表观遗传学的发展范文

时间:2024-01-11 17:39:12

导语:如何才能写好一篇表观遗传学的发展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

表观遗传学的发展

篇1

1.巴氏小体案例在遗传学教学中的应用

2.下一代测序技术在表观遗传学研究中的重要应用及进展

3.遗传学教学中在细胞与分子水平上理解等位基因的显性与隐性

4.果蝇唾腺多线染色体研究进展及其在遗传学教学中的应用

5.以人类血型为遗传学案例教学的思考与实践

6.表观遗传学药物的研究进展

7.表遗传学几个重要问题的述评

8.构建优质教学体系,促进《遗传学》精品教育

9.小鼠毛色遗传的控制机制及其在遗传学教学中的应用

10.肝癌发生的分子遗传学和表遗传学研究

11.景观遗传学原理及其在生境片断化遗传效应研究中的应用

12.以遗传信息为主线的遗传学教学架构及与其他课程的衔接

13.认知过程中的表观遗传学机制

14.我国高校遗传学教材的出版与使用现状的调查

15.表观遗传学:生物细胞非编码RNA调控的研究进展

16.表观遗传学视角下运动干预阿尔茨海默病的机制分析

17.遗传学与基因组学整合课程探讨

18.表观遗传学研究进展

19.癫痫表观遗传学研究进展

20.不仅仅是遗传多样性:植物保护遗传学进展

21.利用文献精读教学新模式优化遗传学教学

22.2015年中国医学遗传学研究领域若干重要进展

23.发展行为遗传学简介

24.光遗传学技术应用于动物行为学在神经回路中的研究进展

25.表遗传学推动新一轮遗传学的发展

26.生物教育专业《遗传学》教学改革的探索

27.糖尿病肾病遗传学研究进展

28.肿瘤表观遗传学研究热点的聚类分析

29.浅谈高校《遗传学》课程教学改革与实践

30.2015年中国微生物遗传学研究领域若干重要进展

31.利用经典文献优化《遗传学》双语教学

32.孟德尔豌豆基因克隆的研究进展及其在遗传学教学中的应用

33.表观遗传学在肺癌诊治中的研究进展

34.人格行为遗传学研究的两类取向

35.害虫遗传学控制策略与进展

36.表观遗传学及其应用研究进展

37.阿尔兹海默病的表观遗传学机制及相关药物研究

38.胃癌遗传学及表遗传学研究进展

39.遗传学在胆管细胞癌发展中的重要性

40.子痫前期表观遗传学研究进展

41.行为遗传学:从宏观到微观的生命研究

42.遗传学史在遗传学教学中的作用

43.男性不育的遗传学评估

44.表观遗传学与肿瘤干细胞

45.开放式教学在遗传学实验教学中的探索与实践

46.表观遗传学调控与妇科肿瘤发生、演进及治疗的研究进展

47.规律运动干预人类衰老过程的表观遗传学机制研究进展

48.表观遗传学及其在同卵双生子研究中的新进展

49.分子群体遗传学方法处理鲤形态学数据的适用性

50.番茄果重数量性状基因的研究进展及在遗传学教学中的应用 

51.遗传学教学中遗传学史及科学方法论的教育

52.景观遗传学:概念与方法

53.孤独症的遗传学和神经生物学研究进展

54.肺癌表观遗传学的研究进展

55.肿瘤的表观遗传学研究

56.遗传学课程群的设置和思考

57.《遗传学》课程的建设与优化

58.表观遗传学在中枢神经系统退行性疾病中的研究进展

59.遗传学实验教学体系的改进

60.肝癌表观遗传学研究进展

61.保护生物学一新分支学科——保护遗传学

62.表观遗传学在淋巴系统肿瘤研究中的新进展

63.大肠癌的表观遗传学研究进展

64.重视经典遗传学知识体系构建和学生自学能力的培养

65.植物化学遗传学:一种崭新的植物遗传学研究方法

66.关联分析及其在植物遗传学研究中的应用

67.表观遗传学及现代表观遗传生物医药技术的发展

68.三阴性乳腺癌与表观遗传学研究现状

69.构建培养新型医学人才的医学遗传学课程体系改革

70.骨髓增生异常综合征的遗传学检测研究进展

71.钉螺遗传学及其生物学特性的研究进展

72.羞怯:来自行为遗传学的观点

73.遗传学探究性实验教学的思考及实践

74.“教学、实践、科研、临床”四位一体的医学遗传学教学体系建设探索与实践

75.国内高校遗传学教材发展研究

76.男性生殖遗传学检查专家共识

77.肿瘤表遗传学研究的进展

78.创新性遗传学大实验对提高大学生综合能力的研究

79.白内障表观遗传学研究的现状及进展

80.遗传学研究性实验教学模式探索与创新人才培养

81.表观遗传学在木本植物中的研究策略及应用

82.高通量测序技术结合正向遗传学手段在基因定位研究中的应用

83.激发与培养学生学习遗传学兴趣的教学途径

84.从表观遗传学开展复杂性疾病证候本质的研究

85.蓝藻分子遗传学十年研究进展

86.建设遗传学课件体系 提高多媒体教学质量

87.表观遗传学与肿瘤

88.原发性肝癌的表观遗传学及其治疗

89.青少年焦虑、抑郁与偏差行为的行为遗传学研究

90.儿童孤独症的遗传学研究进展

91.本科生遗传学实验教学的改革探讨

92.与闭经有关的遗传学问题

93.多媒体教学在遗传学“三点测验”教学中的实践

94.一个实用的群体遗传学分析软件包——GENEPOP3.1版

95.论从“肾为先天之本”到“中医遗传学”

96.《遗传学》多媒体教材的编写与实践

97.肺癌的表观遗传学研究进展

98.无创性产前遗传学检测研究进展

篇2

关键词:表观遗传学;肿瘤

中图分类号:Q3 文献标识码:A 文章编号:1674-0432(2011)-03-0069-1

表观遗传是1942 年由Waddington 提出的[1]。表观遗传学在基因调控、表达和遗传中发挥着重要作用,还在肿瘤与免疫等疾病的诊治中具有独特的意义。

1 DNA甲基化异常与肿瘤发生

(1)DNA甲基化修饰肿瘤细胞整个基因组中普遍存在低甲基化[2]。染色质结构因为低甲基化的大范围出现而引起改变,通过降低染色的质凝聚程度,可以使基因组的不稳定性增加,从而导致肿瘤的发生。DNA的甲基化是由S2腺苷甲硫氨酸作为甲基供体,使胞嘧啶转化为5-甲基胞嘧啶(mC) 的反应。在一般的状态下,基因启动子区的CpG岛是没有发生甲基化的,如果发生甲基化,就会使基因不发生转录。在这种情况下,一些抑制癌症的基因、DNA修复的基因等等就会失去功用,使正常细胞的培养与调控发生改变以及DNA损害不能被及时复原[3],从而产生肿瘤。

(2)组蛋白乙酰化修饰组蛋白是一类小分子碱性基础结构蛋白质,具有五种类型:H1、H2a、H2b、H3、H4,它们能够与DNA中带负电荷的磷酸基团相互作用。组蛋白乙酰化酶(HAT)是组蛋白乙酰化的关键酶,组蛋白的乙酰化程度就是由其决定着,与肿瘤异常基因表达有关。在HAT基因剔除试验中,p300-/-小鼠在妊娠的早期就死亡了,其神经形成、细胞增殖和心脏发育等方面存在很多缺点;p300-/+小鼠的胚胎期的死亡数量非常多,在胚胎分开的细胞中包含特异性的转录缺点与增殖障碍[4]。

(3)染色质重组染色质重组是指染色质的位置、结构等包括紧缩的染色质丝在核小体连接处松开,从而使染色质发生释放,显出了转录基因启动子区中的顺式作用元件,使其可能与反式作用因子结合[5]。染色质重组能够调节基因的转录,同时还参与一些最基础的细胞生理过程,与肿瘤发生密切相关。染色质重组的不同能够导致的肿瘤也不不同,由此我们知道这些生理过程通过相互联系而起到作用的。研究表明不同的染色质重组途径之间存在着相互作用[6],但是在肿瘤发生过程中染色质重组途径之间的确切关系,仍然有待于研究人员去进一步地探索。

2 表观遗传修饰与抗肿瘤作用

(1)DNA 甲基转移酶抑制物DNA甲基化是一种可逆的过程,因此,抑制DNA甲基转移酶的性能已成为研究抗肿瘤作用的新方法。5-氮杂胞嘧啶核苷(azacytidine)与5-氮杂脱氧胞嘧啶核苷(5-aza-2’-deoxycytidine)是DNA甲基转移酶的有效抑制剂。有资料表明,在使用5-aza-2’-deoxycytidine 后使用zebularine,能够非常好的地诱导并稳定p16基因的表达。

(2)组蛋白乙酰化抑制剂染色体结构和基因表达受到组蛋白的乙酰化修饰的影响,但是该修饰过程是可逆的,这就为肿瘤的治疗提供了新的思路。目前,研究最多的是HDAC抑制剂,到现在为止已开发出很多结构不同的HDAC抑制剂。主要有环状四肽类、羟肟酸衍生物、苯甲酰胺类衍生物、氨基甲酸酯类衍生物及酮类。研究发现用HDAC抑制剂诊治几种类型的白血病和实体瘤,结果非常好,副作用小,传统的化疗药物好很多。

3 应用前景

研究表观遗传中各种突变致病因子的作用机理,可以帮助我们阐明表观遗传的机制,为新方案的设计、新药的研制提供科学的依据。人们可根据表观遗传学信息能被一些化学物品所逆转的原理, 对疾病治疗进行探讨。如可通过DNA甲基化抑制剂防止肿瘤的发生, 也可用去甲基化物质使抑癌基因及DNA修善基因的功用得以恢复, 以达到治疗肿瘤的目的。

参考文献

[1] 孙树汉.肿瘤表观遗传学的研究[J].中国肿瘤生物治疗杂志,2008(1):8-13.

[2] StresemannC,BruecknerB,MuschT,etal.Funtional diversity of DNA methyltransferase inhibitors in human cancer cell lines [J].Cancer Res,2006,66(5):2794-2800.

[3] Widschwendter A,Muller HM,Fiegl H,et al.DNA methylation in serum and tumors of cervical cancer patients[J].Clin Cancer Res,2004,10(2):565.

[4] 刘鹏,王一理,司履生.组蛋白乙酰化及其与肿瘤的关系[J].中华病理学杂志,2002(3):263-265.

[5] MasieroM,NardoG,lndraccoloS,etal.RNA interference:implications for cancer treatment[J].Mol Aspects Med,2007,28(1):143-153.

[6] Chert W,Cooper TK,Zahnow CA,et al.Epigenetic and genetic loss of Hicl function accentuates the role of p53 in tumorigenesis[J].Cancer Cell,2004,6(4):387-398.

[7] 尤程程,黄利鸣.DNA甲基化与肿瘤[J].广东医学,2009

篇3

表观遗传学(epigenetics)是与遗传学(genetic)相对应的概念,是对经典遗传学的有益补充;其认为在不改变基因序列的条件下,生物体从基因到基因表型之间存在一种调控,这种机制即“表观遗传学”的含义。尽管已被提出70余年,但直到近10余年,随着科学家们对这种“获得性遗传”的进一步认识,才成为生命科学界最热门的研究之一。因此,研究者们转换思维,从表观遗传学角度对AD发病及治疗进行了研究,发现了一系列表观修饰的关键酶类,以及对这些酶类发挥影响的药物,从而为AD药物研发提供了新的思路和研究方向。本文拟就AD的表观遗传学治疗研究综述如下。

1阿尔茨海默病(AD)概况

阿尔茨海默病(AD)是一种以进行性认知障碍和记忆力损害为主的中枢神经系统退行性疾病。它是最常见的痴呆类型,西方国家[中50%?70%的痴呆属于AD。其病因及发病机制复杂,涵盖了遗传和环境的危险因素,涉及成千上万个基因表达的改变,以及多种信号途径的上调,如P淀粉样肽W-amyloidpeptide,Ap)的沉积、Tau蛋白过度磷酸化、炎症、氧化应激、能量代谢、血管因素及细胞凋亡周期异常等。ad的典型病理改变包括突触丧失、某些神经递质水平下降、神经元内异常物质沉积以及选择性脑神经细胞死亡,使大脑受累区域广泛萎缩,导致记忆力丧失伴行为改变和人格异常,严重者可影响工作及社会生活。受累区域常会出现A沉积、老年斑(senileplaques,SP)、神经原纤维缠结(neurofibrillarytangles,NFT)及Tau蛋白过度磷酸化等。疾病逐渐进展恶化,甚至累及生命。遗憾的是目前尚缺乏延缓或阻碍疾病进展的治疗手段。

在AD中,涉及神经元退行性改变的基因达200余个,越来越多的研究数据发现在没有基因序列改变的情况下,某些机制也可以决定致病基因何时或怎样表达,最终导致AD发病。因此,AD基因组并不能完全解释发病机制[14]。已知编码APP、PSEN1和PSEN2的基因仅可导致家族性早发型AD(early-onsetAD,EOAD);而大多数(约95%)AD均为晚发型AD(late-onsetAD,LOAD)或散发型。因此可以推断,表观遗传现象或环境因素参与了LOAD的致病。这就部分解释了为什么同一家族中有的家庭成员发病而另一些不发病;而且,在年轻的同卵双胞胎中基因组无实质上的差异,而在同一老年双胞胎中其基因表观遗传学上存在显著差异。

大量研究数据证实,基因-环境相互作用在AD的病理生理过程中发挥了关键作用营养物质、毒素、环境暴露及人的生活行为,都可以在不改变基因组序列的条件下使基因激活或沉默。目前已知的可调控基因转录和表达的表观遗传学机制主要分两大类:①基因选择性转录的调控:包括基因组DNA甲基化,多种组蛋白甲基化及乙酰化等修饰;②基因转录后的调控:包括微小RNA(microRNA,miRNA)和小干扰RNA(smallinterferingRNA,siRNA)等非编码RNA的调节,以及沉默的核糖体RNA(ribosomalRNA,rRNA)基因。除此之外,染色体重塑、基因印记、X染色体失活也属于表观遗传学范畴。

2表观遗传学

表观遗传学的涵义即在DNA序列不发生改变的情况下,基因的表达与功能发生改变,并产生可遗传的表型。基本机制即:通过多种基因修饰,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。至此,表观遗传学的发现极大丰富了传统遗传学的内容,使人们认识到遗传信息可以有两种形式:即DNA序列编码的“遗传密码”和表观遗传学信息。它和DNA序列改变不同的是,许多表观遗传的基因转录和表达是可逆的,这就为许多疾病的治疗开创了乐观的前景。

2.1组蛋白修饰

组蛋白在DNA组装中发挥了关键作用,利用核心组蛋白的共价修饰传递表观遗传学信息。这些修饰主要包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化;其中组蛋白氨基末端上的赖氨酸、精氨酸残基是修饰的主要靶点,这些组蛋白翻译后修饰(post-translationalmodifications,PTMs)对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡。一般而言,组蛋白乙酰化是在组蛋白乙酰转移酶(histoneacetyl-transferase,HATs)的催化下,从乙酰辅酶A上转移乙酰基到组蛋白N-末端的赖氨酸残基上;由于乙酰化中和了组蛋白的正电荷,使组蛋白末端和相关DNA带负电荷磷酸基团之间的作用减弱,降低了组蛋白和DNA之间的亲和力,这种染色质构象的放宽有助于转录因子向靶基因片段聚集并利于转录的进行。而去乙酰化则是组蛋白去乙酰化酶(histonedeacetylases,HDACs)将乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态,从而使基因转录下降或沉默。

2.2DNA甲基化

DNA甲基化较组蛋白修饰更进一步,是表观遗传学的又一重要机制。DNA甲基化主要是在DNA甲基转移酶(DNAmethyltransferase,DNMTs,包括DNMT1、2、3a/b和4)催化下,将同型半胱氨酸(homocysteine,Hcy)-甲硫氨酸循环中S-腺苷甲硫氨酸(SAM)中的甲基,由四氢叶酸转移到胞嘧啶的第5位上形成5-甲基胞嘧啶(5-methylcytosine,5-mC)。其中,相邻的胞嘧啶-鸟嘌呤二核苷酸(CpGs)是最主要的甲基化位点。在人类基因组中,CpG以两种形式存在:一种分散存在于DNA中,其CpG70%?90%的位点是甲基化的;另一种CpG呈密集分布于一定区域,称之为“CpG岛”(CpGislands),通常位于或接近基因启动子区(promoterregions),在正常人体基因组中处于非甲基化状态。CpG岛中的胞嘧啶甲基化可以阻碍转录因子的结合,从而可致基因沉默。一般而言,高度甲基化的基因可致表达抑制,而低甲基化的基因可增强基因表达或过表达。

