铁道建筑论文范文

时间:2023-04-03 09:37:33

导语:如何才能写好一篇铁道建筑论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

铁道建筑论文

篇1

参考文献是作者对他人劳动成了的尊重表现,我们在论文的写作当中引用的他人的研究成果就应该子啊引用的地方用阿拉伯数字标注出来,在论文的最后依次列出来。下面是学术参考网的小编整理的关于土木工程概论论文参考文献来和大家一起分享阅读。

土木工程概论论文参考文献:

[1]佘睿,巩学梅.土木工程概论类课程教学探讨[J].宁波工程学院学报,2008,(06).

[2]吴萱,董俊.土木工程专业人才培养模式研究[J].高等建筑教育,2009,(03).

[3]王清标,等.大土木背景下《土木工程概论》教学模式创新研究[J].当代教育理论与研究,2012,(04).

[4]郭旭红.浅谈“启发式教学法”[J].河南机电高等专科学校学报,2001,(03).

[5]林龙镔,等.《土木工程概论》省级精品课程建设的体会及其对教学启示[J].福建建筑,2012,(02).

土木工程概论论文参考文献:

[1]丁大钧.土木工程概论(第二版)[M].北京:中国建筑工业出版社,2010.

[2]叶志明.土木工程概论[M].北京:高等教育出版社,2004.

[3]贡力.土木工程概论[M].中国铁道出版社,2009.

[4]佘睿.土木工程概论类课程教学探讨[J].宁波工程学院学报,2008.

[5]裴星洙.土木工程专业提前进入毕业设计(论文)的实践研究[J].赤峰学院学报(自然科学版),2010.

[6]王浩钰.设计类课程多元化考核体系研究[J].当代教育论坛,2010.

[7]张亦静.基于团队协作的土木工程专业毕业设计模式探讨[J].湖南工业大学学报,2008.

[8]周新刚.土木工程概论[M].中国建筑工业出版社(第一版),2011.

[9]崔京浩.土木工程卓越工程师教育培养计划系列教材:新编土木工程概论[M].清华大学出版社,2013.

[10]钟汉华.土木工程施工概论[M].中国水利水电出版社,2008.7.

[11]王作文.土木建筑工程概论[M].化学工业出版社,2012.11.

[12]张志国.土木工程概论[M].武汉大学出版社,2014.3.

[13]成虎.建设工程法规概论[M].重庆大学出版社,2011.10.

[14]巩天真.土木工程监理概论[M].北京大学出版社,2013.8.

[15]邓友生.土木工程概论[M].北京大学出版社,2012.7.

[16]叶献国.建筑结构选型概论[M].武汉理工大学出版社,2012.1.

[17]巩天真.建设工程监理概论[M].北京大学出版社,2009.8.

[18]韩峰.铁道线路工程概论[M].中国铁道出版社,2010.7.

[19]周国恩.土木工程施工[M].化学工业出版社,2011.7.

[20]肖本林.土木工程与建筑教育改革理论及实践[M].绘测出版社,2014.4.

土木工程概论论文参考文献:

[1]董菲,徐春媛.试论现代土木工程教学的创新方法[J].建筑工程,2012,(10):90-92.

[2]何忠明,刘建华.浅议高校《土木工程概论》课程教学改革[J].科技资讯,2011,(7):169-171.

[3]王琰,周戒.对现代土木工程专业教育的几点探讨[J].高等建筑教育,2003,12(3):12-14.

[4]王清标,初明祥.大土木背景下《土木工程概论》教学模式创新研究[J].当代教育理论与实践,2012,4(4):75-77.

[5]叶志明,宋少沪.把教的创造性留给老师,把学的主动权还给学生[J].中国大学教学,2006,(8):8-9.

[6]刘云平,相琳.《土木工程概论》课中的人文素质教育[J].南通大学学报(教育科学版),2007,23(2):84-85.

[7]刘胜兵.《土木工程概论》课程教学及考试改革探讨[J].中国电力教育,2012,(31):70-71.

[8]张文华.《土木工程概论》教学研究[J].教育教学论坛,2014,(8):69-70.

篇2

关键词 轨道交通系统 环境 振动影响分类号

1  国内外研究工作概况

随着现代工业的迅速发展和城市规模的日益扩大,振动对大都市生活环境和工作环境的影响引起了人们的普遍注意. 国际上已把振动列为七大环境公害之一,并开始着手研究振动的污染规律、产生的原因、传播途径、控制方法以及对人体的危害等. 据有关国家统计,除工厂、企业和建筑工程外,交通系统引起的环境振动(主要是引起建筑物的振动) 是公众反映中最为强烈的[ 1 ]. 随着城市的发展,在交通系统设计规划中,对环境影响的考虑越来越多. 这主要因为过去城市建筑群相对稀疏,而现在,随着城市建设的迅猛发展, 多层高架道路、地下铁道、轻轨交通正日益形成一个立体空间交通体系,从地下、地面和空中逐步深入到城市中密集的居民点、商业中心和工业区. 如日本东京市内的交通道路很多已达到5 ~7 层,离建筑物的最短距离小到只有几米,加上交通密度的不断增加,使得振动的影响日益增大. 交通车辆引起的结构振动通过周围地层向外传播,进一步诱发建筑物的二次振动,对建筑物特别是古旧建筑物的结构安全以及其中居民的工作和日常生活产生了很大的影响. 例如在捷克,繁忙的公路和轨道交通线附近,一些砖石结构的古建筑因车辆通过时引起的振动而产生了裂缝,其中布拉格、哈斯特帕斯和霍索夫等地区发生了由于裂缝不断扩大导致古教堂倒塌的恶性事件. 在北京西直门附近,距铁路线约150 m 处一座五层楼内的居民反映,当列车通过时可感到室内有较强的振动,且受振动影响一段时间后,室内家具也发生了错位. 另外,由于人们对生活质量的要求越来越高,对于同样水平的振动,过去可能不被认为是什么问题,而现在却越来越多地引起公众的强烈反应. 这些都对交通系统引起的结构振动及其对周围环境影响的研究提出了新的要求,也引起了各国研究人员的高度重视[ 2~21 ].

日本是振动环境污染最为严重的国家之一,在其“公害对策基本法”中,明确振动为七个典型公害之一的同时,还规定了必须采取有效措施来限制振动. 在“ 限制振动法”中,特别对交通振动规定了措施要求,以保护生活环境和人民的健康. T. Fujikake 、青木一郎和K. Hayakawa 等[ 9 ,17 ,21 ] 分别就交通车辆引起的结构振动发生机理、振动波在地下和地面的传播规律及其对周围居民的影响进行了研究,提出了周围环境振动水平的预测方法.

面对公众的强烈反映,英国铁路管理局研究发展部技术中心对车辆引起的地面振动进行了测试,主要就行车速度、激振频率和轨道参数的相关关系以及共振现象进行了实验研究. 瑞士联邦铁路和国际铁路联盟(U IC) 实验研究所(ORE) 共同执行了一项计划,以A. Zach 和G. Rutishauser 为首的研究小组研究了地铁列车和隧道结构的振动频率和加速度特征,从改善线路结构的角度提出了降低地铁列车振动对附近地下及地面结构振动影响的途径. 美国G. P. Wilson 等针对铁路车辆引起的噪声和振动,提出了通过改善道床结构形式(采用浮板式道床) 和改革车辆转向架构造以减少轮轨接触力的方法,降低地铁车辆引起的噪声和振动的议.

交通车辆引起的结构和地面振动是城市交通规划中的一个重要问题,由其进一步引发的周边建筑物振动以及相应的振动控制和减振措施,在规划和设计的最初阶段就应加以考虑. 为此,德国的J . Melke 等提出了一种基于脉冲激励和测试分析的诊断测试方法,来预测市区铁路线附近建筑物地面振动水平,并通过不同测点数据的传递函数分析研究了振动波的传播规律. F. E. Richart 和R. D. Woods 等则针对隔振沟和板桩墙等隔振措施进行了实验研究.

此外,西班牙、捷克等国在这些方面也做了大量的测试、调查和研究工作,通过对几种不同场地土的测试结果统计,分析了列车引起的地面振动波的传播和衰减特性,并从降低行车速度、减轻荷载重量、提高路面平整度等方面提出了减少振害的措施.

在国内,虽然城市建设起步得较晚,但随着现代化的进程,交通系统大规模发展的趋势是极为迅速的. 由于轨道交通系统具有运量大、速度快、安全可靠、对环境污染小、不占用地面道路等优点,成为缓解城市交通拥挤和减少污染的一种有效手段. 目前,我国已经拥有或正在建设地下铁道的城市越来越多,不少城市还在筹建高架轻轨交通系统. 近年来在城市交通系统建设中,对于振动可能影响环境和周边建筑物内居民生活和工作的问题也进行了预测,如拟议中的西直门至颐和园轻轨快速交通系统可能对附近的文化和科研机构产生振动影响、地铁南北中轴线可能对故宫等古建筑产生振动影响、拟建的京沪高速铁路沪宁段高速列车对苏州虎丘塔可能产生振动影响等. 为此,国内不少单位已开始结合北京、上海、沈阳等一些大城市修建地铁、轻轨交通系统时车辆引起的环境振动问题进行研究,发表了初步的研究成果[ 22~43 ].

2  振动的产生、传播规律及其对环境的影响

对我国几个典型城市的调查结果表明,交通车辆引起的环境振动水平较高. 根据铁路部门的实测,距线路中心线30 m 附近的振动可达80 dB. 地铁列车通过时,在地面建筑物上引起振动的持续时间大约为10 s. 在一条线路上,高峰时,两个方向1 h 内可通过30 对列车或更多, 振动作用的持续时间可达到总工作时间的15 %~20 %. 最近在我国某城市地铁车辆段附近进行了现场测试,结果表明,当地铁列车以15~20 km/ h 的速度通过时,地铁正上方居民住宅的振动高达85 dB , 如果列车速度达到正常运行的70 km/ h 时,其振级可能还要大得多. 可见由列车运行引起的环境振动已不同程度地影响了居民的日常生活.

在轨道交通系统中,由运行列车对轨道的冲击作用产生振动,并通过结构(隧道基础和衬砌或桥梁的墩台及其基础) 传递到周围的地层,进而通过土壤向四周传播,诱发了附近地下结构以及建筑物(包括其结构和室内家具) 的二次振动和噪声. 对于地下铁道,其影响因素主要有列车速度、车辆重量、隧道基础和衬砌结构类型、轨道类型、是否采用了隔振措施等,此外列车与轨道的动力相互作用也会加大振动作用.

有调查表明,地铁列车在隧道内高速运行时,距轨道水平距离1. 5 m 处,振级平均值为81 dB ;24 m 处,振级平均值为71. 6 dB. 这说明随着距轨道水平距离的增加,振级将不断衰减. 此外,地铁振动影响的范围在很大程度上还取决于列车通过的速度及隧道的埋深. 速度越高,振动干扰越强,影响范围越大(列车速度每提高一倍,隧道和地面的振动增加4~6 dB) ;埋深越大,影响范围越小. 文献[25 ] 采用计算机模拟的方法得到地铁列车引起的地面振动随距离的分布:在距隧道中心线40 m 左右的地面为加速度的局部放大区;对于1~3 Hz 的低频振动加速度,尽管幅值大小不同,都在0 、36 、60 m 附近出现了放大区;对于5~6 Hz 的中频加速度,只有0 m 和30 m 二个放大区,距离再大时就迅速衰减;对> 8 Hz 的高频加速度则随距离的增加而逐渐衰减. 北京曾就地铁列车对环境的振动影响进行过实测,得到了与上述分布规律相同的结果.

