计算机视觉技术应用范文

时间:2024-01-10 17:59:19

导语:如何才能写好一篇计算机视觉技术应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

计算机视觉技术应用

篇1

关键词 计算机;视觉技术;应用研究

中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01

计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。

1 计算机视觉技术

计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。

2 计算机视觉技术在各领域的应用分析

随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。

2.1 在工业领域中的应用

工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。

2.2 在农业生产领域中的应用

该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。

2.3 在林业生产中的应用

该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。

2.4 在农产品检测中的应用

农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。

2.5 在电力系统自动化中的应用

计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。

2.6 在图书馆工作中的应用

随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。

3 结束语

通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。

参考文献

篇2

电力系统自动化是电力系统的发展趋势,随着计算机技术的不断成熟,应用领域不断拓展,在电力自动化系统中的信息输入、输出甚至是存储和传输中都应用了计算机技术。鉴于电力系统具有功能复杂,分布范围广,管理调度较为集中等特点,故基于计算机的视觉图像技术在电力自动化系统中具有非常广泛的应用领域和应用前景。如结合红外成像技术对线路设备进行监测、应用遥感技术和工业电视技术分担工作人员的工作压力等。

如果能够将基于图像识别和图像处理的计算机视觉技术安全合理的应用到电力系统中,可以对电力系统的智能监控和处理。目前,已有部分应用实例投入使用,如利用红外图像分析技术对电力设备进行简单识别、结合传感器等对火电厂煤粉锅炉火焰燃烧状态的判断等。

二、计算机视觉技术在电力系统自动化中的应用

计算机视觉技术是通过对采集到的数据图像进行处理和分析来模拟和研究微观或者宏观层面视觉功能的技术。具体到电力系统自动化领域,计算机视觉技术主要被应用在三个方面,分别为地区调度实时监控、设备运行负荷控制和变电站自动化监控和处理。其中,地区调度实时监控中的计算机视觉技术功能与中心调度监控系统相似,都是通过多台计算机和图像采集设备实现对电力设备运行的监控和对电力的实时调度等。而设备运行负荷控制通常需要利用工频或者声频参与控制,还无法完全脱离人的视觉参与实现自动控制。变电站自动化监控和处理是变电站自动化发展的方向,该技术是利用计算机,通过对实时状态进行视频监控和数据处理,以实现无人值守的自动化运行模式。

典型的应用领域为下述几个方面。

1.计算机视觉技术在在线监测中的应用。该应用主要是利用计算机的红外图像识别技术对电力设备进行在线监测实现的。电气设备的表面温度在一定程度上可以反映其运行的状态,利用图像采集设备对电气设备进行红外成像拍摄,可以获取设备温度的实时动态,在此基础上对红外图像进行图谱分析,并与正常运行时的参照标准进行比较,即可实现对电力设备的在线监测。同时,若设备出现故障,利用红外成像技术还能对故障位置进行定位,这就为及时进行检修提供了强力的支持。

例如,断路器触头接触不良、输电线路绝缘环境的变差、变压器少油等故障都会造成局部设备过热。若只采用传统检修方式,无法切实掌握设备运行状态,只能在故障发生后寻找故障部位,检查确认后才能进行排除处理。计算机视觉技术的应用,首先简化了检测方式,只需要将成像设备在有效范围内对电气设备进行远距离测量即可实现;其次在监测方面,一旦设备的监测数据超出正常范围的最大或最小阈值,即可认定该部位已经发生故障,实现对故障的及时处理,由于定位更为准确,且减少了传统的故障部位确认环节,故提高了系统运行与监测效率。

2.计算机视觉技术在无人值班变电站和电场环境监控中的应用。在无人值班变电站中,利用微波双鉴探测器和计算机网络等组成无人监视系统,通过该系统对变电站周边环境进行视频监控,然后利用差分图像、光流法等计算机视觉技术等对移动物体进行判断和识别,确认移动物体属性,若出现情况可以进行实时报警。实际应用表明,在适当天气条件下,该系统的识别准确率保持在较高水平。若变电站周边发生火情,还可以辅助红外图像识别对火势进行判断并报警。

3.计算机视觉技术在电力线路监测中的应用。随着经济社会的发展,为满足人们日益增长的电力需求,必须进行大量的电力线路铺设,在铺设过程中,通常需要穿越复杂的地理环境,这种情况为线路巡检员的工作带来了极大的困难,且巡检效率不高、存在巡检盲区等。此时,利用计算机视觉技术可以很好的解决该问题。对电力线路安装监测机器人,在机器人中安装控制装置,位置传感器、测距传感器和CCD视觉传感器,线路检测装置,无线图像传输设备等,通过机器人在线路中行走对线路进行温度识别和分布判断,进而完成线路的巡视工作。该方式可以减少恶劣环境对巡线工作带来的操作难度,提高工作效率,增强故障判断精度。

4.计算机视觉技术在位置判断中的应用。利用计算机视觉技术可以对电力系统中的开关刀闸位置和继电保护压板的位置进行监测。开关刀闸具有三种状态,分别为闭合、断开和异常。若开关刀闸位置不适当会影响到系统的工作状态。利用计算机视觉技术可以自动识别其工作状态,并对不正常状态进行报警。继电保护压板会随着电网或者变电站的运行方式的变化而变化。操作规范要求值班人员对压板的位置进行确认和纠正。若压板位置不正确会导致继电保护出现错误动作甚至引发事故。在压板监测方面,由于压板电信息不明辨,传统检测方式不易对其进行检测,若采用计算机视觉技术,利用成像技术对压板盘面进行图像采集,然后通过图像识别技术对独享进行识别,即可实现对压板位置的判断。

篇3

关键词:计算机自动化 视觉检测 制造业

中图分类号:TP274.4 文献标识码:A 文章编号:1007-9416(2014)05-0014-01

在精密测试技术领域,自动化视觉技术具有最大的发展潜力,它将电子学、图像处理、光学探测和计算机自动化技术综合起来进行运用,在工业检测中引入机器视觉,能够快速测量物品平面或三维位置尺寸,其主要特点有:柔性好、速度快和非接触性,在现代制造业中有着非常广阔的应用前景。