2.3非编码RNA

表观遗传学调控机制涉及RNA的主要包括:miRNA、siRNA以及维持细胞周期的沉默rRNA基因的一部分。

miRNA是较短的双链RNA分子,约有22个核苷酸,来源于机体自身基因即细胞核及细胞质中较大的RNA前体,有自己的启动子和调控元件。人类基因组中有约700?800个miRNA。这些小分子RNA在转录后通过绑定靶mRNA,从而抑制转录或诱导mRNA分裂降解。大多数miRNA具有高度保守性和组织特异性,可以调控机体中30%?50%的蛋白质编码基因。siRNA长短与miRNA相似,作用方式也有很多相同之处,区别在于siRNA可以体外合成,多由外源性导入或感染诱导产生。

重复rRNA基因的复制为真核生物核糖体提供了初始活性位点,在基因表达中是蛋白质合成的热点区。不同细胞类型可表现不同的活性rRNA比率,提示随着细胞发育分化,rRNA基因拷贝数比例会发生改变。沉默rRNA的表观遗传学方式在这个过程中发挥了重要作用,使活性和非活性rRNAs保持了动态平衡。

2.4染色质重塑、基因印记和X染色体失活

染色质重塑(chromatinremodeling)指基因复制、转录和重组等过程中,核小置和结构及其中的组蛋白发生变化,引起染色质改变的过程;主要机制即致密的染色质发生解压缩,暴露基因转录启动子区中的特定结合位点,使转录因子(transcriptionfactor,TF)更易与之结合。基因印记(geneticimprinting)指来自亲本的等位基因在发育过程中产生特异性的加工修饰,导致子代体细胞中两个亲本来源的等位基因有不同的表达方式,即一个等位基因有表达活性,另一等位基因沉默。X染色体失活指雌性哺乳动物细胞中两条X染色体的其中之一失去活性的现象,即X染色体被包装成异染色质,进而因功能受抑制而沉默化,使雌性不会因为拥有两个X染色体而产生两倍的基因产物。

3AD的表观遗传学3.1组蛋白修饰

研究显示,在AD中存在组蛋白的PTMs。组蛋白3(histone3,H3)磷酸化作为激活有丝分裂的关键步骤,可使AD海马神经元呈过磷酸化状态。对APP/PS1突变小鼠和野生型小鼠进行条件恐惧训练,结果显示前者乙酰化H4较野生小鼠组降低50%;之后对突变组进行HDAC抑制剂(histonedeacetylasesinhibitors,HDACIs)曲古抑菌素A的治疗,显示前者乙酰化H4水平出现了上升。在一项皮层神经元培养模型研究中,APP过度表达则可导致H3和H4乙酰化降低,以及c-AMP反应元件结合蛋白(cAMP-responseelementbindingprotein,CREB)水平下降;而CREB则是脑神经元中激活记忆相关基因,形成长期记忆的关键蛋白。总之,尽管在AD患者、AD动物模型及AD培养模型中,都出现了组蛋白修饰,但这个过程是极其复杂的,特异性位点会因功能状态不同而出现组蛋白乙酰化增加或减少。

3.2DNA甲基化

3.2.1相关基因的甲基化研究显示,尽管很难判

断AD中甲基化程度是升高还是下降,但12个甲基化的AD特异性基因表现出了显著的“表观偏移”;同时研究还发现,在DNMT1启动子内一些CpG位点也表现出年龄相关的表观偏移。研究还发现,叶酸、甲硫氨酸及Hcy代谢与DNA甲基化机制显著关联。例如,人类及动物模型叶酸缺乏将导致基因组整体低甲基化,而补充叶酸则可部分逆转甲基化程度。Smith等研究发现,衰老及AD人群中都出现了叶酸缺乏和甲硫氨酸-Hcy周期的改变。另一研究发现AD患者脑脊液(cerebro-spinalfluid,CSF)中叶酸显著下降,同样下降的还有CSF及脑组织中SAM。同时还观察到AD患者脑组织中S-腺苷同型半胱氨酸(SAH)及血浆中Hcy的升高,后者可抑制DNA甲基化。

目前已知的AD相关基因主要包括:p淀粉样蛋白前体(APP)基因、早老素1(PS1)和早老素2(PS2)基因、载脂蛋白E(ApoE)基因、p-分泌酶(BACE)基因、sortilin相关受体基因(sortilin-relatedreceptor1gene,SORL1)以及白介素1a(IL-1a)和白介素6(IL-6)基因等。其中,APP基因、BACE基因或PS1基因均存在可调控的CpG甲基化位点。有研究显示,一例AD尸检的大脑皮层中APP基因发生了完全去甲基化,而正常样本或匹克氏病(Pick’sdisease)患者样本则没有这种变化。实验发现,叶酸缺乏所致的BACE和PS1基因表达增强,可通过补充SAM而恢复正常。同样,体内实验发现,给予APP过度表达的转基因小鼠缺乏叶酸、B12及B6的饮食,可以使SAH升高并上调PS1和BACE的表达,以及促进A的沉积和出现认知障碍。在LOAD尸检标本中,研究者发现了著名的“年龄依赖的表观遗传学漂移”(age-dependentepigeneticdrift);对CpG岛异常的表观遗传学控制,可能促成了LOAD的病理变化,因此,“表观遗传学漂移”可能是LOAD个体易感的重要机制。

3.2.2Tau蛋白相关的甲基化Tau蛋白是一种微管结合蛋白(microtubulebindingprotein,MAP),它能与神经轴突内的微管结合,具有诱导与促进微管形成,防止微管解聚、维持微管功能稳定的功能。对记忆和正常大脑功能起重要作用。然而,在AD中,Tau蛋白不仅不再发挥正常功能,还会因异常磷酸化或糖基化等改变了Tau蛋白的构象,使神经元微管结构广泛破坏,形成以Tau蛋白为核心的NFT,最终导致神经元功能受损或神经元丢失。

人体在正常条件下,Tau蛋白启动子的AP2结合位点是非甲基化的,但SP1和GCF结合位点则被甲基化。而随着年龄的增加,SP1作为一种转录激活位点甲基化程度升高,GCF作为启动子抑制位点则逐渐去甲基化,因此总体而言Tau蛋白的基因表达是下调的。尤其在额叶及海马区域,正常Tau蛋白也出现了年龄相关的下降。蛋白磷酸酶2A(PP2A)是一种针对磷酸化Tau蛋白的去磷酸化酶,PP2A催化亚基的甲基化可以激活该酶。研究显示,在APP及PS1基因突变的转基因小鼠中,PP2A的甲基化程度显著下降,结果显示Tau蛋白磷酸化增高。对培养的神经元添加叶酸拮抗剂甲氨蝶呤,也可导致PP2A去甲基化,从而增加Tau蛋白的磷酸化程度。另外,还有研究显示,Hcy可以使PP2A的甲基化程度及活性下降,而添加叶酸和B12则可以逆转这个过程。总之,Tau蛋白的磷酸化和脱磷酸化间平衡是维持微管稳定性的关键因素;而其中磷酸化相关酶类的甲基化程度,成为影响Tau蛋白磷酸化的重要因素。

3.2.3异常的细胞周期和神经元凋亡研究证实,细胞周期异常和神经元凋亡是AD神经退行性变的常见机制。AD神经元中细胞周期及凋亡途径关键因子受DNA甲基化影响并发生上调。包括细胞周期素B2基因、caspase-1基因、caspase-3基因等。这些相关基因的低甲基化使细胞进入异常细胞周期。同样,高Hcy可使培养神经元凋亡,也间接证实了低甲基化导致异常细胞周期;而使用SAM还可起到拮抗细胞凋亡的效果。

3.3A与miRNA

研究发现,miRNA可以调节APP的表达、APP处理、A聚积以及BACE1的表达,从而导致A毒性改变或影响神经再生。因而,miRNA失调可使APP表达及处理过程发生改变,最终引起神经元存活率和神经再生程度的改变。针对全球AD人群和正常老年人群的对比研究发现,特异性miRNA水平存在显著差异。研究显示,在AD中APP相关miRNA显著下降,而APPmRNA水平则保持平稳,提示miRNA影响APP表达是通过抑制转录而不是促进APPmRNA的裂解;同时,在AD皮层中miRNA-106b出现显著下降。具体机制还有待进一步研究。

3.4AD与一碳代谢

叶酸代谢又称为一碳代谢,需要SAM提供甲基。诸多研究表明,AD患者常存在血浆及CSF中Hcy升高(两者浓度升高常呈正相关),血浆叶酸和B12水平下降,以及脑组织中SAM减少。早期暴露于缺乏叶酸及B族维生素饮食的动物,其AD相关基因在脑组织中发生了表观遗传学修饰。SAM作为甲基化过程最重要的甲基来源,其产生及循环依赖于甲硫氨酸循环的正常进行[11]。研究显示,AD患者CSF中SAM出现显著下降,口服SAM(1200mg,qd)4?8个月,可以使CSF中SAM浓度升高。同时,维生素B12缺乏可使SAM产生减少,从而影响甲基化。前瞻性队列研究表明,高Hcy与AD高风险显著相关,而较高的叶酸摄入量可以降低老年人的AD风险。叶酸缺乏导致的SAM缺乏以及Hcy升高,使甲基化水平下降;并且,Hcy影响SAM和SAH水平,后两者可调节DNA甲基化活性以及蛋白翻译后修饰。另外,研究还发现Hcy可通过抑制甲基化,降低PP2A甲基化程度,从而导致Tau蛋白过磷酸化、NFT及SP形成。因此,最关键机制即:叶酸/同型半胱氨酸代谢异常导致AD相关基因启动子的表观遗传修饰(CpG区域甲基化状态的改变),使基因沉默(高甲基化)或过度表达(低甲基化),最终发生AD。

4表观遗传学在AD诊疗中的应用研究

近年来,随着表观遗传学在AD研究中的不断进步,研究者已逐渐将其应用于AD的诊断及治疗中,尽管多数还处于临床前试验阶段,但表观遗传学应用于AD临床的前景是乐观并值得期待的。

4.1表观遗传学诊断手段

利用亚硫酸氢钠进行甲基化测序是检测DNA甲基化的金标准。该方法利用盐析法从血液中提取基因组DNA,经过亚硫酸氢盐处理后,变性DNA中胞嘧啶转换为尿嘧啶,而5-mC则不发生转换,因此在经过PCR扩增和DNA测序后,胸腺嘧啶则代表非甲基化胞嘧啶,而5-mC(主要为CpG二核苷酸)仍为胞嘧啶。继而由该方法延伸出多个DNA甲基化分析法,例如:甲基化特异性PCR(methylationspecificPCR,MSP)、结合亚硫酸氢盐限制性分析(combinedbisulfiterestrictionanalysis,COBRA)以及甲基敏感性单核苷酸引物(methylation-sensitivesinglenucleotideprimerextension,MS-SNuPE)等。然而,由于目前对AD相关基因甲基化的研究还不完善,只能在临床前研究中应用甲基化测序,用于对比分析AD中基因甲基化的真实状态。

实时基因成像(real-timegeneticimaging)技术是另一种判断基因表观遗传修饰的手段;该技术避免了尸检或动物研究,是一种新型的非侵入性的可视化基因调控检测。磁共振波谱(MRspectroscopy,MRS)即是这样一种特殊的磁共振成像,该技术可扫描到特定的蛋白,将来可使我们能够实现对基因表达变化的可视化实时检测,理论上而言可以追踪到DNA甲基化或组蛋白修饰的责任蛋白;因此,在一定程度上,将为AD的表观遗传学诊断和治疗提供新的手段[39]。

此外,另有研究发现,脂肪酸酰胺水解酶(fattyacidamidehydrolase,FAAH)参与了AD的发病,同时还发现FAAH易于从外周血中检出,并可作为一个新的潜在的AD生物标志物(biomarker),继而用于AD的预测或诊断。然而,由于一些AD相关蛋白或酶类在外周血中易降解,稳定的miRNA检测已成为反映疾病的重要手段。由于大多数AD患者外周血单核细胞中存在各种miRNA的表达上调(如miR-371、miR-517等),且与其在AD脑中高表达相对应,提示通过测定血浆及血单核细胞的miRNA谱变化,可作为AD诊断和病情评估的重要方法。

4.2AD的表观遗传学治疗

表观遗传学对研究AD的发病机制和病程转归,以及研发新的药物等方面开拓了广阔的空间。表观遗传学药物进入体内后,可充当基因转录或表达的“开关”,通过不同的基因修饰及调控基因表观修饰相关酶类的活性,继而达到在未改变DNA序列的情况下影响基因表型。因此,正是表观遗传学改变的“可逆性”,使与之相关药物的研发成为AD治疗研究的新方向和重点。

4.2.1HDACIs近年来,科学家们研发了多种新的HDACIs。根据化学形态主要分为4类:①短链脂肪酸类:如丁酸钠、苯丁酸盐和丙戊酸(valproicacid,VPA);②异轻肟酸(hydroxamicacid)类:如曲古抑菌素A(trichostatinA,TSA)、辛二酰苯胺异轻肟酸(suberoylanilidehydroxamicacid,SAHA);③环氧酮类:如trapoxinA和trapoxinB;④苯甲酰胺类:如MS-275。这些HDACIs与锌依赖性HDAC蛋白(zinc-dependentHDACprotein,I、II及IV类组蛋白亚型)相互作用;烟酰胺作为NAD+前体,可以抑制III类HDAC蛋白。其中,研究最广泛的是丁酸钠、苯丁酸盐、VPA、TSA和SAHA。

目前FDA批准上市的是SAHA,-种治疗T细胞淋巴瘤的新型化合物,不仅可增加组蛋白乙酰化水平,同时还可提高认知。在神经系统中,VPA具有抗惊厥和稳定情绪的作用,因此这些作用可能与引起组蛋白乙酰化改变有关;VPA还可以通过抑制GSK-3#介导的y-分泌酶裂解APP,从而抑制Ap的产生,减少A斑块,最终缓解AD模型鼠的认知功能障碍。Ricobaraza等研究显示,4-苯基丁酸乙酯(PBA)可通过降低GSD-3#来降低AD大鼠脑内Tau蛋白磷酸化,并可清除突触间A沉积,减轻内质网压力,从而恢复记忆并逆转学习障碍。而烟酰胺则可选择性降低Tau蛋白磷酸化并增加乙酰化的a微管蛋白。Fischer等也研究发现,非特异性HDACIs如VPA、TSA、4-苯基丁酸钠及伏立诺他等,都可以通过不同的表观遗传机制影响Ap沉积和Tau蛋白过磷酸化,并可改善学习和记忆力。另外,HDACi丙戊酸可以降低APP的表达,减轻大脑中的A肽斑块负担;研究还证实,HDACI治疗还可诱导树突发芽,增加突触数量,以及恢复学习行为和形成长期记忆。Zhang等报道,口服HDACIMS-275可改善神经炎症和脑淀粉样变,以及改善AD模型动物的行为能力。这些研究提示,HDACIs可通过调节HDAC蛋白活性和Tau蛋白磷酸化水平,从而用于AD的治疗.

