人工智能时代教育范文
时间:2024-01-11 17:46:07
导语:如何才能写好一篇人工智能时代教育,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
“每个人都很愿意讲话;同时往往各执己见,谁也无法说服谁。”来自英国惠灵顿公学的校长朱利安·托马斯耸肩一笑,话锋一转:“要让他们达成一致,那几乎是奇迹。”
托马斯口中的奇迹,却真实地发生了。不久前,在天津惠灵顿国际学校举办的一场主题为“如何培养21世纪人才”的论坛上,来自中、英、韩三国知名中学的校长坐在了一起,就人才培养达成了共识:技术正在迅速地改变着这个时代,教育也必须与时俱进地变革,才能培养出未来需要的人才。
在瞬息万变的大数据和信息时代中,在不断融合的全球化大趋势里,到底什么才是未来人才最重要的品质?这个话题成为与会者讨论的焦点。
死记硬背的知识记忆已经过时
“我大学毕业的时候,学校只有一台电脑,有整整一间屋子那么大。而今天,技术在突飞猛进。”托马斯说,目前的教育和考试系统都是源自于过去的时代,当时对于大多数学习者来说,最重要的学习技能是记忆力。”但这种强调记忆力的教育仅适合过去的时代,而今天,应该是改变的时候了。
“让每个孩子在离开学校后,保持一种非常积极的状态,他们不仅是愿意学习的,并且对自己所做的事情很感兴趣。”这是托马斯理解的“好的教育”。
他理想中的教室,并不是鸦雀无声、秩序井然的样子,“在一个非常安静的教室里,老师给学生传授知识,这并不是最好的学习方法。”他认为,一个在未来有持续学习能力的人,首先要学会自主学习,因此课堂上老师不应是仅仅灌输知识,而是要让学生学会独立学习。基于兴趣的学习,能让学习者不会浅尝辄止,而愿意在某个领域进一步钻研和探索,不断深入。
托马斯认为,教育的本质在于释放孩子各方面的天性。在中学阶段,应该给孩子们留下更多可以伴随一生的良好品格,即积极、慎思、独立、个性和包容这五大特质。
“我想先跟大家讲一讲围棋的事儿。”天津韩国国际学校校长姜聲奉开门见山地提到今年3月韩国棋手李世石多次败给人工智能“阿尔法狗”的故事。显然,这次人机大战给教育者带来更多思考——学生是不是可以完全依赖技术而不再学习?
姜聲奉认为,既要看到人工智能给人类带来的巨大便利,也应该透过这场人机大战看到人工智能代替不了的人类能力。比如李世石的拼搏精神,面对失败寻求突破的创造力和耐心,以及带领团队分析的领导力,“这些能力是今后我们应该对学生培养的重点”。
他以一份对外公布的联合国报告举例,未来很多工作都会被人工智能取代。不仅是简单的、初级的劳动,甚至也包括一些专业性较强的工作,比如会计、医生等。那么,在人工智能时代,教育的方向又应该是怎样的呢?他认为,教育应该关注的是那些不能被人工智能取代的能力。如感知能力、创造力和洞察力,以及与人合作的能力等。
天津惠灵顿国际学校校长迈克尔·希金斯举起手机说,现在我们每个人在使用智能手机,它的计算能力都具备了上世纪六七十年代把人带到月球的水平,甚至这种能力还在不断增强,“那么对教育而言,除了传统的数学、英语等必不可少的课程学习之外,我们更应关注一个人的能力和品质”。
更重要的教育在课堂之外
“考什么才学什么,一定要警惕这种功利倾向。”托马斯举例说,如何修理自来水管,这种跟实际生活关系很密切的技能,也是不应忽视的教育内容。
“学习不仅是上课、写作业,还有很重要的一点是‘软实力’的培养。”希金斯解释说,软技能是与人互动的能力。比如学校要准备一场足球赛,在准备的过程中首先会激发学生对足球的兴趣,而过程中锻炼学生的领导力、团队协作力,并且学会共同承担风险,这些都是软实力。
天津南开中学第六任校长、天津南开翔宇学校总校长康岫岩也表示,一个在未来有竞争力的人才,首先要有国际理解力,也就是说,不仅能够植根于本民族的文化,还能够客观看待、理解并尊重外国的历史文化和历史传统,主动参与多元文化的交流。
不约而同的,来自三国的中学校长都提到了,要想让教育方式彻底转变,考试模式必须随之变化。
托马斯说,通过考查记忆力的方式评判一个人能否胜任某一项职业的时代已经成为历史。应该在教育中识别出哪些是希望学生学习的内容,并通过考试体现出来,“要让考试和教育紧密结合”。
篇2
关键词:人工智能;电气信息类;教学应用
教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。
一、人工智能时代的概述
人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯卡普兰(AndreasKaplan)和迈克尔海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。
其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业2本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。
二、人工智能对电气信息类专业人才需求的影响分析
人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。
三、人工智能给电气信息类专业提供的机遇
在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。
四、人工智能技术在电气信息类专业教育教学中的应用路径
(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。
(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。
(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。
(四)利用人工智能技术进行辅的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。
(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。
篇3
[关键词]人工智能;财务机器人;会计电算化;人才培养
0引言
正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。
1人工智能的概念[2]
人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。
2中职学校传统会计电算化专业人才培养[3]
2.1课程偏传统基础核算类,轻参与、管理类会计课程
在多数中职学校会计电算化教学计划课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。
2.2会计实操偏基础性会计技能,轻数据分析、挖掘
在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。
2.3课程偏模拟操作,轻实际操作
无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。
3人工智能背景下的中职会计电算化人才培养[4]
3.1由基础核算型初级人才向有思想的中级人才转变
人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。
3.2由传统的财务会计向人工智能环境下的管理会计人才转变
财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。
3.3由会计电算化软件操作员向人工智能会计系统的设计者转变
人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。
4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]
4.1更新理念与改变教学计划
笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。
4.2提高教师人工智能等相关理念和技术
要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。
4.3关注人文综合素质培养,让人工智能为我所用
财务机器人出现,会计人员有更多时间去从事财务机器人无可替代更具有情感类的工作,这些工作需要人与人之间的沟通与交流,因此,笔者认为,中职会计电算化专业教育,不仅需要培养学生人工智能动手能力,还要关注学生思想道德、人文综合素质的培养,提升学生的思想道德水平,教会学生爱岗敬业,诚实守信、乐于助人,激发学生的学习主动性和创造性。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。
5结语
总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。
主要参考文献
[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.
[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.
[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.
[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).
