式在“大学物理”和“物理化学”课程中学习接触过,但运用这些抽象概念和基本公式解释、推导热物理规律时,多数学生都会感觉到比较吃力,因为这要求学生具有扎实的数理基础和较强的抽象思维能力。另外,该课程中一些概念比较抽象且比较相近,容易发生混淆,比如可逆过程与准静态过程的联系与区别,技术功、轴功、容积功区别,导热系数、传热系数、导温系数的联系与区别等。同时,“工程热力学与传热学”中繁多的公式的关联性极强,推导过程复杂。上述理论性和专业性很强的概念、公式及其之间的复杂关系,大大地降低了学生学习的兴趣和动力。

(3)教学内容及参考教材安全专业应用案例较少,学生专业实践应用能力培养不足。随着科学技术的快速发展,热力学与传热学领域一些新的概念和理论不断涌现,目前多数新出版的“工程热力学与传热学”教材内容丰富,知识面力求新颖和广博,只配有少量简单应用案例。这对目前压缩学时的安全工程专业本科教学来说不合适,不利于学生在有限学时内深入学习和掌握重要热力学和传热学理论,而且不能使学生深入了解热力学和传热学理论在安全专业的应用,从而造成专业实践应用能力培养不足。因此,针对安全工程专业“工程热力学与传热学”课程教学,应有所侧重,补充该专业应用案例,强化学生学习兴趣和动力。

3.该课程教学内容和教学方法优化的必要性

随着经济的快速发展和社会的不断进步,人们对安全的要求越来越高,近几年来安全学科发展迅猛,“安全科学与工程”已成为工学门类下第37个一级学科,安全学科涉及面越来越广,已深入到矿业、石油、冶金、化工、环境、土木、交通等多个工程领域。“工程热力学与传热学”作为安全工程专业重要专业基础课,面临社会科技发展和安全科学发展的新形势,特别是教学学时压缩情况下,其传统的教学模式、授课内容、教学效果已充满挑战,存在较多问题和不足,其教学情况,在一定程度上影响安全专业人才在实际工程中解决相应问题的能力。因此,在有限学时内,对该课程教学内容和教学方法进行改进和优化是非常必要的。通过教学改革,提高该课程教学水平,才能使其充分发挥对安全专业技术课学习应起到的桥梁和铺垫作用,从而在一定程度上提高安全工程专业本科生的培养质量。[2]

二、安全工程专业“工程热力学与传热学”课程教学改革思路及实施

1.该课程教学内容调整和优化

(1)根据安全专业方向和学时分配,强化和弱化部分教学内容。为满足安全工程专业培养计划改革和课程体系设置需要,我校对“工程热力学与传热学”课程学时由起初64学时缩减为48学时。为在有限学时内完成教学计划和提高教学质量,笔者选用的参考教材为张学学教授主编的《热工基础》,该书基本内容由工程热力学和传热学两部分组成。[3]该书侧重于热力学和传热学基础,有助于学生对基本理论知识和方法的理解和掌握,但对于安全工程专业基础教育来说,其部分章节教学内容不重要,比如工程热力学篇的第六章内燃机和燃气轮机动力循环装置和第七章制冷装置循环等内容,因此在教学过程中对上述内容可以弱化。该书第五章中作为了解内容的湿空气性质及其热力学过程,是通风安全理论的基础,对安全工程专业来说就特别重要,因此在教学中对该部分内容应强化。总的来说,对该课程的教学应因材施教,根据安全工程专业方向和教学计划分配,灵活调整和优化教学内容和重点,使得学生能深入透彻理解重要知识点,避免引起教与学的矛盾。

(2)扩充传热学数值计算知识及应用算例,增强学生对基本公式及理论知识应用方面的理解,激发学生学习兴趣和动力。“工程热力学与传热学”课程概念多、公式多、图表多,通过实验教学可以加深学生对热力学与传热学理论知识的理解和掌握,但受于学时和实验条件限制,目前该课程实验教学课时还比较少。近年来随着计算机技术和数值计算方法的快速发展,数值计算(或称数值实验)为热力学和传热学研究开辟了一个新途径。目前“工程热力学与传热学”课程教学中,只在导热部分对数值计算基础进行了简要介绍,为了使学生能较系统地了解和掌握数值计算在传热学的应用,也需要对流换热部分的数值解算进行补充。考虑到本科生对数值计算涉及的数学推导和偏微分方程求解等知识的理解和掌握比较吃力,在课程教学中对MATLAB软件在传热学数值计算中应用进行介绍,并引入相关传热问题解算案例进行讲解。MATLAB是一套综合性的高性能数值计算和可视化软件,借助MATLAB软件不仅能使学生较快掌握传热学数值计算的应用,同时借助其强大的计算和绘图功能,也可以使学生对热力学和传热学中的许多公式和热物理规律推导进行图像化展示,这有助于学生对热力学和传热学基本理论知识的理解和掌握。[4]

(3)建立安全专业应用案例库,细化到具体章节教学内容中。“工程热力学与传热学”与工程实际联系紧密,应用性很强,它源于工程实际,并应用于解决实际工程问题。因此,若要提高“工程热力学与传热学”课程教学质量,在课程教学过程中应将实际工程案例作为教学素材,引导学生对特定的教学案例问题进行分析,并借助热力学和传热基本理论提出解决方案。针对安全工程专业说,工作中会遇到各种各样的危险情景,引入专业案例教学非常重要,比如应该补充讲授热力学能量传递、烟气对流和辐射复合传热方面的案例、热力学与传热学在事故演变分析中的应用案例。通过案例教学不仅可以使学生对热力学和传热学知识有深刻的理解和掌握,也有利于拓展学生的思维模式,激发学生的创新意识,更重要的是培养学生的专业应用和实践能力,对工作中危险情景问题应该怎样借助热力学和传热学理论来分析和解决会有较好的把握。因此,笔者近几年来特别重视对安全专业应用案例库的建设,对各个案例根据教学内容进行分类,基本贯穿于各个章节的教学中。

2.该课程教学方法改进和优化

近几年来随着国家对人才培养战略的调整以及工科类专业培养目标的改革,为了保证和进一步提升“工程热力学和传热学”课程教学质量,笔者对该课程教学方法进行了一些探索和改进。

(1)以科研与工作实践促进教学。大学教学不同于中学教学,大学是培养人才和创造知识的重要平台,在大学教学过程中要讲授传播高深前沿的专业技术知识。只有通过科研历练和工作实践,大学教师才可以逐步提高专业素养和综合素质,才能紧跟进而较好地把握本专业科技前沿。“工程热力学和传热学”课程作为工科类重要专业基础课,该课程任课教师更应立足于科技前沿,通过科研工作不断提高自身业务素质,并将科研成果转变为专业理论知识渗透到教学过程中,这样才能克服教材内容滞后于最新专业科技知识的不足,保证教学质量,同时通过“工程热力学和传热学”课程教学也能拓宽学生的科研视野和提升学生专业知识水平。为此,笔者在教学过程中穿插介绍了课题组在采空区自然发火、矿井降温等领域与热力学和传热学有关的研究成果。

(2)设立课程助教和网络讨论课堂,增强课程教学答疑和交流。为了及时解答学生学习过程中遇到的问题,在“工程热力学和传热学”课程教学过程中笔者安排了助教,助教一般由青年教师或高年级研究生担任,主要负责课程作业批改和答疑,并不定时开展相关专题讨论班,加强学生对重要章节的学习和理解。另外,在课外,笔者还充分利用网络资源,建立了网络讨论课堂(QQ群)。针对课程学习疑难问题、课程建设及改进建议等问题学生都可以在课程讨论群中提出,助教或任课教师基本每天都会登陆讨论群回答学生提出的问题。通过设立助教和建立网络讨论渠道,较大程度上增进了课堂教学以外老师和学生的交流,提升了该课程的学习质量。

(3)借助现代多媒体教育技术丰富教学手段。近年来,随着计算机科技和互联网技术的快速发展,多媒体技术成为教育教学过程中一个非常重要和便利的工具。“工程热力学和传热学”课程涉及的公式和图表非常多,采用多媒体技术可以显著节省教师对一些公式和图表的板书时间,不仅能提高教学效率,并且采用图文并茂的PPT可以形象具体地展示教学内容,利于学生理解。然而,对于比较重要的教学内容,比如导热微分方程、对流换热方程等数学描述的推导,笔者仍采用传统板书方式,详细分析和讲解重要定律和公式的提出和推导过程。另外,要充分利用多媒体技术的多种媒介形式,包括多种形态的文字、图片、动画、录像等。[5]目前笔者已经制作和收集了一些图片和视屏(热电偶等测温器件、肋片、换热器传热过程Flash、煤自燃实验录像等),在课堂教学实践中取得了较好的效果,大大激发了学生的学习兴趣和热情,也加深了学生对传热学在科技生产领域中应用的认识。

(4)改革和优化考核方式。“工程热力学和传热学”课程涉及的公式和准则特别多,有些公式较难记忆和推导,因此任课教师在闭卷考试命题时不得不压缩范围,这导致一些同学在考试复习时会忽略一些教学内容。为了使学生能对热力学和传热学基本理论知识有一个整体的把握和思考,特别是对该课程基本理论的应用有较深刻的认识和理解,笔者采用多元化考核方式。多元化成绩评定包括三部分:第一,课后习题作业、出勤、课堂表现、课下网络讨论表现情况;第二,专题大作业完成情况,专题大作业主要是基于热力学和传热学基本理论开展相关产品设计或数值模拟等;第三,闭卷考试成绩。采取这种多元化考核方式,不仅能促进学生对热力学和传热学理论知识的深入学习和掌握,也能提高学生的学习能动性,提升实践应用能力,有助于培养高素质人才。

