航天技术的重要性范文

时间:2024-01-11 17:42:00

导语:如何才能写好一篇航天技术的重要性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

航天技术的重要性

篇1

【关键词】金属材料;航天领域;热处理;应用

1前言

航天技术的发展不仅带动了我国经济的发展而且还提高人民生活质量,增强我国国防力量,当今经济全球化,信息交往、各地之间业务往来,通信、交通等等都离不开航天技术所带来的科技成果。金属材料是我国航天领域发展不可或缺的材料,它比其他分子材料硬度高,耐热性能好,与无机非金属材料相比,金属材料有具有很好的韧性,因此在我国航天领域应用非常广泛,为了更加了解用于航天技术的金属材料,本文选择了几种常见的金属进行讲述其在航天领域当中的应用以及相应的热处理工艺。

2铝合金

2.1铝合金在航天领域的应用

铝合金材料是航天领域用量最大的金属材料,随着科技的发展,各种复合材料都在不断的发展,其性能也是优越与一般金属材料,虽然如此,但在航天领域铝合金的使用依然占有很大比例,铝合金具有优越的耐磨性以及良好的抗撞击性能总体性能优越于一般金属材料,,并且价格便宜,一般在航天领域的承载结构中都使用铝合金比如一些承载壁板,舱体结构等。所以在航天领域具有很大的用处。

2.2铝合金的热处理工艺

在我国科学技术不断发展的前提下,航天技术对铝合金的要求越来越严格,如何提高铝合金的综合性能是非常重要的任务之一,在研究过程中一方面是设计新型合金,一方面是对其热处理的更新,利用先进技术通过对铝合金加热处理,使得在高温环境下变形,在经过挤压,使得铝合金内部微观结构更加紧密化,内部的结晶程度更高,从而使得铝合金在应用中综合性能更加优秀。

3钛合金

3.1钛合金在航天领域的应用

钛合金在航天领域中具有很多用处,他与一般金属相比,具有耐高温、耐磨性能强,抗疲劳性能等优点,一般在航天领域中,钛合金运用于机舱的主承力结构,压气机叶片等等,在钛合金的试用下,无论是高温环境,还是超低温环境都能保证长时间持久的工作。因此随着航天领域科技的不断发展,钛合金的使用量也是逐渐增多,是具有前景的一种金属材料。

3.2钛合金的热处理工艺

钛合金的热处理工艺十分复杂,根据航天领域的不同需求,钛合金的热处理工艺也就不同,比如普通退火会使得钛合金内部的可塑性变高但与此同时也使得其强度变小,一般适用于一些飞行机器的零件,再比如双重退火,其工艺应用相比较而言稍微麻烦,处理之后的钛合金硬度会升高,但其可塑性相对降低,适用于需求较高的飞行零件。钛合金的热处理工艺还包括等温退火和固溶时效,根据航天领域不同需求以及应用的不同领域,来选择不同的热处理工艺。

4超高强度钢

4.1超高强度钢在航天领域的应用

超高强度钢具有很强的硬度及韧性,正因为其性能也使得该金属在航天领域的应用量保持持续上升,一般该金属适用于火箭发动机的壳体,飞行装备的推动器等所需高硬度的地方,正因如此对于在这种高压强度下的金属材料,其耐腐蚀性成为审核金属实用性的一项重大指标,如何提高超高强度钢的韧性是当前研究金属工艺的重要课题。

4.2超高强度钢的热处理工艺

一般超高强度钢都应保持其高强度的特性,针对该金属材料进行热处理时一般先进行淬火,在960度左右的高温下进行淬取,使其内部的含碳量降至最低,然后进行低温回火,提高材料的强度,随着科技的发展,在高强度钢的热处理工艺中也有先进的技术提高金属的性能,比如奥氏体加工、马氏加工,诱发相变等等。在经过热处理后的金属一般适用于机器的整体构架,高强度的零件等等。

5镁合金

5.1镁金属材料在航天领域的应用

镁金属材料在航天领域具有自身独特的性能良好的导热、导电性能以及对电磁的屏蔽性能使得镁金属在众多金属材料中脱颖而出,但镁金属却又一定的缺陷,那就是不耐腐蚀,也正是因为该缺点使得镁金属在应用当中,一些领域不能涉及当中,比如产品的储存、产品出制造都会带来影响,镁金属适用于工艺复杂的大型铸件,是我国金属材料航天领域非常重要的文件,比如通信卫星所使用的天线等等。

5.2镁金属材料的热处理工艺

镁金属材料的处理工艺非常复杂,根据所需性能的不同其热处理的加工工艺也就不同。一般镁金属的处理分为退火和固溶时效两大类。在实际应用中不同的淬火能力会使镁金属的性能得到不同程度的增减,从而应用到各个领域。

6结语

我国航天技术的飞速发展,使得我国经济水平并不断提高,人民生活水平得到翻天覆地的变化,军事力量也跻身进入世界前列,是我国国防实力的一大利器,由此可见航天技术的重要性,本文讲述了关于航天领域的几种金属,以及其性能,作用等等,随着科技的发展,航天技术的不断提高,我们应研发更加适合航天技术的金属材料,比如金属间化合物、高温合金等等,使得我国真正成为航天大国,实现中国的伟大复兴。

参考文献:

[1]姚瑶.智能机器人在航天领域中的应用[J].中国战略新兴产业,2017(08):79~82.

[2]吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016(03):281~292.

[3]张成,杨海成,韩冬,王晓君,莫蓉,陆小蕊,龚军善.钛合金旋压技术在国内航天领域的应用及发展[J].固体火箭技术,2013(01):127~132.

[4]邱惠中.纳米材料及其在航天领域中的应用[J].宇航材料工艺,1996(02):7~10.

篇2

【关键词】物理学;牛顿力学;工业革命;人类文明

俗话说:“学好数理化,走遍天下都不怕。”这其中的“理”就是指的“物理”。此话虽然有些片面,但也道出了物理学的重要性。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(natural philosophy)同义,探究物质世界最基本的变化规律。随着生产的发展,社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。物理学研究的对象包括力、热、电、光、磁、声,从宏观领域到微观领域,得到了一系列对自然现象的科学解释并形成理论,最终形成发明创造,推动了人类文明的进步。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。物理学给人类提供了大量的物质财富,同时也提供了精神财富。

迄今为止,物理学所创造出来的所有成果无一不是人类身体某一部位的延伸和替代。人造卫星、显微镜、望远镜、照相机等等是人类眼睛的延伸;手机、电话、雷达等等是人类耳朵的延伸;汽车、轮船飞机等运输工具是人类腿和脚的延伸;枪炮、导弹和火箭等等是人类胳膊和手的延伸;电脑、机器人是整个人的延伸;现代医学的诊疗手段也离不开物理学,X光、核磁共振、CT、B超、放射性疗法等等都是基于物理学。纵观人类文明的发展史,就是一部物理学的发展史。

一、物理学初建

古时候人们就尝试着理解这个世界:为什么物体会往地上掉,为什么不同的物质有不同的性质,地球、太阳以及月亮这些星体究竟是遵循着什么规律在运动,人们提出了各种理论试图解释这个世界。这些早期的理论在今天看来更像是一些哲学理论。古希腊哲学家亚里士多德创造了物理这门学科的名称,但由于历史的局限性,他对物理的很多认识却是错误的,比如他认为,物体下落的速度与物体的重量有关,物体越重,下落越快。这一理论最终被伽利略的“大球小球同时落地”的实验所。古希腊哲学家、物理学家阿基米德发现了浮力定律和杠杆原理,并发明设计制造了多种机械,如螺旋扬水器、军用投射器。德谟克利特最先提出了原子论,认为万物都是由原子组成的,原子是不可分割的最小微粒。天文学从强势的“地心说”到开普勒发现了行星运动的三大定律:轨道定律、面积定律和周期定律,哥白尼、布鲁诺等天文学家付出了巨大努力。电磁学方面发现了摩擦起电、磁石吸铁等物理现象,并在此基础上发明了指南针。古代物理学还称不上真正的科学,更多的是基于思辨,对于生活经验和自然现象的总结。

二、牛顿出版《自然哲学的数学原理》

牛顿出版的《自然哲学的数学原理》是人类历史上第一次科学革命的集大成之作。这部巨著阐述了万有引力定律和运动三大定律(惯性定律、力和运动关系的定律、作用力与反作用力定律),把物体运动统一在一个严密的理论中――牛顿力学。根据牛顿力学,我们知道了:苹果为什么总是落到地上;惯性是什么;为什么划桨能使船前行;为什么月球围绕地球运转并出现阴晴圆缺等等。这是经典力学的第一部经典著作,也是人类掌握的第一个完整的科学的宇宙论和科学理论体系,其影响所及遍布经典自然科学的所有领域,并发展出许多学科:宇宙天文学、航空航天科学、工程力学、建筑学、机械制造、原子核科学等等。宇宙天文学的发展,使我们对宇宙的起源有了更进一步的认识。航天科学的发展让人类的飞天梦成为现实。

三、物理学与第一次工业革命

18世纪中期,以蒸汽机的广泛使用为标志的第一次工业革命开始了人类的工业化进程。蒸汽机的发明是基于热学的发展。蒸汽机利用水沸腾产生的高压蒸汽推动活塞做功,产生动力带动机器工作。从18世纪晚期开始,蒸汽机广泛应用在采矿、冶炼、纺织、机械制造、化工等领域,并出现蒸汽轮船、蒸汽机车、蒸汽汽车,蒸汽机成为了当时各行业的主要动力机械。蒸汽机的发明,解放了人类的双手,促成了传统手工业向机械化大生产的转变,陆上和海上长途运输成为可能,极大地提高了生产生活效率。

四、物理学与第二次工业革命

电的使用开启了人类历史上的第二次工业革命。1820年,丹麦物理学家奥斯特发现了电流有磁效应,开始人类研究电与磁的相互关系的序幕。1831年,英国物理学家法拉第建立了电磁感应定律,创立了电磁学的基础,使发电机和发动机的制造成为可能。德国工程师西门子根据闭合线圈的磁通量发生改变可能产生电流的原理,发明了第一台自馈式发电机,可以产生较大的功率,同时体积也较轻巧。从此,电能开始成为主要能源并推动工业向前发展,继而出现了电动机、电机车、电灯、电视机和电工仪器仪表等许多改变人类生活方式的电器设备。1873年,苏格兰物理学家麦克斯韦发表的《论电与磁》开创了电动力学,是现代电工学的开端。麦克斯韦提出了光的电磁说,并预言了电磁波的存在。电磁波是现代通信的基础,无线电、手机、卫星就是通过电磁波进行信号传输,实现人类远距离传输和交换信息。