目前,国内视觉检测领域所需要的视觉检测设备大多是进口的,国内生产的设备缺乏较高的检验精度和较强的实时性;但是进口设备大大增加了检测成本,不少中小企业无力承担。面对国内检测需求日益增加的情况,积极进行成本较低,精度较高的检测设备的开发,成为一个亟需解决的问题,需要引起重视。

1 检测系统的工作原理

自动化视觉检测系统工作流程分为三个部分,分别是图像信息获取、图像信息处理以及机电系统执行检测结果。如果系统有需求,能够借助人机界面对参数进行实时的设置与调整。当被检测对象移动到特定的位置时,位置传感器就会发现它,会将探测到被检测物体的电脉冲信号发送给PLC控制器,经过计算,PLC控制器将物体移动到CCD相机采集位置的时间的出来,然后将触发信号准确的发送给图像采集卡,采集卡检测到此信号后,会要求CCD相机立即进行图像采集。被采集到的物体图像会以BMP文件的形式发送到工控机,运用专门的分析工具软件分析处理图像,分析检测对象是否与设计要求相符合,执行机会依据合格或者不合格的信号对被检测物体进行相应处理。经过这样的反复的工作,系统对被检测物体进行队列连续处理。如(图1)。

2 自动化视觉检测系统的组成

在工业检测领域,计算机自动化检测系统可以在尺寸测量、工件定位、特征检测、图形图像以及字符识别等方面进行运用。自动化视觉检测系统按照功能模块可以划分为,图像信息获取模块、图像信息处理模块、人机交互模块、机电执行模块以及系统控制模块五部分。其中处于核心位置的是系统控制模块,系统控制不论是在被检测物置信息的触发,还是机电执行模块所需检测结果信息的获取等等各个方面,都必须参与其中,否则无法完成;而人际交互模块更是与核心模块有着之间联系,通过与其直接通信,以便实时更新检测系统参数以及执行指令等。

3 自动化视觉检测技术在制造业上的应用

3.1 应用于汽车车身检测的视觉检测技术

现代汽车制造业的生产周期日益缩短,生产日益集团化,原材料和零部件供应呈现大宗化,而这正是给运用自动化视觉检测技术提供了客观环境。该系统包括三维视觉传感器系统、电器控制与接口系统、机械及定位系统、标定系统以及计算机自动化等部分,其测量步骤如下:首先在电气控制系统下初步定位运送车身;然后借助专门的控制系统准确定位待测位置;借着用计算机自动化进行检查点图像的采集与处理;最后,将被监测点的坐标参数计算出来。检测系统应该能够实时控制单光条、多光条、双目立体视觉以及十字叉丝等传感器的动作;按照要求顺序,全部视觉传感器进行测量,然后转换测量结果,将其放置于测量坐标中;经过自动识别,能够地装配结果进行判断。这一视觉检测方法具有非得用地、效率高、自动化、精度好的特点,能够很好的满足汽车工作的需求。

3.2 为智能焊接的实现解决核心难题

在焊接领域,对智能焊接机器人的研究已经成为关注的重点,智能焊接机器人要求能够识别环境目标,对焊接参数进行调整,并实时精确跟踪轨迹。比如在潜艇、大型轮船的制造中,焊接是十分重要的环节,焊接质量直接关系到后续的制造环节以及潜艇、轮船的强度和安全性。智能焊接机器人在红外摄像仪、高速摄像机以及CCD摄像机等高精度图像传感设备的辅助下,采用智能化图像处理方法能够进行图像焊接,检测焊接空间位置,规划焊炬姿态,对焊接熔池特征参数进行实时提取,对焊接组织、机构和性能进行预测等,能够在很多人类难以进行作业的场合完成焊接工作,在焊接过程中,通过数个光电接收阵列对检测组建进行多维视觉传感,并综合处理所获取的信息。目前国外KUKA,Motoman,GMF,Adept等厂家已经开发出智能焊接机器人,其装配了自动化视觉检测功能,并且已经广泛应用于潜艇与航天器的生产中。

3.3 提高手机生产检测速度

随着手机设计精密程度的日益提高,人工检验已经难以适应大规模生产,这是因为其需要的测量投影仪较多,检测速度慢。而采用自动化视觉检测系统能够自动检测电路板组建中的连接器以及内部零件等,检测速度快、测量结果准确,具有较强的扩展性和较高的性价比。检测系统主要就是测量计算机自动化接口电路板组件中各个连接器特定位置的几何尺寸,这里面包括连接器内部零件的尺寸、间距以及连机器与PCB底板的相对位置;另外还要对连接器与标准是否相符以及内部零件被损坏与否。系统可以将质量检验的效率大大提升,而且也能够使产品质量得到保障,实现降低检验成本的目的。

4 结语

作为一种新兴的检测技术,自动化视觉检测技术对我国自动化视觉检测产品的发展起到了很大的推动作用,使其不断向更高层次迈进,同时也为我国制造业的发展做出了贡献,具有广阔的发展前景。

参考文献

[1]伍健.基于PDE和全变分滤波方法的研究及在多种噪声中的应用[D].天津大学,2012.

篇4

1计算机视觉的概述及基本体系结构

1.1计算机视觉概述

通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知。计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。

1.2计算机视觉领域基本体系结构

提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。

2计算机视觉在交通领域的应用

2.1牌照识别

车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。

2.2车辆检测

目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。

2.3统计公交乘客人数

城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。

2.4对车道偏离程度和驾驶员工作状态判断

交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。

2.5路面破损检测

最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。

3结论

本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。

作者:夏栋 单位:同济大学软件学院

参考文献:

[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).

[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).

[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).

[4]马良红.三维物体影像的摄取与分析[J].中国公路学报,2014(05).