篇4
关键词:人工智能;机器学习;教育应用
一、前言
当前的人工智能虽然还不够完善但其在人类的发展进程中起到了巨大的作用。因为其具有了超强的学习和分析的能力,在个人以及人工智能较量的过程中人工智能一直都是处在领先的地位,为此可以利用到人工智能来促进到人类社会的快速发展。
二、相关概念阐述
人工智能又称AI,是模拟物种智能应用的技术实现和科学。机器智能的科研市场领域包括各种图像和语言结构的快速识别,以及使用语言直接处理和服务机器人。它不仅相当于人类行为的智能,还可以系统地模拟物种的思维,并将在几年内超越历史上的物种。在未来,机器人不断学习,以使仿人机器人模仿人类的学习方式,在这一过程,获得新的各种知识,智能机器人的学习过程更快,可以实现对海量综合数据的深入分析。此外,人工智能机器人不仅可以获得更准确的结果,而且具有独特且更快的信号传输速率。许多科学家有能力超越人类自身。在深入思考核心问题时,实际上,很多人因为机器人是人类设计的,所以不可能超越人类的历史,但是人工智能机器人可能具有集成的学习功能,因此这种可能性将变得非常大。人工智能机器人具有继续学习技术的能力,没有人能够预测学习数据后的整体智能水平。
三、人工智能视域下机器人学习的适切性
在当前的文化和教育生活环境中,由于智能教育的兴起,大数据情境系统功能可以为学生综合分析和选择各种类型的信息,从而重用具有潜在影响的知识可以促进智能教育的发展。智能机器人继续学习,但借助计算机来分析综合数据,例如,以完全掌握规则并进行非常有效的分析和预测。可以看出,机器人正为人类智能教育而学习更有益。在教育中,信息化的进程在今天的时代,智能教育无疑已经成为吸引学生在学习过程中的重要因素。将学习与先进技术核心技术结合起来的方法有很多。人工智能机器人必然会给文化教育生态系统带来帮助。向人工智能机器人学习的方式很多,学校教师可以提高和教育的整体质量和效率,学生也可以赢得符合自身市场需求的学习服务,这有助于减轻学生和家长的负担。
四、人工智能视域下机器人学习的应用创新研究
从人工智能技术的角度来看,智能机器人学习是目前世界上最先进的技术。大数据在教育相关领域的应用具有很好的业务前景。人工智能机器人持续学习的应用可以帮助一些学生实现相关知识与数据之间的联系。
(一)机器人学习与教育之间的融合仅从当前的现象来看,大多数教师不了解核心技术,而了解该技术的人也不了解教育,这很容易导致无法在教育与核心之间形成良好的关系。因为技术研发人员不了解教育,所以不能从教育的多个角度审视开发过程,优秀的教师也不能从技术角度回应数据的全面发展。在人工智能开发领域,机器人应该深入地整合到学习和教育中。组织技术实施和教育核心领域的相关人员进行直接沟通和交流,使人工智能机器人在学习和应用过程中能够更充分地认识到技术研发和生产人员的过程。
(二)机器人学习在学习场景方面的应用人工智能在学校教育领域的应用,因其未来的发展趋势而呈现出明显的趋势。然而,随着学校教育核心领域的许多专业学科的介入,对学习人工智能机器人的要求将越来越高。当你开始学习同一个主题时,需要在同一个应用程序中逐步建立不同的场景。这对机器人来说更难在未来继续学习,但也是最值得创新的。仿人机器人普遍对大量综合数据进行深入分析,分析每个学习内容主题的特点和各部分学生的特点,并采取相应的更有针对性的基本教学方法,提高同学教育的速度和效率。
(三)机器人学习对于智慧环境创新方面的应用首先,由于文化教育市场中的数据种类繁多且缺乏正常秩序,这也增加了在大型集成数据系统中分析和处理文化和教育数据的难度。其次,在随后的数据处理过程中,随着时间的推移会遇到数据隐私问题,如何保护数据隐私是另一个需要注意的关键问题。因此,在教育的相关领域,大综合数据的后续处理以改善文化教育和质量,并确保在教育中最终数据的合理使用,必须在许多方面进行协调与合作,从而促进共享的合法性。最后,必须有效地确保可以长期保持教育中的数据情况并实现流程标准化。有可能实现最终数据的统一,这将大大降低全面数据交换的总体成本,并努力实现数据的无缝集成。数据的最终数据主要是由于目标学生的地区差异,以满足同一学生学习知识的不同需求。
篇5
在业内人士看来,人工智能不是一项单一的科技产业,而是将其他行业进行融合的工具,例如将机器人和保姆结合产生的“看家机器人”,将导航和汽车结合产生的“车联网”等。在人工智能技术逐步成熟的当下,谁率先在应用上实现突破,谁就有可能在智能时代的竞争中占据优势,“人工智能”有望成为可触摸的新增长点之一。
发展迅猛
身体不舒服,想要打开手机淘宝问问医生,但是怎么样才能从几千个在线等待咨询的医生中间找到最匹配的那一个?
阿里健康已经开发并在手机淘宝上线了健康小蜜――医药健康智能问答引擎。这个类似于智能问答机器人的引擎,可以回答普通用户的一般性医药健康问题,然后根据用户的需求进行选择,将用户自动匹配给相应的医生或者药师。
事上,目前,从医疗健康的监测诊断、智能医疗设备,到教育领域的智能评测、个性化辅导、儿童陪伴,从电商零售领域的仓储物流、智能导购和客服,到应用在智能汽车的自驾技术,都能看到人工智能的身影。
人工智能等技术是助推自动驾驶发展的关键技术。例如,人工智能在帮助汽车解读传感器数据时起决策作用,通过阅读驾驶者的驾驶行为和表情,能及时提醒驾驶员在疲劳驾驶时切换至自动驾驶模式。
“人工智能”一词,通常被认为是1955年8月31日在达特茅斯(美国一所院校)会议上诞生的,61年来,人工智能的研究和实践一直处于不断增长的趋势。当今,人工智能技术的突破带来了席卷全球的技术革命风暴,创造出了一个无比广阔的市场,中国的很多公司在这股大潮中抓住机遇,表现亮眼。有观察者认为,中国的人工智能已成为一张令世界瞩目的闪亮名片。
过去的一年里,长虹、TCL、创维等中国家电企业都纷纷人工智能家电产品,希望借助人工智能打破家电行业的销售难题。
不久前,搜狗公司2016全年财报,搜狗借助人工智能技术实现了较大的业绩增长。未来会把人工智能应用到更多的产品中,让用户表达和获取信息更简单,让人工智能真正惠及人类。
全球人工智能研发的脚步正在加快,中国也不甘示弱。近年来,百度先后成立了大数据实验室、深度学习实验室和硅谷人工智能实验室,并通过架构调整全面发力人工智能。2016年百度世界大会上,“百度大脑”推出,该项目将对语音、图像、自然语言处理和用户画像、无人驾驶等领域进行重点关注和研发。
在腾讯,人工智能研究项目包括WHAT LAB(微信-香港科技大学人工智能联合实验室)、优图实验室、微信模式识别中心、智能计算与搜索实验室等多个部门。
人工智能犹如新的科技革命,为长期低迷的世界经济注入新的活力。去年诸多关键技术突飞猛进,无疑是人工智能发展史上浓墨重彩的一年。诞生半个多世纪以来,它终于走到了从科技研发到行业应用的临界点,蓄势待发。
为发展更新“发动机”
人工智能技术的重大突破必将带来新一轮科技革命和产业革命,对人类生活的方方面面将产生深远的影响。大力发展人工智能技术是中国经济转型升级的重要动力。
众多研究表明,人工智能是对传统行业商业模式、产业链和价值链的全面颠覆,将为全球经济、社会生活的方方面面带来质的变化。
发展人工智能的最大意义在于为现代化发展更换“发动机”。咨询公司埃森哲研究了美国、芬兰、英国等12个发达国家并作出预测,到2035年,人工智能将帮助这些国家的生产率提高40%左右。