五、物理学与第三次工业革命

进入二十世纪,由于原子能、电子计算机、微电子技术、航天技术、分子生物学和遗传工程等领域的研究进展,出现了第三次工业革命,这是一场不同于传统工业的信息技术革命,标志着工业进入自动化时代。

(1)物理学与微电子技术

1947年,美国贝尔实验室的肖克莱、巴丁和布拉顿研究出一种点接触锗晶体管。晶体管是20世纪一项重大发明,开启了微电子革命的先声。1954年,贝尔实验室研制出第一台使用晶体管集成电路的计算机。以晶体管为基础的集成电路,也叫芯片,使信息处理设备小型化、便携化。如今,大到工业设备、交通工具,小到各种生活设备,凡是有电的设备,几乎都有芯片对信息进行处理。在当今信息大爆炸的时代,微电子技术使得信息接收、存储、处理更加便捷和高效。计算机以及各种“人机控制系统”广泛应用,使生产、办公、家庭生活自动化。人类社会从机械化、电气化进入到一个更高级的自动化时代。

(2)物理学与能源

工业的发展离不开能源的供应,传统的电能、水能、化学能越来越不能满足日益增长的能源需求。核能作为一种高效、清洁能源能极大缓解能源危机。核能的利用得益于原子核物理的发展。从19世纪末发现放射性到1932年发现中子、正电子和氘,原子核理论为核物理奠定了基础。1938年,德国化学家哈恩和斯特拉斯曼发现了铀核的裂变,从而找到了一种利用核能的途径。1942年,美国成功建造了世界上第一座核反应堆,它显示核能时代的到来。目前,我国也有两座正在运行的核电站:秦山和大亚湾核电站,产生的电能为长三角和珠三角地区的经济建设做出了巨大贡献。现在科学家们正在研究可控核聚变,这种核聚变可以用海水和轻核作为原料的,是真正意义上的取之不竭,用之不尽的能源。

(3)物理学与航天技术

20世纪50年代兴起的航天技术使得人类的飞天梦成为现实。1957年,前苏联成功发射第一颗人造地球卫星,开创了人类航天新纪元。如今,人类发射的侦察、预警、通信导航、天文气象、海洋监视、测地探矿等应用卫星,在经济、军事和科研中发挥了巨大的作用。航天技术是一门综合性很强的技术,和物理学密切相关,每一步的发展都离不开物理学的指导和运用。火箭推进技术、人造卫星运行轨道计算、空间通信、载人航天器设计技术、登月技术、深空探测技术等一系列航天技术涵盖了基础物理学的力学、热学、电磁学、光学各个领域。可以预见,未来人类移居外星球、发现外星人、寻找宇宙的起源等等都离不开基于物理学的航天技术的发展。

六、物理学与人类未来

物理学是一门不断改变人类生活和推动社会进步的科学,从宏观的经典物理学发展到微观的电动力学、量子力学等,并将在未来深入到粒子物理、纳米材料物理、天体物理(引力波)、生命科学物理领域。宇宙是怎么产生的,宇宙的组成是什么,物质的最基本粒子是什么,人类是否能穿越时空,人类是否能实现长生不老,这些问题都需要物理学去解决。物理学将继续推动人类文明向前发展!

篇3

【关键词】通用技术课程;校本化;实践

通用技术课程的有效实施对于培养学生创新能力和动手实践能力尤为重要,是新课程改革的亮点。作为百年名校,我校秉承“进德修业,弘毅笃行”的校训,以“成就每一位师生的卓越追求”为引领,不断提升办学品位。学校在新的高度上力求办出特色,深化素质教育,促进学生的全面发展。通用技术作为一门新的课程,能够提高学生的技术素养,进一步提高学生的综合素质,适应社会发展的需要。我们根据课程标准,结合我校实际,整合已有的活动课程,加强特色基地的建设,积极稳妥地推进我校通用技术课程的校本化实施。

一、以“创新人才试点学校”为契机,促进学生创造意识和创新能力的培养

培养创新人才是建设人力资源强国和创新型国家的迫切需要。高中生正处在创造力发展的重要阶段,而通用技术课程又是培养学生创造欲望和开发学生创造潜能的重要内容载体。作为江苏省一所名校,我校学生的素质高,创新能力强,如何有效地教育和引导,我们一直在探索实践。从2005年实施新课程起,我校就积极探索适合我校的通用技术校本化教学,专门配备3名专职教师任教。不仅在课堂上注重学生技术素养的培养,促进学生创新意识和综合实践能力的提高;还经常进行活动指导,参加各级科技创新竞赛,指导的学生每年都有十多位获一二等奖,其中沈伟杰和张祥虎老师获“百佳创新型名师”称号。2011年起我校又以省首批14所“创新人才培养试点学校”为契机,进一步加强通用技术的校本化实践,制定了学生技术创新发明的申报和评比具体细则,修订了学生技术设计作品考查的创新具体要求等多项措施,探索通用技术的校本化实施办法。利用校内外教育、文化与科技资源,与其他学科密切合作,注重创新人才的培养,激发和增强学生的科学精神、创造性思维和创新能力,增强创新意识,提高创新能力。

二、以“航空航天课程基地”为抓手,促进学生团队合作、动手实践能力的培养

项目教学是通用技术课程教学的一种有效的教学模式,基于项目的学习能让学生主动参与到项目中来解决问题。因此,通用技术的项目设计不能仅仅局限于课本上的小板凳、小台灯等的创新设计。借鉴北京四中的项目设计教学,我校积极探索实践校本化项目内容,2011年江苏省开始申报特色课程基地,我校并没有申报语数外等传统学科的课程基地,而是从有利于学生全面发展角度出发申报并顺利通过了“航空航天课程基地”。航空航天技术充分体现信息、能源、材料、制造等综合性尖端技术,涉及数学、物理、化学材料等多门学科知识,更有利于学生素质的全面提高。我们以“航空航天课程基地”为抓手,加强通用技术校本化项目的学习和实践,自编航空航天基础知识校本教材,聘请南航大教授进行普及性讲座。参与相关的实践教学和竞赛活动,共建一个开放的、互动的航空航天科技体验馆。展览部分展出各种图片、飞行器、航天器模型,如天宫一号、神舟8号、航天飞机等;互动部分用现代互动技术和设备,提供互动的条件;体验部分包括模拟飞机驾驶,多维滚环、烟风洞、地球轨道运行模拟器、机载雷达、弹射座椅等。通过这一项目的学习,培养学生自主探究精神、团队合作意识和动手实践能力。以工程实践技能实训为载体,以航空航天社团为抓手,激发学生兴趣、发展创新能力、提高综合素质,实现发展学生特长,实现学校特色发展。

三、以“校本化技术活动”为载体,促进学生技术素养的全面提高

在现有的学习环境中,要切实提高学生的技术素养,必需注重课内外相结合,注重与学校已有的技术活动课程相结合,促进学生创新、实践、合作、交流等能力的提升。学校通过多年的特色活动课程,以校本化活动课程为载体,有效提高学生素质,培养创新和实践能力。我们结合通用技术课程学习要求和我校传统特色课程,定期开展校本化技术活动和实践。如今年我校第23届科技文化节开展了技术发明创新技术讲座,发明创新技术设计、技术模型的制作与设计等活动课程促进学生技术素养的全面提高。参加了省市技术创新设计大赛,工厂技术社会实践等等。在活动中提高学生对技术的理解,进一步认识技术学习的重要性,能够正确地掌握技术,使用技术,进而发展技术。此外通过学校已有的技术活动实验室,积极组建技术活动社团,如机器人搭建与设计社团,航空航天社团,现代雕刻技术与设计社团等。在社团活动竞赛中学生的能力得到了充分的发挥,能通过共同合作、交流,有效形成设计的头脑风暴,促进学生合作、交流、创新等能力的提升,促进学生的特色发展,自主发展。

篇4

关键词: 故障诊断; 故障检测; 发展现状; 航天器

中图分类号: V467文献标识码: A文章编号: 1673-5048(2016)05-0071-06

Abstract: The development of fault diagnosis technology for spacecraft plays an important role in the successful completion of the flying mission. This paper briefly reviews the fault diagnosis technology for spacecrcoft, and it describes the challenges of fault diagnosis and development status of fault detection and isolation technology for spacecraft in China and abroad based on collecting and summarizing the types of spacecraft fault and the probability of fault occurrence. The progress of research and the main characteristics of the fault diagnosis methods are analyzed. The present situation of spacecraft fault diagnosis technology is summarized and the future development direction is prospected.

Key words: fault diagnosis; fault detection; development status; spacecraft

0引言

随着航天领域的不断扩展以及航天技术的不断进步, 航天器系统的复杂度不断提升。 这虽然有利于航天器完成难度更大的太空任务, 但是由于太空环境的复杂性以及航天器地面测试系统的局限性, 航天器的可靠性将会相应降低。 航天器发生微小的故障都有可能引起系统性的故障问题,影响整个航天器的正常工作, 甚至导致太空飞行任务的失败。 所以, 航天器的故障诊断技术对于其飞行任务的成败起到至关重要的作用。 另一方面, 故障诊断技术的发展也可以让航天器更加自主化、 智能化, 脱离繁琐的人工监控模式, 不仅拥有了更高的容错性, 也大大降低了航天器的开发成本和飞行任务的风险。

国外航天领域的科研人员对航天器的故障诊断技术进行了多方面的研究, 国内也同样致力于这方面的发展, 但主要还停留在对航天器的故障分析和状态监测阶段。1航天器故障分析

针对航天器系统发生的故障, 收集并整理了近50年来公开的国内外航天器发射与在轨等各阶段的故障及其发生的原因, 对总体的故障方式进行了总结和研究。

按故障类型对航天器发生故障的比率进行统计, 如图1所示[1-6]。 从图中可以看出, 电源分系统、 控制分系统以及推进分系统发生故障的概率最高, 并且这三个分系统一旦发生故障, 对航天器的正常运行可能造成非常严重的伤害。

另外, 按航天器发生故障的严重性将航天器故障分为四个等级, 如表1所示[7]。

在国内外航天器发生的故障中, 灾难性故障和轻微性故障所占比率较少, 分别为22%和20%。 而严重性和一般性的故障发生概率较大[8], 分别为27%和31%。

所以, 航天器一般以发生在控制系统、 推进系统或者电源系统上的严重性或一般性故障为主。 而只要能够及时开展对航天器的故障诊断技术研究, 其中大多数故障可以提前进行诊断并且避免灾难的发生, 特别是针对控制分系统、 电源分系统和推进分系统方面的探索, 不仅可以保障航天员的安全, 也可以提高航天器在轨运行的可靠性, 减轻地面工作人员的工作负荷以及航天器的发射和制造成本[9]。 所以航天器故障诊断技术的发展对于航天领域的进一步开拓具有非常重要的意义。