HDACIs可选择性抑制HDACs,导致组蛋白乙酰化水平升高,恢复AD模型动物中组蛋白乙酰化水平及提高学习和记忆能力。例如:Guan等发现当脑内HDAC2过表达时,小鼠海马神经元树突棘密度降低、突触形成减少、CA1区LTP形成障碍、空间记忆和工作记忆损伤;而使用HDACIs则能够促进小鼠神经元树突棘和突触的形成,改善AD模型小鼠的学习和记忆减退状态。因此,HDAC2可能是HDACIs最适宜的治疗靶点之一,可能使脑神经元内合成新的蛋白以改善或恢复AD患者记忆。除此之外,HDACIs对基因表达的调节具有特异效应,可以在上调靶基因表达的同时下调其他基因;这种基因特异性常通过转录因子来调控,后者可以识别特定启动子和增强子序列,并赋予靶基因特异性(gene-specificeffects),使之对HDACIs具有敏感性[44],继而逆转表观遗传改变。同时,应用HDACIs治疗AD还应当考虑其是否可穿透血脑屏障,因此,最近的一项研究研发了一种可进入CNS(“CNS-penetrant”)的HDACIs(I类)EVP-0334,目前已进入I期临床试验用于AD治疗。

众所周知,AD大脑受累的主要区域为内侧嗅皮质、海马及杏仁核等。研究发现,与正常脑组织相比,AD患者皮质中HDAC6蛋白水平升高了52%,而海马中则升高了92%。HDAC6与Tau蛋白共同存在于核周,并发生相互作用;其中HDAC6具有独立的微管蛋白脱乙酰基酶的活性。使用HDAC6抑制剂Tubacin治疗或敲除HDAC6,并不能影响HDAC6与Tau蛋白的相互作用,但可以减少Tau蛋白磷酸化[55]。通过结合HDAC6,Tau蛋白可抑制脱乙酰酶活性,从而导致微管蛋白乙酰化增加;在Tau蛋白过表达的细胞中也可见这种增加;说明过量的Tau蛋白成为HDAC6的抑制剂,然而AD患者中正常Tau蛋白是减少的。文献显示,HDAC6的减少或丢失可改善联想和空间记忆形成[56,57],以及阻断A诱导的海马神经元线粒体运输障碍。最近有研究人员还发现,HDAC6无效突变(nullmutation)可以挽救神经元中Tau蛋白诱导的微管缺陷。他们采用遗传和药理学方法抑制HDAC6的tubulin特异性脱乙酰基酶活性,证实这种“挽救效应”有可能是通过增进微管乙酰化所介导的。这些研究结果表明,HDAC6有可能是AD和相关Tau病的一种独特的有潜力的药物靶点,HDAC6抑制剂有望成为AD治疗的新型药物。

目前研究证实,HDACIs可用来治疗神经变性病、抑郁、焦虑情绪、认知功能障碍及神经发育障碍,因此为AD的治疗提供广阔的前景。但现有的HDACIs存在生物利用度低、代谢快、低选择性等缺点。因此,研究开发结构新颖、副作用小、特异性及选择性高的HDACI具有重要的临床意义。

4.2.2饮食因素除此之外,饮食因素,例如叶酸、维生素B2、B6、B12、蛋氨酸、胆碱等都可以影响甲基供体SAM的形成,并影响DNMTs活性;同时,一些天然化合物,如异黄酮、黄酮、儿茶素、姜黄素、白藜芦醇等,可以改变表观遗传学机制,影响染色质修饰酶的活性,因此备受关注。

研究证实,传统用于抗肿瘤、抗氧化、抗炎、抗细胞凋亡及预防高脂血症的姜黄素,也可用于治疗AD:在体外实验中,姜黄素可抑制A聚集沉积、A#诱导的炎症、户分泌酶及乙酰胆碱酯酶的活性;而体内实验则证实,口服姜黄素可抑制AD动物脑组织中Ap沉积、Ap寡聚化及Tau蛋白磷酸化,并改善行为及认知。另有研究发现,姜黄素还可加速淀粉样斑块的分解,继而改善AD的空间记忆障碍。据Bora-Tatar等[65]报道,在33种羧酸衍生物中,姜黄素是最有效的HDAC抑制剂,甚至比丙戊酸和丁酸钠更强效;另有研究也发现,姜黄素可显著降低HDAC1、3和8蛋白水平,并可提高乙酰化H4水平。同时,姜黄素还是潜在的HAT抑制剂,2004年Balasubramanyam等[66]发现,姜黄素是p300/CREB结合蛋白HAT活性特异性抑制剂,对维持一定的CREB水平起到关键作用。因此,姜黄素对HDAC和HAT均有调节作用;作为已知的抗氧化剂,姜黄素可能是通过调节氧化应激,从而对乙酰化和去乙酰化具有双重调节作用。

AD表观遗传学改变受环境、营养因素等诸多因素共同作用,因此自孕前保健开始,直至子代的一生,都保持机体内外生存环境的良好,保证表观遗传学正常修饰及表达,在一定程度上可能会预防AD的发生。同时,由于目前糖尿病、肥胖、心血管疾病、高血压等都是公认的AD高危因素,通过表观遗传学机制防治这些疾病,也是降低AD的发生风险的重要手段。另外,提倡低热量、低胆固醇和富含叶酸、B族维生素及姜黄素等的饮食,以及降低血浆Hcy值,可能对保护大脑神经元,改善老年期认知,以及预防AD发生或逆转AD的表观遗传改变,起到一定的积极作用。

4.2.3其他因素由于DNA甲基化是可逆的,该过程的相关酶类也可作为AD治疗的研究靶点,例如DNMT抑制剂。然而,目前对DNMT抑制剂的研究多局限于肿瘤的治疗,因此对于AD的治疗作用还有待进一步研究。另外,研究发现AD中与APP裂解机制相关的多个miRNA也发生了改变,因此针对miRNA的AD表观遗传治疗成为重要研究方向。2006年,中国科学院上海生命科学研究院生物化学与细胞生物学研究所裴钢院士研究组研究发现,肾上腺素受体被激活后,可以增强y-分泌酶的活性,进而能够增加AD中Ap的产生。这项发现揭示了AD致病的新机制,提示肾上腺素受体有可能成为研发AD治疗药物的新靶点。

5展望

综上所述,在AD中,表观遗传学机制对疾病发生发展起到了关键作用,尤其是散发性AD。表观遗[8]传学调节障碍导致相关基因转录异常,引起关键蛋白或酶类异常,继而发生一系列病理生理改变,是AD发病的主要原因。表观遗传学改变可以通过表观遗传药物进行逆转,因而这不仅为AD的治疗开创了一片新天地,更引导医药行业进入了一个崭新的领域。

然而,使用表观遗传学药物治疗疾病也面临着一系列难题。对于目前可用的表观遗传学化合物如HDACIs及辣椒素等而言,主要的困难即缺乏针对不同脑区、不同神经元亚型或特异基因的“选择性”。

篇4

【关键词】同性恋;基因;表观遗传

【Abstract】The reasons of homosexuality are complex. With the development of science and technology, the reasons of homosexuality are increasingly clearly understood, which mainly involve in physiological factors and social psychological factors. This paper reviews the reasons of homosexuality, like genetic factor, biological factor, endocrine factor, Social psychological factors, as well as the recent research achievement of epigenetic factors.

【Key words】Homosexuality; Genetic; Epigenetic

【中图分类号】C913.14【文献标志码】A

自同性恋产生以来人们就没有停止对其成因的探究,随着科学技术的快速发展,生物医学和分子流行病学的不断进步,以及生理学和心理学的发展都对探究工作提供了更多的理论依据,人们对同性恋有了更清晰的认识。男男者已成为我国艾滋病流行的三大高危人群之一,同时也是性病的高危人群。其形成原因是十分复杂的,涉及生物、遗传、心理、社会文化等多重因素。本文就针对男性同性恋成因的研究进行综述。

同性恋又称同,是人际间性取向的一种。性取向指个体或群体的持续地指向何方。同性恋现象自古就有, 并一直存在, 在任何历史时期,任何文化背景下,不管社会主流支持还是反对,它都在人类社会中保持相当的比例。同性恋 ( homosexuality) 一词最早是由一名德国医生Benkert Kertbeny于1869年提出的。这个词的意思是指对异性不能做出性反应,却被同性别的人所吸引[1,2]。《生命伦理学百科全书》对同性恋的描述为:同性恋者是一个有着持久、显著、唯一的受同性性别吸引,对同性有性渴望和性反应,寻求同性并从中得到性满足的人。我国有学者将同性恋定义为:这种关系可存在于内在的心理上或外在的行为之中,如果某个人一生或一生中大部分时间都和同性别的人建立心理或者行为上的这种关系,就可称为同性恋者。男性同性恋或称男男者(men who have sex with men,MSM)指性取向为男性,且生理性别为男性者。

近年来,对于男男者的形成有先天说(生物因素)和后天说(环境因素)两种说法,前者称为素质性同性恋,后者称为境遇性同性恋[3]。但更普遍认为是由生物因素和环境因素共同决定的。其中生物因素的研究主要集中在与遗传学、神经生物学及性激素水平的相关范畴。环境因素主要在社会因素和心理因素两方面。最近,有学者还提出了同性恋的表观遗传学说,研究显示表观遗传学可能是导致同性恋的一个关键因素,从而扩大了同性恋成因的研究范围。

加州大学圣巴巴拉分校进化遗传学家William Rice[4,5]认为,同性恋会随后代遗传,这必然存在某种原因。研究估计有8%的人群是同性恋,且众所周知同性恋在家族中流行。如果一对双胞胎中有一人是同性恋者,另一个有20%的概率也是同性恋。

Mustanski等[6]利用10cm距离上的403个微卫星标记测定其基因型,分别计算母系的、父系的和联合遗传的最大可能连锁值,发现了连锁值最高的3个区域:7q36、8p12和母源的10q26。而另一项针对男同性恋全基因组扫描的分析也发现这3个区域与性取向的联系,并且发现了1个新的可能与MSM行为发生相关的14q32区[7]。

Camperio-Ciani等[8]比较了男性同性恋者和异性恋者的家系,结果显示同性恋者母系女性亲属的生育能力显著偏高,平均多生育33%的子女,父系女性亲属却没有,提示人类性取向相关的遗传因素有可能位于X染色体上,这些遗传因素未被逐步消除的原因在于携带该基因的女性生育能力较强。此外,男性同性恋的母系亲属中同性恋数目多于父系亲属,而且男性同性恋者多不是长子,有较多的哥哥或姐姐。其他几位学者的研究也报道多项家族性研究均证实男性同性恋具有遗传特征,且其相关影响因素可能位于X染色体上[9-11]。携带有同性恋基因的个体细胞,在适宜的条件下,易于发展成同性恋细胞。这就说明,同性恋的性取向有70% 是遗传基因所产生的结果[12]。Hamer等[13]对114个家庭中男性同性恋者的舅舅和表兄弟的性取向进行家系和连锁分析,并通过DNA连锁分析了兄弟均为同性恋的40个家庭的X染色体的基因多态性,发现Xq28区域可能有决定性取向的基因。

“男性基因”SRY(性别决定基因)的发现也从另外一个角度佐证了男性同性恋和变性者的生物医学基础。SRY基因在哺乳动物性别决定中起关键作用,它是决定因子( TDF),启动分化, 是发育负调节的抑制因子[13]。表现为XY的男性核型却在性染色体中查不到SRY,或SRY发生了突变, 因此可能表现为女性化,即所谓“性反转”[14]。迄今为止还没有明确证据证实染色体上某一区域或基因与男性性取向相关,但似乎可以推测遗传基因在性取向的决定上具有重要的作用,这还有待于进一步的研究。

澳大利亚学者对112 名男性同性恋和258 名男性异性恋的基因进行了比对,发现554%的男性同性恋的雄激素受体基因较长,476%的男性异性恋雄激素受体基因较长。研究人员说,雄激素受体基因较长可能导致激素信号传输弱,而激素是决定早期发育过程中大脑性别认知雄性化的关键因素。该研究认为,激素水平较低可能导致男性在大脑发育期时雄性化的过程不完整,造成性别认知方面倾向于女性[15]。

瑞典研究人员发现,男性同性恋者和女性异性恋者的大脑结构上存在某些相似特点,他们对一些志愿者进行了对比试验,脑部核磁共振成像显示,女性同性恋者和男性异性恋者都拥有不对称的大脑,左侧脑半球比右侧脑半球略小;而男性同性恋者和女性异性恋者的左右脑半球是对称的。研究人员还应用相关检测设备对志愿者脑部杏仁核区域做了分析,结果显示,男性同性恋者和女性异性恋者的杏仁核结构存在着相似性,而男性异性恋者和女性同性恋者的杏仁核结构更为相似。

科学家从脑和内分泌的研究出发,认为下丘脑是大脑负责调节包括性活动在内的身体功能的器官,同性恋可能与下丘脑有关。发现同性恋男性的下丘脑前部神经元的密度只是异性恋男性的一半,而下丘脑前角是大脑中能影响的部分,提出同性恋男性下丘脑前核神经元解剖学的差异可能导致促性腺激素释放激素释放频率的改变,这可能会成为性倾向起因的生物学基础。另外,Levay等比较了同性恋男性和异性恋男性的4种下丘脑前部间质核(interstitial nuclei of the anterior hypothalamus,INAH)的数量,其中INAHl-3是决定人类性别二态性的主要区域,结果显示异性恋男性INAH-3的数量是男性同性恋者的两倍。人体解剖发现男性同性恋INAH-3的体积与男性异性恋相比较小,但女性中却未显示出这种差异,提示了INAH-3与男性性取向的关系[16]。但目前尚未找到造成同性恋者大脑具有独特性的原因,要深入了解与同性恋相关的神经生物学机制需要进行更大规模的研究。

一些研究者考虑到激素可能会导致同性恋。胎儿的大脑受何种性激素的影响,决定了个体细胞未来的性取向。如果男性胎儿未得到激素的影响,而是受到母亲卵巢的雌激素影响,男性胎儿大脑就会女性化;女性胎儿如果受到激素的影响,女性胎儿大脑就会雄性化[13]。有学者推测异性性取向的男性的雄激素暴露水平在一个很小的范围内,不足或超过此范围都可能增加男性成为同性恋的可能性 [17]。也有学者研究发现孕期暴露于乙醇与压力应激的联合作用引发导致雄性后代的性取向的改变[18]。

一直以来也没有任何的“同性恋基因”(gay genes)被确定。根据最新的一种假说,答案或许并不在于DNA本身,而是,随着胚胎发育,子宫中母亲和胎儿两者生成的激素水平发生波动,性相关基因对此做出了反应性开启和关闭。这样的调节机制可使未出生的胎儿受益,即便是在激素处于顶峰时,也可以维持稳定的雄性或雌性发育。然而如果到孩子出生或孩子拥有自己的表观遗传学标记时,这些所谓的表观遗传改变仍然存留,那些后代其中的一些人就可能变成同性恋。在Rice[4,5]的研究中,显示男性和女性胎儿对于它们周围的激素反应并不相同,甚至当一种激素暂时性增高时,这种差异并非是基因的结构,而是基因激活的程度,以及蛋白修饰的方式及程度,如DNA甲基化与剪切、多聚尾修饰等。如在睾酮对胎儿发挥作用的信号通路中,几个关键点的表观遗传改变有可能根据需要钝化或增进了激素的活性。研究中还提到,这些表观遗传学变化在父母处于早期发育时保护了他们,而早期对父母有利的表观遗传改变可解释同性恋在进化中遗留下来。Rice等[19]最近还建立并发表了针对同性恋发展的表观模型,该模型是基于胚胎干细胞的XX与XY核型的表观遗传标记。这些标记提高了XY胎儿中睾酮的灵敏度,降低了XX胎儿睾酮的灵敏度,从而性发展得以进行。该模型预测,这些表观遗传标记的子集进行了跨代遗传,建立了同性恋的表型。Ngun TC等[20]综合相关证据认为性取向是生物学的基础并且认为涉及表观遗传学机制,最近的研究表明,性倾向在同卵双胞胎中比在异卵双胞胎中更为一致,因此认为,男性的性倾向与基因组中的一些区域相关联,该研究惊喜的发现性取向与表观遗传机制有着重要的联系。值得一提的是,在一些先天性肾上腺增生的女性病例中,由于其子宫内高水平的睾酮激素以至于其后代中非异性恋的比例高于哪些非先天性肾上腺增生的女性。同时动物模型研究有力的证明,激素暴露的长期效应是由表观遗传机制介导的,该文章通过描述的假说框架得出结论,遗传和表观遗传共同解释了性取向的有关成因问题并愈发的接近事实,但有关性取向的研究还仍然面临很多挑战。

到目前还没有有力的证据能说明同性恋是由于生理因素导致的,而对于同性恋的形成机制的第二方面,主要包括社会因素和心理因素,其中比较有影响力的观点主要有精神分析学说和行为主义学说。

关于童年早期性心理发展,弗洛伊德认为个体在幼儿时都具有两性素质及双性恋特性,到底发展成同性恋还是异性恋是与个体在成长中的个人经历有关的。他认为在人的个体发展过程当中,4 至6 岁是儿童性别认同、性别角色发展的关键时期,在此期间儿童有着强烈的“恋父情结”或“恋母情结”,对异性的父母有着本能、强烈的依恋情感,而对同性别的父母则产生敌对情绪。父母如果在此期间对儿童的这种性本能不过分刺激也不过分抑制,儿童就会顺利通过这一时期而随后逐渐对同性父母认同。反之,如果在此期间儿童遭受心理创伤,就可能隐藏在潜意识里,并且在青春期时表现出来,可能发展为同性恋[21]。家庭环境对MSM的影响很大,1962 年,贝博提出的“家庭动力是同性恋主因”认为同性恋根源于早期家庭经验。他们大多数来自单亲家庭,从小缺乏父母一方的关爱;或是父母关系很差,经常争吵,长期分居两地;还有的是个体所处的家庭结构是由他/她和多个异性姐妹组成的,或者个体从小被父母当女儿养,从小和女孩子一起玩,产生了性倒错[21,22],将会导致个体对其性别的自我认同产生影响, 并影响以后所形成的性取向。在家庭关系中,通常是母亲的形象和影响远远大过父亲,所以儿子在青春期后会寻找一个具有父亲身上没有的“男性力量”的人作为伴侣。