对于中国而言,人工智能带来的好处将是多方面的。就经济来说,借助人工智能新技术实现自动化,将极大提高生产率,节省劳动成本;优化行业的现有产品和服务,提升其质量和劳动生产率;通过创造新市场、新就业等,将促进市场更加繁荣,开拓更广阔的市场空间。
而在产业升级方面,中国的传统制造业大而不强的问题亟待克服,人工智能恰恰为制造业转型升级提供了便利和动力,一是这些企业拥有行业海量的数据和大量资金;二是在生产力水平急需提升、传统人口红利逐渐消失的情况下,传统企业有迫切的意愿来改造升级自己的工厂、业务,提高收益,降低企业成本。因此,制造业既是人工智能可以大有作为的领域,也是中国发展人工智能的优势领域。
《全球人工智能发展报告2016》显示,中国人工智能专利申请数累计达到15745项,列世界第二;人工智能领域投资达146笔,列世界第三。
据艾瑞咨询预计,2020年全球人工智能市场规模将达到1190亿元,年复合增速约19.7%;同期中国人工智能市场规模将达91亿元,年复合增速超50%。人工智能发展前景极为广阔。
就制造业而言,“中国制造2025”计划的实现就需要很多人工智能。比如过去在技术上难以克服的问题,就可以通过深度学习,在工程上快速地取得一些新的突破。人工智能技术的发展与应用,对于有效实现“中国制造2025”目标至关重要。
面向未来长远布局
在人工智能这场科技浪潮中,中国与其他国家已经站在了同一起跑线上。针对未来产业竞争,中国政府已在多个方面对人工智能产业做出布局,“人工智能+”的发展,需要面向未来,做出长远布局。
未来5到10年,人工智能将像水和电一样无所不在,可以进入到教育、医疗、金融、交通、智慧城市等几乎所有行业。
目前,在驾驶领域,通过依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,电脑可以在无人主动操作下,自动进行操作;在个人助理领域,通过智能语音识别、自然语言处理和大数据搜索、深度学习神经网络,可以实现人机交互;在金融领域,通过分析、预测、辨别交易数据、价格走势等信息,人工智能可以为客户提供投资理财、股权投资等服务;在电商零售领域,主要是利用大数据分析技术,智能的管理仓储与物流、导购等方面,用以节省仓储物流成本、提高购物效率、简化购物程序。此外,在安防、教育、医疗健康等众多领域,人工智能都有着广泛的用途。
篇6
关键词:人工智能;本科高年级教学;教学改革
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。
由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。
本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。
2 本科高年级的教学特点
中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。
3 人工智能课程的学科特点
与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。
4 人工智能教学的三点思考及对策
4.1 注重应用性和介绍性
在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。
4.2 注重科研引导性
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。
4.3 教学内容与毕业设计相结合
本科毕业设计是对本科生用所学知识来解决实际问题和进行专业研究能力的检验,是本科高年级学生将要面临的一项重要任务。由于人工智能学科具有应用性和科研性的特点,人脸识别、网页检索、经济预测、基因数据处理等应用领域都离不开人工智能技术,所以人工智能方向为学生提供了丰富的毕业设计选题。针对这一特点,在本科高年级的人工智能教学中,可以适当穿插介绍有关毕业设计的内容。告诉学生哪些应用领域是目前人工智能研究的热点方向,哪些人工智能技术可以用来解决这些问题。通过向学生介绍具有一定应用价值和研究意义的题目,然后引导他们查找阅读相关技术文献,分析问题,解决问题,最后编写代码和撰写论文。比如笔者给学生提供的选题包括:(1)基于支持向量机的上市公司信用评价;(2)正则化回归在股票预测中的应用;(3)基于肤色的人脸检测;(4)基于内容的网页图像检索等。这些题目应用性强,具有一定科研深度但是难度又不至于太大,学生选择这些题目的积极性很高。通过将教学内容与毕业设计相结合,不但加深了学生对课程的理解,又使其找到了合适的毕业设计题目,可谓一举两得。
篇7
关键词:大学计算机基础;教学改革;人工智能;智慧课堂
云计算、大数据、人工智能新兴领域的崛起,推动信息技术全面渗透于人们的生产生活中。信息技术的核心在于计算机技术和通信技术。然而,虽然目前各个高校都开设了计算机基础课程,但是其教学却存在着诸多问题,导致该课程无法达到预期的教学效果。教育部在2012年《教育信息化十年发展规划(2011-2020年)》,其中指明“以教育信息化带动教育现代化,促进教育的创新与变革”[2]。因此,本文以华中师范大学计算机基础课程教学为例,深入阐述了传统计算机基础课程教学的弊端,提出了在当前人工智能如火如荼的时代背景下,如何应用人工智能相关技术对传统的计算机基础教学进行改革的具体方案。该方案以创建网络智慧课堂教学模式改革为主体,辅以教学观念、知识体系和课程考核方式改革,以期对高校的计算机基础课程教学有所裨益。
1传统教学的缺陷
⑴课程的教学地位没有引起足够的重视一些高校为计算机基础课程分配较少的学时(少于48学时),甚至有的专业将此课程设置为选修课。这种设置降低了该课程在教师和学生心目中的位置,导致了对该课程的忽视。同时,不少老师因为学时不够,时间紧迫,仅仅讲述与考试相关的内容,不考的一概不讲。这导致学生的眼界受限,知识和能力受限,无法培养其全面综合的计算机素质。还有的专业没有将这门课给专业的计算机学院的老师讲授,而是随意安排授课人员。没有经过系统专业训练的教师缺乏足够的知识储备,很难讲好这一门看似简单的课程。⑵课程教学内容的制定与当今时代对于信息化人才的需求脱节一些高校的现状是计算机基础的课程教材知识陈旧[3]、质量堪忧,教材总是无法跟上知识更新的步伐,例如都2019年了还在讲Office2010。有的高校由于缺乏对课程的重视,没有对教材优中选优,而是基于利益的考虑,优先选择自己院系编写的教材。其教材内容是七拼八凑,没有整体性、逻辑性和连贯性,更不用说前瞻性。这样的教材,无疑对学生的学习设置了巨大的屏障。除此以外,一些院校的课程教学知识体系不够明确和完善,教学大纲的制定不够科学。从教学大纲中制定的学时分配来说,常常偏重实用性[4],常用计算机软件操作占据了大部分的课时。这会让教师在授课时轻理论而重操作,如此培养学生,非常不利于其计算思维的形成,对后续其他计算机相关课程的学习也是很大的伤害。⑶教学模式过于传统,信息化水平较低从教学方式上来说,传统的教学模式以教师课堂授课为中心,是以教师为主体的教学模式[5]。