篇5

关键词:计算机视觉图像 精密测量 构造几何模型 信号源的接收

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)05-1211-02

新型计算机视觉图像精密测量是一种基于计算机程序设计以及图像显示的高精度的关键技术,它广泛用于测量的领域,对于测量的准确性有很好的保证。这种关键技术是几何了光学的特性,发挥了图像学的显影性,把普通的测量技术瞬间提升到了一个新的高度。在这项关键技术中包含了物理学中光的效应,图像中的传感器以及计算机中的编程软件,这还不完全,还有一些其他科学领域知识的辅助,可以说这项关键技术是一个非常有技术含量的技术,很值得学者进行研究。

1 计算机视觉图像精密测量的关键技术的具体形式

在以往的测量中,选择的测量方式还是完全采用机械的形式,但是在使用了计算机视觉图像精密测量后,完成了许多以往技术所不能达到的任务。在我们的研究中,计算机视觉图像测量的原理是通过摄像机将被处理的对象采集进行影像采集,在多个控制点的数据采集完成后,系统会自动将这些图像进行整合,得出相关的几何多变参数,再在计算机上以具体的数据显示出来,以供技术人员使用参照。

在上面所说的摄像机并不是我们通常意义上生活中使用的摄像机。它是一种可视化较强,表针比较敏感的测试仪。可以将视觉中的二维形态通过显影,记录在机械的光谱仪上,再将这种的二维图像做数学处理,有二阶矩阵转换为三阶矩阵,通过播放仪呈现出三维的影像。这时的图像变为立体化,更有层次感,效果上也有了明显的变化,这是一种显示方法。此外还有一种造价较高的仪器,我们不常使用,就是图像提取器。同样是采集控制点的数据,将数据整合在系统之内,然后对于原始的图像进行预处理,不再经过有曝光这个程序,将图像中关键点的坐标在整个内部轴面上体现出来,提取数据帧数,再运用机器的智能识别系统,对控制点的坐标进行数据分析,自动生成图形,这也可以用于精密测量。它的优点就是使用上极其的方面,基本只要架立仪器和打开开关,其他的工作机械系统都会自动的完成。使用的困难就是造价极其的高,不适合一般企业使用。在基于计算机视觉图像测量中使用上的原理如下:

1) 计算出观察控制点到计算机视觉图像测量仪器的有效距离;

2) 得出观察点到目标控制点之间的三维的运动几何参数;

3) 推断出目标控制点在整个平面上的表面特征( 大多时候要求形成立体视觉);

4) 还通过观察可以判断出目标物体的几何坐标方位。

在整个计算机视觉图像精密测量的关键技术中最关键的元件就是压力应变电阻仪,这也是传感器的一部分。压力应变电阻仪的使用方式是将应力片粘贴在控制点位上,事先在物体表面打磨平整,清理干净后,涂抹丙酮试剂,在液体完全风干后就可以黏贴应力片,通过导线的联接,形成了一小段闭合的电路,时刻让计算机视觉图像系统可以感应到并作跟踪观察。因受到来自不同方面谐波的影响后,应力片会产生一定数值的电阻,在电路中,这些电阻会转化为电流,视觉图像系统接收到了电流后就会显示在仪表盘上相应的数据,我们就可以根据仪表盘中的数据记录测量中的数据,很好的解决了原始机械在使用过程中大量的做无用功所消耗资源的现象。传感器对每个应点都进行动态的测量,将数据模转换成现实中的图像,精确的成像可以测算出控制点的位置,用计算机视觉图像精密测量结合数据方面的相关的分析,得出施工中的可行性报告分析,减低了施工中的成本,将施工的预算控制在一个合理的范围之内。

当无法观察到控制点是,计算机视觉图像精密测量可以通过接收信号或是相关的频率波段来收集数据,不会因为以往测量的环境不好,距离太远,误差太大的影响。

2 计算机视觉图像精密测量的关键技术分析

在计算机视觉图像精密测量的关键技术中解决了很多以往很难完成的任务,但是在使用过程中还是发生了很多的问题。尤其在视觉图像的选择中,无法使用高帧数的图片显示,无法将计算机视觉图像精密测量的关键技术的优点发挥出来。我们就计算机视觉图像精密测量的关键技术中常见的问题进行讨论。

2.1 降低失误的概率

在很多的数据误差中,有一部分是出现在人为的因素上面。对于机器的不熟悉和操作中的疏忽都会在一定程度上对图像的视觉感模拟带来麻烦。对于网络设备的配置上,要经常性的学习,将配置在可能的情况下设置的更加合理和使用,保证网络连接系统的安全性。为防止更多因操作带来的误差,选用系统登入的制度,用户在通过识别后进入系统,在采集数据后,确定最终数据上又相关的再次确定的标识,系统对本身有的登录服务器和路由器有相关的资料解释,记录好实用操作的时间,及时备份。

2.2 对于权限的控制

权限控制是针对测量关键所提出的一种安全保护措施,它是在使用计算机视觉图像精密测量的关键技术中对用户和用户组赋予一定的权限,可以限制用户和用户组对目录、子目录、文件、打印机和其他共享资源的浏览和更改。图像中的运行服务器在停止的情况下可以做出不应答的操作指令,立刻关闭当前不适用的界面,加快系统的运行速度,对于每天的日志文件实时监控,一旦发现问题及时解决。对于数据终端的数据可采用可三维加密的方法,定时进行安全检测等手段来进一步加强系统的安全性。如果通过了加密通道,系统可以将数据自动的保存和转换为视图模式,对于数据的审计和运行可以同时进行,这样就可以很好的保证大地测量中的图像数据安全,利用防护墙将采集中废弃的数据革除在外,避免数值之间发生紊乱的现象,进一步改善计算机视觉图像精密测量的关键技术。