行为主义者认为,同性恋由环境影响形成。一个人在青少年时期如果在与异往中受挫或有过不快的经历,异性情感没得到正常的发展而与此同时又受到了同性方面的引诱,就可能产生同性恋倾向[23,24],特别的,第一次性经历对个体性取向的影响很大,许多同性恋者第一次受人引诱或者在其他情况下发生同性,从而“欲罢不能”。有学者认为同性恋的形成是极度压抑的结果,如果一个人对性的需求无法通过正常的异性途径获得满足,便会压抑它,压抑的结果便是性需求更大,而为了消除性需求所带来的压抑,个体就会另寻出路去放松这种压抑,一旦个体以同性的方式缓解了压力,就有可能经过多次该行为的强化而形成同性恋。

学校是儿童接受教育的地方,同时也是孩子的主要活动场所,孩子的大部分时间都要在学校这个微缩型社会环境中度过,尤其是初中和高中正值学生性心理迅速发展成熟的时期,其间发生的任何事情如学校和老师对学生的性教育方式和力度、关切程度,以及同伴之间的相互影响等都会给孩子造成很大的影响。

李玉玲等[25]提出同性恋发生的原因在于性情绪的作用,男女同性恋的发生原因是相同的,同性恋与异性恋发生的原因也是相同的,都是由于性情绪的作用。当个体在中体验到喜欢、兴奋、冲动、渴望等积极情绪时,则将带来这些体验的人当恋对象。若此人为同性,则产生同性恋;反之则为异性恋。此外,恋母情结对同性恋者的情绪的产生也有重要作用,有研究表明,同性恋者的父母不鼓励男孩表现出男性特征,有统治欲的母亲不允许儿子对除她自己之外的异性产生兴趣[26],因此产生变得胆小,甚至产生恐惧、偏执的心态,从而影响其未来性取向。

此外,从中医的阴阳角度来看,人体内阴阳互藏,阴阳转化。若男子,阳火不生,或阳刚之气受挫,众阴聚合,则易变主动为主静。阳中阴气愈聚,阴阳失调,则为男子中的女性。相对而言,男子中的女性,为阴,而男子为阳,阴阳的相吸作用,促使他们的自然吸引从而在一起,使得他们相互补足依靠,相互需要,从对方身上获得快乐,实现阴阳的互根交感作用[27]。

社会学的研究个案表明,同性恋个体之间在成因上是不完全相同的,单纯从一种理论出发分析他们的成因是不科学的。比如说素质性的同性恋即绝对同性恋和境遇性同性恋的成因有可能不同。境遇性同性恋更多地受环境的影响,如单性性环境的军队、监狱等,他们中有些人在改变了环境之后,又恢复到异性恋的状态。

综上所述,目前研究男性同性恋成因的领域主要包括社会学、心理学、医学、法学、哲学等多个不同的学科,男性同性恋成因十分复杂,主要涉及遗传因素、表观遗传学、神经生物因素、发育及内分泌因素、社会及心理因素等诸多方面,彼此之间的因果关系不明,尽管相关方面研究均取得了一定的进展,但尚待解决。探索男性同性恋形成原因的道路还很长,但是意义重大。

参考文献

[1]伍传仁.中国男男同性恋的研究现状. 实用预防医学, 2009, 16(3): 985-987.

[2]余放争,杨国纲,余翔.同性恋国内研究概述. 医学信息, 2006, 18(12): 1758-1761.

[3]熊明洲,韩雪,刘爱忠,等.男同性恋性取向成因影响因素Delphi法分析. http:///kcms/detail/211234R.201402081036007html.

[4]Rice WR, Friberg U, Gavrilets S. Homosexuality as a consequence of epigenetically canalized sexual development. The Quarterly review of biology, 2012, 87(4): 343-368.

[5]Bailey JM, Dunne MP, Martin NG. Genetic and environmental influences on sexual orientation and its correlates in an Australian twin sample. Journal of personality and social psychology, 2000, 78(3): 52-54.

[6]Mustanski BS, DuPree MG, Nievergelt CM, et al. A genomewide scan of male sexual orientation. Human genetics, 2005, 116(4): 272-278.

[7]Ramagopalan SV, Dyment DA, Handunnetthi L, et a1 genome-wide scan of male sexoal orientation. J Hum Genet, 2010(55): 131-132.

[8]Camperio-Ciani A, Corna F, Capiluppi C. Evidence for maternally inherited factors favouring male homosexuality and promoting female fecundity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004, 271(1554): 2217-2221.

[9]Blanchard R. Quantitative and theoretical analyses of the relation between older brothers and homosexuality in men. Journal of Theoretical Biology, 2004, 230(2): 173-187.

[10]Ciani AC, Iemmola F, Blecher SR. Genetic factors increase fecundity in female maternal relatives of bisexual men as in homosexuals. The Journal of Sexual Medicine, 2009, 6(2): 449-455.

[11]Iemmola F, Ciani AC. New evidence of genetic factors influencing sexual orientation in men: Female fecundity increase in the maternal line. Archives of Sexual Behavior, 2009, 38(3): 393-399.

[12]佚名. 同性恋是怎样形成的. 科学大观园, 2007 (23): 47.

[13]Hamer DH, Hu S, Magnuson VL, et al. A linkage between DNA markers on the X chromosome and male sexual orientation. Science, 1993, 261(5119): 321-327.

[14]姜明子. SRY 基因的研究进展. 中国优生与遗传杂志, 2007, 15(5): 119-120.

[15]研究认为同性恋可能与基因有关. 中华中医药学刊, 2011, 29(5): 1124.

[16]于微, 冯铁建. 男性同性恋生物学成因的研究进展. 中华医学遗传学杂志, 2012, 29(002): 172-175.

[17]Rahman Q. The neurodevelopment of human sexual orientation. Neuroscience & Biobehavioral Reviews, 2005, 29(7): 1057-1066.

[18]Popova NK, Morozova MV, Naumenko VS. Ameliorative effect of BDNF on prenatal ethanol and stress exposure-induced behavioral disorders. Neuroscience Letters,2011,505(2):82-86.

[19]Rice WR, Friberg U, Gavrilets S. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model. Bioessays,2013,35(9):764-770.

[20]Ngun TC, Vilain E. The biological basis of human sexual orientation: is there a role for epigenetics. Advances in Genetics,2014,86(1):167-184.

[21]李阳, 张延华, 张海霞. 同性恋形成机制探析. 医学与哲学: 人文社会医学版, 2007, 28(6): 50-51.

[22]吴天亮, 张健, 陈国永, 等. 男男同性恋常见精神健康问题及成因探析. 中国性科学, 2013,22(9): 85-87.

[23]马文靖. 浅析同性恋成因中的心理、社会因素. 科技信息 (学术研究), 2008(11): 156-157.

[24]高淑艳, 贾晓明. 近15年来国内同性恋的研究概况. 中国健康心理学杂志, 2008 ,16(4):461-463.

[25]李玉玲. 同性恋是怎样发生的. 中国性科学, 2006, 15(3): 32-35.

[26]杨扬, 岳文静, 朱振菁. 同性恋的心理社会成因. 学理论, 2012 (15): 63-64.

篇5

[关键词] 胃癌;遗传学;表观遗传学;非编码RNA;DNA甲基化;组蛋白修饰

[中图分类号] R735.2 [文献标识码] A [文章编号] 1673-7210(2013)07(a)-0043-04

胃癌是消化道最常见的恶性肿瘤之一,在全球肿瘤死亡原因中排名第二,其5年生存率在10%左右[1]。胃癌的发生与发展是多种因素交互作用的结果,包括环境、饮食、遗传、幽门螺杆菌感染、慢性炎症浸润、癌前病变等。随着人们对胃癌研究的不断加深,遗传因素及表观遗传因素已经成为研究中的热点,对于胃癌的发病机制、细胞免疫与防御、细胞分化及预防治疗等方面具有十分重要的意义,本文就其研究进展做一综述。

1 表观遗传学

表观遗传学是研究细胞分裂增殖过程中,不改变相关基因的DNA序列而影响相关基因的表达,这种改变能通过有丝分裂和减数分裂进行遗传的一门学科[2-3]。表观遗传的变化在肿瘤的发生、发展、复发、预测预后的价值已经得到了证实[4-7]。表观遗传学的范畴包括DNA甲基化、组蛋白修饰、非编码RNA的改变等。

1.1 DNA甲基化与胃癌

DNA甲基化是指在DNA甲基转移酶(DNMT)的作用下,将甲基由S-腺苷甲硫氨酸转移到胞嘧啶5位碳原子上,形成5-甲基胞嘧啶[8]。胃癌中存在很多癌相关基因的甲基化,在胃癌形成的各个阶段都能检测到DNA甲基化的存在[9]。Cooper等[5]对包括220份慢性萎缩性胃炎、196份肠上皮生化、134份胃腺瘤、102份不典型性增生和202份胃癌及其癌旁组织和相应血液标本,采用甲基化特异性聚合酶联反应(methylation-specific PCR,MSP)检测RUNT相关转录因子3(RUNX3)启动子的甲基化状态。结果发现RUNX3的甲基化水平与胃癌的发生发展有关,从萎缩性胃炎(15.9%)到肠上皮生化(36.7%)、胃腺瘤(41.8%)、不典型性增生(54.9%)、胃癌(75.2%),甲基化水平逐渐提高,RUNX3基因甲基化在血清中检测到的水平与胃癌组织中的水平显著一致,表示循环RUNX3基因甲基化可作为标志物检测早期胃癌并有望用于胃癌的筛查。

既然检测DNA甲基化可能用于胃癌的早期诊断,那么甲基化与胃癌的临床病理特征、预后及治疗是否存在某种联系呢?贾安平等[10]应用甲基化特异性PCR(MSP)检测74例胃癌组织p16基因的启动子CpG岛的甲基化状态,发现胃癌组织中p16基因的甲基化阳性率为56.8%,肿瘤分期晚、有淋巴结转移的阳性率更高。Guo等[11]使用MSP的方法检测了92例胃贲门腺癌RASSF1A基因启动子甲基化的情况,其中54例的出现异常甲基化,随着胃癌的进展,其甲基化率也逐渐增高。表明p16基因及RASSF1A基因甲基化可能与胃癌的病期相关。姜蕊等[12]在54例胃癌组织中检测钙黏蛋白(E-cadherin)基因的异常甲基化,发现E-cadherin基因启动子异常甲基化频率为48.1%,显著高于癌旁正常组织中的11.11%,并随疾病进展而进一步提高。E-cadherin异常甲基化状态与患者的性别及年龄均无关,而与胃癌的分化程度、病例类型、浸润深度及淋巴结转移、临床分期有关。提示胃癌组织中E-cadherin基因甲基化状态可帮助判断胃癌分化程度、进展情况,及预测预后。Sugita等[13]又对转移复发性胃癌异常甲基化与化疗疗效相关性进行了研究,分析80例手术治疗后发生转移或复发的患者,使用氟尿嘧啶为基础的化疗。发现存在BNIP3(Bcl-2/adenovirus E1B 19 kDa-interacting protein 3)和DAPK(death-associated protein kinase)基因甲基化的患者总生存期(OS)及无进展生存期(PFS)较短,且对化疗的反应率较低。可见DNA甲基化与胃癌发生、发展和预后之间有着密切的关系,进一步研究DNA甲基化的机制,全面绘制DNA甲基化谱,可能对于胃癌的筛查、早期诊断、疗效预测及预后判断有帮助。

1.2 胃癌与组蛋白修饰

组蛋白是存在于真核生物体细胞染色质中的一组进化上非常保守的碱性蛋白质,含精氨酸和赖氨酸等碱性氨基酸较多,是由德国科学家A.柯塞尔于1834年首先发现的。常见的组蛋白修饰方式有乙酰化、甲基化、磷酸化、泛素化等。研究发现组蛋白修饰与其他表观遗传学改变共存于胃癌中,现在以乙酰化、甲基化、磷酸化研究最多[14]。

组蛋白磷酸化 组蛋白磷酸化是在组蛋白尾区加入带有负电荷的PO4基团,常发生于真白的丝氨酸、苏氨酸和酪氨酸残基上,并且是可逆性修饰。其在有丝分裂、细胞死亡、DNA损伤修复、DNA复制和重组过程中有着直接的作用[15]。Fehri等[16]发现幽门螺杆菌可以诱导组蛋白H3丝氨酸10(H3S10)磷酸化水平降低,从而调节细胞周期,与幽门螺杆菌诱导胃癌发生相关。

1.2.1 组蛋白甲基化 组蛋白甲基化的位点多位于组蛋白H3和H4的精氨酸及赖氨酸残基上,其甲基化方式有单甲基化、双甲基化、三甲基化。其中H3-K4三甲基化的缺失、H3-K9甲基化和H3-K27三甲基化,这些甲基化改变在肿瘤早期出现并随肿瘤进展变化而改变[17]。这些都与胃癌的发生发展有着密切的关系。

1.2.2 组蛋白乙酰化 组蛋白乙酰化是组蛋白乙酰基转移酶将乙酰辅酶A乙酰基部分转移到核心组蛋白氨基末端特定赖氨酸残基上。一般认为组蛋白乙酰化与基因激活相关,而组蛋白去乙酰化与基因沉默或抑制有关。Mitani等[18]通过对29例胃癌组织标本的分析,发现组蛋白H3去乙酰化可以抑制抑癌基因p21(WAF1/CIP1)的表达,而对乙酰化抑制剂处理后,胃癌细胞组蛋白乙酰化水平升高,从而诱导p21(WAF1/CIP1)的表达上调。

总之,特定的组蛋白修饰与特定的基因激活或抑制相关,组蛋白修饰在基因调控中起着重要作用。进一步研究组蛋白修饰及其与基因调控的关系,有利于肿瘤发病机制研究,开发新的抗肿瘤药物,例如去乙酰化抑制剂等。

1.3 胃癌与非编码RNA

非编码RNA是指参与蛋白质翻译过程,不被翻译成蛋白质的RNA,如tRNA、rRNA、miRNA、snRNA等,而miRNA是目前研究的热点。miRNA(microRNA)属于非编码RNA的一种,是内源性非编码小RNA。miRNA是长约18-26nt的单链RNA分子,起始于pri-miRNA,pri-miRNA在核内被Drosha酶复合体切割为miRNA前体,经转运蛋白expoin5的作用下,从核内运输到胞质,再由Dicer酶进一步切割成miRNA[19]。Wu等[20]应用RT-PCR的方法检测了30例胃癌组织和配对正常组织的60个候选miRNA,从中筛选出5个miRNA(miR-125a-3p, miR-133b, miR-143, miR-195,miR-212),经过ROC分析表明miR-195和miR-212对于预测是否发生淋巴结转移具有较高的敏感性和特异性。Brenner等[21]通过从45例胃癌患者手术标本中提取RNA,再通过QRT-PCR(Quantitative real-time polymerase chain reaction)的方法检测发现,miR-451、miR-199a-3p、miR-195在预后良好及预后不良的患者中,表达存在差异,表达高的患者复发率高、预后差。miR-451、miR-199a-3p、miR-195可以作为胃癌预后的预测因子。Konishi等[22]对胃癌患者的血浆检测发现miR-451和miR-486的浓度在术后分别下降90%和93%,表明miR-451和miR-486可能作为血液学检查的手段用以筛查胃癌。

miRNA的种类很多,对胃癌的作用途径多种多样,表1列举了部分miRNA与胃癌的发生发展、治疗及预后之间的关系。随着对于miRNA作用机制的进一步深入研究,有望使miRNA成为胃癌诊断及预后预测的新的生物学标记,还可能使其成为药物标靶或模拟其进行新药研发,为胃癌治疗提供一种新的手段。

2 遗传学改变

遗传学改变是指基于基因序列改变而导致的基因表达水平的变化,如基因突变、基因杂合丢失和微卫星不稳定等。其中尤其以单核苷酸多态性(single nucleotide polymorphism,SNP)最为常见。SNP影响并改变了某些正常的炎症过程、免疫调节、DNA合成及修复等病理生理过程,而这些变化最终导致胃癌的发生。