航空兵器2016年第5期王嘉轶等: 航天器故障诊断技术的研究现状与进展2国内外故障诊断技术发展现状分析

航天器故障诊断技术是随航天技术的不断进步而逐步发展起来的。 以欧美为主的国家在航天器的故障诊断技术上的发展较早, 领先于国内。 但随着国内航天事业的巨大发展以及中国航天大国地位的崛起, 中国在航天器故障诊断技术上的进步也是不容小觑的。

2.1国外航天器故障诊断技术的发展

美国在航天领域的发展早期就已经非常重视故障诊断技术的研究, 是最先将故障诊断技术运用于航天器飞行任务中的国家。 自20世纪70年代起, 美国在很多航天工程中都采用了以状态监测为主的故障诊断方法。 当时的“双子星座”飞船就是以故障监测系统为基础的载人飞船, 将地面数据监测系统以及宇航员舱内手动操作相结合来完成包括姿态控制系统、 燃料推进系统以及三轴转动速率的数据状态检测。 通过对这些状态参数的监测可以对飞船发生的故障采取相应的措施, 保证飞行任务的顺利完成。 而后的“阿波罗”飞船在“双子星座”飞船故障诊断系统的基础上, 建立了一套自身的安全保障系统。 该系统包括了对故障状态的监测和处理, 并由航天领域专家进行参与分析。 这也使得“阿波罗”系列飞船能圆满完成各项任务。 近年来, NASA在航天器故障诊断方面进行了全方位的探索并且已经形成了完整的故障诊断体系, 后来将其归类为集成健康管理系统的范围中[10], 各分工如表2所示[11]。

俄罗斯和西欧等多个国家也在故障诊断技术方面进展卓越。 俄罗斯借助前苏联开展的航天器故障诊断仿真工作中得到的经验技术对航天器的故障诊断与状态进行监测和分析, 并通过地面模拟的方法来保证航天器飞行任务的顺利完成。 而西欧, 以德国和法国为主的国家也进行了研究并开发了很多实用的故障诊断系统。 法国的Delange等人研究开发了用于火箭发动机的故障监测系统, 能够高效准确地判断出故障发生的时间并及时采取措施; Dellner等人针对“尤里卡”平台开发的基于知识的故障诊断系统, 可以对该平台的冷闭合系统进行全方位的故障监测与保护措施[12]。

2.2国内航天器故障诊断技术的发展

相对于欧美等航天大国来说, 国内在航天器故障诊断方面的发展起步较晚, 技术不成熟, 但也逐渐意识到故障诊断对于航天器的重要性, 并开展了一系列理论与实践研究。 自20世纪80年代以来, 在国内各航天院所的带领下进行包括航天器设备的故障诊断系统研究, 研制出了针对不同故障类型的故障诊断系统, 但实验效果并不理想。 2014年成立了国内首个航天器在轨故障诊断与维修实验室, 进行在轨故障早期辨识与定位、 在轨故障仿真与维修、 在轨可靠性增长与延寿等技术研究, 标志着中国的航天器故障诊断技术正迈向一个崭新的阶段, 将更加有效地提升国内航天器自主故障诊断的能力。

3航天器故障诊断的方法

通过对国内外航天器故障诊断技术的发展分析, 归纳出了三种近年来主要运用的方法, 分别是基于信号处理的方法、 基于数学模型的方法和基于知识的方法。

3.1基于信号处理的方法

基于信号处理的方法是最早使用的故障诊断技术, 是其他方法进行故障诊断的基础。 该方法不需要以系统的数学模型为基础, 只需对时域、 幅值、 频域等可测信号特性进行分析, 就能识别和检测系统故障。

基于信号处理的方法较多, 一般有小波变换法、 信息融合法等。 以下主要对信息融合法和小波变换法进行分析。

3.1.1信息融合诊断法

故障诊断是通过一些检测量来判断系统是否发生故障, 所以对单个检测量的故障诊断方法选择至关重要。 为了避免某一种诊断方法的误报或漏报, 可以采取多种方法对单个检测量进行诊断, 即对系统各部分的一个局部故障进行诊断, 然后将各种诊断方法获得的结果融合成最终故障诊断方案, 即全局故障诊断。

基于信息融合的诊断技术可以通过局部故障和全局故障诊断相融合的方法来实现对航天器整体系统的故障检测与隔离。 信息融合法可对故障进行多方面的分析, 比以往单一的信息处理方法更具有可信度和准确性, 提高了航天器系统的信息利用率, 为系统的故障诊断提供更有效的帮助。

3.1.2小波变换诊断法

小波变换法首先对系统的输入信号进行小波变换, 然后求出输入输出信号的奇异点。 通过对其奇异点的分析, 判断出对应故障的发生情况[13]。

这种方法的主要优点是不需要系统的数学模型, 只需通过简单的小波变换特性来分析检测故障。 由于小波变换法的高灵敏度和强抗干扰能力, 近年来很多学者都针对其进行了航天器故障诊断的理论与仿真研究工作。 文献[14]将小波分析方法应用于航天器姿态控制系统中采用的红外地球敏感器、 陀螺和姿控发动机的典型故障模式中, 并达到了预期的效果; 文献[15]提出了利用小波变换的时-频局部化特性作为新的信号处理方法, 提出了基于小波分析的航天器结构故障诊断方法。 但由于小波变换的方法大多只用于理论验证和仿真实验中, 所以还需在实践中验证。

早期的基于信号处理方法的航天器故障诊断技术由于实时性和自主性差, 远达不到预期效果。 但通过小波变换、 信息融合等多种新技术的加入, 使得基于信号处理的方法更加得到青睐, 在航天器的故障诊断方面起到非常重要的作用, 也将会逐渐从工程仿真实验向航天器故障诊断实践上发展。

3.2基于数学模型的方法

基于数学模型的故障诊断是现代故障诊断技术发展的基础, 也是发展最成熟、 应用最广泛的一种方法。 其核心是以分析系统数学模型为基础, 通过参数估计、 状态估计等多种方法来产生残差, 然后通过阈值或其他限定准则对该残差进行分析和下一步的故障处理[16]。 该方法进展迅速且易于理解和研究, 所以应用较为广泛, 主要分为参数估计法和状态估计法两类。

3.2.1参数估计诊断法

参数估计法是指当航天器系统故障的参数可由参数变化的数据来表示时, 就可以利用参数的估计值与实际值之间的偏差来判断出系统的具体故障方式和故障情况[17]。 基于参数估计的故障诊断方法见图2, 其中u和y分别为输入和输出参数值, N为模型参考状态。

在众多的参数估计方法中, 强跟踪器滤波法和最小二乘法因其强鲁棒性而被广泛应用。

3.2.2状态估计诊断法

状态估计诊断法是通过对被控系统的重新建模, 利用模型的估计状态与原系统中可反映自身的状态量相对比, 构成残差量。 从残差量中得出反映系统各个状态的运行情况和故障信息, 从中诊断出故障, 并作进一步的故障隔离和故障容错。 该方法需要具备系统的过程数学模型以及局部可观测部分。 该方法是在能够获得系统精确模型的基础上最为有效的一种方法。

一般观测器和滤波器方法都是运用状态估计的诊断原理来进行的。 若系统是确定且可观测的, 则一般采用观测器的方法, 如自适应非线性观测器; 若系统需要加入噪声等干扰因素, 则一般会使用滤波器的方法, 如Kalman滤波器等。

从以上方法可以看出, 虽然基于数学模型的方法能够较为精确、 高效地完成航天器系统的故障诊断, 但是对于系统结构较为复杂的航天器以及无法预测的太空环境而言, 精确数学模型的建立是非常困难的, 即使建立出数学模型也很难保证不受不确定因素的干扰。 所以, 基于数学模型的航天器故障诊断方法需要与其他方法相结合, 才能更有效地推进航天器故障诊断技术的发展。

3.3基于知识的方法

基于知识的故障诊断方法是通过直接或间接的方法来获取故障诊断的发生征兆或判定原则, 较为直观地了解系统的故障发生情况, 及时做出准确的判断来完成系统的故障诊断。 但由于知识的覆盖有限, 航天器系统的不确定因素较多, 加之经验技术的缺乏, 使得该方法具有一定的局限性。 一般基于知识的方法有专家系统法、 神经网络法、 组合智能诊断法等。

3.3.1专家系统诊断法

早期的专家系统是通过在航天器系统工程方面拥有丰富经验的专家总结出的规则来描述系统故障和故障征兆。 这种方式可以充分利用专家的经验知识来进行系统的故障诊断, 从而快速准确诊断出故障。 但面对未知问题时, 容易出现错判或漏判的现象, 因此, 一旦出现与专家系统不匹配的故障问题时, 就会出现诊断失败的情况[18]。

通常是将专家系统与其他智能方法相结合来完善整个故障诊断技术。 文献[19]设计开发了分布式故障诊断专家系统, 通过各个子故障诊断专家系统间的任务分配、 协作以及诊断决策并结合智能控制方法来满足航天器复杂大系统的故障诊断需要; 文献[20]提出了一种分布式实时故障检测诊断专家系统, 将基于知识诊断技术与自动检测技术有效结合起来, 为航天器故障诊断技术的发展提供了新的思路。

3.3.2神经网络诊断法

由于神经网络具有自组织、 自适应的能力, 并且对于复杂的非线性系统不需要完整的数学模型, 因此在航天器故障诊断技术中得到了应用。 神经网络可将系统知识方法通过网络进行训练和学习, 具有更好的实时更新与推理能力。 常用于航天器故障诊断的神经网络模型如图3所示。

该方法也存在不足之处, 其未能充分利用专家系统的经验知识且只能通过已有的样本进行训练学习, 一定程度上影响了诊断技术的可靠性。 另一方面, 神经网络的训练知识基于输入输出值的检测, 对与过程有关的状态量和发生的故障不能够做出足够准确的解释。 这些都对基于神经网络的故障诊断技术的发展提出挑战。

3.3.3组合智能诊断法

人工智能在各个方面都已经有了广泛的应用, 并且已经展示出其足够的优势所在。 但是, 包括神经网络、 模糊数学、 粒子群算法等智能方法都有其局限性, 如何克服困难充分发挥其优势才是航天器故障诊断技术需要探索的。