对于高架轻轨系统,其影响因素主要有列车速度、车辆重量、桥梁结构类型和基础类型、桥梁跨度、刚度、挠度等,列车与桥梁的动力相互作用也会加大振动作用. 目前国内尚无建成的高架轻轨系统,无法进行现场测试. 但文献[22 ,23 ] 通过力学计算、文献[29 ] 通过对铁路高架桥和路基线路的实测分析,求得高架轻轨系统在列车运行时所引起的周围地层的振动特性,得出了以下结论:

(1) 轻轨列车振动所引起的地面振动,在某一距离范围内,随距线路距离的增加而衰减,在达一定距离后会出现反弹增大(约在40~60 m 间),但总趋势是随距离的增大而逐渐衰减.

(2) 轻轨系统桥梁的基础类型对地面振动的影响非常大. 采用桩基时,地面振动的位移、速度、加速度值均比采用平基时的小许多,且桩基时,地面振动随距线路距离的增加而衰减的速度也较平基时大. 甚至由于采用了不同的桥梁基础,沿线建筑不同楼层的振动响应也有所不同. 采用浅平基础时,上面楼层的响应比下面楼层的强烈,采用桩基时各楼层的差别就小得多. (3) 高架桥线路与路基线路相比,环境振动将大幅度降低. 距线路中心线30 m 处的振动强度可降低5~10 dB.

(4) 高架轻轨的桥梁结构设计应注意避免车桥产生共振,以减小对系统振动的影响.

列车运行对大地产生的振动主要以三种波的形式传播,即横波、纵波和表面波. 日本Erichi Taniguehi 等的研究表明:位于地下2 m 深处振动加速度值为地表的20 %~50 % ;4 m 深处为10 %~30 %. 可见在车辆运行产生的环境振动中,表面波占主要地位.

由于能量的扩散和土壤对振动能量的吸收,振动波在传播过程中将有所衰减. 不同类型的振源,不同的振动方向,不同的传播方向以及不同的土介质,对振动的衰减也是有区别的.

据文献[ 2 ,29 ,30 ,34 ] 的实测结果知,振动强度的分布具有以下特点:从振源的频率分布上看,以人体反应比较敏感的低频为主,其中50~60 Hz 的振动强度较大;从列车速度的影响上看,随行车速度的提高,振动有增大的趋势;就地面振动随距离的衰减而言,距轨道中心线越近,同一列车引起的地面振动就越大,反之则越小. 很多文献认为列车运行所产生的地面振动随距线路距离增加而有较大的衰减是一般规律,见图1 (a) . 但是也有文献得出了不同的结果: 文献[38 ] 和[ 42 ] 曾分别在桥梁(京沈线滦河桥,跨度32 m 上承式钢板梁桥,桥墩高8~10 m , 车速50~80 km/ h) 和线路附近(京广线,车速25~110 km/ h) 测试了列车通过时地面振动加速度随距离的变化规律,结果分别见图1(b) 和(c) . 图1 中G 为振级;ε为各测点加速度与路基处加速度的比值. 可以发现地面振动分别在距桥墩60 m 左右处和距线路40 m 左右处出现了加速度反弹增大的现象. 这一测试结果是与理论计算的结果相吻合的[43 ]. (a) 位置分布(b) 桥梁附近(c) 线路附近

随距离增大而振动强度减弱的规律也适用于沿线建筑. 由于列车引起的地面水平方向振动,在传导过程中的衰减要快于垂直方向的振动,因而沿线建筑物内垂直方向的振动将大于水平方向的振动. 实测结果表明:建筑物的水平振动一般约小于垂直振动10 dB[41 ] ,因此在评价建筑物受铁路环境振动的影响时,可以垂直方向的振动为主. 就不同楼层而言,一般来说,中低层建筑,特别是4 层以下的,随着楼层的增加,振动的强度有增大的趋势. 文献[41 ] 对7 座3~5 层楼房的测试结果和文献[ 43 ] 的理论分析结果都表明:在距列车不同的距离上,3~5 层的振动强度均比1 层高出约3~5dB.

随列车速度的提高,附近建筑物内的振动有增大的趋势(尤其是楼房) [ 41 ,43 ]. 而由列车引起的沿线地面建筑物振动,其振级的大小与建筑物的结构形式、基础类型以及距地铁的距离有密切的联系. 对于基础良好、质量较大的高层钢筋混凝土建筑,由于其固有频率低,不易被激起较大的振动,因而其振级较之自土壤传来的振级可衰减10~20 dB. 在距地铁隧道水平距离32 m 处,高层建筑地下室内实测振级不大于60 dB ,1 层以上则测不出地铁行驶时引起的振级;基础一般的砖混结构住宅楼可衰减5~10 dB ; 而基础较差的建筑,如轻质结构或浅基础建筑,则衰减量很小,其振级与土壤振级接近,甚至还会出现室内振动大于室外地面振动的情况.

3  减振隔振控制措施

如前所述,城市轨道交通系统产生的振动可以通过结构和周围地层传播到振动影响到的区域或个人. 为降低振动或控制振动的不利影响,可从降低振源的激振强度、切断振动的传播 途径或在传播途径上削弱振动、合理规划设计使建筑物避开振动影响区等几个方面着手. 根据有关资料,减少振源振动可采取以下几种措施[ 13 , 34 ]:

(1) 采用60 kg/m 以上的重轨,并应尽量采用无缝线路. 重轨具有寿命长,稳定性能和抗振性能良好的特点,无缝线路则可消除车轮对轨道接头的撞击.

(2) 减轻车辆的簧下质量,避免车辆与轨道产生共振,这样可降低振动强度10~15 dB.

(3) 对于地铁而言,适当增加埋深,使振动振幅随距离(深度) 增加而加大衰减;采用较重的隧道结构也可降低振动幅度.

(4) 对于在地面上运行的轻轨系统,应首先考虑采用高架桥梁. 与普通路基相比较,高架系统不但产生的振动要小,而且占地面积也小,特别适合市区.

(5) 高架轻轨系统的桥梁应优先采用混凝土梁以及整体性好、振动较小的结构形式;合理设计跨度和自振特性,以避免高速运行的列车与结构产生共振. 另外,墩台采用桩基础,可获得较浅平基础好的减振效果.

(6) 采用合适的道床和轨道结构型式,增加轨道的弹性. 瑞士联邦铁路和比利时布鲁塞尔自由大学等都在研究新型的弹性轨枕和复合轨枕以减小动力冲击力,并将有效地降低车辆、轨道和附近环境的振动.

转贴于

对地铁而言,为减少维修工作量,一般都采用整体道床,其中包套式短枕整体道床、塑料短枕整体道床、浮置板式整体道床等几种道床型式都可起到减振作用. 对高架轻轨而言,道床结构形式主要有两种:一是有碴式道床结构型式,二是无碴道床结构型式. 从国外情况看,美国、加拿大多采用无碴式整体道床,德国、新加坡多采用有碴道床,香港地铁高架部分均采用无碴道床,日本轻轨采用有碴道床和混凝土板式道床.

从减振效果来说碎石道床优于整体道床,但碎石道床具有稳定性较差、养护工作量大、自重较大、轨道建筑高度较大且道床易污染等缺点,所以宜采用整体道床,其弹性不足的问题可以利用减振效果好的弹性扣件或其它减振措施弥补. 整体道床包括无枕式整体道床,短枕式整体道床,长枕式整体道床和纵向浮置板式整体道床. 其中纵向浮置板式整体道床减振效果显著,尤其是低频域减振效果更好. 无论是有碴道床还是整体道床,都可在道碴或凝土板下面设置橡胶减振垫,减振效果可达10~15 dB[ 2 ,4 ,14 ,34 ] . 采用适当的弹性扣件,可以增加整体道床的弹性. 例如,在北京地铁使用的D TI 型和D TV 型扣件中,D TV 型扣件经过室内试验比D TI 型扣件可减少振动5~8 dB.

弹性垫层是增加扣件弹性的重要组成部分. 要改善整体道床的缺点,可采用高弹性垫层, 以提供轨道所需用的弹性,缓冲列车的动力作用. 北京地铁一二期工程采用轨下10 mm 橡胶垫板、铁垫板下一层塑料垫板作为弹性垫层,但发现弹性不足. 北京新建的地铁和上海地铁采用轨下一层、铁垫板下两层圆柱型橡胶垫板,均能满足一般地段需要. 需要指出的是,道床型式、扣件型式及弹性垫层之间都要有合理的匹配关系. 为阻止表面波的传播,可采取切断振动传播途径或在传播途径上削弱振动的措施. 在地表层采取挖沟、筑墙等措施有一定效果. 有三种隔离模式:弹性基础、明沟和充填式沟渠. 弹性基础对较高频率的隔振效果较好,但由于弹性基础的存在,轨道上的最大低频加速度会被放大, 所以无论是对运行列车的平稳性还是对于周围环境的隔振来说,弹性基础并不是很理想的方法;对于明沟和充填式沟渠,一般来说,减振沟越深,其有效隔振频率的下限就越低,减振效果越好,它们可以完全切断振动波的传播,只要沟的深度足够,就可以获得理想的隔振效果.

减振墙也常用来作隔振使用,其效能与减振沟类似. 有试验表明,减振墙的板质、厚度和深度对减振效果均有影响. 向地层下打入柱桩,形成柱列或柱阵可以获得显著的减振效果,国外已成功地采用这种措施防止地铁和其它振动对建筑物的干扰. 对于点振源,在其周围设置由具有一定质量的隔振材料形成的阻波区( Wave Impeding Block) ,可以很好地隔绝振动波的扩散. 阻波区隔振的基本原理是利用隔振材料的振动来吸收振源传出的振动能量,其减振效果与隔振材料的质量和埋置深度、阻波区的宽度有关. 台湾某高架桥系统,在桥墩的周围设置环状的阻波区后,环外地层的振动强度下降了5~15 dB[ 45 ].

4  减轻轨道交通系统对周边建筑物振动影响的规划设计原则

根据国内外的研究成果,为减轻轨道交通系统对周边建筑物的振动影响,规划设计中应遵循以下原则:

(1) 规定地面建筑物到地铁隧道或高架轻轨线路的水平距离,必须在古建筑附近修建地铁时,还应规定地铁隧道的埋深,以利用振动能量的传播衰减来降低振动水平.

(2) 对新规划的建筑物,应使其位置避开振动波传播的放大区;对既有的古旧建筑物或其它对振动敏感的建筑物,在规划轨道交通线时,应使振动放大区离开它们的位置.

(3) 在地铁及高架轻轨沿线的建筑物应以基础结构牢固的楼房为主,避免建造轻质结构或基础较浅的房屋. 建筑物的振动特性应合理设计,以防止其振动频率与列车产生的振动一致而形成共振.

(4) 在轨道交通规划布局中,应充分老虑利用振动波的天然屏障,如河流、高大建筑物等, 来隔绝振动的影响.