2.1细胞因子及酶的基因多态性与胃癌

细胞因子是免疫细胞产生的一大类能在细胞间传递信息、具有免疫调节和效应功能的蛋白质或小分子多肽。主要包括白介素(IL)、肿瘤坏死因子(TNF)、表皮生长因子(EGF)、转化生长因子(TGF)、基质金属蛋白酶(MMP)、环氧合酶(COX)等。Guo等[29]通过分析中国北方人群胃贲门腺癌患者的转化生长因子-β1(TGF-β1)基因多态性,发现患者中-509T和869C基因型和等位基因分布较健康人群明显升高,与非携带者相比,携带者发生Ⅲ期和Ⅳ期肿瘤的风险增加。有研究发现,IL-10的-1082G等位基因与胃癌高风险相关[30],Sun等[31]研究发现,IL-10的基因多态性分析中-1082G等位基因使胃癌患者发生恶液质的风险显著增加。宋传贵等[32]对福建地区102例完整随访的胃癌患者进行MMP-1基因多态性的基因型鉴定发现,2G/2G基因型可能是影响福建地区胃癌患者生存的不良预后因子之一,与含1G基因型相比,2G/2G等位基因携带者发生肝脏转移的机会明显增大。殷霞丽等[33]通过对118例胃癌患者的COX-2基因启动子区-1195G>A的多态性研究发现-1195G>A基因型与肿瘤大小及浸润深度明显相关,其中-1195A提示存在肿瘤大、浸润深度深的高风险,同时与COX-2免疫组化表达存在显著相关性。

2.2 DNA修复基因多态性与胃癌

DNA损伤修复是一个非常复杂的过程,维持基因稳定性和细胞正常功能的中心环节主要是DNA修复能力,如果相关修复基因发生突变,就会导致整个基因组DNA修复能力下降,从而引起细胞增殖和分化失控,导致肿瘤发生[34]。Yuan等[35]通过分析160例胃癌患者与其对照组的X射线损伤修复交叉互补基因1(XRCC1)的基因多态性分布,发现携带XRCC1 194Trp基因型的个体患胃癌风险增高,可能是由于该变异影响了XRCC1蛋白的修复功能。

2.3抑癌基因多态性与胃癌

抑癌基因是一类调控细胞生长、抑制肿瘤表型表达的基因,可通过纯合缺失或失活而引起细胞恶性转化。p53基因作为重要的肿瘤抑制基因,在肿瘤的发生、发展中都具有重要作用。Song等[36]通过大规模的病例对照研究发现p53-72Pro.Pro基因型的个体患胃癌的风险增加。而Shirai等[37]的研究也表明该基因型的胃癌化疗效果及预后差、容易发生远处转移。

2.4其他基因多态性与胃癌

除了上述各种遗传基因多态性与胃癌的发生发展及预后密切相关,还有多种胃癌易感基因。在中国人群中研究发现,前列腺干细胞抗原基因(PSCA)的rs2294008T等位基因能显著提高非贲门胃癌的发病风险,并且rs2294008T等位基因和rs2976392A等位基因与非贲门胃癌低分化和高级别有关[38]。而最近的一项荟萃分析通过对9个病例对照研究的分析,表明PCSA的rs2294008T等位基因和rs2976392A等位基因与非贲门或弥漫性胃癌的易感性有关[39]。Xu等[40]通过对929例中国胃癌患者超氧化物歧化酶2(SOD2)和谷胱甘肽巯基转移酶(GSTP1)基因多态性研究发现,SOD2的rs4880 CT+CC基因型与淋巴结转移高度相关,GSTP1的rs1695 GA+GG基因型与肿瘤大小关系密切,表明SOD2的rs4880 CT+CC基因型与GSTP1的rs1695 GA+GG基因型与胃癌的进展及侵袭性相关,而活性氧(ROS)的代谢途径可能成为潜在的治疗靶点。

2.5遗传学改变研究中的一些问题

以上论述只是目前已发现颇具规模的胃癌易感多态性基因中的一小部分,然而只有PSCA等少数几个基因与胃癌易感性的关系较为明确。其主要原因可能为:①目前胃癌关联研究样本普遍都很小[41];②不同胃癌类型还受到表观遗传学的影响;③不良饮食、生活习惯和环境等外在因素促进甚至导致胃癌发生[42];④胃癌家系成员生活环境和遗传背景较一致,基于家系的连锁分析是鉴定胃癌相关基因的比较简单的方法,但是胃癌家系样本难以获得,并且通过家系定位的致病基因往往是该家族特异的,应用到群体中具有一定局限性。

因此尽量使病例同质化,采用较大规模的研究样本和不同群体的验证,并在分析时注意不良饮食、生活习惯及环境等外在影响因素,将有利于明确胃癌的易感基因。

3 总结

胃癌的发生是多基因遗传和表遗传共同作用的结果,通过研究遗传和表遗传改变发现了很多与胃癌的发生、发展及预后密切相关的因素,它们对于胃癌的早期诊断及预后判断起着至关重要的作用,而阻断这些遗传和表遗传改变的发生为胃癌的治疗提供了更广阔的研究和发展空间。

近年来的遗传学和表观遗传学研究主要集中在胃癌的早期诊断及预后预测方面,但是其中大多数研究仅针对单个位点或者单个基因多态性的变化上,很少有研究其相互关联的变化对胃癌的影响。而且这些检测运用于临床前,其敏感性及特异性也有待进一步明确。对于那些被发现可能成为潜在治疗靶点的基因位点,需要更多更大的重复性研究来确定它的真实可靠性,而后才是更深入地去发现通过何种手段去阻断及干预。随着研究的不断深化,基因与基因、基因与环境之间的相互作用将被更深入地解析,利用基因分析的方法来评估个体胃癌风险,制定更加个体化的治疗方案是未来研究的方向。

[参考文献]

[1] Nardone G. Review article:molecular basis of gastric carcinogenesis [J]. Aliment Pharmacol Ther,2003,17(2):75-81.

[2] Holliday R. The inheritance of epigenetic defects [J]. Science,1987,238(4824):163-170.

[3] Wolffe AP,Matzke MA. Epigenetics:regulation through repression [J]. Science,1999,286(5439):481-486.

[4] Lo PK,Sukumar S. Epigenomics and breast cancer [J]. Pharmacogenomics,2008,9(12):1879-1902.

[5] Cooper CS,Foster CS. Concepts of epigenetics in prostate cancer development [J]. Br J Cancer,2008,100(2):240-245.

[6] Nystrom M,Mutanen M. Diet and epigenetics in colon cancer [J]. World J Gastroenterol,2009,15(3):257-263.

[7] Enokida H,Nakagawa M. Epigenetics in bladder cancer [J]. Int J Clin Oncol,2008,13(4):298-307.

[8] Cheng X,Blumenthal RM. Mammalian DNA methyltransferases:a structural perspective [J]. Structure,2008,16(3):341-350.

[9] Lu XX,Yu JL,Ying L S,et al. Stepwise cumulation of RUNX3 methylation mediated by Helicobacter pylori infection contributes to gastric carcinoma progression [J]. Cancer,2012,118(22):5507-5517.

[10] 贾安平,梁秀兰,胡宏波.胃癌中p16基因甲基化及其与胃癌临床病理特征的关系[J].华夏医学,2011,(3):254-257.

[11] Guo W,Dong Z,Chen Z,et al. Aberrant CpG island hypermethylation of RASSF1A in gastric cardia adenocarcinoma [J]. Cancer Invest,2009,27(4):459-465.

[12] 姜蕊,赵春明,宋美娟,等.胃癌组织中E-cadherin基因启动子异常甲基化状态观察[J].山东医药,2012,51(50):4-6.

[13] Sugita H,Iida S,Inokuchi M,et al. Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer [J]. Oncol Rep,2011,25(2):513-518.

[14] Krause B,Sobrevia L,Casanello P. Epigenetics:new concepts of old phenomena in vascular physiology [J]. Curr Vasc Pharmacol,2009,7(4):513-520.

[15] Oki M,Aihara H,Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in disease [J]. Subcell Biochem,2007,41:319-336

[16] Fehri LF,Rechner C,Janen S,et al. Helicobacter pylori-induced modification of the histone H3 phosphorylation status in gastric epithelial cells reflects its impact on cell cycle regulation [J]. Epigenetics,2009,4(8):577-586.

[17] Esteller M. Epigenetics in cancer [J]. N Engl J Med,2008,358(11):1148-1159.

[18] Mitani Y,Oue N,Hamai Y,et al. Histone H3 acetylation is associated with reduced p21(WAF1/CIP1)expression by gastric carcinoma [J]. J Pathol,2005,205(1):65-73.

[19] Pillai RS. MicroRNA function:multiple mechanisms for a tiny RNA? [J]. RNA,2005,11(12):1753-1761.

[20] Wu WY,Xue XY,Chen ZJ,et al. Potentially predictive microRNAs of gastric cancer with metastasis to lymph node [J]. World J Gastroenterol,2011,17(31):3645-3651.

[21] Brenner B,Hoshen MB,Purim O,et al. MicroRNAs as a potential prognostic factor in gastric cancer [J]. World J Gastroenterol,2011,17(35):3976-3985.

[22] Konishi H,Ichikawa D,Komatsu S,et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre-and post-operative plasma [J]. Br J Cancer,2012,106(4):740-747.

[23] Hur K,Han TS,Jung EJ,et al. Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer [J]. J Pathol,2012,228(1):88-98.

[24] Hou Z,Yin H,Chen C,et al. microRNA-146a targets the L1 cell adhesion molecule and suppresses the metastatic potential of gastric cancer [J]. Mol Med Rep,2012,6(3):501-506.

[25] Su Y,Ni Z,Wang G,et al. Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p [J]. Int immunopharmacol,2012,13(4):468-475.

[26] Liu K,Li G,Fan C,et al. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance [J]. J Int Med Res,2012,40(2):467-474.

[27] Tsai KW,Liao YL,Wu CW,et al. Aberrant expression of miR-196a in gastric cancers and correlation with recurrence [J]. Genes Chromosomes Cancer,2012,51(4):394-401.

[28] Hashiguchi Y,Nishida N,Mimori K,et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance [J]. Int J Oncol,2012,40(5):1477-1482.

[29] Guo W,Dong Z,Guo Y,et al. Polymorphisms of transforming growth factor-β1 associated with increased risk of gastric cardia adenocarcinoma in north China [J]. Int J Immunogenet,2011,38(3):215-224.

[30] 白雪蕾,孙丽萍,刘瑾,等.白介素10-1082G/A位点单核苷酸多态性与中国北方人群胃癌发病风险的病例对照研究[J].癌症,2008,27(1):35-40

[31] Sun F,Sun Y,Yu Z,et al. Interleukin-10 gene polymorphisms influence susceptibility to cachexia in patients with low-third gastric cancer in a Chinese population [J]. Mol Diagn Ther,2010,14(2):95-100.

[32] 宋传贵,刘星,黄昌明,等.MMP-1基因1G/2G多态性与胃癌预后相关性的探讨[J].中华肿瘤防治杂志,2011,18(11):833-835.

[33] 殷霞丽,谢丽,魏嘉,等.COX-2单核苷酸多态性与胃癌生物学行为相关性研究[J].现代肿瘤医学,2010,18(11):2192-2195.

[34] Berwick M,Vineis P. Markers of DNA repair and susceptibility to cancer in humans:an epidemiologic review [J]. Journal of the National Cancer Institute,2000,92(11):874-897.

[35] Yuan T,Deng S,Chen M,et al. Association of DNA repair gene XRCC1 and XPD polymorphisms with genetic susceptibility to gastric cancer in a Chinese population [J]. Cancer Epidemiol,2011,35(2):170-174.

[36] Song HR,Kweon SS,Kim HN,et al. p53 codon 72 polymorphism in patients with gastric and colorectal cancer in a Korean population [J]. Gastric Cancer,2011,14(3):242-248.

[37] Shirai O,Ohmiya N,Taguchi A,et al. P53,p21,and p73 gene polymorphisms in gastric carcinoma [J]. Hepatogastroenterology,2010,57(104):1595-1601.

[38] Wu C,Wang G,Yang M,et al. Two genetic variants in prostate stem cell antigen and gastric cancer susceptibility in a Chinese population [J]. Mol Carcinog,2009,48(12):1131-1138.

[39] Shi D,Wang S,Gu D,et al. The PSCA polymorphisms derived from genome-wide association study are associated with risk of gastric cancer:a meta-analysis [J]. J Cancer Res Clin Oncol,2012,138(8):1339-1345.

[40] Xu Z,Zhu H,Luk JM,et al. Clinical significance of SOD2 and GSTP1 gene polymorphisms in Chinese patients with gastric cancer [J]. Cancer,2012,118(22):5489-5496.

[41] Chen B,Cao L,Zhou Y,et al. Glutathione S-transferase T1(GSTT1)gene polymorphism and gastric cancer susceptibility:a meta-analysis of epidemiologic studies [J]. Dig Dis Sci,2010,55(7):1831-1838.

篇6

关键词:医学遗传学;基础医学专业;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2018)10-0097-02

基础医学专业是一门新兴专业,于1996年在我国原北京医科大学、浙江医科大学、上海第一医科大学和哈尔滨医科大学等学校首批承办了该专业[1]。我校南京医科大学也于2014年开始招收五年制基础医学专业本科生,旨在培养适应我国医学科学和医疗卫生事业发展,具有创新精神、综合素质高、知识面广、掌握扎实的基础医学科学和生命科学基本理论知识和实验技能,并有较强的继续学习和发展潜力,将来能够在高等医学院校、医院和医学科研机构等部门从事基础医学各学科的教学、医学实验及科学研究工作的医学专门人才。这就要求该专业的学生既要熟悉临床医学的基础知识,了解临床医学的新进展和新成就,也要具有良好的基础医学各学科实验技能,掌握现代生物医学的基本实验技术以及医学实验的分析、设计方法和操作技术。因此,找到适合基础医学专业学生的培养模式,使医学理论知识与科研及临床培养紧密相结合是现在亟待解决的重要问题。

一、我校基础医学专业医学遗传学课程教学现状

医学遗传学作为一门独立的课程,出现于20世纪50年代,目前已成为医学科学领域十分活跃的前沿学科,被称为现代医学新的五大支柱课程之一[2-3]。医学遗传学是医学与遗传学的结合,是一门研究人类遗传病发病机制、传递规律以及诊断、治疗与预防的基础医学和临床医学之间的桥梁学科[4-5]。医学遗传学基础知识涉及广泛,与很多学科(如细胞生物学、分子生物学、生物化学等)有一定的交叠,因此知识零碎,且涉及一些公式的推导和应用,相对枯燥抽象;而临床医学遗传学则与人类健康、优生优育密切相关,不仅需要掌握遗传病发病的因素和机理,还要求熟悉临床表现和基本防治手段,但目前我校医学遗传学教学侧重于基础知识方面,没有临床实践教学,不利于培养学生理论联系实际的能力。而我校基础医学专业开设的医学遗传学总课时为54(理论36课时,实验18课时),理论和实验课时都较少,导致以往教学过程中采取单纯的“灌输式”教学方法,且最后评价方式单一,不利于学生主动性、积极性和综合能力的培养。同时,与临床医学相比,基础医学专业着重强调学生科研能力的培养。

为了进一步说明教学改革的急迫性,本教研室对这学期刚上完医学遗传学的2015级基础医学专业的学生做了授课问卷调查,其中50%的学生都认为医学遗传学的授课需要改变,这其中有67%的学生都反映医学遗传学比较枯燥乏味,需要更有趣的内容或授课方式,基于这种现状,改革医学遗传学教学和评价的方式迫在眉睫。

二、我校基础医学专业医学遗传学课程教学改革方向

1.开展综合教学模式。当代高等教育教学模式多样,授课再也不应采用单一的LBL(lecture-based learning)教学法,即教师为讲课中心的一种传统教学法。为此,我们计划采取LBL、PBL(problem-based learning)以及E-Learning(electronic learning)C合教学模式讲授医学遗传学。首先选择LBL教学模式,使学生准确系统地掌握医学遗传学的基础知识,再通过本教研室编写的两个医学遗传学案例(“不食人间烟火的孩子”和“笨小孩”)实施PBL案例导向教学,培养学生自主学习能力以及科研及临床思维能力等。同时,与时俱进,安排学生参与本教研室构建的医学遗传学E-learning网络自主学习平台,利用丰富多样化的网络教学资源全面开展辅助教学。我们教研室安排教师轮流值日,每章节授课结束后平时作业,使学生学习不再受空间和时间限制。同时及时回答网上同学的问题,积极与学生互动,促进学生与教师之间的沟通和交流,激发学生的学习热情。

2.加强医学遗传学理论知识与科研及临床的结合。基础医学专业的学生需要着重培养理论知识的运用能力,即理论知识与科研及临床相结合的能力。故当五大类遗传病(单基因病、多基因病、染色体病、线粒体病和体细胞遗传病)讲完之后,可以安排学生到南京医科大学附属医院,如南京市妇幼保健院的遗传医学中心见习,让学生实地对临床病例进行观察,研究遗传病的发病原因、传递方式和治疗方案,从而使学生对书本上的知识有更直观的认识,也培养了学生的学习兴趣。我们还可根据教学内容,设计简单的临床遗传咨询案例,请学生模拟遗传咨询师,解答咨询者的问题。