文献[21]提出了一种基于专家系统、 案例推理以及故障树的混合智能诊断技术来解决航天器的测控管理问题, 并且文献中所提及的故障树双向混合推理机制被用于实现航天器故障定位和预测功能; 文献[22]在TS模糊模型的基础上, 结合H∞最优故障观测器来构建残差信号, 研究姿态控制系统陀螺的故障诊断问题; 文献[23]提出了将几何学与神经网络相结合, 并通过自适应估计滤波器来对残差进行判断, 从而完成对卫星姿态控制系统中反作用飞轮的故障检测、 隔离和估计; 文献[24]采用了一种基于分层神经网络的卫星系统故障诊断模型, 通过自组织特征映射网络和广义回归神经网络相结合来实现整星各分系统故障的精确定位和判断故障发生的原因。

混合智能方法能够让各自算法的结构特点体现出来, 弥补了单个智能方法的不足之处。 通过智能方法的组合应用以及与其他诊断方法的融合, 可以使航天器故障诊断系统通过经验性思维、 逻辑性思维和创造性思维的互相转化与配合, 来完成复杂的诊断技术的发展, 是巧妙组合的有机整体[25-27], 如图4所示。

4航天器故障诊断技术面临的挑战

从上述的航天器故障类型和统计数据可以看出, 航天器发生故障的方式都有其自身的特点和规律。 只要能有效地开展故障诊断技术, 就可以对其故障进行及时的修复, 并且可以防范一些可能发生的故障问题, 对航天器飞行任务的可靠性和故障诊断技术开展的有效性都有一定帮助, 对航天器系统的容错技术起到一定的促进作用。

目前航天器故障诊断技术面临的主要挑战有[28]:

(1) 空间环境复杂, 拥有很多不确定因素。 航天器在发射升空及空间轨道运行阶段, 都会受到来自空间中大气摄动、 引力摄动、 三体摄动等很多摄动力的影响, 除此之外, 太阳高能粒子辐射、 氧原子腐蚀、 单粒子翻转效应等很多太空环境原因产生的不利因素, 也都会对航天器的自主运行和器件的完好性造成一定的影响。 因此, 如何克服恶劣的太空环境来完成航天器的故障诊断, 并避免因环境因素导致的故障误报和漏报现象是现代航天领域的一个重要方向。

(2) 地面人工干预能力有限。 大多数航天器都不仅仅是在本国上方进行太空飞行任务, 所以在航天器的星下点轨迹处都覆盖有地面测控站是不现实的, 导致航天器的可监测性能下降。 当卫星失去控制或者是不在监测范围内时出现故障, 不能及时进行人工干预会对航天器的轨道运行造成恶劣的影响甚至是整个飞行任务的失败。 运用自主故障诊断技术就可以在减少故障发生频率的同时减少地面站的参与度, 有效地节约地面监测成本, 是提高航天器可靠性的主要方法。

(3) 星上可利用资源有限。 要使得航天器的故障诊断技术有很强的自主控制能力, 就需要航天器具有更加复杂的结构。 但是航天器的星上资源有限, 包括星上计算机的资源储备以及有效载荷都具有一定的限制。 过于复杂的系统虽然可以使得航天器的自主故障诊断技术有所提升, 但是会降低航天器运行过程的可靠性, 影响航天飞行任务的顺利完成。 所以如何利用航天器星上的有限资源开展有效的故障诊断也是航天器故障诊断的重要阶段。

(4) 故障诊断技术与航天器结合能力不成熟。 在现代工业发展中故障诊断已经十分成熟, 可以为工业操作系统提供非常精准的故障检测与容错技术。 航天器的自主故障诊断能力在这些方面还有待提高, 所以如何将成熟的地面故障诊断技术运用到轨道运行过程中来提高航天器的智能化, 是故障诊断技术极具挑战性的一个环节。

5总结与展望

航天器故障诊断技术的发展对于提高系统的可靠性和准确性, 保障飞行任务的顺利进行具有重要作用。 但航天器故障检测系统较为复杂, 不能只采用单一的技术来解决故障诊断的问题。 因此通过多种方法结合的优势弥补单个技术方法的劣势, 例如将智能算法与数学模型相结合就是非常重要的发展方向。

另外, 国内对于航天器故障诊断技术的研究尚处于初步阶段, 与欧美等其他航天大国相比, 国内还仅停留在理论研究的初步阶段, 对于航天器这种在特殊环境中运行的系统, 不仅需要扎实的理论研究, 更需将理论与工程实践相结合, 研究开发出高可靠性、 长寿命并且高精度的航天器, 同时降低维修费用和生产成本, 便于航天工程实践的需要。

参考文献:

[1] Zhang Yanduo, Jiang Xingwei, Huang Wenhu. Fusion of Data Association and Expert Knowledge for Fault Diagnosis[J]. Journal of Harbin Institute of Technology, 2002, 34(1): 1-3.

[2] Sakthivel R, Selvi S, Mathiyalagan K. FaultTolerant SampledData Control of Flexible Spacecraft with Probabilistic Time Delays[J]. Nonlinear Dynamics, 2014, 79(3): 1835-1846.

[3] 林来兴. 最近十年航天器制导、 导航与控制(GNC)系统故障分析研究[J].控制工程, 2004(1): 1-8.

[4] Shen Yi, Zhang Xiaolei, Wang Zhenhua. Spacecraft Fault Diagnosis Based on Empirical Mode Decomposition and Directed Factor Graph[J]. Journal of Harbin Institute of Technology, 2013, 45(1): 19-24.

[5] Kato H, Ota J. RealTime Spacecraft Actuator Fault Diagnosis with StateSegmented Particle Filtering[J]. Advanced Robotics, 2014, 28(19): 1265-1276.

[6] 闻新, 张兴旺, 秦钰琦, 等. 国外航天器在轨故障模式统计与分析[J]. 质量与可靠性, 2014(6): 13-18.

[7] 周前祥, 郭华岭. 载人航天器故障特点及其诊断技术的研究展望[J]. 中国航天, 1999(9): 30-32.

[8] 谭春林, 胡太彬, 王大鹏, 等.国外航天器在轨故障统计与分析[J]. 航天器工程, 2011, 20(4): 130-136.

[9] 龙兵, 宋立辉, 荆武兴, 等. 航天器故障诊断技术回顾与展望[J]. 导弹与航天运载技术, 2003(3): 31-37.

[10] 张森, 于登云, 王九龙. 国外航天器故障诊断研究进展[C]∥第二十届全国测试与故障诊断技术研讨会, 2011.

[11] Zolghadri A. An Algorithm for RealTime FailureDetection in Kalman Filters [J]. IEEE Transactions on Automatic Control, 1996, 41(10): 1537-1539.

[12] 王婉秋, 杨松. 航天器动力学环境试验故障诊断专家系统[J]. 航天器环境工程, 2008, 25(1): 36-40.

[13] 张洪钺, 闻新, 周露. 国内控制系统故障诊断技术的现状与展望[J]. 火力与指挥控制, 1997, 22(3): 1-6.

[14] 郝慧, 王南华. 基于小波分析的航天器姿态控制系统故障诊断方法研究[J]. 航天控制, 2005, 23(5): 73-78.

[15] 王婉秋, 杨松. 基于小波分析的航天器结构故障诊断方法研究[C]∥中国宇航学会结构强度与环境工程专委会航天空间环境工程信息网学术研讨会, 2006.

[16] 苏林, 尚朝轩, 刘文静. 航天器姿态控制系统故障诊断方法概述[J]. 长春理工大学学报: 自然科学版, 2010, 33(4): 23-27.

[17] 闻新. 控制系统的故障诊断和容错控制[M]. 北京: 机械工业出版社, 1998.

[18] Chen Wei, Hu Guangrui, Wang Yaping. Knowledge Acquisition in an Expert System for Fault Diagnosis of Certain Spacecraft[J]. Journal of Shanghai Jiaotong University, 2000.

[19] 李清东, 张庆振, 任章,等. 航天器分布式智能故障诊断专家系统设计[J]. 战术导弹控制技术, 2006(4): 107-110.

[20] 丁彩红, 黄文虎, 姜兴谓. 一种实时监测与故障诊断专家系统方案[J]. 自动化技术与应用, 1999, 18(3): 19-21.

[21] 解仑, 刘帆, 巩潇,等. 基于混合智能的航天器故障诊断系统[J]. 信息与控制, 2010, 39(1): 106-113.

[22] 王宇雷, 李传江, 马广富. TS模型和H∞观测器在卫星故障诊断中的应用[J]. 哈尔滨工业大学学报, 2010, 42(9): 1345-1350.

[23] Baldi P, Blanke M, Castaldi P, et al. Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Reaction Wheels[J]. Ifac Papersonline, 2015, 48(21): 194-199.

[24] 安若铭, 高阳. 基于分层神经网络的航天器故障诊断技术[J]. 航天器环境工程, 2013, 30(2): 203-208.

[25] Yan Fei, Li Mingjian. A New Approach to Fault Diagnosis for Satellite Control Systems Based on Machine Learning[J]. Advanced Materials Research, 2012, 457-458: 1070-1076.

[26] Song Fei, Qin Shiyin. A Novel Fault Diagnosis Method for Satellite Systems Based on Multivalue Logic Inference with SemiTensor Product of Matrices[C]∥IEEE Conference on Prognostics and System Health Management, 2012: 1-5.