在这种模式下,教师仍然主要以填鸭式教学为主[6],无法通过课堂教学发现学生的个性化特点,并进行有针对性的教学。另外,虽然计算机基础课程一般都配备了实验课时,但是实验课常常是采用教师布置上机任务、学生做完抽样检查的模式。这对于大课堂来说,教师的任务繁重,无法搜集到每一个学生的任务完成情况,无法清晰地掌握学生学习的实际情况和薄弱环节。而且,该课程缺乏相应的研讨课时,很难让学生对其所学知识进行深入思考和探究,以增强思辨能力和对课程的学习兴趣。⑷课程考核方式不够公平合理从考核方式上来说,该课程普遍采用“平时成绩”+“期末考试”的加权方式对学生成绩进行评定。平时成绩多由考勤分所得,期末考试多采用机考模式。这种考核方式过于单一化、机械化,无法对学生进行全方位的评价。很多学生来到教室打考勤,但可能根本没听讲,而是在睡觉或者玩手机。期末机考的公平合理性也是存在着很多的漏洞。例如机考的试题库可以十年不变,分值的分配和难度的掌握都没有经过系统的考量。甚至有的考试系统不够稳定和安全,频频爆出Bug,严重影响了考试结果的真实性。
2新人工智能环境下对计算机基础课程改革的具体方案
2012年开始,在随着卷积神经网络技术在视觉处理方面的应用取得巨大的成功之后,人工智能到达了有史以来的第三个爆发期。目前,深度学习技术在AlphaGo、无人驾驶汽车、机器翻译、智能助理、机器人、推荐系统等领域的发展如火如荼。与此同时,人工智能技术在教育领域方面的应用已经兴起。人工智能的教学产品也已有先例,例如基于MOOC平台研发的教学机器人MOOCBuddy等等。基于人工智能的教育是融合云计算、物联网、大数据、VR、区块链等新兴技术的增强型数字教育[2].在当前人工智能的大时代背景下,针对传统计算机基础的种种弊端,我们提出了如下教学改革方案。⑴改变教学理念,确立计算机基础课程的重要地位计算机基础作为高校的一门公共课,实则应当作为各个专业的学生后续的学习、科研的必修之课程。因此,高等学校应从源头上确立该课程的重要地位,将该课程纳入必修课范畴,并给与更充分合理的课时分配。除教学课时、实验课时之外,需要为该课程增加一定的研讨课时。任课老师必须是来自于计算机专业的人才。同时,定时举办关于该课程的教学培训、教学研讨会和教学比赛,改变教师的教学理念,从源头上给予该课程足够的重视。⑵优化教学内容,重新制定课程的教学知识体系教材是教师教学的主要依据,也是学生获得系统性知识的主要来源。因此,教材对于教学的重要性不言而喻。教材的选取需要优中择优,必要的时候可以根据自身院校的情况自己编写,力求使用好的教材使教学事半功倍。在选定优质教材的基础上,制定更加合理的教学大纲,优化计算机基础课程的教学知识体系,突出计算机学科入门相关基础理论知识的重要地位。对现有的过时内容进行更新,例如操作系统以Windows10的操作取代Windows7,Office这部分使用Office2019版本取代2010的版本,同时增加关于算法入门知识、程序设计入门知识以及人工智能、区块链等前沿知识单元的介绍。以华中师范大学为例,我们在图1中给出了该校计算机基础课程的教学知识体系结构图。⑶充分利用现代化的教学工具和人工智能技术,构建智慧课堂,改变传统教学模式现代化的教学应当转变以教师为核心的教学模式,更加突出学生的主体性地位。因此,在人工智能、物联网、大数据等技术和蓬勃发展的情形下,应当改变传统的课堂教学形式,充分利用现代化信息技术,将传统课堂教学和网络课堂教学模式相结合,构建智慧课堂。融合课堂教学身临其境的效果与网络课堂自主性强且方便师生交流的特点,通过师生之间多层次、立体化的互动,达到提升教学效果的目的。同时,建立功能强大、完善的学生实验平台,基于不同专业学生的不同特点和不同需求,进行个性化的作业设置。针对教师布置的实验任务和学生的完成情况,结合在线网络教学系统,通过传感器及网络数据,搜集学生的学习行为数据,并且使用人工智能算法进行智能分析,使教师对当前的学生的学习情况一目了然,并能引导学生对重点、难点的巩固和掌握。研讨课以学生为主体,按照所选课题进行分组调研、分组讨论,刺激学生的学习兴趣,培养其思辨能力。研讨内容最终可以课程论文的形式上交至课程共享平台,由教师和同学共同给出评分。这里,仍以华中师范大学为例,我们将在线教学系统、实验课平台、研讨课共享平台等集成为一个基于人工智能技术的网络智慧教学综合平台系统。该系统主要包括用户管理、在线教学、课堂互动、作业管理、考试管理、BBS系统、智能分析和平台管理8个模块,其主要功能如图2所示。该系统采用C/S模式,系统的服务器选用Linux服务器,同时开发基于PC机的和手机端的客户端系统,方便学生和教师随时选用、更加灵活。在线教学模块中的智能学习助理功能,能够根据历史用户的学习行为和当前用户的学习行为,自动地识别学习内容中的难点以及当前学生的难点内容,有针对性地对学生进行知识点强化。课堂互动模块中,通过可穿戴式传感器搜集学生的学习行为,用于后续智能分析模块中对学生的学习态度和学习行为进行智能分析。在线作业评价模块包括机器评价和教师评价两个功能。机器评价是系统为学生作业(客观题、主观题)自动评分,其中主观题的评分也是使用人工智能技术来实现。教师评分时可以参考机器评分,减少教师工作量。同时,教师评分为机器评分提供机器学习的经验数据,促进机器评分更加智能。智能分析模块能够依据学生的在线课程学习模块、课堂学习模块、作业管理模块等搜集到的学习行为数据进行综合分析,促使教师深入了解学生的学习情况和个性化特点,提升教学的针对性,并且有助于后续对学生进行全面、综合的分析和成绩评定。所有系统模块中使用到的智能分析技术包括基本的统计分析、以及各类机器学习算法(k-means,NaveBayes,SupportVectorMachine,DeepLearning等等)。⑷改变传统成绩考核的方式在“教学”+“实验”+“研讨课”课程结构以及网络智慧教学综合平台的辅助之下,学生的成绩评定更加全面化、多元化、公平化、自动化[7]。平时成绩中,除了教学综合平台的“课堂签到”次数之外,还增加更多丰富多元化的考察信息,如:学生的课堂讨论、在线课程学习和考核结果、平时作业完成情况,以及智能分析模块中辅助分析的学习态度、学习能力、平时成绩预测。期末上机考试系统也是智慧课堂综合平台的一个子模块,是精心设计的稳定、安全、功能强大的子系统,方便教师每一年更新试题库,修改bug。试题库中的每一套试卷都应当经过科学的考卷质量分析,使其难度、覆盖范围在一个均衡、合理的范围。最后,教师通过对各类平时成绩指标以及期末考试成绩加权,给出最终的学习成绩。通过规范、合理、公平、全面的考核体系,获得对学生公平、完善的评价机制,激励学生并刺激教学良性运转。
3结束语
篇8
文章编号:1004-4914(2017)05-148-02
一、引言
互联网金融经历了过去几年的高速发展后,带给了人们新的感受。随着2016年4月12日,国务院印发《互联网金融风险专项整治工作实施方案》以来,整个行业正在进行一次“价值回归”,P2P等平台类模式正在减少,靠着拼渠道、流量和高收益的红利时代已经过去,精细化、差异化、技术化的运营和创新将是互联网金融这个阶段的主题,人工智能将在互联网金融领域发挥越来越重要的作用。