2.3 开启自动建立备份系统

计算机视觉图像精密测量的关键技术的完善中会常遇到系统突然崩溃或是图像受到严重干扰导致无法转换的一系列情况,发生这种情况最大的可能性就是系统在处理多组数据后无法重新还原成进入界面。这时为保证图片转换成数字的系统数据不丢失,我们对系统进行备份。选定固定的磁盘保存数据,定期将产生的数据(转换前的图像和转换后的数值)导出,保证程序的正常运行。当系统一旦发生错误,可以尽快的恢复数据的初始状态,为测量任务的完成争取更多的时间。我们还要减少信号源周围的干扰,定期的更新系统数据库,保持数据采集的稳定性,把摄像机记录出的数据节点保存在相应的技术图纸上,用这样的方式来知道测量工作。系统备份的数据还可以用于数据的对比,重复测量后得出的数据,系统会自动也备份的数据进行比对,发现误差值在规定以外,就会做出相应的预警,这样也能在工作中降低出现误差的概率。

3 计算机视觉图像精密测量的关键技术遇到的困难和使用前景

计算机视觉图像精密测量的关键技术作为一种新兴技术在使用时间上不过十几年,其使用的程度已经无法估算。正是因为它的简单、使用、精度高以及自动化能力卓越的特点受到了测量单位的广泛青睐。在测量方面的这些可靠性和稳定性也是有目共睹的。在土木和机械测量的行业计算机视觉图像精密测量的关键技术都会有广泛和良好的使用,前景也是十分的广阔。但是不容忽视该技术也有一些弊端。这项关键技术中涵盖的学科非常的多,涉及到的知识也很全面,一旦出现了机器的故障,在维修上还是一个很大的问题,如何很好的解决计算机视觉图像技术的相关核心问题就是当下亟待解决的。

我们都知道,人的眼睛是可以受到吱声的控制,想要完成观测是十分简单的,但是在计算机视觉图像技术中,毕竟是采取摄像机取景的模式,在取得的点位有的时候不是特别的有代表性,很难将这些问题具体化、形象化。达不到我们设计时的初衷。所以在这些模型的构建中和数据的转换上必须有严格的规定和要求,切不可盲目的实施测量,每项技术操作都要按规程来实施。

上文中也谈到了,计算机视觉图像精密测量的关键技术中最主要的构建是传感器,一个合理的传感器是体统的“心脏”,我们在仪器的操作中,不能时时刻刻对传感器进行检查,甚至这种高精度的元件在检查上也并不是一件简单的事情,通过不断的研究,将传感器的等级和使用方法上进行一定的创新也是一项科研任务。

4 结束语

在测量工程发展的今天,很多的测量技术已经离不了计算机视觉图像技术的辅助,该文中详细的谈到了基于计算机视觉图像精密测量的关键技术方面的研究,对于之中可能出现的一些问题也提出了相应的解决方案。测量工程中计算机视觉图像精密测量的关键技术可以很好的解决和完善测量中遇到的一些问题,但是也暴露出了很多的问题。

将基于计算机视觉图像精密测量的关键技术引入到测量工程中来,也是加强了工程建设的信息化水平。可以预见的是,在未来使用计算机视觉图像技术建立的测量模型会得到更多、更好的应用。但作为一个长期复杂的技术工程,在这个建设过程中定会有一些困难的出现。希望通过不断的发现问题、总结经验,让计算机视觉图像精密测量的关键技术在测量中作用发挥的更好。

参考文献:

[1] 汤剑,周芳芹,杨继隆.计算机视觉图像系统的技术改造[J].机电产品开发与创新周刊,2005,14(18):33-36.

[2] 段发阶,等. 拔丝模孔形计算机视觉检测技术[J]. 光电工程时报, 1996,23(13):189-190.

篇6

关键词:OpenCV;计算机视觉技术;三维模拟技术

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)30-0137-02

21世纪是国际计算机技术高度发展的时代,人们生活中的每个角落都可以看到计算机技术的身影,尤其是现代计算机视觉技术和图像处理功能发展更加迅猛,各技术分支也逐渐趋于成熟。计算机视觉技术主要指的就是利用智能计算机系统来代替人类的眼睛对现实三维世界进行辨识和理解,整个过程均是计算机自我学习的过程,而随着这项技术研究的不断深入,其不再仅仅包含计算机技术科学,同时还涉猎了包括生理学、神经学、物理学、应用数学等多门学科,为人类科技的进步提供了有效的动力。

1 计算机对视频中运动物体检测的原理概述

在现代计算机技术基础下,对视频当中的运动物体检测原理主要包括两种,分别是从微观和宏观的角度出发。其中宏观检测技术指的是当计算机截取了视频中的某一个图像,其以整幅图像为对象进行检测;微观检测技术是指在截取图像后,根据实际需求对某一区域内的图像内容进行检测。在计算机视觉技术实际应用时,其第一步就是对图像的采集,第二步是对已经采集的图像进行预分析处理,如果采用宏观检测技术则对图像整体进行分析;如果采用微观检测技术则首先将图像进行分割,然后对分割后各图像内容中出现的运动物体影像进行分析。在图像数据获取过程中应用的是背景差分法,这一技术主要是将背景和运动物体进行分离提取,以获取没有背景图像的运动物体影像数据。还可以利用帧间差分法,这种方法主要是对一个视频图像的逐帧画面进行差别比较,从而获得各帧图像上的差值,而将这些差值帧图结合起来就是一个物体在计算机视觉下的运动轨迹。现代研究者更倾向于将背景和帧间差分法进行结合运用,这样可以获得无背景下的运动物体轨迹,进而提升计算机视觉系统捕捉数据的准确性。

2 OpenCV的应用概述

OpenCV是现代计算机视觉技术当中具有开源性的视觉库,其最早是由俄罗斯Intel分公司所研发,不仅高效,而且具有兼容的优势。同时与传统IPL图像处理系统相比,OpenCV所处理的图像数据等级更高,例如在对运动物体进行特征跟踪、目标分割、运动轨迹分析以及三维模型重建等方面都有着巨大的优势。