从科研角度结合医学遗传学的教学,可以把医学遗传学最前沿的知识融汇到教学内容当中,让学生深刻理解教学内容,开拓学生的科学视野,同时还能培养学生的科学意识和动手能力。在讲授医学遗传学的过程中,如表观遗传学这章,是近几年来的研究热点,可以安排学生查阅相关文献,撰写综述,从而培养学生查找和阅读文献的能力,让学生了解该方面最新的研究成果。还可以安排基础医学专业学生参观我们发育遗传学系的实验室,有兴趣的学生可以直接参与相关课题研究,做些简单的实验,并参与实验室例会;同时当有国内外科学研究工作汇报的时候安排该专业学生进行学习。

3.建立多元化评价体系。目前我校医学遗传学考核方式还是单一的试卷考核制度,存在一定的偶然性,并不能全面地评价学生能力,以至于出现“高分低能”的现象。为了改变这一现状,本研究团队拟建立多元化评价体系。如上面所说的PBL评价考核;E-learning平时作业和参与度考核;综述写作考核;实验操作和实验报告考核以及最后的试卷考核,将这些考核按照一定比例综合,得出一个合理的分数。当然,这些不同考核方式的比例和打分标准应该在开学时就和基础医学专业的学生解释清楚。多元化评价体系的建立有利于全面反映学生的综合素质,对学生的发展具有长远意义。

4.培养优秀的现代化医学遗传学教师。现代医学遗传学发展迅速,作为高等院校的教师需要紧跟时代,向学生传输最新的知识,这就要求教师长期进行继续教育。除了平时多读文献充实自己之外,遗传咨询师的培训则是其中一个实现医学遗传学教师自我提升的有效方式。遗传咨询师是将先进的技术以易懂的方式宣传给大众,同时能为普通大众遇到的遗传问题提供建议及相关解决方案,使先进技术迅速、准确地转化为临床应用的专业人才,同时我国现在至少有2―5万遗传咨询师的缺口。因此,在中国遗传学会遗传咨询分会参加遗传咨询师培训有利于我们掌握最新的医学遗传知识,并能有效地和临床医学结合起来,从而进一步提高教学水平。

三、结语

医学遗传学传统“老师讲,学生听”的教学模式并不能很好地调动学生的主动性和积极性,而基础医学专业作为我校南京医科大学新开设的学科尤其强调理论联系临床和科研的培养,因此我校急需进行医学遗传学全面教学改革,包括进行医学遗传学综合教学模式改革;加强医学遗传学理论知识与科研及临床的结合;开展综合性实验;建立多元化评价体系以及培养优秀的现代化医学遗传学教师,从而进一步提高教学质量,更好地培养基础医学专业学生。

参考文献:

[1]赵丽,罗艳琳,韩松,李俊.谈基础医学专业本科生科研能力的培养[J].继续医学教育,2015,29(11):47-49.

[2]顾鸣敏,望铸钢.医学遗传学[M].上海:上海科学技术文献出版社,2013.

[3]刘忠平,李质馨,徐冶,田洪艳,林冬静,潘晓燕.医学遗传学教学的几点体会[J].山西医科大学学报:基础医学教育版,2010,12(7):684-686.

篇7

住院医师:

对患者、对疾病的专业性思考

于力的爷爷是闻名乡里的老中医,受爷爷的影响,他从小便立志当一名医生,希望像爷爷那样为饱受疾病折磨的人们解除痛苦。“”期间,面对动荡不安的生活,父亲却从未放松过对于力思想品德及文化课的教育。1977年恢复高考时,于力如愿以偿地考上了白求恩医科大学临床医学系。他十分珍惜这来之不易的学习机会,在当时特定的社会环境和艰苦的校园生活中,他克服重重困难,发奋努力。经过五年的寒窗苦读,于力以优异的成绩从白求恩医科大学毕业,他被分配到中国人民总医院工作,开始了军医生涯。这让作为医生的于力,身上又融入了军人特有的坚韧和意志。

当时,总医院的老专家大部分都毕业于中国协和医科大学,他们继承了“协和”的优良传统,保持着严谨的学术态度和科学的工作作风。对于年轻医生,医院制定了一系列的培养计划,实行24小时坐班制,正是这种严格的训练,为于力的临床工作以及未来的发展打下了坚实的基础。

白血病患者以年轻人居多,在当时病死率极高。看着这些年轻的生命被“白血病魔”无情地吞噬,促使于力在内科系统轮转两年后主动选择了血液科,成为一名血液科医生。他决心努力学习临床知识,做一个挽救白血病患者的人民军医。

进入血液科后,于力又接受了4年严格的血液病专科住院医师临床训练。在血液科老专家们的精心培养和严格带教下,他戒骄戒躁,认真学习临床知识,刻苦钻研业务,诊治了各种各样的血液病患者。

经过6年的临床工作后,于力深深体会到,要使自己在血液系统恶性肿瘤的诊治方面有所成就,解决临床工作中遇到的难题,就必须进一步深造。

1988~1991年,于力师从汪月增教授攻读硕士研究生,主攻 “血液系统恶性肿瘤的诊断及治疗”这一课题。汪月增教授对学生严格要求,诲人不倦,毫无保留地将自己在多年的临床及基础研究工作中所积累的经验传授给弟子,这使于力在专业基础理论、基础实验技能以及临床研究方面进了一大步。

主任医师:

对科室、对医院的宏观性思考

1991~1994年,于力就读于中国协和医科大学攻读博士学位,师从著名肿瘤学家孙燕院士。当年孙燕院士只招收一名外院考来的博士研究生,最终于力从层层考核中脱颖而出,成为了这唯一的一名博士研究生。读博三年中,于力不仅学到了前沿医学知识,开阔了视野,而且还学到了孙燕院士的为人之道和敬业精神。在孙燕老师的指导下,于力在肿瘤学、分子生物学等诸多方面获得了长足的进步,这是于力人生中非常重要的一段历程。即使毕业后回到总医院血液科工作,每年在孙燕老师生日时,于力都要和同学们一起来到孙燕老师的身边,聆听他的教诲,一直延续至今。

1996年,于力应美国俄亥俄州立大学肿瘤研究所的邀请,在其血液内科从事博士后研究,用分子生物学的方法研究白血病。学成归国的他于1999年发现了两个白血病相关基因LRP15和LRP16,这是国际上首次发现的两个新基因,并在国际基因库中注册。2000年,于力以“恶性淋巴瘤分子生物学等基础及临床研究”的研究课题获中国人民军队科技进步二等奖,当时的他已是主任医师、教授、博士研究生导师。

2001年,于力教授与美国俄亥俄州立大学肿瘤中心主任、肿瘤医院院长,国际著名血液病杂志《BLOOD》副主编Caliguri教授,进行合作研究。他应用表观遗传学的方法发现了一个新的白血病相关基因ID4,并在国际上首次证明了ID4基因具有抑制白血病细胞增长的功能,是一个新的抑癌基因。该研究成果于力以第一作者发表于国际著名杂志《Nature Genetics》。国际著名表观遗传学家Costello教授及Bangham教授分别在2005年的《Nature Genetics》 和《Nature Review Cancer》 杂志上专门撰文对该研究进行了评述,认为该研究成果是“表观遗传学研究领域的一项重大突破,开创了应用表观遗传学研究发现因DNA甲基化沉默的抑癌基因的新途径”。

自2005年,于力教授先后申请到国家973课题和国家自然科学基金课题等多项资助。他所在的血液科经几代专家教授的不懈努力,已发展成为总医院血液病中心。

2006年1月,于力教授接任血液科及血液病中心主任的工作。上任后,在院领导的支持下,他有计划、有步骤地发展科室;以临床工作为中心,带领他的团队积极开展造血干细胞移植,不断提高医疗质量,力求基础研究为临床服务,增加了许多新的分子生物学诊断方法,努力提高各种血液系统恶性肿瘤的疗效及长期生存率。2008年初,总医院肿瘤大楼开始启用,血液科大规模扩建,占用三层楼,普通病床由40张增至近100张,移植层流间由以前的7间增至20间。于力教授开发多元渠道,利用国内外及社会各种有利资源,建设人才梯队,配置先进仪器设备,开展尖端医疗科研工作,与全科同志共同努力,力争将科室建设成为国内一流的血液病专科和造血干细胞移植中心。

此时的于力已由一个普通医生成长为具有很高威望的主任医师,从纯朴的、单纯诊治疾病的血液科医生的思想,演变为“为学科、为科室、为医院”发展的宏观思考。他意识到,只有这样才能更多更好地帮助血液病患者。

医学科学家:

对学科、对国家的前瞻性思考

于力大学毕业20余年来,一直就职于总医院血液科。在临床工作的实践中,他完成了大量的血液科门诊、急诊、会诊、住院、骨髓移植及保健工作,在血液系统疑难病症的诊断、白血病和淋巴瘤的治疗及造血干细胞移植等方面积累了丰富的临床经验。作为科室带头人,他以一个科学家的风范纵观全局、立足脚下,将医疗、教学、科研与学科建设有机地结合,尽到了一个科学家对社会、对国家的责任。

目前,白血病的治愈率较过去明显提高,经过全面正规的治疗,约60%的患者可以达到治愈,这无疑给白血病患者带来了希望。于力教授说:“这与新的检查手段、新的药物、新的治疗措施的应用是分不开的。目前对白血病的治疗主要有三个方面:一是常规化疗;二是自体造血干细胞移植;三是异基因造血干细胞移植。针对一个具体的患者,选择何种治疗是获得治疗成功的关键。总医院血液科把临床工作与细胞形态学、免疫学、细胞遗传学及分子生物学研究密切结合,对病人进行个体化治疗,取得了很好的疗效,提高了治愈率。”

“现在,骨髓移植在我国遇到了一个社会问题,就是独生子女家庭给骨髓移植同胞供者的选择带来困难。因此,我们正在研究用患者父母的骨髓来进行移植,但父母和孩子的基因是半相合,移植后常发生严重的移植物抗宿主病,在解决这个问题上,我们与国内同行一起不断努力,已经取得了一定的成绩,不久的将来定能攻克这一难题!”

最后,于力教授做了“血液系统恶性肿瘤的基因诊断和造血干细胞移植”的定位总结,他说:“白血病已不是一种不可治愈的疾病。”

于力教授的一席话,使我们认识到他已经成长为对学科、对国家有前瞻性思想的医学科学家。从住院医师到主任医师再到学科带头人,从朴素的感情到投身血液学事业再到科学家,从专业、科室到学科、医院再到国家,这一演变过程无不源自于他对医学事业的热爱和不断进取的意识,无不源自于老师和前辈的信任与帮助,无不源自于国家和医院的培养。于力教授的思想境界“三部曲”让我们看到了一个科学家的发展历程,也让白血病患者看到了希望。

篇8

关键词 行为遗传学;数量遗传学;分子遗传学:基因:人格

分类号 B845

1 引言

人格是一个人独特精神面貌的整体反映,是需要、动机、兴趣、态度、价值观、气质、性格、能力等多个方面的整合。它的形成和发展与遗传因素息息相关。然而,人格的遗传性究竟如何?到底哪些基因在起作用?它们又是如何起作用的?针对诸如此类的问题,行为遗传学家们试图为我们提供有效的解答,并由此形成了一个重要的研究领域,即人格行为遗传学研究。

人格行为遗传学研究就是运用行为遗传学理论和方法来考察和揭示人格特征(包括人格障碍)和人格差异的遗传基础问题。它强调遗传基因是塑造人格核心特征和造成人格个别差异的主要因素,但并不忽视环境的作用,甚至主张人格特征与人格差异是多种基因、多种环境以及基因与环境动态交互作用的结果。早在19世纪中后期,英国心理学家高尔顿(Galton,F.)就首先利用家谱法和双生子法研究了人格差异的遗传基础。尽管他的研究因未将遗传和环境区分开来而具有诸多局限,但它“为人类行为的变异范围提供了档案证明并且说明了行为变异存在遗传基础”(Plomin,DeFries,McClearn,& McGuffin,2008),是运用行为遗传学方法研究人格差异的先驱性尝试。高尔顿之后的20世纪,人格的行为遗传学研究因行为主义主流范式的盛行而长期遭到“冷遇”。前者强调人格的遗传性,而后者坚持环境论并认为人格由社会化的习惯决定,两者的矛盾在这种势力不均的情势下曾一度不可调和。

但近几十年来,行为主义的逐渐衰落和现代生物学特别是分子生物学的飞速发展分别为人格的行为遗传学研究提供了巨大发展空间和发展动力,并使它由传统的数量遗传学取向发展到分子遗传学取向。分子遗传学取向是发端于20世纪初而到20世纪末才应用于人格研究的一种新取向,它在研究方法和研究理念上都较数量遗传学取向具有革命性突破,目前正以惊人的速度发展着。可以说,人格遗传学研究进入到分子遗传学时代(Johnson,Penke,& Spinath,2011)。不过,两种研究取向在基本思路方面各有特色,在具体研究方面都取得了很多有价值的成果,积极推动了人格行为遗传学研究的复兴和发展。

2 数量遗传学取向

人格的数量遗传学(quantitative genetics)研究取向主张运用双生子研究、收养研究等设计来估计群体中遗传因素对人格表现型方差的贡献率,旨在用数量化的手段从宏观上估计某种人格变异在多大程度上是由遗传效应引起的,并考察遗传通过与环境交互作用或相关影响人格的方式以及这些效应发生的具体情境。

2.1 人格遗传率

数量遗传学衡量人格遗传性大小的核心指标是遗传率(heritability),即在某群体内观测到的人格总变异中能被遗传变异解释的百分比,它既可以揭示遗传是否影响某种人格特征又可以指明这种影响达到何种程度。人格遗传率可以用公式h2=Vg/Vp(其中h2代表人格遗传率,Vg代表遗传导致的人格变异,V。代表观测到的人格总变异)来表示,数值在0~1之间,越接近于0,说明变异越少源于遗传;越接近于1,说明变异越多源于遗传。需要指出的是,遗传率估计具有如下三个特点:第一,它具有群体特异性,仅仅适用于解释样本或群体的人格差异,而不适用于描述个体人格的遗传性;第二,它假定遗传因子和环境因子之间不存在相关或交互作用;第三,它会因测量方法和计算方法不同而有细微差别(郭永玉,2005;Larsen & Buss,2009)。

2.2 数量遗传学设计

为了把基因和环境对人格差异的贡献分离开来,数量遗传学家采用了家族研究、双生子研究和收养研究等多种研究设计。家族研究是最早用于人格研究的行为遗传学方法,但它不能将遗传与共同环境的作用区分开来,因而不能得出准确的遗传率;双生子研究是现代人格行为遗传学研究最常用的一种有效方法,它在一定程度上克服了家族研究的缺陷,但它的等环境假设和代表性也往往令人担忧:收养研究作为一种强有力的自然实验法,是“解开影响家族相似性的遗传和环境源之结的最直接方法”,避免了双生子研究中的等环境假设问题,提供了环境影响人格差异的最佳证据,但它也存在三个争议,即代表性、生前环境影响和选择性安置效应(Plomin et al.,2008)。

鉴于以上三种方法各有其长处和不足,在过去的20多年中,数量遗传学家已经开始利用家族研究、双生子研究和收养研究的组合设计来研究人格。例如,研究分开抚养的同卵双生子就把双生子研究和收养研究各自的优点进行了有效整合,并且分开抚养的同卵双生子在某种人格特质上的相关系数可以直接解释为遗传率的一个指标(Larsen & Buss,2009)。另外,随着离异和再婚现象增多而产生的继亲家庭研究,自然地综合了家族研究与收养研究的优势,也是一种有趣和有效的组合研究设计。对多组比较的组合设计,甚至简单的收养和双生子研究,现代行为遗传学通常采用模型拟合(model fitting)的方法进行统计分析,即建立一个反映各种遗传和环境因素对某种人格特质贡献大小的结构方程模型,并将其与观测到的相关进行比较,从而估计出遗传和环境的影响程度(郭永玉,2005)。