一直以来,金融领域个性化的服务都是依赖于“人”的服务。但从2016年开始,机器正在尝试取代人在财富管理服务中的位置,随之而来的是智能投顾服务。举个例子,在美国,券商、资管纷纷开始设立互联网金融平台,以互联网财富管理类的服务为主,目的是捕获更多中小投资者,在现有的证券业务体系之外培育新的增长点。贝莱德收购Future Advisor、Fiidelity与Betterment展开战略合作、Vanguard推出自己的智能投顾服务、嘉维证券与宜信合作进入中国市场开展智能投顾服务。这样的例子还有很多,这背后是传统金融机构对技术所能产生的势能的认可。国内的智能投顾玩家也很多。其中,宜信和品钛这样的在新兴市场上已经相对成熟的公司已经推出了自己的智能投顾服务。此外,还有大量早期创业公司直接以此为方向,比如弥财、钱景财富、蓝海财富等。
二、人工智能在互联网金融领域的应用情况
(一)人工智能在互联网金融领域应用的必然性
2016年以来央行、其他部委以及最高法院都了关于互联网金融的指导意见,分别是《关于促进互联网金融健康发展的指导意见》、《非银行支付机构网络支付业务管理办法》以及《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》。这些政策性文件的出台,预示着这个行业在政策红利和边界较为模糊的情况下实现的业务的快速发展模式已经走到了尽头。随着后期监管文件的逐步下发,门槛的设立,要求的标准化,很多后来者已经丧失了最好的入局机会,而现有的稳健平台,则迎来了最好的发展机遇。对于互联网金融企业而言,要适应政府的监管,获得客户的支持,要取得自身的发展,只能依托于人工智能。长时间以来,人工智能在互联网金融领域的应用及重要性被频繁提及。近日,《中国互联网金融发展报告(2016)》新书在京,该《报告》执行主编、中科金财董事长朱烨东表示,未来互联网金融行业发展将逐渐走向正规、规范,移动支付的不可逆转,大数据、云计算在互联网金融的核心地位进一步加强,金融科技将成为未来互联网金融发展的主要趋势。
(二)人工智能极大提高了互联网金融的效率
作为百业之母的金融行业,与整个社会存在巨大的交织网络,沉淀了大量有用或者无用数据,包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等,数据级别都是海量单位。同时大量数据又是非结构化的形式存在,如客户的身份证扫描件信息,既占据宝贵的储存资源、存在重复存储浪费,又无法转成可分析数据以供分析。金融大数据的处理工作面临极大挑战。通过运用人工智能的深度学习系统,能够有足够多的数据供其进行学习,并不断完善甚至能够超过人类的知识回答能力,尤其在风险管理与交易这种对复杂数据的处理方面,人工智能的应用将大幅降低人力成本并提升金融风控及业务处理能力。
说到人工智能,不得不提的一定是AlphaGO,但是在互联网金融领域,有一个比AlphaGO更加强势的公司,这家公司的名字叫Kensho。这是以前高盛出来的分析师团队,把整个高盛的经验模拟,通过机器取代现在大量的人工,进行相应的投资、分析、决策。而且在信息,在互联网传播非常快的时候,他们去除掉了大量的噪声,回归到这个事情的本质。很快高盛发现了这家公司的发展速度和未来价值,直接把它私有化,直接变成第一大股东,因为发现这中间带来的差别是这个企业的核心竞争力。
Kensho公司的核心技术就是能在两分钟之内做出一份一份简明的概览,随后是13份基于以往类似就业报告对投资情况的预测。而你根本就不需要去检查这些数据分析,因为这些分析是基于来自十个数据库的成千上万条数据。如果没有这些人工智能,分析师们可能要花上几天的功夫收集梳理这些数据,而等他们分析完成后,市场的行情早瞬息万变。
可见,人工智能的引入对于互联网金融领域的效率提高是呈几何式的,你很难想象也不敢相信这么一个事实:未来的投资大师们可能是一堆机器。
(三)人工智能将互联网金融带入智能金融时代
互联网金融发展至今一共经历了两个阶段:第一个阶段是网络金融,把现有的金融产品搬到互联网上,互联网上面现在卖基金、卖理财、卖信托、卖保险。第二个阶段是大数据金融阶段,通过数据重新去定义相应的金融产品和相应的金融服务。第三个阶段正在萌芽,就是人工智能+互联网金融的阶段,网络上有人称之为智能金融时代。
从目前宁波当地的互联网金融企业发展来看,目前还停留在“互联网+金融”的模式:在传统金融服务上进行叠加,将互联网式思维、互联网式管理、互联网式数据融合进传统金融服务,而这正是现在大部分互联网金融服务提供商正在做的事情。“互联网+金融”的模式也正在让金融进入“普惠金融”的阶段,通过互联网金融对传统金融机构进行补充,让更多的人平等的享受到金融服务。但是,“互联网+金融”的模式下,信息安全、投资风控、资产调节等方面问题仍然存在,一定程度上说,互联网增加了信息风险,也正是如此,摸索期的互联网金融行业才会出现P2P跑路的现象,仅2015年,宁波当地的P2P公司跑路就多达9家之多。
人工智能是大趋势,从阿尔法狗的表现以及人工智能在互联网金融领域的运用来看,互联网金融在人工智能的改造下将不再局限于“互联网+金融”,而是逐渐向“互联网+金融+大数据+人工智能”转变。人工智能起到串联起互联网、金融、大数据,实现更加智能的精确计算的作用,实现大脑一般的思考,解决“互+金”模式下的诸多痛点。
从理财顾问、征信助手、智能风控系统、防范性金融系统这四个层面来看,整个互联网金融领域正在朝着越来越“技术范儿”的方向上前进,金融智能化成为大势所趋。智能金融的机器学习功能,让产品背后的逻辑系统可以快速适应场景数据,建立合适的评分规则、决策体系,真正给现在的互联网金融带来颠覆性的变化。无论是消费金融领域还是风控层面上,互联网金融在人工智能的配合下正在呈现出无与伦比的崭新打法。这也正是阿尔法狗打败李世石之后,给金融智能化带来的全新想象。
(四)人工智能将颠覆互联网金融时代的风控体系
汇总整个互联网金融本质,其实存在两个层次风险,一是道德风险,二是经营性风险。面对2016年不断有“跑路”等负面消息萦绕的互联网金融,去伪存真或成为首要任务。一些企业资金并没有进入到实体业务,而是进入庞氏骗局,而去年出台的监管意见征求稿,监管层管理方向还是较为清晰的,希望通过资金的有效监控,将企业资金与个人用户之间的资金进行分离,规避风险。然而人力毕竟有限,不可能时刻紧盯住所有互联网金融机构,这时引入人工智能监管就十分必要。
人工智能已经在无人驾驶、图像处理、语音识别方面取得了突破性的应用,那互联网金融领域呢?李开复老师曾谈及人工智能应用的三个要素:数据、处理数据的能力和商业变现的场景。人工智能解决金融界问题的过程,很好的对应了这三个要素。也许,金融领域是人工智能最合适不过的颠覆场景。
在金融业务的前端,已经有不少传统银行将人工智能用于为客户定制服务,开发理财产品的应用。例如巴克莱银行和花旗银行等。国内银行中走在科技前列的招商银行,也开始试用全新的人工智能业务模式。未来人工智能和机器学习技术在金融业前端会有更多的便捷精准服务提供给客户。