3.学生实践应用能力培养引导

为了进一步提高学生的实践应用能力和培养学生的创新意识,笔者在“工程热力学和传热学”课程教学过程中通过多种形式对学生进行引导或提供多种实践渠道进行学习。

(1)设置热力学和传热学专题大作业。在教学过程中,笔者精心选取了多个与热力学和传热学密切相关的专业问题,让学生分组协作,首先对这些问题进行调研,然后开展实验设计和数值模拟分析,并写出相应的总结报告。最后,利用讨论课时间,组织各组以PPT形式进行汇报,通过提问和讨论意见进一步完善作业成果。专题大作业的成果作为期末考试总成绩评定的一部分。在课堂教学过程中增加学生参与的比重,使学生成为课程学习的主体,能为培养学生的实践创新能力创造有利条件。[6]

(2)利用大学生创新计划项目。目前,我校积极响应国家、北京市有关开展大学生创新训练的政策和工作安排,每年都组织设立大学生创新训练计划项目近300项,这为我校大学生参与科研工作、开展创新活动提供了重要的平台和良好的条件。我校“工程热力学和传热学”课程刚好在大学生创新训练项目立项这学期开课,在教学过程中,笔者鼓励学生应用热力学和传热学基本理论进行选题,并在开展研究工作过程中给予方法和技术指导。

(3)利用校外实践基地现场实习交流。为了提高学生的实际工作能力和教学质量,培养高素质复合型人才,以尽快适应社会发展的人才需求,和加强本科实践环节的教学,我校资源与安全工程学院积极开展校企合作实践教学,目前已建立了39个校外实习和实践教学基地。在“工程热力学和传热学”课程教学过程中,笔者穿插介绍了安全工程专业相关应用案例,同时,也经常给学生灌输实践学习的思想,鼓励学生好好利用实践基地这个很好的学习平台,到实践基地去实习或社会实践时现场观察、学习热力学和传热学的应用实例。通过现场学习能较大程度上拓展学生实践应用思维和激发学生创新意识。

三、结语

“工程热力学与传热学”课程在理工科本科生教育中占有重要地位,它源于工程实际问题,也发展、应用于解决实际工程问题。为能使热力学和传热学知识适应社会发展需要和满足现代社会对信息型、复合型人才的需求,“工程热力学与传热学”教学内容和教学方法需不断改进和优化。

本文以安全工程专业“工程热力学与传热学”教学为例,针对该课程教学内容、教学特点和目前教学中存在的典型问题和不足,提出了该课程教学改革和优化的思路和具体改进实施方案。该课程教学改革在安全工程专业教学中实践结果表明,新的人才培养目标和培养模式下“工程热力学与传热学”课程教学质量有较大改观,学生理论知识学习情况、分析解决问题能力、实践应用能力都得到较大提升。笔者对该课程在安全工程专业本科教育中的课程改革和教学实践,希望能为国内其他高校理工科“工程热力学与传热学”课程教学改革提供思路借鉴。

参考文献:

[1]于靖博,董丽娜,赵兰英.《工程热力学与传热学》课程教学改革与实践[J].广州化工,2013,41(11):259-260.

[2]林日亿,梁金国,黄善波,等.安全工程专业“工程热力学与传热学”课程教学改革[J].中国电力教育,2010,(167):93-95.

[3]张学学,李桂馥,史琳.热工基础[M].第二版.北京:高等教育出版社,2006.

[4]丁鹏.MATLAB在高校“传热学”教学中的应用与实践[J].中国电力教育,2011,(196):149-150.

篇3

论文摘要 结合多年从事化工热力学教学的经验,根据化学工程与工艺专业培养方案要求,探讨提高化工热力学教学质量的方法。精选教学内容,使之具有合理性、实用性,达到理论与实践相结合。加强学科间的沟通与衔接,科学组织教学;引导学生对热力学性质计算的编程求解,采用双语教学,加强综合知识的能力培养;强化实践环节的训练,注重学生科研能力的培养;适度引入多媒体教学,提高教学水平和教学质量;改革考核方式,注重学生灵活应用知识的能力。

化工热力学作为化学工程专业的专业基础课和必修主干课,是一门理论性和应用性较强的课程,它既要解决化学问题,又要解决工程实践问题[1]。通过化工热力学课程的学习,学生能够掌握化工热力学的基本概念和理论,利用化工热力学的原理和模型进行化工过程能量、相平衡及化学反应平衡分析和研究,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,解决化工生产和设计中的有关实际问题[2-3]。本课程的基本概念和公式多,理论抽象,计算与公式推导较难,学生系统掌握该课程的内容比较困难, 本文从教材建设和教学实施方法上进行探讨,使学生更好地掌握其基本原理和实际应用,培养高素质的化学工程与工艺专业人才。

1 根据化学工程与工艺专业培养方案要求,精选教学内容,使之具有合理性、实用性,达到理论与实践相结合

化工热力学的主要任务是使学生熟悉热力学基本定律在化学工程中的应用,掌握根据热力学原理求取化工基础数据和化工过程中热量与功的计算方法,培养学生应用热力学基本原理分析解决化工领域中有关问题的初步能力。因此,在制定教学大纲和选择教学内容时, 将热力学知识体系分成两部分:一是流体的P-V-T性质及计算、流体热力学性质及应用;二是溶液理论、相平衡及应用。对于第一部分,主要介绍气体和液体的P-V-T性质及计算、流体的热力学性质计算。要求熟练掌握常用的流体状态方程及应用计算,学会计算的思路、步骤和方法;掌握利用状态方程和热容数据计算流体的热力学性质的方法,绘制热力学图表。第二部分介绍溶液活度系数模型方程以及相平衡理论及其在化工分离中的应用。要求能根据超额吉布氏自由能与活度系数的关系,结合模型方程计算混合溶液的活度系数;掌握相平衡理论在不同条件下的方程表达式及其应用,尤其是超临界流体在分离中的应用。采用循序渐进、先易后难的方法逐步讲解和学习,最后达到融会贯通。使教学内容既要具有合理性、实用性,又能够充分反映本学科领域的最新科技成果,并与化工生产发展需要相结合。

2 加强学科间的沟通与衔接,科学组织教学

化工热力学作为一门专业基础课程, 是在物理化学学习的基础上,进一步深化热力学基本概念和理论,将重点转移到解决工程实际问题上来的课程。因此化工热力学具有知识的过渡性和很强的理论性、应用性。化工热力学中涉及到的热力学基本定律,热力学函数如焓、熵、内能、自由焓、自由能,流体P-V-T关系的状态方程等知识,均是物理化学中所学习过的,需要在化工热力学中进一步深化与应用。

加强与高等数学学科的沟通,解决公式推导计算难的问题。化工热力学中涉及到很多计算,如流体的P-V-T关系计算、热力学性质的计算、化工过程能量分析计算、相平衡计算、化学反应平衡计算等,对高等数学知识的运用要求多且较高。应加强与相关的专业基础课程及专业课程的横向联系,做到理论联系实际。在教学过程中引导学生放开思路,加强理论知识与实践知识的联系,将热力学的有关理论与这些课程的实际应用联系起来,避免学生认为化工热力学理论太深、不好学的现象发生。

3 引导学生对热力学性质计算的编程求解;采用双语教学,加强综合知识的能力培养

化工热力学的计算常涉及较多的公式及参数,计算量大且较复杂,通常需要进行试差、迭代来处理,因而电算在化工热力学计算中起着不可替代的作用。在讲授热力学性质时,引入陈新志教材中的偏离函数的内容。焓、熵、吉布氏自由能的偏离函数均可以通过状态方程推导出复杂的表达式,编写程序,即可以得到结果。相平衡中的计算更为复杂,编程计算大有裨益。实践发现,编程计算虽然对部分学生有一定难度,但多数学生却表现出很大的积极性,随着上机题的完成,计算机应用能力也得到提高。

此外,在教学中注意向学生介绍一些英文专业术语以及科技英语的表达方法,为学生查阅相关文献打下一定基础,并推荐原版教材(Introduction to Chemical Engineering Thermodynamics,J.M. Smith)部分章节给学生阅读,双语讲解,进一步培养学生的英文阅读和听说能力。