2.3 具体研究与发现

数量遗传学取向的人格研究者利用上述设计主要对人格特质、人格障碍以及态度与偏好的遗传性问题进行了考察。

2.3.1 人格特质

数量遗传学关于人格特质的研究主要涉及人格的五大特征,即外倾性、宜人性、责任心、神经质和经验开放性,其中研究最充分的要数外倾性和神经质。多数数量遗传学研究表明,“大五”人格模型中的所有因素都具有中等大小的遗传率,并且此研究结果在不同年龄段、不同性别以及不同文化背景的样本群体中具有普遍一致性(saudino,1997;Loehlin,McCrae,Costa,& John,1998)。例如,两项以双生子为被试的研究表明,神经质和外倾性的遗传率估计值分别为43%和52-54%(Wray,Birley,Sullivan,Visscher,& Martin,2007;Rettew,Rebollo-Mesa,Hudziak,Willemsen,& Boomsma,2008)。以往数量遗传学对“大五”人格的研究通常都以正常人群为被试,最近许多研究开始关注异常人群“大五”人格的遗传性问题。例如,Kendler,Myers和Reichborn-Kjennerud(2011)的研究表明,边缘型人格障碍与“大五”人格中的神经质维度存在显著的遗传正相关,而与宜人性和责任心维度存在显著的遗传负相关。Hare等人(2012)的研究表明,躁郁症患者人群“大五”人格的遗传率(23%~32%)某种程度上低于正常人群的研究结果(40%~60%)。我们固然可以推测是异常人格影响了“大五”人格遗传率的变化,但要得出确切的因果结论还需依赖未来数量遗传学和分子遗传学更加细致的综合研究。

除“大五”人格外,研究者还对活动水平(activity level)和“精神病”人格特质的个别差异进行了行为遗传学分析。活动水平是气质的一个组成元素,其个别差异出现于生命早期,并随着时间推移在儿童身上表现出稳定性。Spinath,Wolf,Angleitner,Borkenau和Riemann(2002)对300对双生子的研究表明,活动水平存在40%的遗传率。“精神病”人格特质包括权术主义、铁石心肠、冲动性不一致、无所畏惧、责备外化和压力免疫等方面。Blonigen,Carlson,Krueger和Patrick(2003)对353名男性双生子进行了研究,发现所有这些“精神病”人格特质都表现出中等或高等的遗传率。

数量遗传学研究发现,尽管不同研究设计所得出的具体数值会有所不同,但一般的人格特质都具有较高的遗传率估计值(Krueger & Johnson,2008)。

2.3.2 人格障碍

数量遗传学系统研究的人格障碍主要有精神分裂型人格障碍、强迫型人格障碍和边缘型人格障碍。精神分裂型人格障碍具有轻微精神分裂样症状,用个人访谈法和问卷法所做研究表明,它具有非常高的遗传率(Kendler,Myers,Torgersen,Neale,& Reichbom-Kjennerud,2007)。强迫型人格障碍是一种神经精神病状态,以思想、情感、观念以及行为的反复为典型症状,它所包含的五个因素即禁忌、污驰/清洁、疑虑、迷信/仪式和对称/囤积的遗传率位于24%和44%之间(Katerberg etal.,2010)。上述两种人格障碍可能是精神机能障碍遗传连续体的一部分,因为它们分别与精神分裂症和强迫焦虑症之间存在某种程度的遗传重叠(Plomin et al.,2008)。边缘型人格障碍是一种以心境反复无常、自我认同感紊乱、情绪冲动以及行为不稳定等为主要表现的人格障碍,它很大程度上受遗传基因影响。例如,对荷兰、比利时和澳大利亚三个国家5000多名双生子的数量遗传学研究表明,加性遗传效应(additive genetic effect)可以解释42%的边缘型人格障碍变异,而且这一结果具有跨性别和跨国别的一致性(Distel et al.,2008)。最近一项10年的双生子纵向研究发现,边缘型人格障碍特质在14~24岁的各个年龄段都具有中等的遗传率,且遗传率有随年龄增长而轻微上升的趋势,而这些特质的稳定性和变化受遗传因素高度影响,一定程度上也受非共享环境的影响(Bornovalova,Hicks,Iacono,& McGue,2009)。

2.3.3 态度与偏好

稳定的态度和偏好通常被看作人格的一部分,并表现出广泛的个体差异。数量遗传学家对态度和偏好的遗传性进行了饶有趣味的考察。综观多数研究可知,态度的核心特征传统主义具有中等的遗传率。例如,一项明尼苏达的双生子研究表明,传统主义的遗传率为63%;一项对654名收养和非收养儿童的纵向研究表明,遗传对保守态度具有重要影响,并且显著的遗传影响早在12岁时就已产生(Larsen & Buss,2009)。然而,并不是所有态度和信仰都表现出中等水平的遗传率,这要因所研究的态度类型而异。例如,一项对400对双生子的研究表明,对上帝的信仰、对宗教事务的参与以及对种族一体化的态度的遗传率为零(Larsen&Buss,2009)。基因似乎也影响职业兴趣或偏好。一项用修订版的杰克逊职业兴趣量表(JVIS)做的研究表明,34种职业兴趣中有30种的遗传率在37%和61%之间(schermer & Vernon,2008)。这表明,我们绞尽脑汁作出的职业选择很大程度上受到我们从父母那里继承的基因的影响。但值得我们注意的是,为什么有些态度和兴趣具有较高的遗传性,而有些态度和信仰的遗传性不明显甚至为零?或许未来的行为遗传学研究能够给出答案。

3 分子遗传学取向

人格的分子遗传学(molecular genetics)研究取向主张在DNA水平上用基因测定方法研究特定基因对人格表现型的影响效应,旨在超越传统人格数量遗传学研究仅停留在统计学层面考察遗传率的局限,而从微观层面直接鉴别对人格产生重要遗传影响的具体基因或基因组合,以精确揭示人格特征(包括人格障碍)或人格差异的根本遗传机制。

3.1 人格候选基因

已知人类基因具有数万种之多,要想从中找出对人格起作用的特定基因是件困难的事情。况且,复杂的人格或行为特质并不简单地遵循孟德尔的单基因遗传定律,而是同时受作用幅度不完全相同而又相互协同和相互作用的多个基因的影响,这就又大大增加了确定这些基因的难度。因此,研究者不可能对所有基因都进行考察,更多的是考察候选基因与人格的关系。人格候选基因(candidate gene)是被假定与某一人格特质有关的基因,通常人们已了解其生物学功能和序列,它们可能是结构基因、调节基因或在生化代谢途径中影响性状表达的基因。研究者一般通过了解相关生理机制来确定人格的候选基因。例如,用于治疗活动过度的药物常含有多巴胺,因而像多巴胺受体、多巴胺启动子和多巴胺转运体这样与多巴胺有关的基因便成为候选基因研究的目标。我们通常缺乏哪些基因是人格候选基因的强假设,因此试图将那些与具有生理作用的DNA标记有关的基因与人格联系起来的做法是很有道理的(张丽华,宋芳,邹群,2006)。

3.2 研究策略

人格分子遗传学研究者主要采用连锁策略和关联策略来寻找和鉴别对特定人格或行为特质有广泛遗传影响的具体基因。连锁策略(linkagestrategy)采取从行为水平到基因水平的“自上而下”的研究思路,它以携带某种人格特质或障碍的家系为研究对象,对连续几代人的DNA样本进行分析,以确定是否有对该人格特征影响较大的特定基因存在。由于研究者并无假定的候选基因,这种策略对定位单基因遗传特质的强效基因十分有效,但当牵涉若干个作用较小的基因时它便不再那么有效。然而,大多数复杂的人格或行为特质往往牵涉多个微效基因,于是另一种较新的关联策略(association strategy)便成为最常用的确定人格基因的策略。关联策略采取由基因到行为的“自下而上”的研究思路,通过考察拥有某种特定基因(或等位基因)的个体比没有该基因的个体在某种特定人格特质上的得分是高还是低,来确定候选基因与人格或行为特质之间的关联情况,即一种可能的因果关系。关联策略比连锁策略更容易找到只有微弱效应的特定基因,但系统性不够强。

随着人类基因组多态性研究以及SNP分型技术的发展,全基因组扫描(genome-wide scanning)逐渐成为一种标志性的分子遗传学人格研究策略(Strobel & Brocke,2011)。它主要包括对人格表现型的全基因组连锁分析和全基因组关联分析,先将人格表现型的相关位点定位于染色体某个区域,然后再进行候选基因研究或连锁不平衡分析,确定其具体基因位点。例如,一项用全基因组扫描做的研究表明,伤害回避与8p21染色体区域存在显著相关(zohar et al.,2003)。

3.3 具体研究与发现

基因主要是通过大脑中的神经递质系统来影响人格的,因而参与调节神经递质系统的基因便成为主要的候选基因。在Cloninger等人的人格心理生物模型中,新颖性寻求(novelty-seeking)、伤害回避(harm-avoidance)和奖赏依赖(reward-dependence)三种气质维度被假定分别与大脑调节不同类型刺激反应的三种神经递质系统即多巴胺(dopamine)系统、5-羟色胺(serotonin)系统和去甲。肾上腺素(noradrenaline)系统相联系。此类理论假设促使人格分子遗传学研究者们主要从这三种神经递质路径考察了基因多态性与人格之间的关系。

3.3.1 多巴胺系统

多巴胺是脑部负责快乐和兴奋的一种积极化学物质,它的缺乏会促使个体积极寻求有效物质或新异经验以增加多巴胺释放。到目前为止,人格研究中最早且最多关注的DNA标记是位于第11号染色体短臂上的多巴胺D4受体基因(DRD4)。1996年,两个独立研究小组同时在《自然遗传学》上报告了DRD4基因的3号外显子中的48-bp VNTR多态性与新颖性寻求之间存在正相关,标志着人格分子遗传学研究的初步登场(Ebstein & Israel,2009)。其中,Ebstein领导的小组运用三维人格问卷(TPQ)对124名犹太健康志愿者进行了测量,发现长重复段DRD4等位基因对新颖性寻求具有6%的解释效应,而未发现它与另外三个TPQ指标(奖赏依赖、伤害回避和坚持性)有显著关联(Ebstein et al.,1996);Beniamin领导的小组运用大五人格量表修订版(NEO-PI-R)对315名美国成人和兄弟姐妹进行了预测测量,也发现拥有长重复段DRD4等位基因的个体比拥有短重复段DRD4等位基因的个体新颖性寻求水平显著高,并且发现长重复段DRD4等位基因与NEO-PI-R量表的外倾性和责任心两个维度显著相关,而在其他三个维度即神经质、开放性和宜人性上未见此结果(Benjamin et al.,1996)。对于这两种研究的结果可能的解释是,拥有长重复段DRD4等位基因的个体对多巴胺的相对缺乏反应敏感,需要寻求外界新异经验来增加多巴胺释放,而拥有短重复段DRD4等位基因的个体倾向于对脑中已经存在的多巴胺作出高度反应,无需寻求新异经验便可使多巴胺含量达到适当水平。

此后,一系列研究对DRD4基因与新颖性寻求这种人格特质之间的关联进行了重复验证,但结果并不完全一致。两项分别以德国人和日本人为被试的研究证实DRD4基因与新颖性寻求特质之间的确存在显著关联(strobel,Wehr,Michel,&Brocke,1999;Tomitaka et al.,1999);Burt等人对明尼苏达137个双生子家庭所做的研究发现,DRD4基因与新颖性寻求测量指标之间不存在任何关联(Bun,McGue,Iacono,Comings,&MacMurray,2002);Ekelund等人则得出了与1996年研究相反方向的结果,即在新颖性寻求水平较高的群体中,2次和5次重复等位基因而非7次重复等位基因的频率更高(Ekelund,Lichtermann,Jarvelin,& Pelmnen,1999)。除此之外,有些研究还发现DRD4基因与其他人格候选基因存在联合效应。一项关于1岁新生儿对新异事物反应的研究发现,DRD4基因中的48-bp VNTR与5-羟色胺转运体基因(5-HTT)中的一种多态性存在联合效应(Lakatos et al.,2003)。之所以会出现如此多样的研究结果,可能与样本大小、被试特点(年龄、性别和种族文化等)、测量工具、研究设计等因素有关。例如,分组方法不同所得研究结果就会有很大差异(Tsuchimine et al.,2009)。不管怎样,这都有待于进一步研究证实。

除DRD4基因外,研究者还对多巴胺系统中的其他人格候选基因进行了考察,如多巴胺D2受体基因(DRD2)、多巴胺D3受体基因(DRD3)、多巴胺D5受体基因(DRD5)以及多巴胺转运体基因(DATl)等。一项用多种人格测验所做的研究表明,DRD2基因的-141C插入/缺失多态性与卡氏人格量表(KSP)测量的冷漠以及北欧大学人格量表(SSP)测量的自信缺乏之间存在关联(JSnsson et al.,2003,),而利用气质性格量表(TcI)对被试所做的一项研究表明,-141C插入/缺失多态性和DRD2/ANKK1基因的TaqlA多态性与人格特质之间可能并非存在直接强相关,而是在DRD2基因与ANKKl基因的交互作用条件下才对人格产生影响(Tsuchimine et al.,2012)。在一个由862名个体组成的样本中发现DRD3基因与神经质和行为抑制存在关联,而当该样本扩大到1465人时这种关联未得到验证(Henderson et al.,2000)。有研究表明,DRD5基因可能与人格的持续性发展有关(Vanyukov,Moss,Kaplan,Kirillova,&Tarter,2000)。由于发现DAT1基因与具有某些新颖性寻求特征的注意缺陷多动症(ADHD)存在关联(Jorm et al.,2001,),有人用极端分数个体为被试考察了DATl基因与新颖性寻求之间的关联,结果表明这种效应只在女性被试身上有所显现(van Gestel et al.,2002)。

3.3.2 5-羟色胺系统

5-羟色胺作为一种生物胺,对于人类的攻击性、抑郁、焦虑、冲动、幸福感等情绪情感具有重要调控作用。此系统中最经常被研究的人格候选基因是5-羟色胺转运体基因(5-HTT),该基因越长释放和回收5-羟色胺的效率越高,已有许多研究考察了它与伤害回避等焦虑类人格特质之间的关联。5-HTT基因具有两种多态性:5-HTT基因连锁的多态性区域(5-HTTLPR)和5-HTT基因2号内含子中的VNTR多态性,其中人格研究关注最多的是5-HTTLPR。

1996年的一项经典研究发现,短5-HTTLPR等位基因携带者较长5-HTTLPR等位基因携带者在神经质和伤害回避维度上的表现水平更高(Lesch et al.,1996)。功能性磁共振成像表明,携带一个或两个短5-HTTLPR等位基因复本的个体在对恐怖刺激的反应中表现出更强的杏仁核神经元活动(Harid et al.,2002)。这种由遗传导致的杏仁核对情绪刺激的兴奋性差异支持了该结论。不过,也有一些其他研究并未发现此种关联(Flory et al.,1999;Tsai,Hong,& Cheng,2002)。还有一些研究得出了相反结果。例如,使用极端得分个体做的一项研究发现,短5-HTTLPR等位基因在低伤害回避群体中比在高伤害回避群体中出现的频率更高(van Gestel et al.,2002)。2004年的一份元分析指出。这种可重复性的缺乏很大程度上是由于样本量过小以及所使用的量表不同而导致(Sen,Burmeister,& Ghosh,2004)。分析者发现,运用大五人格量表测量的神经质与5-HTTLPR有显著关联,而运用气质性格量表测量的伤害回避与5-HTTLPR不存在任何显著关联。2008年的另一份元分析也得出了类似结论(Munaf6 et al.,2008)。然而,使用NEO-PI-R量表对4000多名被试进行的一项大型研究发现,5-HTTLPR与神经质或其各维度(焦虑,抑郁,愤怒,敌意,自我意识,冲动。易受伤害性)之间不存在任何关联(Terracciano etal.,2009)。近年来,有研究者发现,与其杂合子同伴或短等位基因的纯合子同伴相比,具有长5-HTLPR等位基因的纯合子个体通常更关注积极情感画面,而选择性地回避一同呈现的消极情感画面(Fox,Ridgewell,& Ashwin,2009)。这表明他们通常更加乐观。使用信息加工眼动跟踪评估法进行的另一项研究发现,短5-HTLPR等位基因携带者在视觉上更加偏爱积极场景而回避消极场景,长5-HTLPR等位基因的纯合子个体更加无偏地看待情绪场景(Beevers,Ellis,Wells,& McGeary,2009)。这表明,短5-HTLPR等位基因携带者可能比长等位基因纯合子个体对环境中的情绪信息更加敏感。对于5-HTLPR与人格特质之间关系的这些看似不一致的结论,还有待进一步研究确证。此外,一项最新研究显示,5-HTLPR与Val66Met两种多态性对伤害回避存在显著交互作用(Ariaset al.,2012)。