篇5

关键词:测绘卫星;原始码流;信息管理

中图分类号:P237

随着遥感和航天技术的不断发展,高分辨率遥感测绘卫星的数量不断增加,应用领域日益广泛,卫星拍摄的影像数据也呈几何基数增长,达到了GB、TB甚至是PB的级别,因此,对海量影像数据的高效组织、管理已显得越来越重要[1]。卫星地面接收站所接受的卫星直接下传的数据是其中最重要、最核心的数据,本文称之为原始码流数据,更高等级的影像产品均是由原始码流数据生产形成,因此,对这些数据的管理是一项重要且有挑战的工作。

1 设计目的

为对日益增长的原始码流数据进行有效管理,本文设计了一种信息管理系统,该系统能对原始码流数据各类参数信息进行组织管理,并能对部分统计工作自动化处理,提高了生产效率,同时能够实现对影像产品的初步质量检测及历史信息查询等功能。

1.1 影像产品生产的一般流程

测绘卫星影像产品的生产流程一般包括如下流程:地面站接收采集原始码流数据―磁盘阵列临时存储―生产更高等级影像产品―原始码流数据备份(转存盘阵、磁带刻录等方式),如图1所示:

图1 影像产品生产的一般流程

1.2 实现思路

本系统在win7系统下采用C#编程实现,编程环境采用Microsoft Visual Studio 2010,系统主要由用户界面与各功能模块组成,主界面菜单中可以修改参数设置,主要包括原始码流数据存放的目录、网络盘阵、服务器等的IP地址、端口号等,达到对数据文件读取分析的目的,用户界面如图2所示。

图2 用户界面

2 系统功能

基于卫星原始码流数据的重要性,在地面站接收到卫星下传的数据后一般要进行各类参数统计,以便于后期数据再查询生产;同时,在对原始码流数据进行生产后,需进行影像产品的初步质量检测,若符合质量要求,则进一步生产更高级别的影像产品;为方便日后数据重生产,需要提供历史信息查询功能,该系统主要实现上述功能模块。

2.1 参数自动化统计

当地面接收站采集到卫星下传的原始码流数据后,为便于管理,需记录一圈次数据的各类参数,如摄影时间、数据量大小、数据来源等;同时,在原始码流数据解压、解密、成像过程中,需统计误码率、记录遥测数据等,为此,该系统设计自动化统计功能,以降低人工工作量,最后记录进后台数据库以后备查。

2.2 质量监测

质量评价是影像成产过程中不可或缺的环节,通过对产品数据进行分析、测试和评估,可以进一步调节算法参数,使整个成像处理过程得到优化。目视判读不能完全客观地理解图像的质量信息,客观方法则以一系列的指标进行定量评价,目前常用客观评价法有信息熵法、方差法、信噪比、信息容量、清晰度、平均剃度、偏差指数、相关系数等等一系列的指标[2],本文主要研究对原始码流数据和初级影像产品的初步质量检测。

原始码流一般采用采用空间数据系统咨询委员会(CCSDS)编码算法,具有固定的格式,如图3所示,因此对原始码流数据的质量检测主要是判断帧同步头是否正确以及后面数据是否连续,通过对同步信息搜索,定位同步字和辅助信息的位置,检查这些信息段,以确定数据质量是否正常[3]。

图3 CCSDS编码格式

测绘卫星影像产品一般根据包含参数信息分为不同级别产品,并且是逐级生产的,以天绘卫星产品为例,分级如表1所示:

表1 天绘卫星影像产品介绍

对初级影像产品的质量检测本文主要采用数据量对比的方法进行,以发现原始码流质量问题或生产流程的故障,由于影像数据数据一般采用CCSDS编码及固定的加密压缩算法,在成像过程中,数据在解压解密等处理后的数据量是以按照一定的算法比例释放的,因此,通过计算成像后的数据与原始码流的数据量对比可初步检测成像是否正常。

2.3 信息查询

在影像产品生产过程中,经常需要对某圈次数据再生产或查询某圈次数据的各类参数,为此,该信息管理系统提供查询功能,可使用常用约束条件进行查询,如摄影计划号、采集时间、摄影时间段、卫星代号等,如图4所示。

图4 查询功能界面

3 结束语

本文提出了一种测绘卫星原始码流数据信息管理系统的设计方法,可以对原始码流数据信息进行有效组织管理,并提供参数自动统计、影像产品初步质量监测、历史信息查询等功能,工作实践证明,该方法可以有效提高工作效率。

参考文献:

[1]王华斌,唐新明,李黔湘.海量遥感影像数据存储管理技术研究与实现[J].测绘科学,2008(11).

[2]蒲德祥,胡艳,董竹.卫星遥感数字产品质量评价方法研究[J].测绘与空间地理信息,2013(03).

[3]杨仁忠,石璐,韦宏卫,林波涛.遥感卫星原始数据质量监测系统技术研究.第二十三届全国空间探测学术交流会,2010.

篇6

1 地理科学在科学体系中的地位

钱学森在20世纪80-90年代逐步完成了总结全人类研究的科学体系。概括起来分11个门类、5大巨系统、4项建设(图1、图2、图3、表1),下面分别表述原著与解解的内容。

附图

图1 钱学森论人类的知识体系

Fig.1 The statement of human knowledge system by Qian Xuesen

钱学森将当今人类对科学知识的体系,分为数学科学、自然科学、地理科学、社会科学、建筑科学、军事科学、人体科学、思维科学、行为科学、系统科学与美学11个体系。对上述人类知识体系解读,可以将自然科学、社会科学和地理科学作为客体世界的主要研究对象;而人体科学、思维科学和行为科学作为人类主体的主要研究对象;建筑科学界于客体与主体科学之间;军事科学实际上是指谋略科学(包括经济、政治、军事等),是在掌握所有科学基础上的智慧较量;美学是纵贯于各个学科的;数学科学与系统科学是横贯于各个学科的。因此有以下的科学分类网络系统(图2)。

附图

图2 科学分类的网络体系

Fig.2 The network system of science classification

在五个开放的、复杂巨系统中(图3),地理系统与星系系统、社会系统、人体系统、人脑系统并列,其中的物理、地理、事理、人理、脑理中的“理”都是指研究的“规律”。

钱学森提出的社会主义总体设计部(表1)中,除了政治文明建设、物质文明建设、精神文明建设外,特别提出地理建设,笔者将其修改为地理系统工程,并增加了人口、科教、城镇、资源、灾害、产业。

表1 社会主义建设的系统结构(略有修改)

Tablel The system structure of socialism construction

附图

2 地理信息科学

20世纪70年代以来,随着航天技术的迅猛发展,来自外层空间的遥感、遥测、定位、通讯信息海量地增加;随着计算机技术的迅猛发展,处理与解决这些海量数据的能力大幅度地提高。地理信息系统、地理专家系统、管理信息系统、辅助决策系统应运而生,使得地理信息科学首先获得发展的机会。正是地理信息科学这门用高新技术武装起来的技术科学的发展,带动了整个地理科学的建立与发展。

附图

图3 五个开放的复杂巨系统

Fig.3 Five open complex giant system

地理信息科学的主要内容就是天地信息一体化网络系统,包括航天信息网络系统(外层空间卫星之间的信息网络)、地面的网络系统、天地之间的网络系统三部分,是有线网络与无线网络连通的一体化网络系统。1998年笔者发表了“航天信息与地理信息一体化网络系统及其应用”的论文[5],2002年又发表了“论地理信息科学的发展”[6]一文。两篇论文基本上代表了地理信息科学的创始与发展,当前各行各业都在进行数字化或信息化的建设,实际上都是天地信息一体化网络中的部分子网络或子系统。地理信息科学中最重要的原创性的成果是遥感信息模型与地理信息编码模型。

随着遥感信息的大量获取,数学家以模式识别为工具对遥感信息进行图像处理与分类,使用的数学工具主要是数理统计的方法,把遥感信息看成是没有成因关系的随机变量;物理学家则把获取遥感的物理过程视为遥感信息的成因,因此采用反演的方法,使用辐射传输方程为主的数学工具,事实上不承认地理现象的不确定性;大多数地理学家将遥感信息当成系列成图的基础信息,快速、准确地制作系列地图。地图是符号系统,其信息量远不可与遥感信息量比较,地图学家把遥感信息转化成符号系统的系列图谱。遥感信息模型则是将地理复杂现象中的非遥感信息转变为归一化的影像信息,与遥感信息一起用方程、统计与相似准则结合,也即演绎逻辑、归纳逻辑与类比逻辑结合;确定性与不确定性(包括随机的不确定性、模糊的不确定性、灰色的不确定性、分形的不确定性)辩证统一;图像与方程(一个像元或一个图斑、一个方程)耦合;抽象思维与形象思维互动而建立起来的一种地理复杂信息模型[7-9]。这种信息模型只有在遥感技术的推动下才有可能产生。这种信息模型是遥感信息与地理信息连接的纽带。

地理信息系统本来就是为了制作地图而创建的,因此地图学家将从遥感中提取的系列地图存入地理信息系统,是顺理成章的。但是这种地理信息系统无论空间分析功能多么强大,也不可能进行模型计算,外挂、内嵌种种方式都不可能解决直接进行模型计算问题。系列地图存入计算机的图形库时,信息又是冗余的,因此带来一系列与计算机技术发展格格不入的疑难,最为典型的是数据挖掘,数据挖掘说明存在数据库中的信息有冗余。遥感信息模型的运算要求地理信息系统可以直接进行模型计算,由此地理信息编码模型应运而生[10,11]。传统的地理信息系统以图形的叠合(Overlay)为主;而能够进行遥感信息模型运算的地理信息系统则以像元或图斑中的多位编码的抽取(Extract)为主。这又是完全相反的途径。地理信息编码模型还是地理定量信息与定性信息转化的纽带,也是地理信息系统中属性库与地理专家系统中知识库联系的桥梁。

总之,天地信息一体化网络系统是开放的复杂巨系统,研究这个巨系统的地理信息科学的内容远远超过了3S(Remote Sensing,Global Positioning System,Geographical Information System)的范围,而是以天地信息一体化网络系统为核心的天—地—人—机系统。地理信息科学虽然是从属于地理科学的技术科学,但是地理信息科学的诞生与发展是引领地理科学成长的核心力量,因此本刊更名时,将地理信息科学与地理科学相提并论,突出了地理信息科学的重要性。

3 地理系统工程

地理系统工程当前尚未被广泛认识,已经认识到的也仅仅是系统工程在地理学中的应用。当地理信息科学中的模型在实践中应用时,必然会涉及地理系统工程的可操作性。地理遥感复杂信息模型的建立,可以进行定量预报和回溯,因此为地理系统工程打下了工程的基础。国民经济的主战场主要包括人口、资源、生态、环境、灾害、城镇、基建、产业等8个方面,这8个方面是互动的。中国的人口问题、西部开发问题、21世纪水资源问题、能源问题、洪旱灾害问题、环境问题、生态农业问题、城镇体系问题、基建布局问题、产业结构动态调整问题以及相互之间的协调发展问题,无不属于地理系统工程。

地理现象是复杂现象,地理系统是开放的复杂巨系统。当研究西部开发时,如果国家各个部门各行其是,石油开发只考虑石油开采与输送管道;交通只考虑公路建设;铁路只考虑铁路建设;水利只考虑南水北调问题;城镇建设只考虑城市规划等,那么整体的西部地区有可能产生许多事倍功半的现象,例如修了公路没有物资运输;城市居民结构不尽合理;劳动力与产业结构不配套等。钱学森的社会主义总体设计部就是要把地理系统工程与政治文明建设、物质文明建设、精神文明建设系统地结合起来,地理系统工程仅是其中的一个子系统。而人口、资源、生态、环境、灾害、城镇、基建、产业是地理系统工程中的子系统。人口中的数量、素质、结构、分布是人口系统中的要素;资源中的矿产资源、水资源、生物资源、土资源、大气资源等又是资源系统中的子系统;大气环境、水环境、土环境、生物环境、地质环境是环境系统的子系统;交通、铁路、航运、航空、供排水、供电、供气、供暖、电讯、电视、计算机网络是基础建设系统的子系统等。系统嵌套系统,分层次子系统与交叉子系统,构成完整的、开放的、复杂的巨系统。