OpenCV本身编辑的源代码是开放式的,编写过程简洁且方便,并且程序中大多数函数已经通过了汇编的最优化,使其能够更加高效地被应用。在使用OpenCV的摄像机标定模块已经为用户设计了实用性较强的接口,并且能够支持Windows界面的操作平台,使得这一技术的操作更加简便。这一技术本身操作简便,对于编程人员和检验人员个人技能素质要求并不高,视觉技术系统研发人员可以利用简便的操作来检验其设想是否能够实现,这就使得现代计算机视觉技术开发团队能够形成更好的协作研发关系,进一步提升技术研究效率。目前已知OpenCV编程系统在航空航天定位、卫星地图绘制、工厂大规模生产视觉检测等方面得到了广泛的应用,同时对于无人飞行器的视觉捕捉技术也有极大的帮助。最为重要的是OpenCV编程语言的兼容性较强,编程人员可以根据自己的意愿对源代码进行披露,并且国内也已经形成了规模较大的交流社区,给更多同行业者提供答疑解惑的场所,进一步扩大了OpenCV的应用范围。

3 基于OpenCV的计算机视觉技术

3.1 基于OpenCV下的运动物体检测技术

在常规运动物体检测技术下,均是直接通过图像背景和运动物体的区分来实现运动物体的捕捉。而基于OpenCV下的运动物体检测技术则不仅能够针对于图像背景的分离实现运动物体的观察,还可通过物体本身特定的信息来进行检测,主要包括形状、轮廓以及颜色等。这样就能够实现在复杂的背景当中将特定的运动物体完整抽离出来。其基本流程包括:首先,对影像数据当中某一时间点的图像进行捕捉,然后对这一视频图像的格式进行转化;其次,对转化格式后的视频图像进行早期处理,并将运动物体和复杂的背景区分开,降低周围各环境因素对运动物体主体图像的影响;第三,根据完成提取后的运动物体图像进行辨识,然后再从视频当中捕捉拥有相同特征的物体,并对该物体进行跟踪识别。而这一过程的实质则在于先利用图像捕捉技术对画面进行截取,然后同时利用背景差分法和帧间差分法对图像进行分割,逐帧地将运动物体完成提取出来,以供计算机进行视觉跟踪处理。

3.2 基于OpenCV的图像预处理技术

一般情况下,计算机视觉处理技术应用的环境情况较为复杂,大多数应用环境当中均有光照的变化,并且部分计算机视觉处理设备还需要在露天环境下进行工作,此时周围环境中的风、温度、光照、气候以及运动物体数量等对视频图像的采集均有着极大的影响。环境因素会使图像采集的质量大幅度降低,同时图像当中的噪点问题也难以避免,而噪点是视觉捕捉和图像处理当中最大的影响因素。因此,在基于OpenCV下的计算机视觉技术在捕捉视频图像之后先对其进行预处理,然后再由系统对运动物体进行分离、检测和跟踪。一般的预处理过程主要包括平滑度滤波、图像填充、背景实时更新等。

1)图像的平滑度滤波预处理技术

由于在实际计算机视觉捕捉过程中图像噪点是难以避免的问题,以此在对图像中运动物体进行检测前,应该相对这些噪点进行预处理,降低环境噪声对图像的影响。图像的平滑度滤波处理共分为两种方式,分别为线性和非线性。其中线性处理方式就是通过计算机处理设备的简单运算,对图像当中的噪点进行直接清除,但这一技术使用后会造成截获图像模糊不清的情况,因此仅对噪点较少的图像采用该处理方式;非线性滤波处理则是利用复杂的图像处理运算,将截获图像当中的噪点无限缩小,使其不对图像整体造成影响,并且可以有效保证图像的局部调整,但这种处理方式在运算时速度没有线性滤波处理快,因此需应用在噪点较多,图像信息较复杂的处理当中。

2)图像的填充预处理技术

这一处理技术在使用过程中运算速度较慢,主要是由于其需要对逐帧的图像均进行处理,也包括两种处理方式,分别为边缘填充和腐蚀膨胀处理。其中边缘填充处理主要指的是在确定运动物体之后,利用计算机系统自身的边缘检测处理技术,对物体的轮廓进行辨识,并利用形态学上的漫水填充方式对运动物体周围的噪点进行颜色填充,减小其对画面整体元素的影响。而腐蚀膨胀处理与边缘填充处理原理相类似,但这种处理技术主要是针对于噪点进行腐蚀和膨胀,使其在画面当中所占比例扩大,但对运动物体本身不造成影响,这使运动物体和噪点之间的差异就会更加明显,就可以将噪点的影响降到最低,但这种处理方法的效果和摄像机本身的性能、质量等有着密切的关联。

3)背景的实时更新预处理技术

在进行运动物体和背景分离过程中,计算机系统需要对图像上的背景元素进行辨识,并对其开展初始化处理,这样就能够为后期实时背景图像的差异进行凸显,以增加前景图像的效果,降低噪点对图像的影响。在运用这一技术时,首先要先对第一帧的图像进行确定,并将第一帧图像当中的背景图像元素进行辨识,然后在后期图像更新和运动物体检测过程中对背景进行实时更新处理。在更新的过程中其流程主要包括:首先,系统要对所读取的画面进行有效的判断,了解该图像是否为第一帧;其次,将Opencv处理的图像转变为单通道灰度值;第三,对转变后的图像进行高斯平滑度滤波处理,将图像当中的噪点进行去除;第四,采用形态学噪点填充技术对图像当中的噪点进行二次处理,以获得所需要更新的背景图像。

3.3 前景运动物体的提取技术

在计算机视觉技术进行运动物体的检测时,只有有效保障检测流程的准确度,才能够有效保障对前景运动物体的跟踪效果。其主要分为两大步骤,其一是对二值化后的图像数据进行分割处理;其二是在图像分析前对其进行充分的填充处理,保证前景图数据的完整性。同时,在前景图像提取的过程中也分为多个步骤,其包括:首先,对所提出的前景图像和背景图像进行差分处理;其次,将差分处理后的图像二值化处理;第三,对背景当中前景物体的轮廓或边缘进行辨识,根据前景图像的轮廓对其进行填充。由于在实际操作过程中,摄像头所处环境的变化较大,并且会在不同场所内的不同角度捕捉画面,因此就需要在前景图像提取时有效提高背景图像实时更新的效果。