4 强化实践环节的训练,注重学生实践能力及科研能力的培养

在实践教学中,注重培养学生的动手能力,将难懂的知识与实际过程进行关联,运用所学基本理论解决实际问题的能力,将抽象的热力学概念和理论具体化,与生产实际联系起来,以消除学生对热力学的畏惧情绪,培养实际应用能力。比如我们延伸了实验内容,在二元汽液平衡数据测定和无限稀释溶液活度系数的测定实验中,除测定必要的实验数据外,还要求学生根据实验计算回归出Wilson和van Laar模型方程参数,再比较两种模型与实测值的偏差大小,并分析原因,从而达到了理论与实践的结合。另外,还组织感兴趣的同学进行创新性实验研究。随着生命科学和分子热力学的发展,生化模型分子(例如含N,N-二甲基甲酰胺DMF和醇的混合物)由于其在生化过程模拟中的重要意义,正引起人们越来越多的注意。为了更深入地了解这些体系的热力学性质及分子间的作用力,组织学生采用Rose平衡釜测定常压下二元体系(正丙醇—DMF,正丙醇-异丙醇,异丙醇—DMF)的常压气液相平衡数据来关联三元体系(DMF +正丙醇+异丙醇)的性质,并通过热力学同一性检验数据的可靠性。学生从查阅资料,设计实验方案,确定原料、试剂及分析方法,到实验操作,数据处理,并进行整理写出研究报告。这一过程对学生是一次全面的综合训练,加强了理论与实践的结合。对实验中遇到的问题老师及时解决,锻炼学生综合运用所学知识分析和解决实际问题的能力,强化专业操作技能,同时也加深对溶液理论知识的理解,培养学生的科研创新意识。

5 适度引入多媒体教学,提高课堂教学效果

热力学抽象、难懂,多媒体辅助教学具有形象、生动、直观的特点,便于加深学生对问题的理解;同时大大增加了课堂信息量,提高了教学效率,还可免除教师上课时写板书的劳累,因此多媒体辅助教学还是很有必要的。如在讲解化工热力学中混合物汽液相平衡计算,状态方程法计算组成、温度和压力时,往往非常复杂而且容易出错,迭代步骤繁多,计算费时费力。如果采用多媒体技术,可以形象生动地展示计算框图,在程序中采用循环语句,只需要输入初始的条件就可以很快得到结果。

但使用多媒体辅助手段也有缺点,主要是变换的画面,虽能形象直观地阐述丰富生动的信息,但用幻灯片显示热力学中公式推导显得相当机械、呆板,与看书相差无几,无法体现教师的灵活思路,更无法调动学生的积极性,同时也会影响师生之间的情感交流,结果是学生反映来不及记笔记,听课时就像看电影,教学效果差,对所学内容印象不深,甚至形成了课下学生借教师课件拷贝的局面。因此,多媒体教学只是教学的辅助手段,不能成为教学的主体形式,多媒体教学优势并不是在任何课中都能体现出来的。热力学教学应采用多媒体与传统板书相结合方式的教学手段,板书与多媒体的优势才能相得益彰,提高学生学习兴趣,拓宽学生思维空间,更好理解化工热力学内容。

6 改革考核方式,注重学生灵活应用知识的能力

考试是教学过程和教学成果的检验,它往往成为教学过程的指挥棒,因此考试内容及方法的改革是教学改革的重要组成部分,也是教学改革的重点和难点。根据热力学课程的教学实践,要求学生全面阅读书籍,在归纳整理的基础上,使知识系统化,找出学习中存在的问题,再集中解答。由于化工热力学的理论性强,大量模型方程难以记忆,闭卷考试要花费较多的时间和精力去记忆公式,难免疏虞理解和应用,或本末倒置,顾此失彼。因此采用了开卷考试,考试的目的在于使学生对教材体系有个全面的理解,突出重点和实用性,善于灵活应用。而且整个试卷均采用英语出题,这就加大了热力学题的难度,有些学生对英文句子不理解或不懂得专业词汇,导致答题南辕北辙。部分学生怀着侥幸心理,想依赖考场上翻书籍蒙混过关,但因课程知识的复杂性,突击过关是不现实的。因此开卷考试,扩大了学生的阅读量,注重学生融会贯通的能力。

参考文献

[1]赵云鹏,荆涛.化工热力学教学实践的研究[J].长春师范学院学报:自然科学版,2006,25(4):125—126

篇4

关键词:工程热力学;双语教学;课程体系

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)33-0069-02

随着我国本科教学水平的不断提高和国际化交流与合作的广泛开展,就业市场对本科毕业生的知识结构和外语应用能力有了新的要求,专业外语应用能力成为21世纪国际化专业人才的必备专业素养,直接影响本科毕业生的就业趋向和未来发展。[1-4]我国教育部对本科生的双语课程教学十分重视,2001年教育部在《关于加强高等学校本科教学工作,提高教学质量的若干意见》中提出,要采用英语等外语进行公共课和专业课教学,要求各高校在三年内开设5%~10%的本科双语课程。[5]2005年,教育部在《关于进一步加强高等学校本科教学工作的若干意见》中又指出:要提高双语教学课程的质量,继续增加双语教学课程的数量。2007年,教育部在《关于进一步深化本科教学改革,全面提高教学质量的若干意见》中指出,要鼓励开展双语教学工作。教育部2004年8月开始试行的《普通高等学校本科教学工作水平评估方案》中,双语教学被列为主要评估点之一。双语教学的水平已经成为衡量高等学校办学水平的一项重要指标。我国高校在本科生课程双语教学的实践过程中,近年来取得了实质性的进展,也突显了课程体系构建不合理、重点内容设置不当、教材建设相对滞后、双语教学师资不足、双语学习氛围较差、课程考核评价方法有待改革等问题。为了使“工程热力学”在校级精品课程的基础上进行双语教学,需要对“工程热力学”双语教学的课程体系进行合理构建和重点内容进行设置,以期把该课程建设成为高质量的双语教学课程,为提高本科毕业生的整体质量和英语应用能力奠定良好的基础,以适应国家化人才市场的需要。

一、“工程热力学”双语教学的课程体系构建与实施

“工程热力学”作为能源、环境、机械、化工等大类工科专业的专业基础课,兼有理论性、实践性和工程性,它起到承上启下、从基础课程到专业课程的桥梁作用,是本科生专业课程体系中不可或缺的骨干专业基础课,在上述专业本科生的培养过程中具有重要的核心地位。“工程热力学”课程内容具有概念多、基本理论抽象、富含哲学思维和理念、工程应用领域广泛等特点,要实现该课程的高质量双语教学就要对该课程体系进行合理构建,为保证教学效果奠定良好的基础。该课程经过多年的建设、教学改革和教学经验的积累,已成为校级精品课程,在教师团队建设、师资英语水平、多媒体课件及相关网络资源、课堂教学方法及课程评价方法等方面均具有良好的条件,为“工程热力学”双语教学课程体系的合理构建做了较为充分的准备。“工程热力学”课程教学团队认真研究了国内高校开设双语课程的案例,确定了“工程热力学”双语教学课程体系主要由教学模式、教学团队、教学内容(如课程大纲、授课计划)、多媒体课件、课堂教学实施、多层次启发式教学方法、网络资源、课程成绩评价方法等内容组成,认为教学模式、教学团队和教学团队是保证“工程热力学”双语教学质量的关键因素。

双语教学模式对课程体系的构建起到关键性影响,首先要确定双语教学模式。近年来我国高校开展的双语教学模式主要可概括为全外语型、混合型和部分外语型三种。

(1)全外语型。采用外文教材,直接用外文授课。这种模式要求师生均应具有较高的外语水平。

(2)混合型。采用外文教材,混合外文与汉语授课。与全外语型相比,学生较易掌握课程内容,适合学生接触双语教学的初级阶段,也适合多数任课教师的外语水平。

(3)部分外语型。采用外文教材,用汉语讲授。这种模式适合外语知识和接受能力较弱的生源。结合“工程热力学”课程多年的教学实践,结合现有的师资英语水平和学生的实际英语水平,建议对“工程热力学”采用混合型双语教学模式。

教学团队是实施“工程热力学”课程体系的人力资源保证,教学团队的建设是关键。经过多年的建设,“工程热力学”课程已形成了年龄结构、学历层次、学缘结构等较为合理的教学团队。老教师具有丰富的教学经验,青年教师具有较高的英语应用水平,为“工程热力学”双语教学的实施提供了良好的师资力量。

教学内容是一门课程知识面宽窄、程度深浅、系统性完善度的体现,也是体现课程整体质量的重要组成部分。“工程热力学”在建成校级精品课程的过程中,在教学大纲、教学计划、课程的重点和难点、多媒体课件制作和网络资源建设等方面积累了丰富的素材与资源,为“工程热力学”双语教学的教学内容规划与设置奠定了扎实的基础。

在上述条件下,“工程热力学”课程教学团队经过认真调查研究,并结合现有的师资条件、课程教学资源、学生的实际英语水平构建了“工程热力学”双语教学的“三段一改”课程教学方法,“三段”即课前阶段、课堂教学阶段、课后检验阶段;“一改”即改革课程考核和评价方法。现就“三段一改”课程教学方法的实施构想简要介绍如下:

(1)课前阶段。课前阶段所做的工作重点是确定双语教学模式、选定中文教材和外文教材、编制中英文教学大纲和授课计划、确定课程的主要知识点和重点与难点内容、制作多媒体课件、建立习题与思考题库,并将教学大纲、授课计划、多媒体课件和习题与思考题库在学校的毕博网络平台开放,供学生结合各自的时间、兴趣和特点进行课前预习与课后复习。教师在课堂讲授前预习要求,以保证学生的预习效果。