除5-HTT基因外,研究者还对5-羟色胺系统中的另外两个人格候选基因5-羟色胺2A受体基因(5-HT2A)和5-羟色胺2C受体基因(5-HT2C)进行了考察。有研究者在双极性精神障碍患者和健康控制组群体中检验了5-HT2A的1号外显子中的一种单核苷酸多态性与伤害回避维度之间的关联,但是没有发现任何关联存在(Blairy et al.,2000)。还有研究者以健康日本人为样本对5-HT2A的5种单核苷酸多态性进行了考察,没有发现它们与气质性格量表的任何维度存在关联(Kusumi et al.,2002)。就5-HT2C与人格的关系而言,研究者发现5-HT2C中的一个点突变与三维人格问卷的奖赏依赖维度和坚持性维度存在关联,并且DRD4与5-HT2C对奖赏依赖存在显著交互效应(Ebstein et al.,1997)。然而,后来的一项重复性研究发现,5-HT2C对奖赏依赖不存在主效应,但DRD4与5-HT2C对奖赏依赖确实存在显著交互效应(Kühn et al.,1999)。

3.3.3 去甲肾上腺素系统

在人格的分子遗传学研究中,人们对去甲肾上腺素系统的关注远不及对多巴胺系统和5-羟色胺系统的关注多,但也取得了一些研究成果。有研究以健康被试为样本,考察了去甲肾上腺素转运体(NET)的一种外显子限制性片段长度多态性(RFLP)与气质性格量表中各维度之间的关系,但没有发现任何关联存在(Samochowiec et al.,2001)。不过,另一项以朝鲜人为被试的研究表明,去甲肾上腺素转运体的T-182C基因多态性与气质性格量表的奖赏依赖维度存在显著关联(Ham,Choi,Lee,Kang,& Lee,2005)。有研究表明,在中国人被试中,αla肾上腺素受体基因(ADRAlA)和0c2a肾上腺素受体基因(ADRA2A)的多态性与三维人格问卷各维度之间不存在任何关联(Tsai,Wang,& Hong,2001)。而之前的另一项研究发现,ADRA2A的一种常见单核苷酸多态性与易怒性、敌对性和冲动性诸测量值之间的确存在某些关联(comings et al.,2000)。关于去甲肾上腺素系统的诸候选基因与人格之间关系的研究,有待进一步加强。

4 总结与展望

行为遗传学通过数量遗传学和分子遗传学两条取径对人格遗传性问题进行了不同层次的详细探索,取得了较为丰富的研究成果,推进了我们对人格遗传程度和遗传机制的深刻认识,也有利于促进人格研究的科学化。人格行为遗传学研究的两类取向各具优势和不足。数量遗传学取向借助生态研究设计从宏观上估计遗传变异对人格差异的解释程度,资料获取经济简单、技术要求低,并且结果解释相对容易,但它无法确切地告诉我们究竟哪些基因或多态性导致了人格差异以及具体作用过程如何(Parens,2004),对研究设计和被试取样的依赖性较强,况且面对遗传与环境实际存在相关或交互作用的不争事实,遗传率的解释意义往往遭到质疑(Lerner,2011)。分子遗传学取向摆脱了数量遗传学取向存在的诸多不足,可以从DAN水平精确细微地探知造成人格障碍或差异的特定基因及其作用机制,但研究程序繁琐复杂,对新兴生物技术要求较高,在人格候选基因的选择上带有推测性,迄今为止尚未产生符合最初预期的可重复的实质性人格研究成果(McClellan & King,2010)。除此之外,两类研究取向还存在诸多共同的问题:一是受测量手段限制,对被试自陈报告依赖性高,往往会造成某些人格特质在防卫或伪装心理作用下被隐藏;二是由于研究设计和技术、被试取样、人格和基因自身复杂性以及环境与基因的交互作用等原因,研究结果的可重复性不高(Kim & Kim,2011);三是受过去百余年消极心理学研究传统的影响,所研究的对象主要是精神分裂症、抑郁症、多动症等病理人群(张文新,王美萍,曹丛,2012),缺乏对健康人群积极人格品质的遗传研究;四是研究成果的现实利用率低,未能把研究所得成果及时有效地转化为现实效益。

鉴于人格行为遗传学研究所存在的诸多问题,未来研究应特别注意以下五个方面:

(1)强调两种研究取向的有机结合,在数量遗传设计中加入对特定基因型的直接测量。这两种研究取向各有优缺,可以相互弥补,况且分子遗传学的许多工作需用传统数量遗传学设计综合考虑环境与遗传因素来完成。未来研究可以在数量遗传设计中加入对特定基因型的直接测量,例如,可以先用数量遗传学方法确定某种人格特征是否具有遗传性以及遗传到什么程度,然后再用分子遗传学方法从根本上细微探究影响人格的具体基因及其作用方式。

(2)注重多学科和多范式的有效整合。人格的行为遗传学研究是一项综合性很高的困难工作,涉及遗传学、心理学、生物学、神经科学、医学和社会学等多门学科,因此需要在更广泛的视野下进行多学科的整合研究。人格的遗传机制相当复杂,靠单一研究工具(如自陈问卷)或研究范式很难获得理想结果,今后应在传统研究范式的基础上综合采用脑成像、诱发电位、前脉冲抑制和计算机博弈模型等一些新的研究范式,从多个角度综合考察和相互印证人格与基因的关系,从而弥补由自陈报告带来的弊端,同时克服可重复性低的问题。

(3)扩大对健康人群积极人格品质的研究。未来人格行为遗传学研究不仅要研究病理人群的消极人格品质,而且更要研究正常人群甚至超常人群的积极人格品质,探究它们的遗传性及分子作用机制,为积极人格品质的培养提供遗传学依据。

篇9

1精准医学现状

2015年1月20日,美国总统奥巴马在国情咨文演讲提出“精准医学计划”,并于当月30日宣布启动该计划。我国政府也启动了相关的规划部署,如:科技部组织成立了国家精准医疗战略专家委员会,决定在2030年之前投资600亿元人民币用于此项研究;国家卫计委和科技部又组织召开了精准医学专家研讨会,研讨精准医学研究计划的实施原则、目标及重点内容。目前,精准医学的实施和应用主要集中在恶性肿瘤领域,且已取得了突破性进展,尤其在肺癌、乳腺癌等方面,呈现出良好的发展势头。但精准医学的癌症研究也有很多阻力,如难以解释的耐药性、肿瘤组织的时空异质性、疗效评估体系的不完善以及肿瘤复发因素的复杂性等[4],在其他领域的应用更有待于进一步探索。调查显示,目前国内临床医生对精准医学理念普遍缺乏深刻了解[4],医学教育中加强精准医学理念的传播成为时代提出的新要求。基于现行医学本科及研究生教学体系中尚未涉及精准医学的专门课程,理论教学中,授课老师应结合本专业课程,积极传播精准医学理念;临床实践教学中,适时实施个体化诊疗方案,促进精准诊疗技术的推广和应用。

2医学教育措施

2.1改革教育格局,优化教育体系

在传统医疗体系中,对疾病的诊疗过程主要依靠临床症状、体格检查、影像学及相关实验室检查等内容,由此导致我国临床医学教学体系侧重于解剖、生理、生化、病理及药理等基础医学与内科、外科、妇产科及儿科等临床医学的培养。精准医学本质是应用现代遗传技术、分子影像技术、生物信息技术结合患者生活环境和临床大数据实现精准的诊断与治疗,制定具有个性化的疾病预防和治疗方案。因此,精准医疗体系在传统医疗的基础上还涉及如何采用测序、荧光定量PCR、荧光原位杂交(FISH)等技术分析疾病发生的分子生物学本质;如何根据疾病的分子分型针对性地选择靶向药物;如何利用多维数据去揭示疾病的病理生理状态。显然,传统的教育体系已不适应精准医学的发展需求。在精准医学体系下,医学生培养内容除了涉及基础医学与临床医学外,还应加强对化学、生物学、遗传学、信息学、分子生物学及计算机技术等交叉领域的培养,建立适合精准医学人才培养的教育体系。

2.2加强学科交叉,培养团队精神

目前占主导地位的医学模式是循证医学,循证医学是遵循科学证据的临床医学。精准医学依然是遵循科学证据的临床医学,而且其对科学证据的要求更全面、更深入,因此,可以说精准医学是循证医学的升华。但精准医学关注的不再是疾病本身,而是患者本人,其核心理念是“个体化”,即通过对患者进行全面、深入的分析和综合判断,尽可能认识和把握疾病的分子生物学本质,定制出针对患者个体的一套诊疗方案[5]。基于疾病的复杂性和各个学科的专业局限性,单独一个学科很难全面、深入地认识和把握疾病复杂的病理现象,这就要求不同学科之间加强合作,建立多学科联合诊疗模式。未来医学将更加重视“环境—社会—心理—工程—生物”医学模式,因此,精准医学的突破性进展不单单依靠医学内部多学科的交叉,亦有赖于医学与生物学、工学等学科的结合。基于这种背景下,我们的医学教育必须让每位医学生、医务人员认识到精准医学是一个多学科交融的新兴医学发展领域,提倡团队作战精神,培养与其他学科的合作意识,这样才能有效打破技术壁垒,融合多元数据,达到资源共享的目的。

2.3加强科研意识和创新思维培养

精准医学的研究内容主要有:①疾病防控体系研发:积极开发前瞻性的、探索性的疾病预防体系,建立个体化疾病预防模式,以期达到治病于未病、防病于未然的目标。②分子诊断体系的完善:分子诊断是精准医学的重要基石,其研究内容涉及基因组、表观遗传组、转录组、蛋白质组和代谢组等多个层面,研究目标旨在发现在临床诊疗过程能发挥指导和参考作用的生物标志物,如:一些与疾病关联性、特异性强的标志物,可以用于疾病的筛查、早期诊断及复发监控;一些与药物疗效密相关的标志物,可以作为指导个体化用药的参考和依据;一些反映疾病预后的标志物,可用于疾病预后和转归的预测。③分子影像学技术研究:包括研发分子标志物为指导的MRI、CT、超声等多模态图像融合技术,以实现微创或无创的精准诊断。④临床精准医疗研究:精准医疗的核心即治疗方案的“个体化”,以患者分子诊断结果、个人全面信息、影像学以及大数据的分析结果为依据,选择个体化的治疗方案,通过开展回顾性及前瞻性的临床研究,全面评估精准治疗方案的疗效、优势和不足,作为开展精准治疗的循证医学依据[6]。精准医学的发展离不开人类基因组测序技术的革新,生物信息学及大数据分析技术的进步;亦有赖于生物芯片技术、蛋白质组学技术、代谢组学技术、分子影像、微创等生物医疗技术的发展。因此,对我国医疗技术的创新提出了更高的要求。因此,医学教育中除了让广大医学生及医务工作者意识到精准医学的战略地位外,更要让他们充分意识到精准医学目前正处于发展阶段,整个精准诊疗体系的各个环节尚有待于进一步发展和完善,充分调动广大医学生及临床医务工作者的创新意识和研究热情,积极营造浓厚的科研氛围。同时各大医学院校、医疗机构出台相关支持政策,并加大精准医学研究平台建设,为精准医学的发展提供可靠的支撑。

3结语

精准医学将改变人们对疾病的认知水平,并使疾病的分类、诊断、治疗及后续健康管理等各个环节的指南和规范发生革命性的变化,这对我国医学人才的培养和梯队建设,科研环境的支撑都提出了新要求。医学教育应顺应时代的发展需求,加强精准医学理念传输,优化医学教育体系,加强学科交叉培养,灌输团队精神,激发科研和创新意识,深化精准医学人才的培育,以期促进我国精准医学的健康发展。

参考文献

[1]RichardsonPE.DavidSackettandthebirthofEvidenceBasedMedicine:HowtoPracticeandTeachEBM.2015,350(3):2382~2383.

[2]肖飞.从循证医学到精准医学的思考[J].中华肾病研究电子杂志,2014,3(3):123~128.

[3]ReardonS.Precision-medicineplanraisehopes.Nature.2015,517(7536):540.

[4]CollinsFS,VarmusH.Anewinitiativeonprecisionmedicine.NEnglJMed,2015,372(9):793~795.

[5]李雷,郎景和.精准医学[J].国际妇产科学杂志,2016,43(4):365~376.

篇10

关键词:小规模在线课程;线上线下;混合式教学;遗传学

随着互联网技术的飞速发展,教学形式也在发生变化。2011年,斯坦福大学的两位教授SebastienThrun和Pe‐terNorvig开设了“人工智能导论”在线课程,全球有16万名学生参与学习,掀起了在线学习浪潮[1]。在传统教学中,教师根据学生的先修课程分析学情,制订一个适合大多数学生的教学计划。而在在线课程中,教师通过在线平台分析每一个学生的学习情况,有针对性地实施教学,实现个性化教学,这样更能适应时展的需求。在线课程的形式包括大规模在线课程与小规模在线课程。

1大规模在线课程

MOOC,即大规模在线课程。2013年以来,中国各大高校先后建立了学堂在线、中国大学MOOC、优课联盟、人卫慕课等平台,提供免费的优质共享资源,开启了全民在线学习的新时代[2]。与传统教学模式相比,MOOC拥有以下优势:①MOOC是免费资源,所有对课程感兴趣的学生注册后均可学习;②知识碎片化,MOOC将复杂的理论知识分解为多个10分钟左右的短视频,学生不懂的地方可以反复回放;③设置了在线测试、答疑和讨论环节,丰富了课堂形式,激发了学生的学习兴趣,提高了学生自主学习的意识。然而,MOOC也存在明显的不足,首要问题是师生缺乏面对面交流,学生之间也缺乏分组讨论和协作。其次是课程通过率低,学生拖延症比较明显,中途放弃学习的学生比较多。另外,学生通过MOOC学习获取的学分很难得到工作单位的认同,接受在线教育的学生就业率远远低于接受传统授课模式的学生[3]。

2小规模在线课程

2013年,加州大学伯克利分校的ArmandoFox教授推出了小规模在线课程,即SPOC(SmallPrivateOnlineCourse)。“small”指规模小,通常面向高校某门课程的学生开放,学生人数为几十到几百人;“private”指准入条件限制,只有该门课程学生才能学习。该课程要求在线学习者在规定时间内完成相应的视频学习、在线讨论、在线测试,合格后获得证书,一般情况下不允许学生中途放弃课程[4]。根据清华大学和加州大学伯克利分校的实践经验来看,SPOC具有以下优势:①针对性更强,更适合大学课程的专业教学;②依托在线教学平台,通过自动评分系统给予学生快速反馈;③允许多次提交作业,促进学生多次反复练习,强化知识。从结果看来,SPOC教学模式可以引导学生深入讨论,培养学生解决问题、表达观点的能力[5]。

3SPOC混合教学的课程安排

教师需要对教学内容和学生学情进行分析,将知识点简单易学、视频资源丰富的章节作为线上教学内容,而知识点生僻的章节则以线下教学为主。课程的设计包括线上课程、线下课程和课程考核体系这三个部分[6]。下面以“遗传学”教学为例展示课程设计:

3.1线上课程设计

对于学生比较熟悉的知识点,比如减数分裂、数量性状遗传、线粒体遗传、孟德尔定律和连锁交换等,采用线上教学以激发学生的学习兴趣。将章节的重点分解成10分钟左右的小视频上传到网络平台。学生学完线上课程后,再进行线下讨论或者习题测试,以巩固和完善知识。此外,线上课程需要建立实时互动的答疑和讨论平台,这个平台可以是超星、QQ或者微信。教师通常需要预先建立一个班级群,学生在群里可以公开提问,也可以单独向教师提问。在开课之前,教师要上传教学大纲、教学计划和课程视频资源到网络学习平台。课程视频资源有三种来源,分别是引入精品课程、融合精品课程和自建录播课程[6]。录播课程是首选,因为这种形式更符合学情。同时,教师可以选择部分精品课程作为课程的拓展和补充。

3.2线下课程设计

目前,在线课程开展不成功的原因之一是理论教学比较枯燥,课程太难容易使学生产生厌学情绪,这部分章节的教学宜采用线下模式[7]。以“表观遗传”这一章节为例,其中包含了印记基因、基因组印记、甲基化、乙酰化、组蛋白的构象变化等基本知识点。根据往年的教学经验来看,学生对这部分知识基本处于空白状态。因此,采用线下讲授为主、线上预习和测试为辅的模式更为适宜。线下课程设计主要包括重难点讲解、课堂展示和分组讨论。

3.3课程考核体系设计

课程考核是混合教学模式的重要环节,分为线上考核和线下考核。线上考核包括线上课程学习、章节测试、课堂讨论等部分;线下考核主要包括考勤、实验报告、测试、作业和期末考试。教师可以设置每一部分成绩的权重,通常情况下,线上学习成绩占总成绩的比重在40%~50%[8]。

4讨论