参考文献

1  守田荣. 振动篇— 公害防止管理者国家实验讲座. 东京:日本工业新闻出版社,1981

2  Volberg G. Propagation of Ground Vibrations near Railway Tracks. J . of Sound and Vibration , 1983 , 87(2) :371~376

3  ORE. Question D151. Vibrations Transmitted Through the Ground : [ Technical Report ] .Office for REIUR , NL , 1989.

4  ORE. Question DT217. Measures Against Structure Borne Noise & Vibrations : [ Technical Report ] . Office for REIUR , NL , 1991

5  Dawn T M. Ground Vibration from Passing Trains. J . of Sound and Vibration , 1979 , 66(3) : 355~362

6  Dinning M G. Ground Vibration from Railway Operations : [ Rapporteur′s Report ] . J . of Sound and Vibration , 1983 , 87 (2) : 387~389

7  Dawn T M. Ground Vibration from Heavy Freight Trains. J . of Sound and Vibration , 1983 , 87(2) : 351~356

8  Verhas H P. Prediction of the Propagation of Train2Induced Ground Vibration. J . of Sound and Vibration , 1979 , 66(3) : 371 ~376

9  Fujikake T. A Prediction Method for the Propagation of Ground Vibration from Railway Trains1 J . of Sound and Vibration , 1986 , 111(2) : 289~297

10  Bata M. Effects on Buildings of Vibrations Caused by Traffic.Building Science , 1985 , 99(1):1~12

11  Rucker W. Dynamic Behavior of Rigid Foundations of Arbitrary Shape on a Half2Space. Earthquake Engineering and Struc2 tural Dynamics , 1982 , 66(5): 674~690

12  Tassily E. Interaction Dynamique Voie/ Rouie : Modeles Existants et Perspectives de Recherche. Revue Generale des Chemine de Fer , 1988 , (107): 23~30

13  Watts G R. Case Studies of the Effects of Traffic Induced Vibrations on Heritage Buildings : [ Technical Report ] . Berkshire : Transport and road research laboratory , 19871

14  Wilson G P. Control of Ground2Borne Noise and Vibration. J . of Sound and Vibration , 1983 , 87(2) : 339~350

15  Kurzweil L G. Ground2Borne Noise and Vibration from Underground Rail Systems. J . of Sound and Vibration , 1979 , 66 (3) : 363~370

16  Bata Miloslav. Effects on Buildings of Vibrations Caused by Traffic. J . of Buildings and Science , 1977 , (6) :221~246

17  Hayakawa K. Reduction Effects of Ballast Mats and EPS Blocks on Ground Vibration Caused by Train and its Evaluation. Proc. Inter2Noise′92 , 1992. 233~240

18  Kurzweil L . Ground2Borne Noise and Vibration from Underground System. J . of Sound and Vibration , 1979 , 66(3) :363~ 370

19  Degrande G. A Special and Finite Element Method for Wave Propagation in Dry and Saturated Poroelastic Media : [ Ph. D the2 sis] . Belgium : K. U. Leuven , 1992.

20  Richart F E , Woods R D. Vibration of Soils and foundations. New Jersey : Prentice2Hall , INC , Englewood Cliffs , 19871

21  青木一郎. 铁道交通による振动とその周边居民に对する影响1 东京:东京都环境科学研究所年报,1994 ,(18) :24~30

22  夏禾,冯爱军,张弥. 高架轻轨系统列车振动效应研究. 地铁与轻轨,1992 ,(2) :27~33

23  夏禾,冯爱军,张弥. 轻轨列车和高架桥梁系统的动力响应分析. 北方交通大学学报,1994 ,18(1) :1~8

24  夏禾,陈英俊. 车—桥—墩体系动力相互作用分析. 土木工程学报,1992 ,25(2) :1~10

25  Xia He. A Study of Vibration Effects of Underground Trains Upon Surrounding Environments. Advances in Structural Engi2 neering. Beijing : Railway Publishing House , 19951116~122

26  . 浅淡地铁振动与噪声. 地铁与轻轨,1993 ,(2) :19~20

27  . 北京地下铁道振动对环境影响的调查与研究. 地铁与轻轨,1993 ,(2) :21~25

28  潘昌实,谢正光. 地铁区间隧道列车振动测试与分析. 土木工程学报,1990 ,23(2) :21~28

29  潘昌实,刘维宁. 隧道列车振动试验与动态分析. 兰州铁道学院学报,1985 ,4(2) :1~21

30  孙家麒. 振动公害浅谈. 环境保护,1979 ,(5) :25~27

31  孙家麒. 振动公害的治理. 环境保护,1979 ,(6) :34~37

32  盛碧华1 城市轨道交通高架桥上道床结构型式探讨. 地铁与轻轨,1993 ,(2) :26~31

33  傅光新编译. 地铁轨道基础参数对隧道衬砌振动的影响. 地铁与轻轨,1993 ,(2) :40~43

34  周才宝. 地下铁道整体轨下基础. 地铁与轻轨,1994 ,(2) :29~31

35  铁道部科学研究院铁道建筑研究所1 广深线准高速铁路行车噪声、振动环境影响和治理措施的研究与试验: [ 研究报告] . 北京:铁道部科学研究院,1995.

36  铁道部科学研究院环境评价与工程中心. 北京西至黄村联络线环境影响报告书:[ 研究报告] . 北京:铁道部科学研究院, 1995.

37  茅玉泉. 交通运输车辆引起的地面振动特性和衰减. 建筑结构学报,1987 ,(1) :12~19

38  杨光辉. 列车运行引起的地面振动衰减规律研究: [ 学位论文]1 北京:北方交通大学,1998.

39  潘昌实,谢正光. 北京地铁列车振动对环境影响的探讨. 隧道及地下工程学会第七届年会论文集,北京:1992. 424~431

40  姚正伦. 重庆地下轻轨列车运行地面振动效应的预测与评价. 隧道及地下工程学会第七届年会论文集,北京:1992. 372 ~379

41  马筠. 我国铁路环境振动现状及传播规律. 中国环境科学,1987 ,7(5) :4~7

42  陈实. 高速铁路列车对周围环境的振动影响研究: [ 学位论文] . 北京:北方交通大学,1997.

43  于大明. 轻轨列车作用下高架桥梁系统振动及其对周边环境的影响. 桥梁及结构工程学会第12 届年会论文集,北京: 1996. 632~640

44  杨永斌. 高速列车所引致之土壤振动分析:[ 研究报告]1 台湾:台湾大学,1995.

篇3

关键词:高速铁路;接触网;防雷;措施

从目前我国的高速铁路的开通情况来看,一部分的线路雷击事故还是较为频繁的,雷害导致的跳闸也是其中的一个重要因素。随着我国铁道运营里程的快速发展,重载以及高速铁路的迅猛发展,从而减少因接触网发生雷击故障而造成的事故发生,它具有重要的理论意义与工程应用价值。我们可以利用电气化的几何模型来分析回流线对于接触网雷击的屏蔽效果,并通过仿真软件分析雷击回流线的时候接触网上所感应的电压。并深入研究高速铁路 AT 供电的方式以及接触网避雷线的保护情况,从而推导出高架桥单线与复线铁路的避雷线设计高度。

一、国内外高速铁路接触网防雷的现状

随着我国高速铁路的快速发展,应考虑牵引高铁线路的结构等级与所经过的地区的雷电灾害频率,所经过的土壤所含电阻率与地形地貌等自然条件的情况,共同来设计牵引系统所进行的防雷设计。欧洲率先就拥有高速铁路的国家之一,它对雷击的接触网造成了牵引性的供电系统灾害有着丰富的实践经验,设计的标准是一年时间之内 100千米牵引网将会遭受雷击的次数来做为评定的标准,只是采用牵引变电的配带综合性自动重合闸与避雷器来限制雷电电压过高,避雷器不能够减少因雷电的侵入而减少损害接触网的次数,只能够对接触网的过电压起到有效的保护作用。无论是对于欧洲的气候条件还是经济等方面的因素考虑高铁的接触网进行有效的避雷也是十分重要的。

二、国内接触网防雷接地设计的概况

我国铁道接触网的防雷设计主要是依据《高速铁路设计规范》、《铁路电力牵引供电设计规范》与《铁路防雷、电磁兼容及接地工程技术暂行规定》来进行规定的。根据雷电日的数量来分为4个等级管理区域:年平均雷电日在20d及以下地区为少雷区,年平均雷电日在20d以上、40d及以下地区为多雷区,年平均雷电日在40d以上、60d及以下地区为高雷区,年平均雷电日在60d以上地区为强雷区。《高速铁路设计规范》中规定重污染或是重雷区以及高路基、隧道口等重要的地段接触网应该增设氧化锌避雷器。接触网中的防雷设备主要是指接触网上所安装的避雷器,为了减少对综合接地系统上其它电气设备的影响。

三、高速铁路接触网防雷的措施

(一)接触网安装形式

现有高速铁路一般是采用AT供电方式,AF线与PW线安装位置,此时的PW线安装位置在AF线下方。采用电气应为:几何模型与先导发展模型的应计算该安装形式下的接触网线路来直接减少落雷的闪络概率,将它调试为自然雷中的90%为负极性。雷击闪络的次数和线路的暴露宽度 D( I)以及地闪密度是息息相关的。再乘以地闪密度即可以求出线路的年雷击闪络次数。PW线位置提高后还可对AF线与T线产生屏蔽,AF 线与T线直接落雷的次数将会大大的降低,但PW线落雷的雷电流幅值较高的时侯还是会造成AF线与 T线绝缘子的反击闪络,另外AF线与T线绝缘子仍存在雷电感应闪络的可能。

(二)合成绝缘子的采用

雷电所造成的接触网重合闸失败,将会导致供电的停止,其最根本的原因就是绝缘子受到了工频续流电弧烧蚀后的炸裂、破损,线路绝缘不能自行进行恢复,重合闸就会失败。如上所述,为了防止绝缘子的烧蚀损坏,一定要防止线路闪络与工频电弧建立。目前,我国输配电线路中所采用的绝缘子有瓷绝缘子、玻璃绝缘子与合成硅橡胶绝缘子,线路所具备的重合闸条件,而非瓷绝缘子烧蚀后的伞群已是完全脱落的。合成绝缘子在工频电化烧蚀之后,硅橡胶材料的成分将会发生变化,材料中遇热的易分解成分完全挥发,合成的绝缘子对提高线路 重合闸成功概率有一定的优势,并不能够完全解决线路的防雷问题,建议作为其它主要防护手段的辅助手段规避。

(三)接触网防雷接地

《建筑物防雷设计规范》中规定:对于国家级的会堂、大型展览与博览建筑物、国家级档案馆的重要给水水泵是特别重要的建筑物,应该划为第二类的防雷建筑物。对第二类的防雷建筑物的外部防雷装置应接地设置,相应同时设定方闪电感应、内部防雷、电气与电子系统等接地共用装置建设,雷击时都会成为雷电流的引下线路。当采用综合性的接地系统时,综合性接地系统的接地电阻不能够大于1欧姆,在综合性接地施工的过程中要及时施工完成,还应实测接地的电阻,如果达不到建网的要求,应该采取可靠有效的降阻措施。

四、结论

鉴于高铁的雷电防护问题它从原理上是无论采用何种措施,都只能够减少雷电所引起的故障概率或是跳闸概率,AF线悬挂的采用合成绝缘子,应认真做好接触网的防雷接地措施。我国目前的规范都只有相关的措施要求,但是没有接触网系统的耐雷水平与跳闸率或是故障率等具体的规避标准,防雷设计的深度不容易把握。总而言之,建议完善我国高铁的接触网系统的耐雷水平、跳闸率或是故障率等具体指标,应积极设定科学合理的规避方针,铁路综合性接地系统便是极好的雷电引下接地装置,应该充分利用。

参考文献

[1] 冯金柱.世界电气化铁路概况[J].世界铁路,2003,(3) :14-15.