(2)课堂教学阶段。课堂教学阶段是将课程内容传授给学生。授课语言采用中文和英文,英文讲授不低于50%。教学方法采用启发式、讨论式、课堂提问等方式激发学生的学习兴趣。多媒体课件分别有中文和英文版本,课程的重点内容有中英文对照。课堂教学针对不同英语水平的学生分为三个不同层次,即最高层次、平均层次和低层次。最高层次要求学生以英文教材和英文多媒体课件为主,作业用英文完成;平均层次要求学生以中文教材和英文多媒体课件为主,英文教材为辅,对课程的主要内容能用英文和中文同时掌握,作业以中文为主;低层次要求学生以中文教材和中文多媒体为主,英文教材和英文多媒体为辅,对课程的重点内容能用英文理解和掌握,作业可全部用中文完成。课堂教学的目标是以平均层次为主要教学对象,逐步积累经验后过渡到以高层次为主。

(3)课后检验阶段。课后检验阶段主要包括课程作业批改、网上答疑和讨论、课程实验等环节,不仅可以检验课堂教学效果,巩固课堂讲授的知识,还可以检验学生对知识点的掌握情况,积极征求学生对本课程教学的意见,及时发现教学过程中出现的问题,改进教学方法,提高教学质量。

(4)改革课程考核和评价方法。双语教学的课程考核和评价方法应考虑到双语教学的特点,把英语的应用能力作为课程成绩的重要组成部分,把学生的英语作业、课堂英语提问和交流纳入课程平时成绩,并加大平时成绩的权重,以引起学生对英语应用能力的重视,激发用英语思考和学习的主动性,保证双语教学质量。

因此,合理构建双语教学的课程体系,由任课教师在课堂教学中分层次加以有效实施,并提高学生的自主性和积极性,可确保双语教学取得较好的教学效果。

二、“工程热力学”双语教学重点内容的设置与教学要求

“工程热力学”双语教学重点内容的合理设置是保证“工程热力学”双语教学质量的重要组成部分,重点内容的设置应该基本与中文教学的内容相同,同时应吸纳经典英文教材中的新概念和工程应用,与国际先进水平接轨,满足人才市场的国际化要求。“工程热力学”的内容可分为基本概念和理论、工程应用、常用图表三大部分。结合该课程教学团队多年教学经验的积累,建议将如下内容作为“工程热力学”双语教学的重点内容:

在基本概念和理论方面,主要包括:热力系如闭口系、开口系、绝热系、孤立系;状态参数如压力、温度、比容、内能、焓、熵、火用;热力过程如可逆过程、准静态过程、不可逆过程;热力循环如正循环、逆循环;不可逆因素如温差传热、摩擦耗功、自由膨胀;热力学基本定律如热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律;不同形式的实际气体方程;热效率、制冷系数、火用的概念、常见形式能量的火用、火用效率、火用损失、生成焓、理论燃烧温度、平衡常数、相对湿度、含湿量、干球温度、湿球温度、露点温度、马赫数;卡诺定理、孤立系统熵增原理、克劳修斯不等式;卡诺循环热效率,一般热效率表达式等。[6, 7]

在工程应用方面,主要包括:实际应用案例,气体动力循环如狄塞尔循环、奥托循环;制冷循环如空气压缩制冷循环、蒸汽压缩制冷循环、喷射式制冷循环、吸收式制冷循环;蒸汽动力循环如郎肯循环、再热循环、回热循环;燃气-蒸汽联合循环;燃料电池;燃料电池-燃气-蒸汽联合循环等;湿空气的加热、冷却与干燥等。

在常用图表方面,主要包括:水蒸气表、水蒸气焓-熵图、常用制冷工质的热物性图表、湿空气的焓-含湿量图等。

上述内容是不同层次学生必须掌握的“工程热力学”课程内容基本知识点,对不同层次的学生,主要体现在英语应用能力的要求不同。最高层次同学能够熟练阅读英文原版教材和相关的英文资料,能在课堂上用英语与老师和同学进行流利口头交流,在课后能用英语完成作业,熟练地应用英文多媒体课件进行课后复习;平均层次同学能读懂上述内容相关的英文原版教材内容的相关内容,能用英语在课堂上与老师和同学进行交流,能用英语写作部分作业题,能用英文多媒体课件进行课后复习;对低层次同学,能基本看懂英文原版教材中上述相关课程内容,基本能用英语在课堂上与老师和同学进行沟通,掌握上述课程内容的英文词汇和表达方法,能看懂英文多媒体课件中的上述课程内容。在双语教学中要强调学科的专业性,绝不能把双语教学变成专业外语教学。

三、结论

合理构建“工程热力学”双语教学课程体系和设置课程内容知识点,采用“三段一改”的教学方法,改革课程考核与评价方法,对不同层次的学生提出不同的英语应用能力要求,把学科内容作为课程教学的重点,并在实际教学过程中不断总结经验,改革教学方法,有望使“工程热力学”双语教学的教学质量不断得到提高,把“工程热力学”建成高水平的双语教学示范课程。

参考文献:

[1]龙国智.我国高校双语教学的现状评析[J].改革与开放,2011,

(4):173-174.

[2]马剑敏,施军琼,胡倩如.生物化学双语教学在我校的实践与思考[J].科技信息,2008,(26):590-591.

[3]栾晓明,姜,马惠珠.工科专业课程双语教学模式初探与实践[J].高教探索,2007,(6):169-172,190.

[4]曲燕.推进专业课双语教学的建设和设想[J].化工高等教育,

2010,(1):84-86.

[5]胡炜,蒋.高校双语教学实践初探[J].改革与开放,2010,(18):

172-173.

篇5

关键词:Aspen;化工热力学教学;p-V-T关系;状态方程

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2016)21-0214-03

一、引言

化工热力学是化学工程的基础学科,是化学工程与工艺专业的必修课程,在化学工程的教学过程中占有极其重要的地位。

学习化工热力学课程的目的是为了解决实际问题,物性数据的计算是本课程的重要内容,因为过程工程的研究、设计、操作与优化中都离不开物性数据。例如,为蒸馏、萃取、结晶等分离过程提供基础数据;从容易测量的性质推算难测量的性质;从温和条件的物性数据推算航天发射、深潜高压等苛刻条件下所需的物性数据等等。

化工热力学的研究对象更接近实际过程,实际过程所涉及的系统如此复杂,温度、压力范围如此宽广,化学工程师们不能再依靠简单的理想气体或理想溶液模型来计算物性了,而是需要适用范围更广、准确性更好、复杂性更高的模型,如PR等状态方程,借助商业化的化工流程模拟软件Aspen来促进化工热力学教学是一个很好的选择,对促进学生掌握概念,强化基础,提高应用能力具有重要作用。同时对后续的化工设计、化工计算等课程的教学十分有益。化工热力学教学中引入Aspen具有如下优点:

1.Aspen软件中物性计算原理与本课程热力学性质的计算原理是一致的,用该软件辅助热力学教学,能提高教学效率,简化计算过程,激发学生的学习兴趣。另一方面,也能使学生掌握Aspen软件物性计算原理的内核,了解更多的基础数据来源,提高应用能力,真正掌握“核心技术”,不至于再像从前那样,只知计算结果,不知计算原理,不明所用的模型,不能分析结果。

2.国内许多高校的后续课程,如化工设计、化工计算等教学中也开始采用Aspen辅助教学,化工热力学作为这些课程的基础,采用Aspen进行热力学性质计算,无疑会使得后续课程的基础更加扎实。

用Aspen软件指导化工热力学的教学过程,在发达国家也受到高度重视,如Sandler等也出版了相关的教学指导材料[1]。但国内的化工热力学教学与国外教学有相当的差异性,如,国内的教学课时数较少,教材内容更紧凑,因此,引入化学物性计算软件来提高教学效率更加重要。

在之前的文章中已经就Aspen软件辅助[2,3]化工热力学教学进行简单探索,但存在和课本知识与课堂教学不能较好匹配的问题,因此我们将基于Aspen软件,结合化工热力学课程教学,演示完成化工热力学性质计算过程,包括典型的流体性质,如p-V-T性质、焓、熵、热容、逸度、相平衡、稳定流动及循环过程的模拟计算等,能较全面地辅助化工热力学为教学过程,是展示化学热力学在相关过程中的应用,提升教学效果的一种尝试。

本文用PR方程完成流体p-V-T性质计算。

二、流体p-V-T性质计算的原理

状态方程是物质p-V-T关系的解析式。以经典的立方型状态方程PR方程[4]为例,该方程描述为

其中,ai与bi是混合物中纯组分I的模型参数,kij是二元相互作用参数[5],其数值一般从混合物的实验数据拟合得到,也可以通过从混合物的第二virial系数的数据来决定。

计算由Aspen自带的数据库就能提供相关的临界参数等物性数据,以完成物性的推算。

三、流体的p-V-T性质计算

本文采用《化工热力学》[6]中的两个实例,对Aspen计算过程进行简要说明。

实例一选自《化工热力学》例题2-3,用PR方程计算异丁烷在380K的饱和气、液相摩尔体积。利用Aspen计算过程如下:

1.启动Aspen Plus User Interface,选择Run type为Property analysis。

2.在Components>Specifications>Selection下设定组分为异丁烷。

3.在Property>Specifications>Global>Base method下选择状态方程为PENG-ROB。

4.在Property>Prop-Sets下新建一个物性集“PS-1”,在Property>Prop-Sets>PS-1>Properties下设定物性参数V,在Property>Prop-Sets>PS-1>Qualifiers设定Phase为Liquid和Vapor。