那么金融应用领域的后端呢?信息安全、投资风控、资产管理等方面的问题成了新问题,对于躲在触屏手机背后的客户,缺失了央行数据的客户,银行没有办法通过一双双眼睛去看到用户是谦谦君子还是骗子流氓。这个时候,金融后端,传统金融风控手段覆盖不到和难以触及的,那么“互联网+金融”业务就要结合更广泛的互联网数据和人工智能手段,来处理更广泛的金融客户问题。
(五)人工智能技术在金融领域应用案例
Google、IBM等国际巨头公司已经将人工智能技术渗透在各种产品的方方面面,总体上看,国内金融行业也逐步开始应用人工智能技术,随着国内双创政策的推动和对人工智能产业的投资拉动,预计广泛应用节点即将到来。
1.阿里巴巴旗下的蚂蚁金服下设一个特殊的科学家团队,专门从事机器学习与深度学习等人工智能领域的前沿研究,并在蚂蚁金服的业务场景下进行一系列的创新和应用,包括互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布数据,网商银行的花呗与微贷业务上,使用机器学习把虚假交易率降低了近10倍,为支付宝的证件审核系统开发的基于深度学习的OCR系统,使证件校核时间从1天缩小到1秒,同时提升了30%的通过率。以智能客服为例,2016年“双11”期间,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。当用户通过支付宝客户端进入“我的客服”后,人工智能开始发挥作用,“我的客服”会自动“猜”出用户可能会有疑问的几个点供选择,这里一部分是所有用户常见的问题,更精准的是基于用户使用的服务、时长、行为等变量抽取出的个性化疑问点;在交流中,则通过深度学习和语义分析等方式给出自动回答。问题识别模型的点击准确率在过去的时间里大幅提升,在花呗等业务上,机器人问答准确率从67%提升到超过80%。
2.2015年,交通银行推出智能网点机器人,并引发了金融银行界的广泛关注。它为实体机器人,采用语音识别和人脸识别技术,可以人机进行语音交流,还可以识别熟悉客户,在网点进行客户指引、介绍银行的各类业务等。在语言交流过程中,它能回答客户的各种问题,缓解等待办理业务的银行客户潜在情绪,分担大堂经理的工作,分流客户,节省客户办理时间。
3.百度教育信贷实现“秒批”。“人工智能对于金融也会产生变革性影响,可以真正做到让征信升级”。6月8日,在2016百度联盟峰会上,百度董事长兼首席执行官李彦宏特别提到人工智能正在重构包括金融在内的传统产业。他特别强调,“现在百度的教育贷款,基本上是以‘秒’的时间可以决定是不是给一个人贷款。”李彦宏讲到的百度教育信贷的“秒批”,其具体的操作程序非常简单,用户想要获取百度消费信贷服务,只需在百度钱包APP“教育贷款”板块上传身份证,系统就能自动比对、确认用户身份信息,并根据信用记录判定用户所需的服务类型或额度,不仅能实现远程审批,审批时间更可缩短至“秒批”级别。秒批依靠的是百度以大数据和人工智能为基础的严谨风控体系。借助“大数据+人工智能”技术,百度风控部门为有信贷需求的群体绘制用户画像,建立信用体系,加上图像识别等人工智能技术的实际应用,构成了秒批的技术基础。
4.宁波聚元集团旗下超人贷平台自2014年上线以来,发展迅速,以高效风控、低成本控制、低坏账率享誉业内,平台注册会员超过1万人,线上累计交易金额已突破2亿元,稳定健康的发展道路使得平台处于整个大市行业中领先地位,并受到CCTV2、CCTV7央视正面报道,成为浙江地区首批在央视上榜的互联网金融品牌。超人贷平台除了将资金交由第三方商业银行或有资质的资金托管机构进行托管,建立信息披露制度,充分披露融资项目、经营管理等信息外,最重要一个突出优势就是采用先进的人工智能对每一笔交易?M行实时监控,监控信息还可面向公众开放。自创立以来发展稳健,越来越受到客户青睐。
篇9
苏霍姆林斯基在《教育艺术》中认为,“在人的心灵深处有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者。在儿童的精神世界中,这种需要特别强烈”。我们要敢于打破传统的教学模式,运用现代教育技术培养真正适应于经济社会发展的创新型和国际化人才。现代教育技术是伴随现代科技的发展,特别是电子、通讯、计算机的飞速发展而产生的,也是现代教育理论发展到一定阶段的产物。
作为新一轮科技革命的代表,人工智能(AI)技术已经或正在颠覆性地改变着许多行业和领域,而教育就是其中之一。来自谷歌的世界顶尖的人工智能专家团队将AI的智能l展划分成了三级:第一级是“弱人工智能”,只能够专注在一个特定领域,如下围棋;第二级是“强人工智能”,能够达到或超过人类水准;第三级是比人类聪明1000万倍的人工智能。
目前,“弱人工智能”已经渗透到我们生活的方方面面:搜索引擎、实时在线地图、手机语音助手、智能客服等都运用了人工智能技术。尽管人工智能要从感知、行为和认知三个维度全面模拟甚至超越人类,还有很长的路要走,但目前的AI凭借强大的计算能力、存储能力和大数据处理能力,已经改变着传统教育模式与教育形式,在破解教育资源不均、提高教育效率和教学质量、提供个性化精准化教学、优化教育评价系统等方面将发挥重要作用。
浙江西湖高等研究院人工智能研究室主任于长斌认为,人工智能下一步应用可能是远程教育、自我强化教育,甚至是教育领域的机器换人。从人工智能现阶段研究成果来看,机器人做数学题、英语题完全没有问题,有科学家还成功用人工智能自动生成科研和学术论文,其中有一些甚至被期刊录用。
高考机器人
在今年6月7日的“高考”中,人工智能机器人AI-Maths在数学科目的两套试题考试中分别取得了105分和100分的成绩。整个答题过程中,机器人不联网、不连接题库、无人工参与,全由机器人独立完成解答。研究人员表示,由于AI-Maths在识别自然语言时遇到了一些困难,导致部分考题失分。
AI-Maths先后解答了2017年数学科目高考的北京文科卷和全国Ⅱ卷的试题,分别用时22分钟和10分钟,北京文科卷得分105分,全国Ⅱ卷(数学)得分100分。对这台机器人来说,解答一道题目的时间最快不到一秒。此前总共做了不到500套试卷,大约12000道数学题。而一个中国学生,按照每天10道数学题估算,到高考前已经做了大约30000道数学题。
考试结果显示,这台高考解题机器人在不依赖大数据的前提下,逻辑分析能力远超人类,但在文意理解、多样性思维上要比人类逊色得多。参与阅卷的资深数学老师表示,AI-Maths相当于中等成绩水平的高中毕业生,失分主要是因为“读不懂题目”,遇到一些人类语言(而非数学语言)时,无法理解。
专家指出,这次机器人不得高分的原因较多,首先这个机器人并没有代表机器人的最高水平,其次机器人没有联网,不能够联想自己的知识,这样得低分也是理所当然的了。经过更多的训练和学习以后,未来AI-Maths会取得更好的成绩。
该机器人是由成都准星云学科技有限公司研发的一款以自动解题技术为核心的人工智能系统,诞生于2014年。该公司参与了科技部的863“超脑计划”。
同时进行的另一场机器人高考测试中,学霸君的Aidam首次与6名高考理科状元在北京同台PK,解答2017年高考文科数学试题。Aidam的成绩为134分,6名状元的平均分为135分。Aidam答题耗时9分47秒。为了展示,Aidam当天答题放慢了六倍速度,平时每道题完成时间应该在7-15秒。