利用阀值二值化的分割方式能够有效将前景图像和背景图像分离开,从而使目标运动物体能够呈现独立化,并且阀值分割方式开展前要相对每个像素点进行确定,判断其是否位于灰度值的范围内。而将该图像的像素灰度和阀值进行对比后会出现两种结果,分别是灰度值低于或高于阀值。在实际应用过程中,有效确定图像的分割阀值T,就能够降低环境当中光照因素对图像质量的影响。

4 计算机视觉技术当中的三维重建技术

1)三维重建的视觉系统

计算机视觉技术在对图像进行捕捉时可以视为是对大量的图像信息进行处理,从摄像机的视觉角度出发,其所输入的图像一般为二维属性,但输出的信息确是三维数据,而这种三维空间数据能够提升对运动物体所处空间位置、距离等描述的准确性。在三维重建视觉系统工作过程中,其相对基本的图像数据框架进行确定,然后利用一个坐标点建立2.5D图像数据,即以此点为视角能够观察到的图像数据,再将2.5D图像数据进行整合从而建立三维图像。

2)双目视觉系统

当人体利用双眼在不同角度、同一时间内观察同一个物体时,就可以利用算法来测量该物体和人体之间的距离,而这种方法也被称为双目立体感,其应用的原理主要是人体视觉差所带来的影响。同时利用两台摄像机对同一图像从不同角度进行观察,就能够获得人体双目观察后的效果,因此这一三维重建技术也被称为“双目视觉系统”。两台不同的摄像机即可代表人体双眼,其对图像进行逐帧捕获,但由于角度不同和环境影响因素的差异,因此造成了图像差异,必须对其捕捉的图像进行预处理。

3)三维重构算法

在计算机视觉技术中对于视频流的采集主要依靠的是彩色摄像机、红外摄像机、红外接收摄像头等设备。还可以利用微软所提供的Kinect设备,在进行运动物体检测前能够对NUI进行初始化处理,将系统内函数的参数设定为用户信息深度图、彩图、骨骼追踪图等数据。在使用Kinect设备对视频流进行打开时,其可以遵循三个步骤,其一是彩色和深度数据的处理;其二是根据数据的索引添加颜色信息,并将其引入到深度图数据当中;其三是骨骼追踪数据。

5 结束语

计算机视觉捕捉技术是现代计算机应用当中较为先进的内容,其应用范围较广,对于运动物体的捕捉准确度较高,能够有效推进现代计算机模拟技术的发展。

参考文献:

[1] 张海科.基于Opencv的人手识别与跟踪定位技术研究与实现[D].昆明: 云南大学,2013.

篇7

农业机械化不仅是人类的解放,解放劳动力。这些年轻的劳动力投入到其他领域,促进中国的经济发展可以提高农业生产的效率,优化操作质量和增加作物产量,有利于农业发展和农民收入,因此,今后应重视先进技术的推广,提高农业机械化水平。目前农业机械的使用,一些机械在使用过程中不能清楚地确定作物的位置,机器在关闭过程中很容易错过,所以利用新技术在农业机械有利于弥补农业机械的脆弱性,提高机器的运作效率。

目前,高新技术的应用范围扩大,农业机械行业也开始使用高新技术,引入计算机视觉技术、自动控制技术、信息网络技术、人工智能技术、机器人技术和液压技术在农业机械的应用现状。

2 农业机械的应用技术

2.1 农业机械的应用计算机视觉技术

农业机械的应用计算机视觉技术,主要是利用计算机视觉技术在农产品质量、品位等农业产品检查,是基于图像处理,计算机视觉的学科,主要是视觉信息处理理论。表达和计算方法研究,近年来,图像处理,计算机硬件和软件,等可视化仿真技术的逐渐发展计算机视觉技术的使用功能也扩大,计算机视觉技术是用来检查农产品的质量不仅是现阶段和分级产品还用于收割、种植等。

2.2 农业机械的CAD技术

CAD技术在我国已广泛应用于机械工程设计制造从上个世纪60年代,我国40多年后独立研究开发和推广应用。但由于我国机械工程设计CAD系统的开发过程的社会主义改革开放的影响,以便后期的完美程度我国机械工程设计CAD系统程度的效率和其他性能大大受到限制,相对于我国的国外机械工程设计CAD系统仍处于较低水平。

2.3 农业机械的信息网络技术

信息网络技术在农业机械中的应用非常成功,信息网络技术和地理信息系统,结合自动化技术等技术,可以监测作物和土壤的农业生产,也可以生产作物的发展,植物病虫害,和实时监控等等,然后依靠定位系统和地理信息系统来完成现场操作。

农业机械、机器人技术应用、信息网络、计算机视觉、自动控制技术的融合。目前,已经开发了采摘机器人,嫁接机器人,机器人除草,施肥机器人喷涂机器人,等。对肥料和喷涂机器人的使用,可以避免肥料、杀虫剂和其他化学品危害人体,达到改善环境的目的。目前虽然我国机器人技术落后于发达国家,取得了一些就,但由于现代机械机器人的购买成本非常高,所以这项技术并没有得到普及。

在农业机械的设计、制造和测试,虚拟现实技术具有非常广阔的发展前景,利用虚拟现实技术建立三维模型的农业机械设计师不仅可以了解每一个部分的质量,也可以完全满足的每一部分的运行性能三维农业机械模型具有很高的精度,和农业机械制造商大规模生产的计算机数据的基础上。

在虚拟制造系统中,虚拟现实技术的基础,虚拟制造系统是由多种学科知识,利用计算机技术综合建模、仿真、生产、制造汽车。与此同时,虚拟制造系统还可以制定合理的产品检验和测试程序。目前,虚拟制造技术应用范围广泛,涉及开始工装及模具生产设备,和其他领域,可以在生产部门系统,在这一过程中完成建模、修改、分析和优化的四个工作。此外,虚拟现实技术用于柔性制造系统和计算机集成制造系统的设计。