5.在Property>Analysis下新建一个物性分析“PT-1”,Select Type选择GENERIC。

6.在Property>Analysis>PT-1>System下选择Point(s) without flash,输入异丁烷的摩尔流量为1kmol/hr。

7.在Property>Analysis>PT-1>Variable下输入温度为380K,在Adjusted variables下选择Variable为Pressure,随后点击Range/List,输入压力值为22.5bar。

8.在Property>Analysis>PT-1>Tabulate下选择第5步建立的物性集PS-1。

9.点击NEXT,计算完毕,在Results查看结果。

将实例一的计算结果与教材结果对比,整理后如下表所示:

由此可见,Aspen计算结果与实验值相差较小,在误差允许范围内。因此可认为计算结果可靠。

实例二选自《化工热力学》例2-4,用PR方程计算由R12(CCl2F2)和R22(CHClF2)等物质的量的混合气体在400K和1MPa,2MPa,3MPa,4MPa,5MPa时的摩尔体积。并假定二元交互参数kij为0。

该例在Aspen中的操作上与实例一基本一致,具体过程如图1所示:

将实例二的计算结果与教材结果对比,整理后如下表所示:

由此可见,Aspen计算结果与教材值相差较小,在误差允许范围内。因此可认为计算结果可靠。

四、讨论

在用Aspen计算上述两个实例时,需要注意以下几点:

1.在进行计算前,应先了解温度、压力等基本单位。在Setup>Specifications>Global下,可以设定输入以及输出的单位,在本例中,选用了SI-CABR单位集,默认温度单位为℃,压力单位为bar。

2.在实例二的计算中,题目中已假定两物质的二元交互参数kij为0,因此在选好状态方程后,可以在Property>Parameters>Binary Interaction>PRKBV-1中,查看各组分的二元交互参数,在Aspen中,PR方程中的kij由三个参数进行描述,即,可以看到在Aspen中R12与R22的这三个参数的默认值均为0,符合计算要求。而在实际生产中,可通过利用实验数据得到回归值,在相关位置进行修改后,使得计算值更贴近实际值。

3.实际过程测定混合物性质需要花费大量人力、物力和时间,但用Aspen软件和化工热力学原理,推算混合物的性质具有准确、高效的特点。

五、结论

利用Aspen软件进行流体p-V-T性质计算,操作步骤简单易行,计算结果比较准确。可以使学生对求体积根、混合法则的应用等方面有更深的理解,有利于教学过程。同时,进一步掌握了Aspen软件的内核,还可以实现利用Aspen完成物性数据的计算,将化工过程的基础计算、流程模拟统一起来,利用一个专业软件解决多个课程的问题,增加将来在工作中应用物性推算解决实际问题的能力。

参考文献:

[1]Sandler S I. Using Aspen Plus in Thermodynamics Instruction:A Step-by-Step Guide [M].New Jersey:John Wiley & Sons,Inc,2015.

[2]陈新志,赵倩,钱超.基于Aspen-Plus的化工热力学教学(Ⅰ)均相性质计算[J].化工高等教育,2011,(05):75-79.

[3]陈新志,赵倩,钱超.基于Aspen-Plus的化工热力学教学(Ⅱ)纯物质饱和性质计算[J].化工高等教育,2011,28(06):58-60.

[4]Peng D Y,Robinson D B. A New Two-Constant Equation of State[J]. Industrial & Engineering Chemistry Fundamentals,1976,15(1):59-64.

篇6

关键词:化工热力学 化学工程与工艺 学习兴趣

化工热力学是一门理论性和逻辑性很强的课程,在学习过程中概念多而抽象,并且非常容易混淆,公式繁多并且推导复杂。这些特点使得学生缺乏必要的学习兴趣,造成化工热力学课程的教学效果普遍欠佳。学生形容其是“一大堆的基本概念,没完没了的公式,无穷无尽的计算,是一门“含含(焓)糊糊伤(熵)脑筋”的课程。因此,如何提高学生学习化工热力学的兴趣,使学生能够掌握基本的热力学原理,能够从热力学的观点出发解决日常生活和化工过程中的实际问题,培养他们理论联系实际的能力,是本课程必须首先解决的问题。为此我们进行了一些有益的尝试。从教材选择、调整教学内容、改进教学方法、运用生活实例等方面进行了探索,旨在提高学生学习兴趣,从而加深学生对化工热力学基本原理的掌握与应用能力,收到了较好的效果。

一、选用合适各高校学生特点的教材

目前,化工热力学教材版本较多,有浙江大学朱自强等编著的,有清华大学高光华等编著的,有天津大学马沛生编著的等。每套教材都涵盖了化工热力学的基本教学内容,但又有各自的特点。在教材的选用方面,必须结合高校化学工程与工艺学生的整体素质水平,综合考虑,不宜盲目照搬。如冯新等主编的化工热力学教材,在编写时,始终坚持“从生活中来,到生产中去”的主旨。教材编写内容始终围绕“为什么要学――学什么――如何学――如何用”展开。在近三年采用冯新等编著的新版教材后,武汉工程大学化学工程与工艺专业学生对化工热力学的学习热情明显提高,在教学反馈中,多数学生认为该教材紧密结合生活与化工生产实际,如“液化气成分的选择”、“以压缩天然气为燃料的出租车的里程问题”以及“低温热管降服青藏铁路冻土‘多动症’”、“化工热力学与遏制全球变暖的关系”等科学前沿成果。使他们对日常生活中热力学问题有了进一步的了解,培养了在日常生活中对一些科学问题的分析与思考能力。

二、重视绪论教学,激发学生的学习热情

在一些课程教学中,绪论部分往往是易被教师忽略的章节。但我们在教学实践中发现,一个好的绪论就是一盏指路的明灯,学生对一门课程的兴趣程度,与绪论讲述的好坏,有非常直接的关系。绪论教学不仅可以让学生详细了解化工力学课程的历史发展、学科脉络和学科意义,更重要的是它能适时地激发起学生的学习兴趣,让学生从总体上初步把握课程的内容和特点,为整个课程开个好头。我们在教学中,一般会用4节的时间,先入为主,首选向学生提出一些日常生活中常见的热力学问题与现象,如为什么会有高原反应,为什么铁会生锈,而生成的铁锈不会自动变成铁,为什么化工厂要用这么多的换热器,核电站究竟怎么发电,与普通火电站有什么异同点?通过一系列的提问,使学生产生联想,进而引导学生用热力学的严密思维去思考生活中遇到的一切问题。同时结合我校学生刚经过化工厂生产实习的特点,引导学生思考在化工生厂过程中用到哪些经典的热力学知识,工厂是如何节能降耗的,将重点转移到更接近实际的系统上。通过4个学时的绪论教学,课后总有很多学生围着老师表达想法和看法,表现出对化工热力学学习的极大热情。

三、多应用联系生活和生产实际的实例教学,生动教学内容

枯燥的理论知识永远也吸引不了学生的学习热情,让热力学的知识从生活实践中来,反过来再指导我们的生产实践,才能提高学生对该课程的兴趣。生动的实例是提高学生学习热情的良药。考虑到学生对生产没有感性认识,课程教学应尽可能用从生活中来到生产中去的实例,并精心设计。如在流体的p-V-T关系一章的教学中,以p-V-T行为与液化气成分选择的关系为例,先问学生液化气的选择问题。通过引导学生对一系列烷烃p-V-T图的利用,来解释为什么天然气有这么多的优点,但没有作为瓶装液化气的原因,而瓶装液化气只能选择丙烷和正丁烷。另一个例子是汽车用压缩天然气的问题。作者鼓励学生对武汉市正在运行的出租车司机进行用气经济情况调查,由于多数司机凭经验知道加同样的气,冬天用气比夏天经济,但不知道其究竟是什么原因,通过学生自己向司机的调查与说明,极大地提高了学生的自豪感,深深觉得自己的所学在生活中有用武之地,从而提高了学习的热情。

四、将现代化教学手段与传统板书有机结合,丰富课堂气氛

多媒体教学具有信息量丰富、图表显示方便、链接转移自由等优点。但对于化工热力学课程,从历年教学经验和学生反馈的意见看,完全采用多媒体进行教学,并不是最佳选择。化工热力学教学中大量的公式及推导,大量的热力学图表的集中展示,会使学生大脑高度紧张,而长时间地观看屏幕,也易使学生产生视觉疲劳,跟不上老师的思路,造成学习兴趣下降,反而有损教学的实际效果。

近几年来的实践表明,采用多媒体教学和传统板书教学有机结合的方式,更符合化工热力学课程的特点,有利于学生的互动,更有利于提高教学质量。通过板书,将相关公式与理论推演一步步详细列在黑板上,与多媒体相比更利于学生集中精力,跟随教师的思路进行思考和记录。此外,利用校园网,开设BBS论坛,对课堂教学平台进行延伸,方便学生不受时间和空间限制地进行讨论和提问,也极大地提升了学生的学习热情。

尽管化工热力学的许多内容是枯燥和抽象的,但在长期的教学实践和反思中,我们通过对教材的选择、教材内容的优化、教学方式改革,提高了学生对于化工热力学学习的兴趣和积极性,培养了应用化工热力学的理论和观点解决化工过程实际问题的初步能力。以后,我们会进一步探索课程改革的方法,为培养宽口径、厚基础、复合型的化工高级人才而努力。

参考文献:

[1]冯新,陆小华.以学生为本的化工热力学课程教学改革[J].化工高等教育,2006,(4).