从2014年开始,国内人工智能引领者科大讯飞就联合了包括北大、清华等在内的超过30家科研院校和企业,共同开启了一项隶属国家863计划的“高考机器人”项目,他们希望通过这个项目的实施,研制出能够参加高考并在2020年考上北大、清华的智能机器人。“超脑计划”汇集了国内近60%的人工智能专家,其重点就是要研究突破机器的知识表达、逻辑推理和在线学习能力。
目前,高考机器人在英语学习方面也取得阶段性成果:一是翻译,已经能够让翻译能力达到高考入门水平。二是在广东地区的英语高考、中考场景中,在发音准不准、填空题选择题,判断你懂不懂知识上,机器已经超过人工。三是口语作文实现突破。比如给学生一个题目《My Mother》,现在AI机器的评测打分已经比人类打分更精准。
有人提出了一个十分滑稽的问题,那就是人工智能要是通过高考考上大学,是不是意味着我们的教育培养出来的就是考试的机器?这个问题的逻辑不一定严密,但巧妙地折射出了现行教育体制的一些问题。如果以应试为主的教育方式不改变,智能机器取代老师几乎是必然。更可怕的是,这样的教育培养出的人也将被智能机器淘汰。
AI阅卷批改作业
面对庞大的考生规模和多种多样的考试,专家和老师阅卷成为一个独特的景观。从传统的纸笔阅卷到网上阅卷,再到今天的机器智能阅卷,AI可以轻松解决繁重复杂的阅卷难题,大大提高阅卷的效率和质量。
通过对试卷进行数字化扫描、格式化处理,转换成机器可识别的信号,机器就能按阅卷专家的评判标准,进行自动化阅卷,还可以自动检测出空白卷、异常卷,并给出最终的评阅报告及考试分析报告。原来三个月的工作,现在一周就能完成,而且更准确、公正。
中国教育部考试中心对“超脑计划”的阅卷工作进行了验证,结果是,在“与专家评分一致率、相关度”等多项指标中,机器均优于现场人工评分。
除了代替人工阅卷,人工智能还可以帮老师做批改作业、备课等重复枯燥的工作,不仅节省大量时间,还可以减少工作量。
语音识别和语义分析技术的进步,使得自动批改作业成为可能,对于简单的文义语法,机器可以自动识别纠错,甚至是提出修改意见,这将会大大提高老师的教学效率。
今年两会期间,科大讯飞董事长刘庆峰在提案中提到,科大讯飞的英语口语自动测评、手写文字识别、机器翻译、作文自动评阅技术等已通过教育部鉴定并应用于全国多个省市的高考、中考、学业水平的口语和作文自动阅卷。而基于国家“十三五”863“基于大数据的类人智能关键技术与系统”阶段性成果构建的“讯飞教育超脑”已在全国 70% 地市、1 万多所学校应用。
国外也有多个智能测评公司和实践案例。GradeScope是美国加州伯克利大学一个边缘性的产品,它旨在简化批改流程,使老师们更专注于教学反馈。目前有超过150家知名学校采用该产品。MathodiX是美国实时数学学习效果评测网站,算法会对每一步骤都进行检查、反馈。
美国教育考试服务中心(ETS)是世界上最大的私营非盈利教育考试及评估机构,已经成功将AI引入SAT和GRE论文批改,同人类一起扮演评卷人角色。
计算机科学家乔纳森研发了一款可进行英语语法纠错的软件,不同于其他同类型软件的是,它能够联系上下文去理解全文,然后做出判断,例如各种英语时态的主谓一致,单复数等。它将提高英语翻译软件或程序翻译的准确性,解决不同国家之间的交流问题。
虽然人工智能可以阅卷、批改作业,但诚如《信息时报》刊发的《推广“机器人老师”可为广大教师减压》一文所言:教育需要尊重“异质思维”,同样的问题,学生会给出差异化、个性化的答案;目前“机器人老师”在阅卷、批改作业的时候会有明显的局限性,可能更适用于客观题却不适用于主观题。
不可否认,最初机器是用来辅助人工教学的,未来的趋势则是人辅助机器,而这个过程会一次次重塑考、学、教、管的服务流程。未来,当进入强人工智能和超人工智能时代,机器人更像是老甚至在许多方面超越老师。
机器人当老师
城乡、区域教育鸿沟,择校问题,学区房问题,都是教育教学资源不均衡导致的,归根到底是优秀教师的稀缺,而智能教育机器人则是解决这一问题的有力工具。“机器人老师”不仅有助于解决师资不足和师资结构不合理等难题,还能大大缓解社会矛盾,促进教育公平。
目前国内已涌现出像魔力学院这样的创业公司。几年前魔力学院创始人张海霞从北大毕业时,她的毕业论文是国内最早对人工智能教学进行研究的学术论文,同时在上大学期间,她就已经是新东方出国留学部最好的英语老师。这种雄厚的技术和教学背景,让她成为国内最早一批人工智能领域的创业者。
“与大多数互联网教育领域的产品不同,魔力学院从一开始,我们要解决的问题就是用人工智能机器替代老师进行讲课。曾经有很多投资人建议我们妥协一下,暂时用真人老师讲课,后面再一步步地进化到人工智能老师,但我们从来没有妥协。”张海霞说。
直到2016年3月,魔力学院第一个商业化的版本上线,企业开始有了第一笔收入,成为全球在人工智能老师这个领域第一家产品上线的创业公司,也是第一家实现了持续收入和盈利的创业公司。至今,在人工智能老师这个领域,魔力学院的相关产品仍然是惟一能从教、学、练、测各个维度提供人工智能老师教学的公司。
目前在新东方也开始这样的实验,教室里没有人类老师上课,机器人将重要知识点经过搜集和教学设计后,用非常幽默的方式向学生传授,从课堂效果来看,“学生很愿意听”。
新东方教育集团董事长俞敏洪认为,未来10年内,教师七成教学内容一定会被机器取代。不过,缺少人类老师的教学必然不完整,因为课堂教学不光是把知识点告诉学生,更需要对学生开展知识融合、创造性思维、批判性思维等能力训练。对于这些思维方式的训练教学,机器人老师还无法胜任。“未来的课堂将是机器人智能教学、老师情感和创新能力的发挥及学生学习的三者结合。”
除了民办教育在积极引入机器人老师,我国的“福州造”教育机器人已在部分城市的学校开始“内测”,今后有望向全国中小学推广。这款教育机器人除了帮助老师朗诵课文、批改作业、课间巡视之外,还能通过功能强大的传感器灵敏地感知学生的生理反应,扮演“测谎高手”角色。一旦和“学生机”绑定,可更清楚地了解学生对各个知识点的掌握情况。
对于机器人老师,国外早有应用。2009年,日本东京理科大学小林宏教授就按照一位女大学生的模样塑造出机器人“萨亚”老师。“萨亚”皮肤白皙、面庞清秀,皮肤后藏有18台微型电机,可以使面部呈现出6种表情。她会讲大约300个短语,700个单词,可以对一些词语和问题做出回应,还可以学会讲各种语言。“萨亚”给一班10岁左右的五年级学生讲课,受到新奇兴奋的孩子们的极大欢迎。
教育是塑造灵魂的特殊职业,教师是人类灵魂的工程师,面对的都是活生生的具有不同个性情感的学生,在价值观塑造和创新思维启发方面,“机器人老师”有着明显的局限性。尽管机器人老师不知疲倦,知识渊博,能平等地对待学生,加上它的特殊身份能激发学生的学习兴趣和动力,然而机器人永远无法完全替代“真正的人类教师”。
当老师们从繁重的重复性工作中解放出来,实际上可以将更多的时间和精力花在富有创造性的工作上。比如培养学生的素质和情商,激发学生对学习的热情,鼓励学生独立思考,形成自己的价值观和思想体系,成为有美好人格和创新能力的个体。
实际上,老师充当的是一个引导者、启发者的角色,老师做的应该是“准备环境-引导孩子-观察-改进环境-再引导-退出-再观察”。极少干预和不断引导,让孩子能最大限度地拥有独立性、专注度和创造力。