2.4 人工智能技术

近年来,全球高端技术获得了农业机械在农业的快速发展,管理,挖掘和采摘等实现智能化,使用人工智能技术研究和开发的激光拖拉机、内部导航设备,等等,可以拖拉机的方向和具置测量,并通过建立计算机数据库将记录相关数据,使用数据库了解排水位置、土壤湿度、等等。了解土地信息后,制定合理的土地种植方案,计算机化化肥消费,数量的农药和种子。

3 先进技术的应用在农业机械化操作的保障措施

得到更好的应用程序为了促进先进技术,提高农业机械化水平,未来应该完善的技术推广体系,提高农业机械化水平,促进农业生产和发展。完善的技术推广体系,高度重视农业技术推广,建立试验示范基地,发挥作用的指导,让农民参观和学习。让他们意识到农业机械设备的重要作用,加强农业机械化的意识,接受和使用机械设备,技术推广和培训活动。让广大农民掌握农业机械和设备的使用,提高思想认识和应用技能、农业机械和农业技术应用于农业生产。

构建技术环境,当地政府应该高度重视农业机械和农业技术推广的作用。提高思想认识,加强规划和指导,增加资本投资,培训专业人才,创新工作方法,对许多人来说,完善的技术推广体系,认真履行职责,并扩大先进技术的影响。完善法律法规,充分利用其在技术和人才优势,重视技术的宣传和推广活动,增强服务意识,扩展广泛的服务渠道,更好的满足实际工作的需要,对农业技术的发展,为推广农业机械和设备创造便利。

4 农业机械新技术的发展

农业机械新技术的应用和发展是为了提高农业的生产力服务,所以农业机械新技术的发展主要是以下几点:

首先,加快新技术的使用和推广。科学技术是第一生产力,加快计算机视觉技术、自动控制技术和智能技术等新技术在农业机械的使用,同时引进国外先进的机械、新技术,促进我国农业的发展,提高农业的生产效率具有重要意义。

第二,政府补贴。购买新机器的个人组织生产、资本压力,使得他们很难机械技术推广,所以对于农业机械推广使用新技术,政府将给予补贴材料,扩大新机器的使用。

第三,提高农业资源的利用效率。机械使用以提高农业生产的效率,提高农业资源的利用率。例如,在传统的农业生产过程中,和处理农作物秸秆,绝大多数情况下燃烧,不仅浪费资源,还污染空气。但农业机械的使用新技术的农作物秸秆粉碎加工、作物秸秆可以转化成脂肪不仅材料,提高农业资源的使用效率,也减少了空气污染。

篇8

2013年4月,何搏飞辞去了一家美国上市公司中国区总经理的职务。他用几个月的时间在中国寻找创业伙伴,结果却让人失望。当时,他已经做好打算,和这个团队随便聊半个小时,然后就飞去美国硅谷。

何搏飞推开门,看见几个光着上身的年轻人坐在电脑前,整个屋子被各种大小的显示屏围绕。随后,他和团队CTO赵勇从下午两点一直聊到了凌晨两点,就决定加入担任CEO。这家公司的名字叫做“格灵深瞳”。

格灵深瞳是一家计算机视觉和人工智能的技术公司,通过深度数据和机器学习算法让计算机主动获取三维视觉信息,并进行精确的实时智能分析。简单来说,他们想让计算机像人一样,看见并理解这个世界。

“计算机视觉的技术已经存在了几十年,我们想要做第一个将计算机视觉商业化的公司。”何搏飞说。切入智能安防监控领域是格灵深瞳选择将计算机视觉商业化的第一步。今年6月,格灵深瞳获得了红杉资本数千万美元的A轮融资。10月,其智能安防系统开始在国有四大银行中的三大银行进行试点。

格灵深瞳CTO赵勇创业之前在Google工作,是Google Glass的核心研发团队成员之一。Google的工作原则是80/20,员工可以利用20%的时间自由创新。赵勇利用空闲的时间,重新开始研究自己在美国博士期间的研究方向―计算机视觉的人工智能。

计算机视觉过去主要建立在光学镜头采集的二维图像上。光学镜头在生成图像时,会丢失掉一个维度“深度”,只保留长度和宽度。当时人们觉得,通过二维图像加上算法,就能够让计算机看懂世界。但赵勇和他布朗大学的博士导师并不同意这个观点。他们坚持认为,计算机必须要通过三维信号才能够看懂这个世界。因此,他们主张要增加“深度”这一维度的信息。“我们有两只眼睛,就是为了判断深度。人脑比计算机聪明多少倍?人脑进行判断还需要三个维度的信息,计算机只通过两个维度怎么能够准确判断?”何搏飞对《第一财经周刊》说。格灵深瞳的这一代智能安防系统上一共装有3个镜头。一个是和普通安防系统一样的RGB摄像头,另外两个用来发射和接收激光。激光发射镜头能够在1/30秒的时间里发送36万束激光,安防系统借助它们扫描出现实世界的三维立体图像。

这3个镜头就相当于计算机的“眼睛”。格灵深瞳所做的,不仅是给计算机装上“眼睛”,而且给计算机设置了一套“视网膜神经系统”,让计算机能够看懂“眼睛”里出现的东西。

借助机器学习算法,格灵深瞳的系统能够同时分辨多人的运动轨迹和行动速度,并一一精确记录。比如早上8时的北京地铁站,人群正处于早高峰极端拥挤的状态,格灵深瞳可以从中分辨出一个穿红衣服的女孩,精确跟踪她在人群中的行走轨迹。同时,格灵深瞳的系统还能够监测人类肢体的运动幅度和速度,从而精确识别人们的姿势和正在做的事情。

最初,赵勇和团队已经解决了基本的技术问题,但还没有想好商业化应该选择的行业。办公区域前的大黑板上密密麻麻地写着80多条可能的商业化方向,包括安防、教育、医疗等等。这些是格灵深瞳团队的工程师们一个晚上头脑风暴之后的成果。

“你们这是科学家在实验室里想问题的方式。”熟悉商业的何搏飞对赵勇说。“如果格灵深瞳的目标是成为全球最好的计算机视觉和人工智能公司,最需要的是什么?”“海量的数据。”赵勇说。