[2] 于增.接触网防雷技术研究[J].铁道工程学报,2001,1:89-94.

[3] 梁曦东,陈昌渔,周远翔.高电压工程[M].清华大学出版社,2005.

[4] 刘靖.牵引网雷击跳闸研究[D]:[硕士学位论文].北京:北京交通大学, 2009.

[5] 范海江,罗健.铁路客运专线接触网防雷研究[J].铁道工学,2008,8(119):1006-2106.

篇4

关键词:地铁工程测量

 

地铁工程施工测量的施测环境和条件复杂,要求的施测精度又相当高,必须精心施测和进行成果整理,工程测量成果必须符合相关规范的要求。论文参考网。

地铁工程测量的测量特点

(1)车站包括主体结构、出入口和风道。采用明挖及盖挖顺作法施工方法,施工工艺复杂,工序转换快,地下施测条件差,测量工作量大。

(2)地面导线控制网和高程控制网由地面传递到地下,必须保证精度,且要布设形成检测条件并经常复测控制点。

(3)对于车站主体结构,净宽尺寸在建筑限界之外,还应考虑如下的加宽量:50mm综合施工误差+H/150钻孔灌注桩施工误差及水平位移。论文参考网。

(4)区间暗挖先通过竖井,再通过横通道分别进入左、右线隧道,并且曲线半径较小,造成了后视距离短、转角多,给正洞内导线延伸带来一定难度。

平面控制测量

根据地铁工程特点,利用建设管理方提供的测量控制点,在场区内按精密导线网布设。

精密导线技术精度要求:导线全长3~5km,平均边长为350m,测角中误差≤±2.5″,最弱点的点位中误差≤±15mm,相邻点的相对点位中误差≤±8mm,方位角闭合差≤±5(n为导线的角度个数),导线全长相对闭合差≤1/35000;导线点位可充分利用城市已埋设的永久标志,或按城市导线标志埋设。位于车站地区的导线点必须选在基坑开挖影响范围之外,稳定可靠,而且应能与附近的GPS点通视。

车站平面控制测量

利用测设好的平面控制网,以车站的两个轴线方向为基线方向,直接把轴线控制点测设于车站基坑边,经检查复核无误后,设立护桩,利用轴线控制点通过全站仪把车站轴线直接投测到基坑内,并对车站结构进一步进行施工放线。若受场地影响,为保证测量精度,也可按以下分步方法进行测设。

区间暗挖隧道平面控制测量

施工竖井平面尺寸较小,井深多在20米左右,拟采用竖井联系三角形测量,即通过竖井悬挂两根钢丝,由近井点测定与钢丝的距离和角度,从而算得钢丝的坐标以及它们的方位角,然后在井下认为钢丝的坐标和方位角已知,通过测量和计算便可得出地下导线的坐标和方位角,这样就把地上和地下联系起来了。

施工放样测量

施工中的测量控制采用极坐标法进行施测。为了加强放样点的检核条件,可用另外两个已知导线点作起算数据,用同样方法来检测放样点正确与否,或利用全站仪的坐标实测功能,用另两个已知导线点来实测放样点的坐标,放样点理论坐标与检测后的实测坐标X、Y值相差均在±3mm以内,可用这些放样点指导隧道施工。也可用放线两个点,用尺子量测两点的距离进行复核,距离相差在±2mm以内,可用这些点指导隧道施工。

暗挖区间隧道施工放样主要是控制线路设计中线、里程、高程和同步线。隧道开挖时,在隧道中线上安置激光指向仪,调节后的激光代表线路中线或隧道中线的切线或弦线的方向及线路纵断面的坡度。每个洞的上部开挖可用激光指向仪控制标高,下部开挖采用放起拱线标高来控制。施工期间要经常检测激光指向仪的中线和坡度,采用往返或变动两次仪器高法进行水准测量。在隧道初支过程中,架设钢格栅时要严格的控制中线、垂直度和同步线,其中格栅中线和同步线的测量允许误差为±20mm,格栅垂直度允许误差为3°。

高程控制测量

(1)车站高程控制测量

对于车站施工时的高程测量控制,利用复核或增设的水准基点,按精密水准测量要求把高程引测到基坑内,并在基坑内设置水准基点,且不能少于两个,通过基坑内和地面上的水准基点对车站施工进行高程测量控制。

(2)区间隧道高程控制测量

区间隧道高程测量控制,通过竖井采用长钢卷尺导入法把高程传递至井下,向地下传递高程的次数,与坐标传递同步进行。论文参考网。先作趋近水准测量,再作竖井高程传递。

地下控制网平差和中线调整

隧道贯通后,地下导线则由支导线经与另一端基线边联测变成了附合导线,支线水准也变成了附合水准,当闭合差不超过限差规定时,进行平差计算。

按导线点平差后的坐标值调整线路中线点,改点后再进行中线点的检测,直线夹角不符值≤±6″,曲线上折角互差≤±7″,高程亦要使用平差后的成果。

隧道贯通后导线平差的新成果将作为净空测量、调整中线、测设铺轨基标及进行变形监测的起始数据。

参考文献:《城市测量规范》CJJ8

《地下铁道、轻轨交通工程测量规范》GB50308

《工程测量规范》GB50026

《工程测量》 邵自修 冶金工业出版社 1997

《工程测量》 扬松林 中国铁道出版社 2002

《测量平差基础》 武汉测绘科技大学 1994

篇5

关键词:昆明南站,建筑方案,概念设计

 

在国家采取积极的财政政策以扩大内需的总体经济方针指导下,基建投资的重点由公路向铁路转移。铁路项目批复和开工速度明显加快,铁路建设各项相关工作都相对提速。在我国通过加大铁路建设投资拉动经济发展的宏观大背景下,铁路建设投资将会保持较快增速。正是在这种大环境下,促成了我们省院二所与武汉铁四院的这次合作,组成联合体共同参与了历时三个月的昆明南站建筑概念设计方案投标。

1.设计前的准备

此次投标从09年3月13日开始,第一轮于5月18日结束。在两个月的时间内我们需要完成的是昆明南站站房的建筑造型设计,以及车站配套的公共交通枢纽,周边道路规划等车站相关设计内容。车场总设计规模为30站台面30线,建筑面积按10万平方米控制。

1.1现场踏勘的重要性

以往我们的工作模式都对投标开始之前的现场踏勘不太重视,有时候甚至不是设计人员去到现场,这就会导致真正的设计人员无法对现场的状况有准确的把握,或者在转述的过程中对一些关键问题的忽略和遗漏。铁四院在这方面的重视程度值得我们借鉴。在昆明南站的现场踏勘,他们派了老总和设计人去,并且全程用DV录像,再加上照片及录音笔的补充,这样就不会漏过任何一个细节,而且没去过现场的人也能最直观的了解情况,这样就不会产生转述过程中的错漏或者理解错误。

1.2前期准备资料的制作

在与铁四院的合作中发现他们有个很好的习惯,就是对资料收集的系统化和重视。不管是昆明南站投标,还是现在正在进行的向莆铁路沿线站房设计,他们都会把当地的文化背景,标志建筑,历史古迹等对设计有用的素材和资料收集好,并整理很正式的演示文档。在这样的系统收集整理当中,设计人既能全面的了解当地文化特色,也能方便在以后的方案汇报中,更好的介绍自己的设计,或者使中途加入的设计人员能更快的进入角色,提供了很好的帮助。

1.3制定详细计划

制定详细的计划有利于统筹的领导整个设计过程,通过合理安排时间,严守设计进度,会使整个设计过程有条不紊的进行下去。把计划详细列出来后,贴在自己的桌旁,每天都会有个清晰的思路,准确把握自己的时间安排,是设计质量更高。

2.设计过程

2.1封闭集中办公模式

在铁四院的建议下,这次昆明南站我们采用了封闭集中办公的模式,在华中理工大学的学术交流中心内进行集中办公。铁四院方面对此给出的理由是,能最大限度的利用闲散时间,并且有一个安静的环境来给大家灵感,同时也是为了设计方案的保密。于是在投标的前一个多月时间,我们都是在华中理工大学内生活、工作和设计。但是在设计过程中,我们也感受到了这种工作模式的利弊。由于住宿的房间和工作的会议室都处于学术交流中心的同一楼层,造成了每天“两点一线”的生活工作模式。单一的工作及生活场所,的确使工作效率有所提高,但这是建立在取消了所有假期及每天都加班到晚上11点之后的基础上。这样的封闭模式对提高思维活跃性上是不利的。人都被围困起来了,思维如何能活跃呢?而且这样的封闭办公,对成本的投入也比较大。据悉铁四院经过这次投标之后,也打算取消这种办公模式了。

2.2设计过程简述

画草图,是投标前期最重要的设计过程。由于参考书籍比较少,每天只能通过互联网来查找相关设计资料,然后在草图纸上进行思维碰撞。手绘草图是最能快速反映出自己思维的手段,每天我们会议室内8,9个人,就是不停的勾草图,在绘图纸上记录下思维的过程。我们也有利用制作工作模型的方式,更加直观的控制建筑体型。论文格式。大家也会在画草图的过程中讨论,当发现一个比较有创意或者有发展潜力的建筑体形时,就会再进一步的讨论和深化下去,由草图模型进一步到电脑模型,逐步控制深入。

2.3评标方式(吸引目光的方案,排除法挑选好方案)

当草图的数量和深度达到一定程度的时候,我们就会把渲染的草图模型打印出来,整理成统一的A4格式,贴在墙上,以最直观的方式来进行方案比选,同时也是抛砖引玉来刺激大家的思维。到了内部评选方案的那天,会把院领导及相关人员邀请过来,然后大家就面对着这片布满方案的墙壁,来对方案发表意见。火车站站房设计有它的特殊性。由于平面功能比较单一,并且已经形成了自己的行业标准,并不适宜做太突出的颠覆性的改变,所以大家评比的标准都集中到了建筑造型上来。一个吸引眼球的造型和巧妙的立意,成为了评选的最重要标准。在评选过程中,会把近期曾经出现过的造型给排除,以免引起类同之说,成为方案的致命伤。这些方案都会被直接从墙上撤下来。经过一轮筛选后,会把比较平庸的造型及比例不妥的,没有前途的也撤下来。最后剩下在墙上的,都是有自己独到之处,或者得到部分人认同的方案。

在第一轮方案评选之前,我们都是按照自己的思路及想法,充分发散思维的去做方案,没有太多的约束。当第一轮方案评选结果出来,确定了某个方向作为主线思路之后,我们所有人就会围绕这这个想法来做方案。我们在第一轮确定了“绽放的春城”作为我们的设计立意,大家就会在这个立意的指导下来发挥创意,集中力量攻破一点,也就初步形成了第一轮方案的雏形。