[2]朱自强,徐汛.化工热力学[M].北京:化学工业出版社,1991.

[3]高光华,童景山.化工热力学[M].北京:清华大学出版社,2007.

[4]马沛生.化工热力学[M].北京:化学工业出版社,2005.

篇7

关键词:农林高校;热工基础及流体力学;课程教学;实践创新

当前,在“绿色发展理念”深入人心的时代背景下,农林类高校迎来了很好的历史发展机遇;同时社会和企业对农林类专业人才的需求更加重视质量,对人才的知识深度、广度和对专业基础课、专业特色课核心知识的实践运用能力,均提出了更高要求。提高机械设计制造及其自动化专业学生林业装备系统总体及其子系统技术的掌握程度,拓展学生在林业装备系统上运用专业基础课、专业特色课中核心知识的科研能力,是农林类高教工作者面临的共同课题[4]。

1课程教学剖析

1.1课程内容

“热工基础及流体力学”这门课程是机械设计制造及其自动化专业的一门综合性专业基础课,是后续液压与气体传动、泵与风机、林业机械等专业及特色专业课的重要基础。课程目标包括:掌握工质的热力学性质、热力学第一定律、第二定律、热工转换的规律和理想气体的热力学过程,学会基本的理论分析与计算方法;通过对热量传递的三种基本方式、导热基本理论、对流换热基本规律、黑体辐射基本定律等内容的学习,使学生具备对基本的传热学问题进行分析和总结的能力;掌握流体的主要物理性质和流体静力学的基本理论知识,学会流体上的作用力分析,能够推导流体动力学方程的连续性方程和伯努利方程,针对黏性流体,能对管内流动状态进行判断;能够对“传热学”“工程流体力学”的实验结果进行分析和解释,通过实验数据综合分析工程中的现象及问题,并得到合理有效的结论。总体来看,本课程讲授内容包括工程热力学、传热学以及工程流体力学三大板块的内容,是在高等数学、大学物理、理论力学、材料力学的基础上进行深化学习,拓展到实际的工程问题,所以本课程不仅理论性强,而且工程应用性也很强;与机械设计制造及其自动化专业其他课程相比,该课程涵盖了本应三门独立开设的课程内容,知识难点聚集、微积分公式众多、三大知识板块思维跨度大、学生融会贯通掌握难。但是,学生对课程内容的掌握程度直接影响后续专业特色课程的学习情况。

1.2教学思路

目前,本课程总学时为48学时,理论授课42学时,实验授课6学时。三大板块的教学内容多,理论授课课时较少,矛盾突出:(1)学生由固体学科切换到流体学科的学习需要较长适应期;(2)课程中较多章节内容抽象,且涉及大量公式推导及专业的概念铺垫,加之为了跟上教学进度教学内容更新较快,学生普遍反映课程难度较大;(3)教学内容和后续专业及特色专业课内容衔接性不够紧密;(4)从内容的充实性和课程的结构上来看,“热工基础及流体力学”这门课程的教学内容已经满足要求,但是对接林业机械领域最新技术,强化学生创新思维方面,当前的课程建构仍无能为力;(5)由于本课程的学习不涉及具体的机械装备系统,使得同学们对本课程在专业中的地位认知不足,学习积极性欠佳,这些现状使得提升教学效果难度较大。针对上述课程特点及教学现状,结合农林类高校“机械设计制造及其自动化”专业的实际情况,制定了如下教学思路:(1)授课时,使学生从机电系统、固体力学等学科的思维中切换出来,将空间观测法跟同学们探讨透彻,基于空间观测法开展“热工基础及流体力学”的课程教学。(2)在教学大纲中删除过于抽象、应用面较窄的教学内容,深入讲解与后续“液压与气体传动”“泵与风机”“林业机械”等课程关联度较深的内容,为专业及特色专业课的学习做好扎实铺垫。(3)结合在林业机械领域与“热工基础及流体力学”紧密关联的科研经历,探索寓教学于科研、科研反哺教学的授课模式,强化同学们对“热工基础及流体力学”在“机械设计制造及其自动化”专业里占有重要地位的基础认知,显著提升同门们自愿学习、自主学习的热情。(4)注重思维方式、终身学习意识的培养。教学过程中注重切入问题角度的讲解,使得同学们在明白问题的同时更养成学习思考问题方法的习惯;从固体学科到流体学科是一个较大的跨越,在跨越的过程中,使同学们树立终身学习意识,为以后培养同学们提出、解决林业机械领域学科前沿性、热点性问题的能力打下坚实基础。

2课程构建探讨

在“碳达峰、碳中和”的硬性发展要求及“绿水青山就是金山银山”的发展理念加速推进的浪潮之下,农林高校“机械设计制造及其自动化”专业的毕业生在高等教育系统中的地位不断提升,所以基础专业课程构建更需获得与之地位匹配的重视。一方面,基础专业课课程构建要体现基础知识的深度和广度;另一方面,内容要很好衔接并服务于核心专业课、特色专业课,为学生后期毕业设计、研究生科研深造做好铺垫。

2.1课程内容深度衔接核心专业课

“林业机械”是南京林业大学“机械设计制造及其自动化”专业的核心专业课,内容涵盖林业动力、整地、清理、苗圃、造林、抚育、保护、防火、采伐、采摘、智能化等机械。其中,和“热工基础及流体力学”专业基础课相关的包括动力、清理、保护、采摘等板块。林业动力机械(包括泵、风机)涉及“工程热力学”中热能和机械能之间的转化问题,同时也涉及“工程流体力学中”可压缩混合气体压强、温度变化和装置的动力匹配问题;林业清理机械涉及“工程流体力学中”不可压液态水在管道内部的流动,在雾化器内的流态分布、出口后雾化粒径分布等复杂多相流问题,如图1所示;林业保护机械中喷雾射程、喷雾穿透涉及“工程流体力学中”可压缩流体空气的外部流动及耦合风场、雾滴的多相流动问题,如图2所示;林业采摘机械中,基于负压的采摘系统涉及可压缩流体空气的管内流动问题。从衔接核心专业课的角度来看,一方面,农林类高校“热工基础及流体力学”这门专业基础课程应该深耕“工程热力学”和“工程流体力学”,而“工程流体力学”应该是重点中的重点;另一方面,也好兼顾课程内容的完整性,“传热学”也要适度调整。

2.2匹配三大板块关系,优化课程结构

建议协调、平衡三大板块的课时占比,同时明晰课程内容的内在逻辑关系,在此基础上进一步优化课程结构。在“工程热力学”(热能的间接应用)板块中,我们将实现热力学能向机械能转化的媒介称之为“工质”,媒介一般是“单一气体”或者“混合气体”,热力学第一定律、热力学第二定律、工质热力学性质及理想气体的热力过程等课程内容和专业核心课程林业机械吻合度较好。“工程流体力学”中,对流体的终结性定义是“抓不起来的物体”,一般性的定义是“气体和液体”的总称,但课程内容中流体基本概念的铺垫、流体静力学、流体运动学、流体动力学及黏性流体等课程内容都是基于不可压的液体,同为流体,但气体和液体的性质及研究重点相差甚远,“气体”这种流体相关课程内容的缺失为后续专业核心课程的学习带来很大知识结构缺陷。“传热学”(热能的直接应用)中,对导热、对流传热(混合传热,主要是流体和固体之间)、辐射传热的基本原理、工程应用等课程内容做了比较详细的讲解,但是后续专业核心课程对传热学中的知识需求很少,仅仅在脉动燃烧技术这一研究领域有所涉及。总体来看,不管是“工程热力学”中的“工质”,还是“工程流体力学”中的“气体”,再或者“对流换热”中的“流体”,其中“气体”是课程的“最大公约数”,也是和林业机械这一专业核心课程相关的“最大公约数”。鉴于此,“工程热力学”教学内容总体上可以维持不变,部分章节可以简化,不重要的知识点减少不必要的推导,侧重理论、公式概念的理解和应用,这样可省出一部分课时。总课时不变的情况下可以合理缩减“传热学”的课时,对辐射传热只做一般性介绍;考虑到相似原理在流体力学的试验研究中也有重要应用,可以在这里对相似准则进行深入讲解,省出较多课时。将“工程流体力学”放在最突出的位置,省出来的课时分配给这一部分;增加可压缩流体“漩涡势流理论”“相似理论中的量纲分析法”、包括气体动力学中“扰动在外空间流场中的传播”及“管内气体的流动”等内容,以匹配林业机械核心专业课。

2.3树立自主学习、终身学习意识

目前,流体力学板块中关于可压缩流体的课程内容匮乏,教学中会鼓励同学们在MOOC上寻找优秀资源进行线上学习,使同学们树立自主学习意识。通过工程流体力学板块,我们在体力学的范畴内将研究运动的方法由拉格朗日法提升到欧拉法,这是一个显著的改变,也是重要的进步,通过这一步,有助于培养同学们的终身学习意识。