研究开放复杂巨系统的方法,首先是将系统分解为多层次的子系统,明确其中的交叉子系统;其次是从定性到定量地确定子系统中各个要素与指标体系;第三是根据指标(相似准则)建立模型进行预测预报;最后是检验该巨系统的效益与效率。当前大多数是分别研究人口、资源、生态、环境、灾害、城镇、基建、产业等子系统,在一个地区全面研究区域地理系统工程的有效实例不多,区域经济地理的研究还远远够不上地理系统工程。笔者曾在2000年底提出中国水资源、水灾害、水环境、生产用水、生活用水统一解决的洪水充分利用,全国水系网络化与渤海淡化的地理系统工程,中国科技报曾进行报道,之后笔者在“21世纪黄河系统工程方略”一文中进行阐述,首先所能进行的研究是虚拟地理系统工程。全国水系网络化与渤海淡化是21世纪的世纪工程,尚需有识之士共识,广泛地深入研究,进一步的论证。转贴于

如果没有以高新技术武装起来的地理信息科学的支撑,研究复杂的地理系统工程就是空想,然而所幸的是人们已经掌握了地理信息科学的许多关键技术,地理系统工程的实践指日可待。

4 理论地理科学

地理信息科学一方面可以进一步为地理系统工程提供研究方法与手段;另一方面又为理论地理科学提供技术基础。从遥感信息模型发展到地理复杂信息模型再到地理数学[8],为理论地理科学奠定了坚实的基础。

理论地理科学中首要的是建立开放的复杂巨地理系统的理论;其次是地理类比的广义相似理论[13];第三是一般地理复杂模型理论与地理数学;第四是地理数学在部门地理—部门子地理系统工程与区域地理—区域地理系统工程中的应用。理论地理科学如果不能指导部门子地理系统工程的研究和区域地理系统工程的研究,那么就失去了理论意义。

如果没有以高新技术武装起来的地理信息科学的支撑,研究理论地理科学也是空想,然而所幸的是人们已经掌握了地理信息科学的许多关键技术,理论地理科学的建立指日可待。

5 地理科学在可持续发展信息社会中的作用

地理学的发展经历了“地理环境决定论”、“人类中心主义”,然后达到了地理科学的可持续发展的阶段。地球上人类消耗的资源、能源是极其不平衡的,按照发达国家的水平,一个地球是满足不了全人类的需求的。可持续发展只有在信息社会中才能实现,人类一方面需要依靠科学技术开发资源,如太阳能的利用,靠基因工程使绿色植被更多地利用太阳辐射,靠纳米技术直接转化太阳能为电能;另一方面是靠信息技术节省资源、能源,如天地信息一体化网络系统就是信息社会的重要支柱之一,靠航天技术获取外层空间信息源,靠计算机技术建立信息网络。由此可见,地理信息科学在可持续发展信息社会中的作用[14]。随着地理信息科学的发展,地理系统工程与理论地理科学的发展,将为国民经济的主战场做出重要的贡献。

由上分析,可见地理科学与地理信息科学已经被广泛共识,地理系统工程与理论地理科学的发展尚不够充分,因此本刊更名为“地理与地理信息科学”是适时的,是既有继承性又有发展性的;是既有前瞻性又有现实性的。在这里我们希望地理科学界的同仁,切不要轻视技术,高新技术恰恰是新理论、新应用的强大推动力。

参考文献

[1] 钱学森,等.论地理科学[M].杭州:浙江教育出版社,1994.1-325.

[2] 钱学森.发展地理科学的建议[J].大自然探索,1987,6(19):36-46

[3] 钱学森.就“地理科学”答《地理知识》记者问[J].地理知识,1990,(1):90-93.

[4] 马蔼乃.论地理科学的发展[J].北京大学学报(自然科学版),1996,32(1):120-129.

[5] 马蔼乃.航天信息与地理信息一体化网络系统及其应用[J].北京大学学报(自然科学版),1998,34(4):533-541.

[6] 马蔼乃,等.论地理信息科学的发展[J].地理学与国土研究,2002,18(1):1-8.

[7] 马蔼乃.遥感信息模型[M].北京:北京大学出版社,1997.1-165.

[8] 马蔼乃.遥感信息模型与地理数学[J].北京大学学报(自然科学版),2001,37(4):521-529.

[9] 马蔼乃.遥感地理信息模型[J].地理学报,1996,51(3):266-271.

[10] 马蔼乃.地理信息编码模型[A].地理科学与地理信息科学论[C].武汉,武汉出版社,2000.283-302.

[11] 马蔼乃.地理知识的形式化[A].地理科学与地理信息科学论[C].武汉,武汉出版社,2000.261-274.

[12] 马蔼乃.21世纪黄河系统工程方略(首届黄河论坛暨王化云治黄思想研讨会)[N].黄河报(转载),2002.

篇7

关键词:微机械加工技术;传感器;应用

DOI:10.16640/ki.37-1222/t.2016.06.025

0 引言

微机械加工技术的兴起要追溯到上世纪末,其快速发展的原因主要是因为微机械加工技术的使用涵盖了多个学科,这也是它能够广泛被公众关注的原因。其中有物理学、光学、力学以及生物学等等,这些学科都为微机械加工技术提供了一定的理论支持,使其在成熟发展后能够运用于各个领域,如汽车制造、航天技术、生物化学工程等。作为本世纪初的新兴技术,微机械加工技术由于其特有的特殊性,也逐渐体现出它在各个领域的重要性,因此收到了社会的广泛关注和重视。不仅是我国,其他发达国家也对微机械加工的研究投入了大量了人力和物力,但在研究过程中也难免存在一些问题,通过本文对此技术的分析和研究,希望为这一技术的应用和发展提供一定的借鉴意义。

1 微机械加工的基础技术

1.1 LIGA技术

LIGA技术在过去的几十年中始终是人们熟知和青睐的重要技术,它能够对金融材料进行加工,也能够对陶瓷、塑料等非金属材料进行加工。由此看出,LIGA技术是新兴的三维加工技术,并且其加工特点主要以“高深”而闻名,加工的深度能够达到数百微米。LIGA技术主要以加速器作为加工基础,将其产生的X射线刻在光敏聚合物层之上,形成部件的图形,再通过电场把金属迁移到已经形成的模型中,从而完成金属结构。

1.2 微放电加工技术

微放电加工技术也有其独有的特点,即加工阻力与其他技术相比都要小,不但能够加工导电性材料,还能够加工半导体材料。因此,微放电加工技术经常应用于微机械构件的制造。不仅如此,微放电加工技术还能够解决银钨丝在机床上成形的关键问题,并且随着多年的研究和发展,微放电技术在加工的精度和微细程度方面都实现了较大的突破。

1.3 腐蚀技术

腐蚀技术主要涉及到三个方面:第一,湿法腐蚀技术。这一技术以电化学为基础,能够精准地控制腐蚀深度,主要用途于制作硅结构。第二,干法腐蚀技术。其特点是具有较高的分辨率和精准度,主要涉及到等离子体腐蚀。第三,各向异性腐蚀技术。通过腐蚀液在硅各个晶向上产生的有差异的腐蚀速度,并以此作为基础,制作微结构或者微型零件。

2 微机械加工技术在传感器当中的应用

2.1 石英加速度传感器

石英加速度传感器,最早生产与法国,这种传感器是由法国的LET1制造的,该传感器有效的利用了微机械的加工技术,使得石英加速度传感器除了有典型的尺寸之外,还有典型的设计外观。在石英加速度传感器当中,传感器的厚度一般为124um,传感器自身的梁宽与梁长分别能够达到5-8um以及2mm,在石英加速度传感器当中,质量块为2mm*2mm,探测器的间隙则为50um,线圈的厚度一般为3.5um,对于电机的制造,则利用机械掩膜蒸发来制造。在石英加速度传感器当中,其输出方程一般用V0/V1=K0+K1ax+K2a2x+K3a3x+Kyay+Kzaz+e来进行表示,在本公式当中,K1用来表示比例因子,而偏置则用K0来进行表示,而本公式当中的ax、ay、az则分别用来表示加速度分量。

2.2 热红外位传感器

在热红外传感器的制作过程当中,我们能够看到这种传感器对于微机械加工技术进行了集中的使用,这种传感器的阵列通过在一种悬臂上面来进行构成,这种悬臂的长、厚、宽应支持3mm、10um、440um。在悬臂的自由端,应设置膜层,并确保该膜层有一定的吸收性能,而在悬臂的另一端,则应设置热电偶。当红外位传感器被放在辐射下面时,悬臂的自由端能够吸收热量,而热量则通过悬臂来进行传到,从而被热电偶阵列检测出来。

2.3 角度传感器

本传感器的敏感部分,是由两个扭转杆支撑的悬浮可动微机械摆,一般来讲,角度传感器的制作过程为:在硅片上通过LPCVD的方法来沉积多晶硅作下电机,在沉积完成之后,还需要再沉积一层S1O2来作为牺牲层,此后,将沉积的较厚的多晶硅作为悬浮结构,将牺牲层腐蚀掉,利用这种方法来得到想要的结构。但是,如果存在一定水平的磁场,或者是存在恒定磁场的时候,悬浮的多晶硅结构往往会转出特殊的角度,这样就能够有效的测出电压的传输形式。

3 结束语

如今,随着时代的进步以及科技的不断发展,微机械加工技术已经在各个行业当中得到了充分的应用,其涉足之广,包含传感器、微电子机械制作、微机械结构加工等等,作为一种新兴技术,微机械在硅平面的基础上得到了长足的发展,微机械加工技术与传感技术的结合,也得到了广泛的应用。本文从实际出发,并将微机械加工技术与传感技术的结合作为视角,阐述了微机械加工技术在传感技术的应用,并对这些应用进行了一些研究,在此基础上得到了些许结论,希望能够在日后起到指导实践的效果。

参考文献:

[1]彭思平,徐家文,李颖,杨倩.微细电解加工机理探讨[J].电加工与模具,2015(02).

[2]王振龙,赵万生.微制造系统中的微细电火花加工技术[J].制造技术与机床,2013(09).

[3]胡明,马家志,邹俊,张之圣.微机械加工技术在微传感器中的应用[J].压电与声光,2012(04).

[4]虞承端.微机械加工技术与微传感器[J].电子元器件应用,2011(05).