3.成图的完善

3.1最终确定方案

在第一轮确定了以“绽放的春城”为主题后,在大体形一致的基础上,我们在建筑表皮上发展了两个方向。一个是铁四院方面的以规整为主的网格交错的表皮,我们则做了以自然生长为主题的构思。在最终权衡中,还是以稳妥为主,选择了保守一点网格交错的方案,我们的浪漫构思作为比选方案一同递交。

在方案比选中,我们的方案被专家提出的几点问题是,设计带有随机性,不利于以后施工,而且尺度巨大,没有对使用者提供亲近感。论文格式。我的理解是,在尺度感方面,这是两个方案共同的硬伤,当这个体型确定下来后,巨大的基座已经决定了这个建筑不是一个对人有亲切感的建筑,他的尺度的失去,是整个体型决定的,而并不在于表皮的各种形式搭配。网格状的钢构和我们设计的树枝状形体,尺寸上是相差无几的。最大的破绽在于,这前面的两个形体完全与车站的交通建筑性质无关,即使没有了,这个车站也完全成立。是完全为了吸引眼球及给建筑强加上意义而去做的一个设计。当然,在第一轮评选并且没有更好的理念的时候,这是目前我们能做的最好选择。

3.2文本制作的模式

铁四院的工作模式不同于我们,也体现在后期的成图文本制作上。他们把设计人员的所有精力,大部分都投入到前期的设计中去,在后面的成果整理,汇总成图,都不需要我们花太多的心思,会交给另外专门负责做排版的同事完成。这样既能保证我们把所有心思都集中到设计构思中,也能使后期排版及文本成册更加专业及迅速。以往我们都在后期制作中投入大量时间精力,往往熬夜都在成图的过程中,把设计的精力分散了。

4.第二轮的战略模式

4.1分析对手,找准目标

由于在第一轮竞赛中我们并没有找到一个很好的设计构思点,所以把目标定在了以一个极度吸引人的造型,先进入第二轮再重新调整。第一轮结果出来后,我们也意料中的以第四名入围。论文格式。从以往的经验,铁四院是很善于进行第二轮的修改和冲刺的,经常可以在第二轮以出其不意的构思来重新获得铁道部的注意。经过分析讨论,大家都一致觉得第三名中南院的设计方案“雀舞云南”是潜在威胁最大的对手。飞扬的姿态,极具民族味道的符号,简洁的造型,他们的方案使人印象深刻。

4.2深化自己的设计

第二轮深化设计我们从6月4日开始,约两周时间。在深化过程中我们对第一轮的构思进行了颠覆,定下了我们设计的主题是“雀舞春城”。原来第一轮的“绽放的春城”方案,由于构思和造型都存在明显缺陷,就不再深入发展了。我们一组7个人,就围绕着孔雀这个主题来进行构思设计,设法找到一个最好的切入点,既能体现建筑的宏伟体量,又能反映孔雀意念的点睛之笔。在大的建筑体形确定后,我们采取了分组完善细部的方式,每个小组负责一个细部的设计,并且随时进行整体的协调和沟通,力求整个建筑都能以最完美的姿态出现。在整个深化的过程中,也有因为设计上的各执己见而引起激烈的讨论,也经历了柳暗花明又一村的惊喜,大家都在合作设计中充分享受着建筑设计带来的苦恼和乐趣。

5.总结

今年和以往的工作经历有了很大的改变,不再是有头无尾的兼顾各种事情,而是能够专心地把所有精力都放在一个项目的设计工作中。事实也证明了对于这种全国性的投标,必须要有一个完善配备的团队,充足的时间,详尽的计划和公开的内部评审机制,才能得到好的成绩,做出更加完善的设计方案。

篇6

关键词:大直径盾构 扩挖 地铁车站限界 侧式站台

Study on design schemes for metro station driven with enlarging large-diameter shield tunnels

Wang Wenjun,Li Aimin,Zeng Deguang

Abstract:For solving the problem of the construction of metro station in a complex environment, the trial section project of the Beijing metro Line 14 is taked as subject investigated for the construction schemes, the design schemes of metro station driven with enlarging large-diameter shield tunnels were proposed to study.

Key words:large-diameter shield; enlarged excavation; metro station; gauge ; side platform

1背景

随着北京城市建设、地面交通和地铁建设的快速发展,地铁的建设用地愈来愈紧张,周边环境愈来愈复杂。特别是一些道路狭窄、周围建筑物密集、地下管线复杂的地段采用常规的地铁施工方法,给人民生活带来不便,对城市交通产生很大影响,同时造成管线改移困难、费用高等问题。在城市中心区修建地铁,这些问题将愈发突出。为了适应今后北京地铁的发展,结合北京的特点,寻求一种适应性高、灵活性好、对现状地上和地下环境影响小的设计和施工方法,故在北京地铁十四号线进行盾构扩挖设计和施工试验研究。结合本线的环境条件和工程难点等情况,选择将台路站、万红西街站、东四环北路站~将台路站区间、将台路站~万红西街站区间、万红西街站~阜通东大街站区间两站三区间作为试验段为背景,提出大直径盾构扩挖修建地铁的思路,并进行了分析研究。

2 大盾构扩挖车站方案的提出

2.1目前地铁车站和区间常规的施工方式及存在的问题

目前地铁车站主要采用明(盖)挖法和暗挖法施工,区间主要采用盾构法和矿山法施工,也有部分区间采用明挖法施工。 通常车站采用明(盖)法施工,在车站两端设置盾构端头井,区间才有条件采用盾构法施工;而暗挖车站目前只做到盾构调头,还不具备直接在车站端部设置始发井和接收井,实现始发和接收的功能。若要具备始发条件,需要在区间上另设盾构始发井。要具备接收条件,也需要在车站端部将盾构机平移到风井后,再进行接收。这些因素大大地制约了区间采用盾构施工的条件;目前,在建成区实施地铁车站受周边建筑、地下管线、地面交通等周边环境条件的制约,明挖施工条件越来越困难,另外车站暗挖施工又制约了区间的盾构施工。

2.2试验段工程特点

东四环北路站至阜通东大街段线路经过酒仙桥地区的老区,酒仙桥路是本地区唯一主干路,万红西街是连接广顺南大街与酒仙桥路主要道路,道路红线仅40m,特别是万红西街站处道路宽度仅为17m(图1为万红西街站道路断面),两侧建筑紧贴红线布置,交通导改难度大,地下管线改移量大,因此,将台路、万红西街站的车站明挖实施难度较大。本段起点东四环北路站位于四环路外,有大盾构的始发条件。万红西街站后具备较好的盾构接收条件,且根据地勘资料,这段范围的地层条件比较好,比较适合采用盾构施工,因此,经过研究和比选,选取本段线路作为大盾构扩挖车站的试验段。 图1 万红西街站道路断面

2.3盾构扩挖的思路

为了解决上述问题,我们通过研究提出了区间盾构先推过车站后,在车站范围采用盾构法与暗挖法联合修建车站的方法(简称盾构扩挖车站),该方法实现了车站暗挖和区间盾构的有机结合,既解决了困难地段车站的修建问题,也提高了盾构在区间的利用效率。

针对这一设计思路,国内学者对单洞单线已有进行过研究和应用。如广州地铁6号线东山口站已成功应用(左线站台隧道在6m直径盾构机先行过站后,再破除管片,将盾构隧道扩挖成车站左线站台)。北京地铁早在10号线一期工程三元桥车站进行过设计研究,当时主要是针对区间采用外径为6m的常规盾构进行了研究,通过研究发现,采用常规盾构扩挖修建车站实施难度很大,且不易满足车站的功能。为此需另寻新的思路,提出本试验段主要采用大直径盾构扩挖实现车站。

2.4扩挖车站形式

通过前期对日本、俄罗斯、德黑兰1、2号线(法国设计)等国外地铁工程的调研,国外有很多先施工盾构区间 ,后实施车站的成功经验和思路。在此基础上,分析研究了盾构区间与扩挖车站的可能性, 根据十四号线建设条件特点,主要概括为以下三种形式,并进行了比较,即:图1为单洞双线盾构扩挖侧式车站,图2为单洞双线盾构扩挖岛式车站,图3为双洞双线盾构扩挖岛式车站。

图2 单洞双线盾构扩挖岛式车站 图3 双洞双线盾构扩挖岛式车站

三种车站都是利用盾构扩挖形成车站站台层,而其站厅及设备用房则尽量置于路侧可明挖施工的场地内(可以在地上或地下),站厅与站台之间则用暗挖通道连接,设备用房与站台之间则用暗挖电缆廊道连接。

经过比较,单洞双线的侧式车站虽然在功能上与其它两种形式相比稍有不足,但从总体的工程量和施工难度上相比,还是有较大的优势,所以试验段车站推荐采用单洞双线扩挖侧式车站的形式,对有特殊需要的车站可采用单洞双线扩挖岛式车站。双洞双线扩挖岛式车站虽然在功能上优势比较明显,但区间的工程量太大,工程中一般不采用。

3大直径盾构的确定

3.1单洞单线岛式车站圆形隧道限界

区间盾构机通过车站,需利用盾构空间作为车站的一部分。当采用分离岛式车站时,由于站台宽度在站台面以上2米高度范围内,最小宽度需3.5m,B2型车轨道中心线距离站台边直线段为1500mm,曲线段最大1580mm,以及考虑车辆肩部距离车辆动态限界空间最小300mm的要求,确定车站及区间隧道圆形隧道合理建筑限界为直径7600mm。

3.2单洞双线盾构隧道限界

为了充分利用盾构隧道经过车站后的空间以及区间的行车限界要求,综合考虑到侧式车站中间立柱的线间距要求、设置9号单渡线道岔的线间距要求及疏散平台的设置要求,本工程区间采用线间距4.2m。按照车辆肩部与设备限界最小间隙300mm控制建筑限界,确定本工程单洞双线盾构隧道的建筑限界为8800mm,为经济合理限界。

4大盾构扩挖车站方案的选择和优势

经过比较,单线大盾构在工程量、造价、安全性、实施难度等方面相对其它形式具有综合优势,经比选,采用限界8.8m,隧道内径9m的单线盾构隧道方案,在单线盾构隧道基础上进行车站扩挖施工,形成侧式站台车站,车站平面见图4,车站断面见图1。 图4 万红西街站平面图

东四环北路站具有始发条件,将台路站、万红西街站为扩挖站,在万红西街~阜通东大街区间具备设置接收井条件,根据地勘资料,这段范围的地层条件比较好,适合采用盾构施工,因此确定本段作为大盾构试验段,全长约3.6km。

经过比较,大盾构扩挖法具有一定的优势:

1、对地面周边环境影响小,外部协调工作量大大减小。

2、与明盖挖法相比,将台路站、万红西街站两座大盾构扩挖车站可少改移管线36根,约3400m。

3、与明盖挖法相比,可节省交通导改费用。

4、盾构机可连续施工几个区间和车站,施工可操作性强,避免了常规暗挖车站需要过站或站内调头,解决了暗挖车站与盾构区间结合的难题。

5、单洞双线侧式站台车站,空间大,地下乘车空间效果好。

通过初步的设计研究,大盾构扩挖车站在管线改移、交通导改、外部协调工作量、站位布置、盾构施工等方面具有较大优势,这种方法适合在城市中心区修建地铁,特别是在地铁沿线建筑密集,交通繁忙,地下管线直径大、种类多、埋深等困难环境下修建地铁。