结语

篇8

关键词:研究型教学高等工程热力学课程实践

如何激励研究生的创新意识,锻炼和培养研究生的创新和研究能力,是研究生教育改革的重要课题之一。当前,传统的接受式教学模式面临巨大的挑战,这种教学方式的特点是:教师在讲台上讲授,学生在台下做笔记,学生被动地接受知识,这种传统的单向灌输式教学方式,无法调动学生学习的积极性和主动性,学生往往在没有压力的状态中学习,教学效果不佳。本科生相比,研究生身心已较为成熟,思维活跃、求知欲望和实践意向都较为强烈,若还是采用传统的灌输式教学,注重结论和公式的推导,而这些结论和公式到底有何作用,学生常常并不清楚,学习积极性不高,教学效果事倍功半。学生缺乏研究创新,不能很好地解决实际问题,是传统教学模式最大弊端,有的研究生在进入论文阶段后不清楚科研论文如何写作,对科学问题的敏感性不强,将文献的阅读变成简单的课程学习,科研能力、创新能力都不强,专业课程内容呈老化,教学特点日益淡化,甚至浪费了课程学习阶段,因此,有必要对研究生的课程,尤其是专业课程的教学方法和教学理念进行改革,引进国内外先进的教学方法和教学理论,提高研究生的科研能力和创新能力。

研究性教学模式是在综合美国布鲁纳的“发现学习模式”和瑞士皮亚杰的“认知发展学说”基础上构建的教学模式,主要强调它在与工程实践结合较紧密的专业课程中的应用,是一种培养创造性人才的新途径。因为学生学习的过程与科学家的研究过程在本质上是一致的,因此学生应像“科学家”一样,以主人公的身份去发现问题、分析问题、解决问题,并在探究过程中获取知识、发展技能、培养能力,特别是培养创新能力,发展自己的个性。研究性教学将科学研究的思想和过程融入课堂教学中,鼓励和带领学生从课本固有知识框架中走出来,勇敢且智慧地去发现未知,帮助学生形成自己对某一事物的分析路径和独特观点。

《高等工程热力学》是动力机械、制冷与低温工程、工程热物理、化工等与能源相关专业研究生的重点基础课程,其理论对高效利用能源、节约能源以及开发新能源有重要的指导意义。其主要教学内容包括热力学理论基础、流体工质的热力性质计算、多组分系统热力学和相平衡、管内气体流动热力学。其教学目的是让学生更深刻地理解热力学三大定律,以及用热力学知识去解决问题的方法。从以往的教学情况看,学生普遍反映理论较难理解,课程实用性不强,学习兴趣不高。针对这种情况,笔者结合研究型教学的特点进行以下方面的尝试。

一、改变教学手段,传统教学模式和课堂讨论式教学相结合

《高等工程热力学》是本学院研究生的专业基础课程,一些必要的理论和方法需要通过传统教学模式教授给学生。在讲授过程中,针对以往学生提出的实用性不强的问题,在讲解某一理论的时候,更侧重该理论及方法的应用背景,让学生在结合使用背景去理解理论知识,达到事半功倍的效果。课堂讨论则是研究型教学的一种方法,研究导向的教学模式侧重于营造情境,提出问题,引导学生独立思考,形成自己的观点,而不在于给学生提供权威性的标准答案。在进行传统教学的一个阶段结束之后,进行一堂课堂讨论,一方面,有利于加深学生对所学知识的理解;另一方面,也可以提高学生对问题独立思考的能力。但组织课堂讨论,要注重讨论内容的选择,过难或过于抽象的问题会使学生丧失兴趣和信心,导致冷场。在课堂讨论过程中,教师要始终把握讨论的重点和方向,不致偏题,对于学生提出的观点,教师要给予适当的点评和鼓励,指出其不足,并引导讨论逐步深入进行。同时为了避免同学在课堂上提出的问题比较空洞、缺乏一定的论据,在课堂讨论的前二周时间会给学生布置下去题目,让学生在课下进行查阅资料并归纳总结,最终在课堂上提出自己有理有据的论点。

同时笔者鼓励学生自由思考、标新立异,引导学生在已有的学习和生活经验基础之上形成假说。比如,在进行“准平衡过程和可逆过程”这两个基本概念的课堂讨论中,有很多同学提出了对这两个概念自己的理解,对原有的概念提出了质疑。同时通过课堂讨论,大家也更深刻地理解了在经典热力学中为什么要引入这两个概念。

二、完善课程内容,追踪研究领域的最新进展

学生要完成研究型的学习,单靠一本教材是不可能完成的。所以笔者在教学的过程中,针对某一部分教学内容,笔者经常是结合着国内外最新的研究文献或者硕博论文进行讲解,同时附上参考文献。在整个课程的讲解过程中,笔者共引用了10余本书,并对其进行简短评价,学生可以根据自己的兴趣和研究方向,有重点地对这些参考书和文献进行深入的研究。研究生阶段学生对研究领域内的所有未知充满好奇,通过对本领域最新进展的学习,可培养学生创造性思维的意识。科研工作如果缺少创新性,则研究的价值就不能体现出来。因此笔者在授课过程中,一方面介绍当前研究的热点问题,比如说开发环保型工质的问题、先进联合循环的问题、不可逆热力学中有限时间热力学的问题等。同时还给学生介绍本专业的一些高水平期刊,比如说《Progress in Energy and Combustion Science》、《Microscale Thermophysical Engineering》等。让学生追踪本学科领域的最新研究进展,开拓自己的思路和视野。

三、改变评价体系,考核形式多样化

过去的考试体系往往是一卷订终身的形式,教学围绕考试转。最终考核的不是学生的综合能力,而是学生的记忆能力。因此笔者和课程组其他人员讨论,拟定采取“小组作业”和“个人作业”相结合的考核方式。小组作业一般由6~8人分工完成。在学期初期就将学生分组,每个小组的题目不同,要结合所学的内容和研究专题去确定题目。小组成员要定期进行讨论。在小组研究过后,需要撰写科技类的小论文,字数一般为3000字左右。之后,由小组成员分工把主要内容采用适当的形式(多采用PowerPoint)讲解出来,其他小组的成员和教师会就作业内容提出问题。小组作业一般占个人总成绩的40%,个人作业占个人成绩的60%,其由期末考试、平时讨论发言情况成绩组成。期末考试改变过去闭卷考试的形式,而采取开卷考试的形式,试题题目侧重于运用知识去解决实际问题的方法,而不再是公式的死记硬背。

通过这种考试形式的改变,在很大程度上调动了学生主动学习的积极性,对高等工程热力学产生了浓厚的兴趣。“小组作业”的形式改变了过去学生只是一个人闷头拿着教材看和学的状态,注重和组内其他人的交流,加强合作意识。同时小组的经常讨论,也使得每个学生都得到了表达自己的机会,使学生的表达能力得到了加强。而科技论文的撰写,是研究生今后从事科研的必备能力,因此课堂上科技论文的撰写是其练兵的过程。这大大地激发了学生的学习兴趣,同时也鼓励学生的创新思维。

研究型大学培养的研究生更应该具有创新意识,因此在研究生专业基础课上进行研究型教学的探索是非常有必要的,根据笔者进行的教学模式、教学内容和评价体系三方面的改革探索,已经确定初步的成效。但这仅仅是课程改革的开始,在教学模式和教学内容上我们还有许多工作要做,旨在使我们培养出来的研究生都符合知识经济时代对创新人才的要求。

参考文献:

[1]翟亚军,哈明虎.我国研究生课程教学中存在的问题及对策研究[J].中国高教研究,2004,(6):39-41.

[2]张喜德.研究生专业课程教学改革的探讨与实践[J].广西大学学报(哲学社会科学版),2006,(28):65-66.

[3]孙旭峰。有限元法课程中的研究型教学实践[J].高教论坛.2009,(3):86-88.

[4]马风华.研究性教学方法在“国际金融”教学中的运用[J].2008,(8):101-102.

篇9

对于复合材料与工程专业而言,物理化学是一门非常重要的基础化学课程,与专业理论知识紧密联系,学好物理化学是学好复合材料专业知识的前提,但在实际教学中物理化学这门课程在本专业学习中存在一些问题,以下分别阐明现有问题及课改意见。

一、合理安排教学内容及课时

物理化学是一门概念性、理论性、系统性和逻辑性很强的学科,涉及的公式多,应用条件严格,比较抽象,是学生学习过程中普遍感到难度较大的一门课。在本专业的培养计划中只安排了一学期的课程学习,因此选用高等教育出版社的《物理化学简明教程》作为学习教材。这本教材简明扼要地阐述了物理化学学科的主要内容及材料类学生所需的基础知识,是一本符合本专业实际教学目标的好教材。但由于本专业物理化学的课时较少,最终只能摘取部分章节学习。例如在2010级的教学方案中,只教学了化学反应热力学部分内容(热力学第一定律、热力学第二定律、化学势、多相平衡等章节)及表面现象与分散系统章节,电化学及化学反应动力学两个重要章节都未学习,这无疑会对物理化学课程学习的系统性产生不小的损害。面对这一实际情况,我们完全可以从整个专业的培养计划出发,筛选出多门课程的重叠内容,选排重叠知识在哪门课需要重点学习,在哪门课可以了解。如在物理化学这门课程中多相平衡章节就和材料科学基础课程里相关相图的章节有所重复,对于复合材料与工程专业而言,材料科学基础里的相图知识更重要,因此在物理化学教学中完全可以减少多相平衡的教学任务,简要介绍一些基本概念和原理即可,主要学习可在材料科学基础课程中完成。同时,物理化学中的表面化学章节也与学习材料表界面课程知识重复,在材料表界面课程中更系统丰富地阐述了表面化学,因此在物理化学课程也可以酌情减少教学任务。此外,像胶体化学此类比较简单的内容也可以安排学生自学,如果担心学生的自觉性,就可以一些代表性问题作为作业,让学生完成。