机器人进课堂是大势所趋。不久的将来,人类老师将负责进行情感、心理、人品、人格上的健康教育和品德教育,以及各类知识的融会贯通、学习方法的引导、创新能力的培养。而知识教育这部分,将会以“机器换人”的形式让渡给人工智能。这将对老师提出更高的要求,因为除知识教育外的这些教学内容,需要由真正有能力的老师来传授。“老师要避免被机器取代,就要先避免自己成为机器。”
可见,教师需要快速适应现代化教学需要,熟练使用各类领先科技产品,提升综合素质,这将决定教师本人的去与留,更是教育希望与未来的关键所在。
个性化教育
因材施教在我国已有2000多年历史,但在我国应试教育大环境下,根据学生不同的认知水平、学习能力以及自身素质来制定个性化学习方案,真是说易行难。当传统思想与尖端科技相结合,因材施教的可行性有了大幅提高。人工智能介入后,个性化教育有两条实现途径。
一是构建知识图谱。构建和优化内容模型,建立知识图谱,让学生可以更容易地、更准确地发现适合自己的内容。国外这方面的典型应用是分级阅读平台,推荐给学生适宜的阅读材料,并将阅读与教学联系在一起,文后带有小测验,并生成相关阅读数据报告,老师得以随时掌握学生阅读情况。
Newsela将新闻与英语学习融为一体。通过科学算法衡量读者英语水平,抓取来自《彭博社》《华盛顿邮报》等主流媒体的内容,由专人改写成不同难度系数的版本。LightSail也是相同应用,不过它的阅读材料是出版书籍,它收集了适合K12学生阅读的来自400多个出版商的8万多本图书。
2015年底Newsela用户量超过400万,LightSail和纽约市教育局、芝加哥公立学校、丹佛公立学校等机构达成了合作,而目前我国没有如此规模、与官方达成合作的个性化阅读学习平台。
二是自适应学习。人工智能可以从大量的学生中收集数据,预测学生未来表现,智能化推荐最适合学生的内容,最终高效、显著地提升学习效果。当一个学生阅读材料并回答题时,系统会根据学生对知识的掌握情况给出相关资料。系统知道应该考学生什么问题,什么样的方式学生更容易接受。系统还会在尽可能长的时间内保留学生信息,以便未来能给学生带来更多的帮助。
在美国乔治计算机学院,有一门课叫“人工智能概论”。这门课是艾萨克・格尔教授创建的。他有一个教学助理叫吉尔。这个课程的特点是以问答方式授课,学生提问,老师和助教回答。第一年就有大约1000多名学生参与,提出了超过1万个问题,其中40%的问题是由助教吉尔回答的。让学生惊奇的是,吉尔竟然是一个机器人,而且教了他们整整一个学期。格尔教授采用IBM沃森界面,创建了这个AI驱动的BOT交互系统,也开发了整个课程的内容和形式。
篇10
中国电子信息产业发展研究院总工程师乌宝贵参加了本次大会并代表主办方致辞。乌宝贵回顾了人工智能的历史,肯定了人工智能60年来的发展成绩,并指出,中国人工智能产业正步入一个崭新的阶段。从科学研究角度来看,中国在深度学习等领域的学术研究水平,已经走在世界前列;从龙头企业发展角度来看,阿里等国内企业在人工智能领域已经具备和国际巨头抗衡的实力;从创新创业角度来看,人工智能已经成为国内“双创”最活跃的领域之一;从应用创新角度来看,制造、交通、家居、教育、金融、大健康等众多领域的应用正全面展开;从产业链角度来看,从智能芯片到IT基础设施,从底层架构到模型算法,从大数据到云平台,从智能终端到智能应用,国内在各个层面均取得了突破性进展。他表示,人工智能不仅仅是一个概念,而是下阶段技术创新、应用创新的新焦点,是市场发展的新热点,也是我国推动产业转型升级的重要支点。
中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃参加了本次论坛并发表演讲。王飞跃以《迈向人机混合虚实互动的平行智能》为主题,追溯了智能的本源,探讨了平行时代的智能基础设施X5.0,并展望了智能产业和智能社会。王飞跃认为,阳为智能,阴为情报,相辅相成,智能是开放的情报,情报是封闭的智能,智能的本质是利用已知解决未知,从已知到未知只能依靠想象。王飞跃提出,物理世界与心理世界、人工世界共同构成平行世界,平行世界需要平行智能。开放智能算法,开发人工世界,最终消除“智力的不对称”是新智能时代的历史任务。人机混合、虚实互动的平行智能,是“激活”的人工智能,是未来人、组织、各种类的智能机器、装置、过程、系统所必备的“生存”形式,是智能产业的基础设施。X5.0 时代的智能体系包括:一个核心――平行,两个支撑――ACP 和CPSS,三个主题――智能系统、智慧管理和社会智能。平行智能各种各类的虚实互动X5.0 系统是智能社会的基础设施,不久的将来,一个个体的实力,很大程度上可能并不取决于其本身,而取决于与其伴生的软件定义的人工映像。
中国电子信息产业发展研究院电子信息产业所副所长温晓君参加了本次大会,并以《电子信息产业新兴热点及趋势――人工智能与虚拟现实》为主题发表演讲。温晓君指出,泛在、互联、融合、智能成为产业发展新趋势,技术创新是国内经济新旧动能转换,经济结构转型升级的核心推动力量之一,是从根本上打开增长之锁的钥匙。温晓君重点解读了人工智能和虚拟现实的发展现状和趋势。温晓君分享了智能感知、人脑芯片、深度学习、大数据等人工智能前沿技术,移动社交、智能搜索、机器人、无人驾驶等人工智能前沿应用,指出“基础资源+技术+应用”的人工智能产业生态逐步形成。我国人工智能产业需构建开放生态体系、合作搭建基础资源、促进产业链深度合作、开拓可持续应用需求 。在虚拟现实方面,温晓君判断,消费端市场早期一定爆发于欧美等发达国家,国内市场短期内以产业链布局蓄力和消费者提升消费认知为主;行业应用一定从高附加值行业或价值链的高端环节兴起,应用成本与效率提升必须首先得到权衡。他指出,虚拟现实的趋势为:消费市场的普及化、行业需求的明晰化、投资热潮的全球化、基础平台的开放化、技术创新的协同化。他建议,强化顶层设计,面向行业需求规划应用路径;加强重点攻关,尽快突破行业应用技术瓶颈;制定标准规范,开展行业应用联合测试验证;推进试点示范,以点带面扩大行业应用范围和影响力。
搜狗、英特尔、陌上花(衣+)等企业代表分别从各自的领域出发,分享了人工智能的实践与思考。
北京搜狗科技有限公司CTO杨洪涛分享了关于互联网产品自然交互的经验。他指出,人机之间交互的学习成本在不断降低,变得越来越接近人的自然能力,语音正在成为最自然的交互形式。在他看来,自然交互= 技术 + 计算力 + 数据 + 产品。技术是扩散的,计算力稳步增长, 只有数据和产品才是私有财产,将成为竞争的壁垒。要想做好自然交互,需要充分利用“产品+数据”。会上,杨洪涛还分享了搜狗输入法即将推出的智能回复功能。
英特尔中国研究院院长宋继强博士就《人工智能驱动的智能交互,推进个人机器人产业化》发表演讲。他说,人工智能与人机交互推动科技进步,人工智能应用的终极平台是自主系统。他分析,个人自主服务机器人理想与现实的差距在于智能组合的实现难度,其中运动不易,认知更难。人工智能联手智能交互,通过商业化成功带动人工智能的发展和成本下降。宋继强分享了几种人工智能驱动智能交互的应用模式,并提出了个人机器人的智能度分级建议,展望了个人机器人的商业化迭代 ,即在用户需求推动下,由能力达标到价格达标,再到可靠性达标。