6结束语

(1)在日益发展和复杂的城市环境下,在国内首次对大直径盾构扩挖地铁车站方案及工法进行了试验和研究,确定了盾构合理的隧道内径为9m。

(2)从车站功能和经济合理性来说,采用单洞双线扩挖形成侧式站台车站较为合理。

(3)为今后北京地铁,乃至全国地铁的建设提供一条新的工法和设计思路。

虽然本工法仍有很多具体问题需要继续研究解决,但其本身无论是技术还是经济上都是完全可行的,使得我们对解决特殊及困难地段地铁车站的建设问题拥有了更多的技术解决手段,对困难地段地铁车站方案设计有指导意义。

参考文献

[1]施仲衡,张弥,王新杰等.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997

[2]林朝.盾构区间扩挖技术在东山口地铁站施工中的应用[J] .广州土木与建筑,2006,6(6):23-25

[3]许世伟.盾构扩挖修建地铁车站施工方案研究[硕士论文D] .北京:北京交通大学,2006

[4]吴占瑞.盾构扩挖修建地铁车站对临近建筑物的影响研究[硕士论文D] .成都:西南交通大学,2009

[5]北京城建设计研究总院有限责任公司,天津市市政工程设计研究院.北京地铁十四号线工程11标段总体设计方案及初步设计方案[R] .北京:北京城建设计研究总院有限责任公司,2009

篇7

关键词:高速铁路;路基过渡段;研究现状

中图分类号:U412文献标识码: A

1引言

铁路的发展必须以安全性、可靠性、舒适性等为前提,以线路的高平顺性和轨下基础的稳定性作保证。高速铁路的建设不可避免地会遇到不同轨下基础连接处的过渡段,这些地段恰恰是高速铁路线路的薄弱环节,由于强度、刚度、沉降等差异的存在必然会引起钢轨的弯折变形,致使不平顺的产生。为了保证高速铁路线路的高平顺性,必须对线路刚度有突变的区域进行过渡段的设置。

2国外轨道过渡段的研究现状

随着高速铁路的修建并成功投入运营,国外在高速铁路的修建过程中,一直非常注重过渡段部位,并对过渡段的处理措施做过专门的研究。90年代初德国Gobel和Weisemann等人在室内模拟时速160km的列车作用下,由土工格栅加固后路堤承载力的增加和沉降量减小的问题。意大利国家铁路公司曾经应用双向土工格栅加固铁路路堤,在不同的横断面上安装测试原件,以确定不同类型车辆经过时产生的动应力场。美国TTCI研究人员CharityD.Sasaoka和David Davis为解决大轴重对轨道过渡段的影响,利用NUCARSTM和GeotrackTM软件模拟轨道刚度和阻尼对过渡段的影响分析,得出提高过渡段区域轨道结构的阻尼可以使车轮对轨过渡段的作用衰减30%,此外还认为减小桥梁刚度的最好方法是调整桥上枕下刚度;美国TTCI研究人员Dingqing Li和David Davis对引起和加速路桥过渡段及轨道过渡段破坏的因素进行了研究并得出评估过渡段和一些减缓过渡段破坏的措施。

对于路基与桥梁、涵洞、隧道、隧道与桥梁等过渡段的研究国外己有不少,日本在路基与桥梁过渡段设置碎石填筑段;德国则是加宽路基与桥梁过渡段中路基的宽度,道柞厚度沿桥梁至路基方向逐渐递减,以使线路刚度逐渐变化;法国是在路基与桥梁过渡段设置过渡桥台等。

3国内轨道过渡段的研究现状

在国内,我国铁道部科学研究院、西南交通大学、原上海铁道大学等有关研究者也先后通过模拟试验研究了在列车重复荷载作用下路基基床的动应力响应特性,但这些试验和研究一般都是针对路基而言,而非针对过渡段。另外,我国在秦沈客运专线、遂渝客运专线等对路基与桥梁、涵洞、隧道等过渡段都进行过大量试验研究,对于路基与桩板结构过渡段的研究,我国也己在遂渝线进行过研究。石家庄铁道学院杨广庆等进行了高速铁路路基与桥梁过渡段的技术措施分析,并指出设置钢筋混凝土过渡板对路桥间的刚度平顺过渡非常有利,但必须配以其他级配粗粒料或加筋土路堤结构等处理措施才`能解决路桥间沉降差引起的轨面弯折对行车的影响。西南交通大学罗强、蔡英等间等运用车辆一轨道一路基相互作用的动力学理论,全面分析了路桥过渡段的轨面弯折变形、轨道基础刚度的变化、不同的行车速度、车辆进出过渡段等情况对车辆垂向加速度和轮轨垂向力等动力学性能指标的影响规律,并指出路桥结构的工后沉降差引起过渡段轨面弯折变形是影响行车安全与舒适的主要因素,而路桥间的刚度差、列车的行车方向对行车的动力学性能指标影响不显著,并对过渡段的变形限值和过渡段长度的确定方法进行了一些研究。

西南交通大学王于等以有碎和无碎轨道的过渡段为例,进行了车辆一轨道垂向动态相互作用的仿真研究,指出了在确定轨道过渡段长度时,应考虑动力学性能评价指标,并提出了确定轨道过渡段长度的“临界长度法”。西南交通大学王其昌、蔡成标等对高速铁路路桥过渡段的轨道折角限值进行了分析,试提出了高速铁路路桥过渡段轨道折角容许的限值,确定了一套轨道过渡段动力特性的评价指标,分析了由基础沉降差引起的钢轨初始变形及行车方向、行车速度对轮轨系统动力性能的影响,提出了确定路桥过渡段长度应根据最高行车速度、基础沉降差,由动力学评判指标来确定。西南交通大学翟婉明等应用动力学理论建立了车辆一轨道祸合模型,详细研究了过渡段长度对高速列车与过渡段轨道动态相互作用性能的影响情况,确定了高速铁路不同类型过渡段在不同速度等级下的最小长度理论建议值。华东交通大学雷晓燕等建立轨道过渡段基础刚度突变的轨道振动微分方程,进行了轨道刚突变对轨道振动的影响性分析,提出了轨道过渡段的整治原则。

孔祥仲、刘伟平等从静力学角度对板式轨道与普通轨道之间设置轨道刚度渐变的板式轨道过渡段提出了刚度设计方法,并建议采用不同厚度的沥青混凝土道床宽轨枕轨道结构作为有柞与无柞轨道过渡段型式。中南大学陈雪华[28]基于无柞轨道路一桥一隧过渡段祸合动力学理论,应用高速铁路路一桥一隧过渡段与无柞轨道相互作用的动力学模型,研究了轮重、车速、不平顺和材料特性对无柞轨道过渡段结构系统相互作用的响应特征。施光夏运用动力学分析程序ANSYS/LS-DYNA在二维模型里面模拟了直结式轨道与普通有柞轨道过渡段中钢轨和轨床(道床板)的动态响应,既而讨论了轨下胶垫刚度对过渡段的影响,认为适当提高轨下胶垫的刚度可以有效地降低钢轨的变形,最后讨论了轨枕共振、轨枕间距、支承刚度与行车速度之间的关系,认为轨枕间距越大、支承刚度越大则列车的临界速度越高。

综上所述,目前路桥过渡段的分析是高速铁路过渡段分析的重点,分析的方法仍是基于车辆与线路相互作用的动力学理论,一般采用理论建模、数值求解与试验验证相结合的方法。首先对车辆一轨道相互作用中的具体问题建立适当的数学物理模型,进而寻求有效的数学分析方法以获取系统响应,再将动力学关键指标(如轮轨力、车体加速度等)的试验测量结果与理论分析结果进行对比,从而验证并改进理论模型。

4结论

从国内外的过渡段研究现状可以知道,目前研究的工作大多数集中在路桥、路隧过渡段上,绝大多数针对的是路基、桥梁或者隧道,可以说以往研究的过渡段包括秦沈客运专线上有碎与无柞轨道(线路上部结构)的过渡段都是放在了基础(线路下部结构)的过渡段上,由此不论是从施工设计还是实际运营来看都带来了许多问题,而系统研究路基上有柞轨道与无碎轨道过渡段的几乎空白。

参考文献:

[1]赵国堂.高速铁路无碴轨道结构[M],北京:中国铁道出版社,2006

篇8

【关键词】结构转换层 高层建筑 结构设计 高层建筑设计 转换层设计

中图分类号: TU97 文献标识码: A 文章编号:

一.引言

随着我国现代高层建筑高度的不断增加,建筑的功能也日趋复杂,在高层建筑竖向立面上的造型也呈现多样化。在某些建筑结构中,通常会要求上部的框架柱或是剪力墙不落地,在建筑结构中需要设置较大的横梁和桁架来作为支撑,甚至有时要改变竖向的承重体系,此时就要求设置转换构件,将上部和下部两种不同的竖向结构进行过度和转换,通常这种转换构件占据约为一至二层,这种转换构件即为转换层。结构转换层在很大程度上改变了建筑的结构体系,在进行设计时要慎重考虑。

二.转换层结构施工特点

由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常的结构布置应是下部刚度大、墙体多、柱网密,而到上部则逐渐减少墙体及柱的布置,以扩大柱网。这样,结构的正常布置与建筑功能对空间的要求正好相反。因此,为了适应建筑功能的变化,就必须在结构转换的楼层设置水平转换构件,部分竖向构件在转换层处被打断,使竖向力的传递被迫发生转折,而转换层就是实现转折功能的大型水平构件。转换层的结构形式一般有以下几种构成:箱式转换、梁式转换、空腹桁架式转换、桁架式转换、板式转换和斜撑式转换等。 带转换层的高层建筑是一受力复杂、不利抗震的结构体系,该结构及其支撑系统有自身的特点。众多高层建筑采用梁式转换层进行结构转换,这主要是由于:

1.转换层设计带转换层的多高层建筑,转换层的下部楼层由于设置大空间的要求,其刚度会产生突变,一般比转换层上部楼层的刚度小,设计时应采取措施减少转换层上、下楼层结构抗侧刚度及承载力的变化,以保证满足抗风、抗震设计的要求。转换构件为重要传力部位,应保证转换构件的安全性。2.8度抗震设计时除考虑竖向荷载、风荷载或水平地震作用外。还应考虑竖向地震作用的影响,转换构件的竖向地震作用,可采用反应谱方法或动力时程分析方法计算;作为近似考虑,也可将转换构件在重力荷载标准值作用下的内力乘以增大系数1.1。

2.经济指标

从抗剪和抗冲切的角度考虑,转换板的厚度往往很大。一般可2.0m~2.8m 。这样的厚板一方面重量很大,增大了对下部垂直构件的承载力设计要求,另一方面本层的混凝土用量也很大。

转换梁常用截面高度为1.6~4.0m,只有在跨度较小以及承托的层数较少时才转换梁常用截面高度0.9~1.4m,而跨度较大且承托较大且承托的层数较多时,或构件条件特殊时才采用较大的截面高度4.0~8.2m 。