此外,如果有可能就应尽量合理制订培养计划,空出一些课时,把物理化学这门分为两学期学习,因为只有系统、透彻地学习才能让学生真正走进物理化学的世界。

二、改进教学方法

物理化学这门比较让学生学起来吃力的课程,应该积极采取有效的教学方法,改变这一现状。

首先要提高学生的学习兴趣,比如在学习热力学的过程中可以从历史背景及名人轶事出发引出热力学定律,又如在电化学中可以介绍锂电的研究前景、新能源汽车的发展现状等。兴趣始终是学习的最好动力,培养学生的学习兴趣是最大挑战也是最有效的教学方法。

其次采取案例法[3]、类比法[4]等总结所学知识与生活的联系及知识之间的关联对比,加深学生印象,帮助学生更好地理解所学知识。对于案例法,我们可以从工业生产的角度选取一种产品总结其中涉及的化学反应热力学、化学反应动力学等知识,这样可以使学生产生直观的学习感受,应用更好的学习方式。物理化学中有很多知识是可以用类比法学习的,如可逆电池与不可逆电池、理想气体与非理想气体等。这些类比不应由老师直接给出,而应让学生先独自完成这些类比,最后再对学生的类比结果进行查缺补漏,这样不但可以加深学生的学习印象,更可以锻炼学生的自主学习能力。

传统的“满堂灌”教学方法培养出来的学生,最明显的弱点是思维呆板,缺乏创新能力和发散思维[5]。因此,我们可以设置专门的讨论课,在相互交流中使学生的思维活跃起来,对于一些重要概念如热力学部分的焓、熵等,让学生通过独立思考提出见解,得到教师和其他同学的帮助和启发。讨论课不仅能激发学生的学习兴趣,而且能形成良好的相互探讨和交流的学习风气,有利于发散思维及创新能力的发展。

篇10

[关键词] 化工热力学 双语教学 教学实践

双语教学,是指将母语以外的另一种语言直接应用于语言学科以外的其他学科教学,使第二语言学习与各学科知识获得同步。2001年9月21日,教育部为迎接经济全球化和世界科技革命的挑战,提高我国教育的国际竞争力,出台了《关于加强高等学校本科教学工作提高教学质量的若干意见》。其中,明确要求全国高等院校积极推广使用英语等外语讲授公共课和专业课,力争3年内开设5%~10%的双语课程。

我院从2001级化学工程与工艺专业教改班开始,进行“化工热力学”课程的双语教学,在教材选择、教学内容与方法、教学手段及考核结果等方面进行了积极的探索,下面就教学实践的经验对“化工热力学”双语教学的内容和模式进行探讨,并提出了提高双语教学的建议。

一、教材选择

与母语教学相比,双语授课的教材选择更为重要,对教学效果的影响更为直接。在选择双语教材时,主要考虑教材的英文难度、专业难度及与中文教材的配套程度,只有英文难度和专业难度都合适时,学生才能对双语教学提起兴趣,并取得良好的教学效果。由于专业课程的英文难度都不高,除专业词汇和一般的复合句外,没有太多生僻的单词和语法,所以教材的专业难度成为一个重点要考虑的问题。目前,国内化工类原版教材,主要是化学工业出版社出版的“国外名校名著影印版系列”。其中,关于化工热力学的有两部:J.M.Smith等编著的“Introduction to Chemical Engineering Thermodynamics”(第六版)和Stanley I. Sandler编著的“Chemical and Engineering Thermodynamics”(第三版)。

这两部教材中,以J.M.Smith等编著的“Introduction to Chemical Engineering Thermodynamics”(第六版)比较经典;国内大部分中文的化工热力学教材都是以其为蓝本编写的;且有前几版的中文译本和配套的中文习题集。所以,本院的“化工热力学”双语教学决定采用此教材为基础,并辅以相关的中文教材。

二、教学内容的确定

J.M.Smith等编著的“Introduction to Chemical Engineering Thermodynamics”(第六版)覆盖内容广泛,热力学三大定律及其应用都包含在内,同时介绍了分子热力学的内容;教材系统性较好,对定律原理的来龙去脉讲解清楚,便于学生更好地理解概念性问题,是关于化工热力学的一本经典著作。但是,国内化工类专业的学生在学习“化工热力学”前,已学习过“大学化学”、“物理化学”、“大学物理”等课程。这些课程中已介绍过热力学的三大定律、简单的汽液平衡和热机原理,而目前“化工热力学”课程本身只有56~64学时,不可能依照原书的内容讲解。我们根据培养方案和教学大纲的要求,并参考国内广泛采用的浙江大学陈钟秀等人编写的“化工热力学”内容为基础,选择了以下内容进行教学:

Chapter 1 Introduction

Chapter 2 Volumetric properties of pure fluids

Chapter 3 Thermodynamic peoperties of fluids

Chapter 4 The second law of thermodynamics

Chapter 5 Production of power from heat

Chapter 6 Refrigeration and liquefaction

Chapter 7 Solution thermodynamics

Chapter 8 Vapor/liquid equilibrium

这些内容涵盖了原版教材10章的内容,其编排的顺序是根据中文教材调整过的。这样便于学生的预习、复习和对原版教材的进一步理解。

三、教学手段的运用

本院的学生英文基础较差,所以在教学过程中采用了循序渐进的方式,并针对不同章节有区别地采用不同程度的双语教学,以达到在有效的学时内牢固掌握专业课知识,并学会相关的专业词汇和英文表达的目的。

在具体的教学过程中,双语教学的模式有三个层次:一是专业术语的掌握阶段。虽然学生已完成大学英语的学习和部分基础课,如“有机化学”的双语学习,但对化工专业中常用的英文术语还掌握较少,尤其是对一些在专业英语和日常英语中释义不同的词更难掌握;二是学会如何用英文表达专业内容。达到这一层次相对较难,且与学生的主观能动性有很大的关系。从第3章的内容开始,课程难度加深,学生原有的知识储备较少,全英文的讲解可能会影响专业知识的掌握。所以采用英文板书,中文讲解为主。三是学会阅读英文习题并尽可能用英文答题的阶段,这一阶段的培养主要从第6章冷冻(Refrigeration)循环开始。一方面,是由于此时学生对专业词汇已有一定的积累;另一方面,是这一章节的内容与第5章的热机循环有相近之处,学生在大学物理和物理化学中也有涉及,专业知识的理解没有太大的障碍。但在实践过程中发现,原版教材中所配的习题与工程实践联系紧密,但单位多为英制,不便于学生使用。所以教师正在考虑编写相关的习题集;对学生而言,英文读题比阅读原版教材难度更大。因为题目的英文表述较简洁,没有教材中的上下文联系。尤其是题中已知条件较多时,解题时不知采用哪一个。针对这些问题,化工热力学课程的双语教学目前还停留在习题以中文为主、英文为辅的阶段。考核还停留在英文出题、中文答题的阶段。

四、考核结果分析

对于教学效果,其直接的检验方式就是学生的考核结果。对比01级以来三届双语班和非双语班的学生考核结果。这三届学生除01级为教改班(强化英语和计算机教学)外,其他两届都为平行班。考试的试卷内容是相同的,只是出题的语言分别为中文和英文,评分标准也是相同的。从图1-3的数据可以看出,在成绩的总体分布上,双语班和非双语班几乎没有差别,但在成绩的分布范围上存在一定差别;对于01级教改班的学生,由于强化过英语,所以双语班的学生的平均成绩高于非双语班。而对于02和03级平行班而言,双语班的学生取得高分(80分以上)的人数少于非双语班,尤其是扩招后的03级。这说明学生英语基础的差别对双语教学的效果是有一定影响的,但对于知识的掌握不存在决定性的作用。

五、教学收获和建议

通过化工热力学双语教学的实践,教师最大的收获是促进了教师继续学习的主观能动性,促使教师的英语听说能力进一步提高;纠正了中文教材中某些含糊不清的概念和公式推导。学生的收获在于学习专业基础知识的同时掌握了更多的化工专业词汇和表达,并在有限的课时内学到了更多的知识。

但在教学工作中发现还是存在很多问题,需要在今后的教学工作中进行改进。一是课程系统化。双语教学只通过少数几门课程的学习是达不到良好的效果的,需要从化工专业的基础课开始;二是编写相关的教辅材料。由于学生目前使用的原版教材中习题多为英制单位,且习题量较多,涉及过程广泛。三是分层次教学。针对英语基础较好,有学习兴趣的学生开展双语教学,才能达到专业课学习和英语学习同时进行,达到双赢的可能和必要,对于英语基础不好的学生,开展双语教学可能还会影响对专业知识的掌握和后续课程的学习,不建议采用。

参考文献:

[1]任卫群,饶芳.工科专业类课程双语教学的体系化[J].高等工程教育研究,2005,(3):103-106.

[2]陈志国,蒋玲.理工科大学双语教学的探讨[J].现代大学教育,2005,(2): 107-109.