篇8

关键词 人机工程学 医疗空间 医用设备

一、人机工程学简介

人机工程学又称“人体工程学”或“人类工效学”(欧洲),“人类因素学”或“人类因素工程学”(美国)。1960年国际人机工程协会正式成立(International Ergonomics Association),并对人机工程学给出了迄今为止最权威和最全面的定义:研究人在某种工作环境中的解剖学、生理学和心理学等方面的因素,研究人和机器及环境的相互作用,研究在工作中、生活中和休假时怎样统一考虑工作效率、人的健康、安全和舒适等问题的综合学科。

二、人机工程学的发展与应用

在上世纪60年代左右,人机工程学的应用基本集中在欧美发达国家复杂的军事工业上,随着航天技术的发展,人机工程学又迅速成为航天工业的重要组成部分。随后,人机工程学迅速发展,开始在军事和航天工业以外的领域得以应用,包括医药公司、医用设备公司、计算机公司、汽车公司和其他消费品公司,同时生产工厂也开始意识到人机工程学在工作场地和产品设计方面的重要性。1980年以后,随着人们对人机工程学的不断研究,人机工程学的应用已经深入与“人”有关的各个领域,从人们的居住、工作、学习的室内空间环境,以及与之密切相关的家具设计,到现代多类型的工业产品,生活产品的设计,都离不开人机工程学。

三、人机工程学与医疗空间环境

医疗建筑无疑是功能最为复杂的民用建筑,原因如下——

(一)医院人群的复杂性

患者、医护人员、医学工程技术人员、后勤管理人员、培训实习人员、探视人员、学术交流专家学者等不同类型的人群,因职业的不同对医疗空间环境有着不同的要求。

(二)医疗设备的复杂性

医院中有着大型影像设备、小型手术器械,还有成千上万种诊疗设备,如消毒设备、气体设备、急救设备、护理设备等。其中很多设备都有自身的对医疗空间平面和立面的特殊要求。

(三)诊疗环境的复杂性

医院中的门诊、急诊、医技、病房、手术部、ICU、消毒供应中心、生活服务中心等大小和功能各不相同的区域,均有着自己独特的人流、物流、气流、信息流等医疗功能流程的要求。

(四)治疗器材的复杂性

医院中使用各种医疗药品、检验标本、被服膳食以及各类消耗品。一座综合型的现代医院消耗品通常有50多种类别,2000多品种。治疗器材的复杂性必然造成物流量的复杂性。

在如此复杂的空间环境中,医患双方生理、心理压力越来越大,很多医院管理者、医疗建筑设计师、医疗流程规划设计师、医用设备设计工程师,正逐步认识到人机工程学在医疗空间中的合理应用是改善医疗环境的重要手段。人机工程学的应用将使医疗过程变得高效简便,安全舒适,成为医疗空间环境设计与医用设备结构设计的指导理论与实践工具。

图1表达了在医疗领域中人—机—环境三者之间关系,是以“人”为中心,以“人”为本。医疗环境必须充分适应医院人群及医疗设备的需求,致使医疗环境建设工程尤为繁重。

四、分析“人—机—环境系统”设计的应用

(一)在手术部的应用

人——主要有麻醉医师、外科医师、护士、患者、医学工程技术人员、后勤服务人员、培训实习人员等。

机——无影灯、手术台、麻醉机、麻醉吊塔、呼吸机、监护仪、体外循环机、内窥镜、手术显微镜、导航仪、中心吸引、中心吸氧、体外去颤器、器械台、器械柜、药品柜、手术圆凳、观片灯、洁污运输车、手术护理设备等。

环境——医疗区、医疗辅助区、净化区、生活区。医疗区又可分为手术间、无菌物品存放间、麻醉准备间、复苏室、清洗间、医生办公室、值班室等。

下面仅以手术部中最重要的房间——手术间来分析 “人—机—环境系统”设计的重要性:

“人—机系统”:在手术间内,麻醉师、外科医生、护理人员是设备的主要使用者,他们有各自需要操作的专业设备。如麻醉师主要操作的设备有麻醉机、监护仪、麻醉柜、品车等。外科医生需要操作各类手术器械、高频设备、腔镜设备等。而护理人员则通过操作手术器械台、升降台、手术床、器械柜等设备为医生提供帮助。这些大量的设备与使用者的工作流程之间,是否形成一个最佳的动态结合,是“人—机系统”设计的核心。

“机—环境系统”:手术间的很多设备,如各类气体吊塔、气源电源供应箱、器械柜、药品柜、麻醉柜、观片灯等均需固定或内嵌式安装。而手术设备、腔镜设备、手术床等设备的气源电源供应又依靠固定式设备来提供,所以机器与环境之间就必须进行系统思考、系统设计,只有这样才能使医护人员在紧张的手术环境中,操作各自的医用设备能够得心应手,进入最佳的工作状态,见图2、图3。

(二)在消毒供应中心(CSSD)的应用

人——各区域工作人员、外出运输人员、外来人员等。

机——清洗消毒机、高温灭菌器、低温灭菌器、干燥柜、手工清洗槽组、器械打包台、敷料打包台、无菌物品存放设备、各类无菌物品及污染物品运输设备等。

环境——去污区(又称污染区),检查包装灭菌区(又称清洁区),无菌物品存放区(又称无菌区)、工作生活辅助区等。

同手术部类似,消毒供应中心各不同区域的工作环境,既有各自空气净化的气流要求,又有各自人员的工作流程及物流动线的要求。而消毒供应中心的固定安装类设备(清洗消毒机、高温灭菌器、手工清洗槽组、器械打包工作站等)比手术部设备体积更大,重量更重。对空间布局规划的影响也更深。所以只有进行“人—机—环境系统”综合设计,才能将消毒供应中心的“工作流程”、“设备布局安装”与建筑平面、立面同时考虑,尽量减少内部工作流程交叉回路,满足工作人员操作设备距离最短、最便捷,去除一切不必要的移动和搬运,从而使工作人员生理上、心理上的干扰降至最低,发挥一个最优工效来提高工作效率。

上海长海医院消毒供应中心,应用“人-机-环境系统”设计,使原建筑立面中干扰工作的承重柱,变成了岛式器械打包工作站,见图4。

江苏省中医院消毒供应中心的建成,证明“人-机-环境系统”设计在消毒供应中心空间规划中尤为重要,见图5。

五、人机工程学与医用设备设计

由于科学技术的高速发展,各类数字化、微创化的高新诊疗设备在医院广泛使用,而作为医用设备的一个重要组成部分——基础护理设备,越来越受到医院管理者的重视。从2010年开始,我国医疗机构正在逐步推广国际先进的整体护理理念,各医院的管理者更加注意到基础护理设备重要性,它与护理人员的日常工作关系非常密切。护理人员的工作重复、繁重而单调,而一台品质低下的护理设备(例如推动起来叮当响的送药车,内部摆放物品设计不合理的急救车)均会使护理人员在工作中增加大量无效成本,并造成消极的工作情绪。人机工程学设计具有成功的解决办法,即在护理设备设计中应以人机工程学为原则,用建立人与产品之间和谐关系的方式,最大限度地挖掘人的潜能,综合平衡地使用人的机能,保护人体健康,从而提高功效。另一方面又可在满足产品使用功能的前提下,以人的感性需求为着眼点,在产品的外形和色彩上满足人的精神需求,协调和平衡人的情感,充分体现以人为本的设计理念。

如多功能急救车,在满足产品使用功能的前提下,用色彩满足人的心理需求,从而提高抢救效率。人机工程学设计对护理设备的造型、外形尺寸、内部空间规划、选材、色彩都要进行反复的推敲和研究。

篇9

关键词:先进制造技术 机械制造工艺 关系分析

中图分类号:TG333.17 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-02

在科学技术飞速发展的当今,先进制造技术是影响国家综合竞争力的最直接条件,而良好的机械制造工艺就是先进制造技术最好的体现。随着我国对工业化发展越来越重视,因而先进制造技术引起了更多人的普遍关注,对其研究力度不断加强,并收获了令人满意的成果。可是,我国的先进制造技术与机械制造工艺与国外相比还存在较大差距,因此我们并不能止步于此,我们要正确看待二者的特点及其相互关系。在激烈的市场经济中,怎样样能做到制造技术与制造工艺不断创新,这是对于我们来说既是一次挑战,又是一次机遇,因而我们找对最佳的发展途径,将对机械制造业发展具有实际意义。

1 先进制造技术的确定和体系建立

先进制造技术具体是指什么?目前还缺少规范的、统一的定义。当广泛被接受的含义是:先进制造技术是促进制造业汲取高科技技术并应用到实践生产中所取得的成绩,并能把它贯穿于整个制造流程的制造技术的合称。

先进制造技术是制造业的综合竞争能力,其不断革新是社会发展的必然选择。目前,先进制造技术快速发展,逐渐形成高新技术群,并经过不断完善,已经构成了健全的体制系统。可是,受各国不同基本国情制约,先进制造技术内容和构成方式上差异很大。对于我国来说,我家相关部门已确定了多层次技术群组成的先进制造技术

体系。

首先,现代先进制造技术要以优质、节能、环保、经济、高效为中心,在逐渐向基础制造工艺扩展。其次,新型制造单元技术创新。这是为了适应市场需求及新兴产业的促进下,制造技术与其他现代高科技技术向融合而产生了现代先进制造技术,例如数控技术、网络监控技术、航天技术等。

最后,先进制造技术集成化。这是将应用信息技术与系统管理技术的完美结合,它是基于计算机网络和数据库等技术结合而产生的。

2 先进制造技术的现状与特征分析

2.1 先进制造技术现状分析

先进制造技术是现代技术创新与工业进步的典型代表,是衡量制造业水平的关键指标,也是国家工业赖以生存的保障。近年来,世界各工业发达国家已经深刻意识到先进制造技术在国家发展中的重要地位,并给予了前所未有的高度重视,各自都在对其进行深层次科研,可见,市场经济的竞争实质是先进制造技术的竞争。不同的先进制造技术格局已经形成,并在各自领域取得了许多科技成果,例如:网络监测系统、数控系统、虚拟制造系统等。

2.2 先进制造技术特征分析

2.2.1 全球化

随着经济全球化浪潮的袭来,对制造业也产生了巨大的冲击,主要体现在制造业的资源配置逐渐扩展到世界各国,这就推动了制造业在全球范围内发展。某种产品的制造过程可能由不同国家共同完成,将根据不同国家的国情及制造技术先进程度来对制造过程进行分配,这样做除了能够充分利用资源、减低成本、便捷方便外,还能够促进国家交流,缩小国家间贫富差距,有利于构建和谐社会。