3.抗震性能

由于厚板集中了很大的刚度和质量,在地震作用下,地震反应强烈。不仅板本身受力很大,而且由于沿竖向刚度突然变化,相邻上、下层受到很大的作用力,容易发生震害。以往的模型振动台试验研究表明,厚板的上、下相邻层结构出现明显裂缝和混凝土剥落。另外,试验还表明,在竖向荷载和地震力共同作用下,板不仅发生冲切破坏,而且可能产生剪切破坏,板内必须三向配筋。

4.转换层结构的基本功能

从结构角度看,转换层结构的功能主要有:

(1)上、下层结构形式的转换

这种转换层广泛用于剪力墙结构和框架--剪力墙结构,将上部的剪力墙转换为下部的框架。

(2)上、下层结构轴网的转换

转换层上下结构形式没有改变,但通过转换层使下层柱的柱距扩大,形成大柱网,这种形式常用于外框筒的下层以形成较大的入口。

(3)下、下层结构形式和结构轴网同时转换

上部楼层剪力墙结构通过转换层改变为下部框架结构的同时,下部柱网轴线与上部剪力墙的轴线错开,形成下、下结构不对齐的布置。

5.转换层结构设计方法存在的问题

目前在多、高层建筑中,绝大多数的开发商都会要求建筑物具有完备的建筑功能,建筑师在建筑设计中也往往首先想到采用结构转换层来完成上、下层建筑物功能的转换。但一些结构设计人员在实际进行转换层设计时显得无从下手,没有可操作、可遵循的设计思路、设计原则来进行结构设计。造成这种现象的主要原因是当前转换层设计没有相关的可遵循的设计准则,使设计人员难以进行结构选型、截面确定、计算模型确定、计算方法确定,计算结果应用以及配筋方法的实施等一系列结构设计步骤。这种现状与我国当前高层建筑的迅猛发展足不适应的。转换结构层具有与一般结构层相比结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。这样的尺寸和重量意味着转换结构组成了建筑物的主要构件。它们设计的是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要影响。现有的转换层设计方法,主要是针对形式简单、受力相对简单的转换梁,对于受力复杂的转换梁还没有深入研究。即便是对于形式简单的转换梁,其受力性能也没有完全清楚,而往往是互相混淆,设计概念小明确,设计原则不准确。

三. 带结构转换层的高层建筑结构设计

1. 带转换层的高层建筑结构设计原则

高层建筑中转换层的设置造成建筑物竖向刚度的突变,地震作用时在转换层上下容易形成薄弱环节,对结构抗震不利,故转换层结构在设计时应遵循以下原则:

(1)为防止沿竖向刚度变化过于悬殊形成薄弱层,设计中应考虑使上、下层刚度比γ≤2,尽量接近1。这样才能保证结构竖向刚度的变化不至于太大,使上柱有良好的抗侧力性能,减少竖向刚度变化,有利于结构整体受力。

(2)尽可能减少需结构转换的竖向构件,直接落地的竖向构件越多,转换结构越少,转换层造成的刚度突变就越小,对结构抗震更有利。

(3)设计中应保证转换层有足够的刚度,一般应使梁高度不小于跨度的1/6,才能保证内力在转换层及其下部构件中分配合理,转换梁、剪力墙柱有良好的受力性能,能较好的起到结构转换作用。

(4)必须控制框支剪力墙与落地剪力墙的比例,当剪力墙较多且考虑抗震时,横向落地剪力墙数目与横向墙总数之比不宜少于50%,非抗震时不宜少于30%。

(5)转换层以上的剪力墙和柱子应尽量对称布置,梁上立柱应尽量设在转换梁跨中,以免转换梁变形时,在梁上立柱的柱脚处产生较大转角,带动立柱柱脚产生较大变形,引起柱的弯曲及剪切,使立柱产生很大的内力而超筋。

(6)转换层结构在高层建筑竖向的位置宜低不宜高。转换层位置较高时,易使框支剪力墙结构在转换层附近的刚度、内力和传力途径发生突变,并易形成薄弱层,对抗震设计不利,其抗震设计概念与底层框支剪力墙结构有较大差异。当必须采用高位转换时,应控制转换层下部框支结构的等效刚度,即考虑弯曲、剪切和轴向变形的综合刚度,这对于减少转换层附近的层间位移角及内力突变是十分必要的,效果也很显著。另外,对落地剪力墙间距的限制应比底层框支剪力墙结构更严一些。对平面为长矩形的建筑,落地剪力墙的数目应多于全部横向剪力墙数目的一半。

2.转换层的应用

(1)梁式转换层

作为目前高层建筑结构转换层中应用最广的结构形式,它具有传力直接明确及传力途径清晰,同时受力性能好、工作可靠、构造简单、计算简便、造价较低及施工方便等优点。转换梁不宜开洞,若必须开洞则洞口宜位于梁中和轴附近。转换梁有托柱与托墙两种形式,其截面设计有4种方法,即普通梁截面设计法、偏心受拉构件截面设计法、深梁截面设计法和应力截面设计法。转换梁的截面尺寸一般由剪压比(mv=Vmax/febh0)计算确定,应具有合适的配箍率,以防发生脆性破坏,其截面高度在抗震和非抗震设计时应分别小于计算跨度的16和18。(2)厚板转换层 当转换层上、下柱网轴线错开较多而难以用梁直接承托时,可采用厚板转换层,但厚板的巨大荷载会集中作用于建筑物中部,振动性能复杂,且该层刚度很大、下层刚度相对较小,容易产生底部变形集中,其传力途径十分复杂,是一种对抗震十分不利的复杂结构体系,应进行整体内力分析、动力时程分析及板的内力分析等。厚板的厚度可由抗弯、抗剪、抗冲切计算确定;可局部做成薄板,厚薄交界处可加腋或局部做成夹心板,一般厚度可取2.0~2.8m,约为柱距的1/3~1/5。厚板应沿其主应力方向设置暗梁,一般可在下部柱墙连线处设置。转换层厚板上、下一层的楼板应适当加强,楼板厚度不宜小于150mm。

(3)箱式转换层

当需要从上层向更大跨度的下层进行转换时,若采用梁式或板式转换层已不能解决问题,这种情况下,可以采用箱式转换层。

它很像箱形基础,也可看成是由上、下层较厚的楼板与单向托梁、双向托梁共同组成,具有很大的整体空间刚度,能够胜任较大跨度、较大空间、较大荷载的转换。

(4)桁架式转换层

这种形式的转换层受力合理明确,构造简单,自重较轻,材料节省,能适应较大跨度的转换,虽比箱式转换层的整体空间刚度相对较小,但比箱式转换层少占空间。

(5)空腹桁架式转换层

这种形式的转换层与桁架式转换层的优点相似,但空腹桁架式转换层的杆系都是水平、垂直的,而桁架式转换层则具有斜撑竿。空腹桁架式转换层在室内空间上比桁架式转换层好,比箱式转换层更好。

四.结束语

高层建筑的迅速发展,从以往的简单体型和功能单一的时代开始走向体型复杂,建筑的功能呈现多样化发展。在高层结构设计中,带转换层结构设计不能简单设置成“承上启下”,而要在实际结构上实现上部结构和下部结构的过度和转换。

参考文献:

[1] 熊进刚 李艳 带结构转换层的高层建筑结构设计[期刊论文] 《南昌大学学报(工科版)》 ISTIC -2002年4期

[2]季静 韩小雷 杨坤 郑宜 Ji Jing Han XiaoLei Yang Kun Zheng Yi带主次梁转换层的超限高层建筑结构设计[期刊论文] 《结构工程师》 ISTIC -2005年2期

[3]丁奇峰 带结构转换层的高层建筑结构设计 [期刊论文] 《城市建设理论研究(电子版)》 -2013年6期

[4]韩小雷 杨坤 郑宜 季静 带梁式转换层的超限高层建筑结构设计[期刊论文] 《昆明理工大学学报(理工版)》 ISTIC PKU -2004年6期

[5]黄瑛 带转换层高层结构综合楼设计 [期刊论文] 《铁道标准设计》 ISTIC PKU -2005年1期

[6]侯俊杰 带结构转换层的高层建筑结构设计 [期刊论文] 《城市建设理论研究(电子版)》 -2013年5期

篇9

关键词:双块式无砟轨道;梁板模型 土质路基

中图分类号:TU7 文献标识码:A 文章编号:1007-3973(2010)010-085-02

1、引 言

轨枕埋入式无砟轨道结构是将预制好的整体或双块式轨枕,在现场通过浇筑混凝土或其他材料,将轨枕埋入或“振入”到道床板中,使轨枕与道床板成为一个整体的无砟轨道结构形式。这种轨道结构以预制轨枕与现浇道床板的高度整体性为主要目标,与轨枕支承式、轨枕嵌入式结构相比很大程度上避免了轨枕块的横向倾斜和转动,基本上消除了因钢轨外翻而造成的安全隐患,能保证高速条件下列车运行的平稳性和安全性。国外应用范围最广的轨枕埋入式无砟轨道结构是Rheda型和Zublin型,二者结构相似度极高。

在国外无砟轨道结构迅速发展的同时,我国结合本国实际,近几年先后在新建线上铺设了适用于我们国家铁路情况的I型、II型双块式轨道结构,获得了满意的效果,两者最大的区别在于施工方法的不同,建模分析可作相同考虑。图1为土质路基上双块式无砟轨道的断面示意。

2、计算模型

由于道床板和支承层厚度远小于其长度和宽度,因此,在不研究内部受力的情况下,为方便分析计算,可将其视为板结构,经验表明,梁板模型在轨道结构研究分析中是一种比较理想的结构。此外,对于CRTS-I型双块式无砟轨道,其道床板钢筋布置完毕之后,排布轨枕,之后整体浇注,因此,在纵横方向的受力,道床板整体结构内部的钢筋混凝土结构可以承受,其结构可认为是连续的;下层的混凝土支承层则为了应对纵向传递的力,必须在每隔5m的位置从上表面往下切割出深度约为支承层厚度1/3的缝,由于此处主要研究垂向受力,因此也可以将其视为连续。混凝土支承层摊铺成型后,采用拉毛刮在支承层纵横方向上拉出沟槽,以使得支承层与道床板结合良好。因此,在建模时,通常将道床板和支承层作为整体来考虑。

钢轨采用beam4单元模拟,道床板与支承层整体用shell63弹性壳单元模拟,该合成层的弹性模量E按照线性原理来计算取值。扣件、地基均采用combinl4单元进行模拟,所有单元均由节点生成。模型建立如图2(为求视图效果,板单元小网格划分未完全显示):

3、参 数

土质路基I型双块式无砟轨道结构参数选取如下:

(1)钢轨

CHN60型

钢轨截面积:A=7.745x10-3m2;钢轨惯性矩:I=3.217x10-5m4;钢轨高度:h=0.176m:弹性模量:E=2.06x105Mpa;泊松比μ=1.3;钢轨容重:p=7.85x104N/m3。

(2)扣件

间距:0.650m;刚度:60kN/mm。区

(3)道床板

尺寸:长15.500m,宽2.800m,厚0.200m:弹性模量:3.40×104MPa:泊松比:O.2;道床板容重:p=25000N/m3。

(4)支承层

尺寸:厚0.300m,宽3.400m:弹性模量:1.50x104MPa;泊松比:0.2;支承层容重:p=24000N/m3。

(5)地基弹性系数

K=1.50x102 MN/m3

4、计算与分析

(1)本文只考虑垂向作用,运用瞬态动力分析法,在所选轨枕埋入式无砟轨道结构上,分别研究120km/h、160km/h、200km/h、250km/h、300km/h、350km/h六种行车速度下轨道结构的垂向位移及受力状况。轮载轴重150kN,取一组轮对,将其简化成为在钢轨上不断移动的荷载,计算轮重由动力系数法得出,动力系数一般小于2,考虑到一定的安全系数,动力系数取2进行分析。