2.2.2 多元化

由于技术创新瞬息万变,尤其是信息技术的进步使得原有的生产方式与生活方式逐渐被取代,关键体现在多元化、复杂化及人性化。今后的市场走向依然充满不确定性,没有水能够准确预见其发展趋势,当人们不仅仅满足于生理需求后,更追求自我个性化的展现。更多的消费者对原有的制造业提出了新要求,制造业既要提供特定的战略、舒适的环境及合理时间使用的有形产品,又要能够保证产品的使用质量及后期服务,制造业生产出的产品,要对市场需求有充分了解后才能生产,要避免盲目制造

产品。

2.2.3 灵敏化

以前的制造业生产出的产品种类单一、批量大、传统、统一化等特征;随着时代的发展,制造业逐渐向灵敏化发展。制造厂家通过各种合作方式来增强竞争力,最大化利用资源,节省投资成本,根据市场需求的快速变化调整制造生产目标。其建设重点就是实现各方面先进技术全面结合,使得整个制造业能够准确应对瞬息万变的市场需求,保证所生产产品能够在社会上大量流动,为制造业带来更大的经济效益。

2.2.4 服务化

现代制造业是以市场需求变化为前提的,服务质量是确保产品被人们接受的重要保障,制造业已经意识到服务的重要性,并不断努力向服务业转型。现代的制造业所考虑的重点不仅仅是设计与生产,更重要的是根据对市场的实际考察,将产品后期服务作为关键环节来抓,服务化应该体现于为社会服务、为消费者服务,制造业应将服务化作为主要建设内容。受这层发展趋势影响,很多企业对服务的关注度不断加大,而且服务所带来的综合效益会更可观。

2.3 mT的体系结构

面向制造的设计技术群。面向制造的设计技术群系指用于生产准备的工具群和技术群。设计技术对新产品开发生产费用、产品品质以及新产品上市时间都有很大影响。产品和制造工艺的设计可以采用一系列工具,例如计算机辅助设计(CAD)以及工艺过程建模和仿真等,生产设施、装备和工具,甚至整个制造企业都可以采用先进技术进行有效地设计。

制造工艺技术群( 制造技术环境)。制造工艺技术群是指用于物质产品生产的过程及设备。制造工艺技术群是有关加工和装配的技术,也是制造技术的传统领域。

3 针对机械制造工艺进步先进制造技术的措施

制造业所涉及到的领域很多,例如:机械、轻工、化工、电子、航天、建筑等等,制造业从实质上分析,其不仅仅是通常认为的基础产业,而且是创新生产力的生产过程。制造技术是现代制造业发展的前提,而机械制造则是制造技术的直接体现,这也是制造技术创新的方向。第一,先进制造技术已经被大范围的运用到机械制造领域,促进了机械制造工艺的进步,并对其他相关产业也有积极影响。第二,机械制造工艺不断革新,其重点内容又是先进制造技术。所以,先进制造技术和机械制造工艺的关系是相互促进,在其发展过程中不能倾向用于任何一方。

我国的制造业起步比较晚,与其他制造业国家相比差距比较大,而机械制造业又是制造业的重要组成部分。虽然经过几代人艰辛努力,我国机械制造业积极汲取国外的先进制造技术,但还是处于初级阶段,要想达到成熟阶段还有很漫长的道路需要探索。面对新形势下机械制造工艺创新,先进制造业应采取以下措施。

3.1 强化先进制造技术过程全面开发

强化先进制造技术过程全面开发包括技术装备、生产技术、管理体制、市场观念及人员调配等环节。它对提升制造业市场综合竞争力是很有必要的措施,因此,我们要给与其高度重视。除此以外,我们也需要关注机械制造技术自身创新,这可以丰富先进制造技术、带动相关制造业打下坚实

基础。

3.2 扎实基础工作,合理采用先进制造

技术

在机械制造业不能盲目的使用先进技术,要在各项基础工作牢靠的前提下,合理采用先进制造技术。总之,先进制造技术要以市场需求为发展核心,循序渐进,不能操之过急,因地制宜,协调发展。应该具有针对性的挑选出某些重点行业,将其作为试点来建设,不断总结实践经验,等技术使用熟练后,再进行大范围推广建设,这样能大大降低制造业投资风险。

3.3 重视人才素质道德建设

人才是先进制造技术不断进步的决定性因素。他们的素质道德高低对制造业影响最大,因此,要想确保先进制造技术应用与创新,那么一定要重视人才素质道德建设。通过对制造技术研究人员开展定期的思想道德教育,并及时向他们传播最先进的制造技术,在每次培训过后,还应该制定严格的考核制度,只有顺利通过考核的人员才可以上岗。这样能培养出一批高素质。技术硬、通管理的制造人才。

3.4 积极汲取国外先进制造技术

我国制造技术起步滞后于发达国家,因此我们要虚心接受它们的先进技术,并通过积极的汲取过程不断丰富我们自身的制造技术。经过我国对制造业的长期探索,已经形成具有中国特色的制造技术,我们在未来的制造技术发展中,要积极汲取国外先进制造技术,探索出最符合中国的先进制造技术。

4 结语

总而言之,随着社会不断的进步与科技飞速的发展,先进制造技术仍是提高国家竞争力的重要保障。我们对先进制造技术应该有侧重点,建设具有中国社会主义特色的先进制造技术。不言而喻,随着我们对制造技术研究的继续深化,不久的将来,它会有更广阔的发展空间,并在世界制造业激烈的市场经济中站稳脚步。在党的正确方针引领下,相信我国的制造技术会有更长远发展,在世界的大舞台上会绽放耀眼光芒。

参考文献

[1] 刘晓宇,艾春雨.先进制造技术与机械制造工艺[J].科海故事博览・科技探索,2011,3(2):16-18.

[2] 赵文兴,张舸.轻型碳化硅质反射镜坯体的制造工艺[J].光学精密工程,2011,7(11):145-147.

篇10

一、培养学生学习物理的兴趣

物理教师首先要激发学生学习物理的兴趣,让学生愿意学习,这样学习效率才会更高。高中学生正处在青年初期,心理发展具有明显的社会性、探索性、创造性、闭锁性和独立性。为适应学生的心理特点,教师应该给学生创造一个展示自我的平台,充分调动学生的积极性,在课堂教学中,采用的教学策略“精彩十分钟”使学生们津津乐道,让每位学生自愿参加成为课堂的主人,选择如《黑洞》《航天技术的发展和宇宙航行》等,以学生感兴趣的方式展示给全班同学。“精彩十分钟”促使主讲人翻阅书籍、上网查询、多方请教等,每次主讲人的精彩讲授都赢得了全班同学的热烈掌声。“精彩十分钟”激发了学生的参与意识、合作意识、共享意识,培养了学生的语言表达能力、信息收集能力等,使学生的潜能得以发挥,为学生的终身发展奠定了基础。激趣的方式应灵活运用于高中物理教学中,要幽默恰当、突出有效。

二、教师要巧妙导入教学内容

在新课程背景下,高中物理教师在实施教学过程中,要探索一些新方法提高教学效率。教学的开始很重要,教师要特别重视教学内容的导入,然而导入要有方法、要有技巧。故事不仅可以吸引学生的注意力,还可以引发学生积极的思考,探索故事中的科学奥秘。通过一些物理学家的趣闻轶事或者物理知识在生活、生产中的应用来引入新课是一种能够吸引学生注意力,提高课堂教学效率的有效方法。如认识《超声波和次声波》之前,先讲“次声波杀人”的故事:1992年11月24日,桂林上空发生了一起空难。当事件的原因经多方调查而未肯定之时,中国声学研究所的专家提出了存在着因“次声波”的作用而致使飞机坠毁的可能性。桂林属半丘陵地带,气团依山势走向而上下浮动,引起气流震动,会产生一种“山背波”的次声波,当飞机遇到这种危害极大的由次声波引起的晴空湍流时,如同落入一个风旋涡中,在挤压力、冲力等多种强劲外力的作用下,造成飞机失控。最新研究结果表明,次声波对飞机的影响还有一种“生物效应”。该理论认为,当次声波的频率接近人体频率时,就有可能产生“共振”,就有致命的危险。通过这个故事除了让学生初步了解次声波的知识外,还能让他们知道物理知识在生活和生产中的具体应用,认识到物理知识对于推动社会进步的重要性,激发学生探索兴趣。除此之外,在物理学史料中有许许多多关于科学家探索、发现物理规律的故事:牛顿通过苹果落地发现了万有引力定律和卫星运行的原理、阿基米德洗澡时领悟出浮力的作用、伽利略观察吊灯而发现摆的等时性、瓦特由水壶盖被顶起而发明蒸汽机……这些史料都是培养学生观察科学兴趣的生动教材。

三、利用教学新手段实施教学

物理教师要利用教学新技术、新方法来提高物理的教学质量,实现教学多种模式的教学方法。子曰:“工欲善其事,必先利其器。”没有任何一门课程可供终身受用。与时俱进,不断丰富自己的教学手段,跟上社会的步伐,才能最大限度地提高课堂效率,发挥主观能动性。首先,图像、文字、声音、动画等的有机结合,多重感官共同刺激下,学生的兴趣会较容易激发。其次,多媒体的使用可以节约板报书写的时间,而且多媒体的书写具有可重复性和任意性,操作方便。最后,当前是信息化的社会,以多媒体技术为主要载体的现代教育要求教师这样做。而且新课标指出:课程改革要“大力推进信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合”。用信息技术改造某些已有的实验、增加原来不能做的实验,这是大势所趋,教材编者要促进这项工作的开展。但是,由于发展不平衡,也由于我国在这方面还缺少经验,所以不能搞“一刀切”。

四、重视培养学生的思维能力

教师要通过不同的解题方法来培养学生的思维能力,提高学生的多维思维能力,如何培养学生的思维能力呢?解题教学及习题训练是物理教学中必不可少的重要环节。通过解题的训练,尤其是一题多变、一题多解、一题多练及多题归一等变式训练,更有助于加深对知识的巩固与深化,提高解题技巧及分析问题、解决问题的能力,增强思维的灵活性、变通性和创新性。一题多解,培养学生求异创新的发散性思维。通过一题多解的训练,学生可以从多角度、多途径寻求解决问题的方法,开拓解题思路。使不同的知识得以综合运用,并能从多种解法的对比中优选最佳解法,总结解题规律,使分析问题的能力提高,使思维的发散性和创造性增强。一题多变,培养学生思维的应变性,有新意的问题,使更多的知识得到应用,从而获得一题多练、一题多得的效果。使学生的思维能力随问题的不断变换、不断解决而得到不断提高,有效地促进学生思维的敏捷性和应变性,使创造性思维得到培养和发展。任何一个创造过程,都是发散性思维与收敛性思维的优秀结合。