建模计算可得在移动荷载作用下结构任意点处的垂向变形数据,用大型有限元软件ansys可以生成其直观图,如在120km/h的轮对前进速度下,所取钢轨段中部节点node946的,挠度随时间变化情况表示如图3,其挠度最大值为1.334mm,方向向下(沿y轴负向)。不同荷载移动速度下轨道机构垂向响应值统计结果见表1

可见对于本文所研究的I型双块式无砟轨道结构,荷载移动速度从120km/h增加到250km/h,钢轨Y向挠度和z转角位移的峰值里增加的趋势,但是从250km/h增加至350 km/h时,该值有所减小,原因是荷载移动速度过快,钢轨尚未来得及变形列车已经通过作用点,可见,250km/h左右的行车速度对轨道结构垂向性能要求较高;随着行车速度的增加,道床板和支承层的挠度变形逐渐增加,对道床板和支承层的性能要求逐渐提高,地基面承受的压应力逐渐增加,速度超过200km/h后,该值增长缓慢。

(2)在300km/h的轮对移动速度下,扣件选取不同的刚度,即20kN/mm,40kN/mm,60kN/mm,80kN/mm,100kN/mm,其他参数不变,运用瞬态动力分析法,研究不同扣件刚度对结构整体垂向性能的影响。

扣件刚度取60kN/mm时,所选钢轨段中部节点node946,的挠度随时间变化情况见图4,其最大值为1.29mm,方向向下(沿y轴负向)。扣件不同刚度值下轨道结构垂向响应归类统计见表2。

表中数值可知,随着扣件刚度的增加,钢轨的最大垂向位移和转动位移逐渐减小,道床板和支承层的垂向位移和转角位移渐增大,但是后者增幅缓慢,同时地基应力逐渐增加。这是因为构件刚度增加之后,能够较好的将力直接传递至下部结构。因此,在满足地基应力的前提下,为了平衡钢轨和下部结构的位移,轨道结构设计中应该选择合适的扣件刚度;地基面压应力随着扣件刚度增加逐渐增大,20kN/mm到60kN/mm之间增幅较大,60kN/mm到100kN/mm之间增加缓慢。

5、结 论

(1)列车运行速度对轨枕埋入式轨道结构垂向位移的影响,在120km/h到350km/h之间,以250km/h左右时最为不利,因此,轨道结构设计中,垂向受力研究要着重考虑该速度区间。

(2)随着扣件刚度的增加,地基面所承受的压应力逐渐增加,从20kN/mm到40kN/mm变化时,压应力增加最为明显,之后渐趋缓和。

(3)扣件刚度大小对轨枕埋入式轨道结构垂向受力影响非常明显,尤其在低于60 kN/mm的时候,且扣件刚度对钢轨和道床板的影响相反。因此,在轨道结构设计中要慎重选择扣件类型,合理确定扣件刚度。

参考文献:

[1]王圣涛,雷达2000型轨枕施工技术研究[c],建筑,2007(22)

[2]郝赢,铁道工程[M]北京:中国铁道出版社,2002

[3]何华武,无碴轨道技术[M]。北京:中国铁道出版社,2005

[4]曾国升,路基Rheda2000无碴轨道施工设备与施工技术研究(硕士学位论文)[c],长沙:中南大学,2007,11

[5]赫丹,向俊,曾庆元,一种无碴轨道动力学建模的新方法[J],长沙:中南大学土木建筑学院,2007,12

篇10

论文关键词:地铁车辆,全自动车钩,结构及原理,故障,检修

对于高速列车、城市地铁和轻轨车辆的车钩缓冲装置常采用机械气路、电路均能同时实现自动连接的密接式车钩。这种车钩属刚性自动车钩,它要求两钩连接后,其间没有上下和左右的移动,而且纵向间隙也限制在很小的范围内(约1-2mm)。这对提高列车运行平稳性、降低车钩零件的磨耗和噪声均有重要意义。同时由于车钩的连挂精度大大提高,在列车连挂和分解时,钩缓装置也能自动的实现列车间空气管路的自动连接和分离。密接式车钩缓冲装置,能够保证列车连挂的可靠性、运行的舒适性和安全性。

一、车钩的简介

1、车钩类型

深圳地铁一期列车车钩采用SCHARFENBERG公司生产的密接式车钩,共有三种类型车钩:

全自动车钩:(2个/列)

半自动车钩:(2个/列)

半永久牵引杆:(8个/列)

2、全自动车钩特性

全自动车钩是一种自动机械连接、自动气路连接、自动电路连接,它可在司机室操作,自动气动解钩;气路故障时,可用解钩绳手动解钩;对中装置设有可复原能量吸收装置(缓冲器);吸收能量设有可压溃筒体,过载保护装置。

全自动车钩能够使车辆机械、电路、气路自动联挂。无需人工辅助,把一辆车开向另一辆车就可以实现两辆车的自动联挂。水平方向和垂直方向有角位移的情况下也可以自动联挂。通过司机室的解钩按钮可以进行自动解钩,也可以在轨道旁手动解钩。车辆通过车钩联挂后可以顺利地在一定的坡道和曲线上运行。

二、全自动车钩结构作用

1.全自动车钩的作用

全自动车钩能够使铁道车辆自动联挂。没有人的辅助,把一辆车开向另一辆车就可以实现两辆车的自动联挂。水平方向和垂直方向有角位移的情况下也可以自动联挂。车钩允许联挂的列车通过垂直曲线和水平曲线,允许有旋转运动。不仅实现机械联挂、电路联挂和气路联挂,当车钩机械联挂在一起时,空气管就自动联接上了。可以通过司机室的遥控器进行自动解钩,也可以在轨道旁手动解钩。解钩和车辆分离后,车钩又处于待联挂状态。缓冲器(橡胶缓冲装置)能够保证缓冲和牵引装置的缓冲效果。车钩装有吸能装置,当吸能装置受到强烈冲击时就会压馈,从而可保护底架免受破坏。另外车钩还装有过载保护装置,当超过了橡胶缓冲器和吸能装置的吸能能力时,过载保护装置就释放了,一旦释放,车钩就与车辆分开,过载力就不会施加在车辆底架上。

2.全自动车钩的检修

1、计划检修

(1)日检

全自动钩缓装置日常检查以目视检查为主。检查全自动车钩钩头,橡胶托架,电缆和电缆夹,气管密封环,缓冲器标志环,各紧固件等。要求各项目均正常,无明显损坏,无明显松的及遗落。

(2)月检

月检是对运营时间或运营里程数分别达到一个月或10000Km的电动列车所进行的检修维护,包括:

清洁并机械车钩。

目测检查全自动车钩各部件,橡胶托架,电缆和电缆夹,气管密封环等。

检查电气车钩盖板,车钩电气触头表面防腐处理。

检查车钩压溃管是否移位。

清洁电气触头保护罩转动轴的表面并。

(3)定修

定修是电动列车运营里程数每达到100000KM或运营时间达一年时进行的检修,一般定修的周期为1d。

检查各零部件应完好无损。

清洁接合面及其内部。

检查点状况。

检查对中装置的功能。

检查钩尾座保险螺栓及其紧固力矩。

清洁电气触头。

用铜棒紧系模拟对接试验,以检查撞钩动作,要求钩舌联挂动作灵活。

进行手动解钩功能检查。

进行自动解钩功能试验。

(4)架修

架修是电动列车运营里程数每达到500000KM或运营时间达5年时进行的检修一般检修的周期为20d。

清洗机械车钩的表面和钩头,应采用冷洗方式。

测量车钩钩舌间隙。

分解全自动车钩。

检查钩头各零部件磨损状况,对钩锁连接杆、抱箍、钩锁、舌销进行探伤。

对钩头零部件油漆和以及对中心轴进行并组装。

清洁、检查、和油漆连接杆,进行无损探伤并更换所有垫圈,须注意连接杆不得

检查垂向支承、接地电缆和软管。

检查手动解钩钢绳。

(5)大修

大修是电动列车运营里程数每达到1000000KM或运营时间达10年时进行的检修,一般大修的周期为25d。

对机械部件进行分解与清洗。

对电器箱进行检查和清洁并更换触点和密封圈。

对机械部件进行检修,更换电磁阀、密封件及限位开关并对钩舌等进行磁粉探伤。

进行油漆、组装和试验台试验,试验台试验进行车钩连挂和解钩试验和气密性试验。

全自动钩缓装置使用的轴承为自免维护轴承,使用过程中,无须专门或维护。

2、重要部件的检修

(1)车钩磨损的检测

在将全自动车钩和车体分解之前,应该用专用的测量工具检测机械勾头内机械连挂机构的间隙,来判断钩锁的磨损情况。

(2)车钩钩头检修

车钩钩头由机械钩头、电气连接箱和气路连接器等部分组成。

(3)气路连接器检修

对气路连接器进行如下维修:

清洁和检查零件是否有损坏,更换损坏件;

更换主风管和解钩风管弹簧阀对接口的橡胶密封件;

更换主风管和解钩风管的橡胶管;

(5)缓冲装置检修

缓冲装置分为可再生缓冲器和不可再生缓冲器两种类型,可再生缓冲器有双作用环弹簧缓冲器、橡胶缓冲器、液压缓冲器和气液缓冲器等,压溃管是不可再生缓冲器。

(6)对中装置

对中装置进行如下检修:

用无油压缩空气和抹布清洁各零件;

用刚性金属丝或螺丝刀清洁汽缸排气孔;

检查凸版和衬套是否损坏和磨耗;

检查活塞杆端部的滚轮是否损坏。

3、监测和控制元件

车钩实现连挂和解钩动作的控制和监控元件为S1、S3、S4、行程开关和二位五通换向阀。当机械钩头连挂和解钩时钩头中心销的凸轮扳转动,S1行程开关监测到该动作并给出反馈电信号。当电气连接箱连挂和解钩时,S3行程开关监测到电气连接箱操纵机构的动作并反馈电信号。S4行程开关与车钩的止动板有连锁作用,当止动板动作时即使车钩高压电路切断,特别在解钩时起保险作用。

4、车钩检修后的试验

(1)车钩连挂和解钩试验

将全部组装好的全自动车钩安装在试验台是,进行车钩自动连挂和解钩试验。连挂时要听其声音是否清脆,以判别机械钩头安装的质量。通过操纵手动解钩装置,检查手动解钩的性能是否正常。

(2)气密封试验

在车钩处于连挂状态下,用肥皂喷在所有阀和管路接头处以检查气路是否有泄漏。

参考文献

1 中国铁道百科全书》,北京:中国铁道出版社,2006年

2 维修保养、检修及大修手册》,长春长客庞巴迪轨道车辆有限公司

3 车辆工程》,严隽旄 傅茂海,中国铁道出版社,2008年

4 城市轨道交通车辆运行与维护》,何宗华,中国建筑工业出版社,2006年