要获得海量的数据,有两种方法。第一个是像Google街景一样,自己到各地去拍摄采集。另外一种,是通过现成的行业和设备实现。有没有一个行业,已经在所有能够采集数据的地方都装上了摄像头?赵勇和何搏飞同时想到了安防。安防是一个足够大的市场。2013年中国安防市场的复合增长率为30%,销售收入约为4000亿元。美国的摄像头与人口比是1:10,但在中国的北京和上海这个数字还只是1:50。

更难得的是,格灵深瞳的技术正可以解决安防领域目前面临的两个难题―看不见和找不到。一方面,一个安保人员往往要同时负责监看100多个摄像头,随便里面某个摄像头拍摄到突发事件,当时就被监控人员发现的可能性非常小。另一方面,想要查找监控录像中的某一段录像也非常困难,就算快进,一段6个小时的视频也得近1个小时才能看完。而格灵深瞳的智能计算机视觉系统可以很好地解决这些问题。

选择安防领域作为商业化切入口之后,赵勇和何搏飞开始分析市场和客户。他们发现安防系统在机场、火车站、广场等场景应用最多。但场景一多,很多东西就无法控制。他们希望首先找到一个具有高度可复制性的场景,他们将目光投向了银行。“中国的银行几乎都长得一模一样。由于银监会有严格的条例规定,它们的需求也都一样。而且银行本身底子厚,它们有很强的应用安防新技术的动力。”何搏飞告诉《第一财经周刊》。

一开始跟银行谈合作时,何搏飞和赵勇将重点放在了暴力事件的监控和报警上面。但他们发现实际情况并不如自己所想。暴力事件的概率极小,因此在很长一段时间内,格灵深瞳无法向银行展示出产品优势。

银行的工作人员告诉他们,比起外部风险,银行更头疼的是内部风险。银行一直有双人加钞的规定,一个人保管钥匙,一个人保管密码。但这条规定执行得并不好,就算排班排了两人,也常出现一个人出去抽支烟,另一个人自己加钞的情况。媒体曾经报道有顾客在ATM机中取出过假钞,就是加钞过程中出了问题。

何搏飞和赵勇将这点作为了产品的突破口。经过一段时间的研发,他们的安防监控已经能够确保当ATM机的加钞盖子被打开的时候,必须有两个人在场。甚至当一个人输入密码时,另一个人没有转过身,系统都能够自动报警。银行长久以来的难题被格灵深瞳解决了,它们开始接受格灵深瞳成为自己的安防合作伙伴。2013年12月,格灵深瞳进入全国网点最多的银行中国农业银行进行无人监控安防测试。2014年10月,格灵深瞳在国有四大银行的三大银行中进行大规模推广试点,测试地区包括北京、重庆等省市。

篇9

关键词:计算机视觉系统 工业机器人 探究

中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2015)05-0000-00

计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。近年来,机器人已经广泛使用于工业生产,但是多数机器人都是通过“示教-再现”的模式工作,在工业机器人工作是都是由操作员进行操作示范再由机器人跟着示范进行工作。由于机器人缺乏对外界事物的识别能力,工作中经常发生偏差或者位移等情况。由于工作环境的恶劣以及各种阻碍,为了提高工业机器人的工作效率、灵活性、适应性等,让机器人更好的识别外部环境并及时调整运作方向,能更好的发挥其作用,在原有的机器人系统中添加了一套计算机视觉系统,利用计算机视觉图像装置的信息,通过图像使机器人进行外部环境的识别处理,采用三维的重建,通过作业中利用三维图像的信息进行计算,采用Motocom32软件和机器人控制柜通讯等设备,对工业机器人进行控制,更好的实现机器人对空间特点的跟踪与定位。

1系统的结构与原理

本文主要针对Motoman UP6工业机器人系统的二次研究,在原有的工业机器人的系统中,增加了一套计算机视觉系统, 使工业机器人更好的识别外界环境的系统。计算机视觉系统主要包括:Panasonic CCD摄像机、Motoman UP6工业机器人系统、工控机、OK C-50图像采集卡等外部设备。工业机器人的整个系统由原有系统与计算机视觉系统组成,在原有的系统中包含了YASNAC-XRC- UP6机器人控制柜、Motoman UP6工业机器人本体、示教编程器、Motocom32系统以及相关的外部设备等[1]。计算机视觉系统的设备主要有Panasonic CCTV摄像机、AVENIR TV镜头、OK系列C-50图像采集卡、工控机、AVENIR TV镜头、Panasonic CCD摄像机、OK系列C-50图像采集卡形成的视频采集系统主要是捕获物体的图像,该功能主要是分三个层次进行图像处理、计算、变换以及通信等功能来实施工控机。利用远程控制来对工业机器人进行Motocom32系统进行通信。

2计算机视觉系统的构建

2.1硬件的组成

CCD摄像头:选用的CCD摄像机采用PAP-VIVC810AOZ型彩色摄像头,如图1。摄像机的像素为P:500(H)x582(V),N:510(H)x 492(V),摄像机的分辨率为420。摄像机的成像器使用1/33"CCD,信噪>48 dB,同时摄像机具有自动背景光补偿、自动增益控制等功能。

图像采集卡:图像采集卡主要采用CCD摄像头配套的MV-200工业图像处理。如图2所示。MV-200图像采集卡的分辨率、图像清晰度具有较高的稳定性,其真彩色实施工业图像采集卡,该图像采集卡的硬件构造、地层函数都具有稳定性,同时在恶例的环境中都可以稳定运行[2]。图像采集卡的图像采集效果非常好,画面效果非常流畅。

MV-200图像采集卡性能特点:其分辨率为768 x 576,具有独特的视频过滤技术,使图像质量的采集、显示更加清晰流畅。主要支持的系统为Win98 /2K/XP,主要用于人工智能、事物识别、监控等多种领域。

工控机:工控机以奔4系列为主。

2.2软件组成

图像匹配软件。

图像处理与获取软件。

定标和定位算法软件,功能分布如图3所示。

3视觉系统的原理及流程图

工业机器人的主要系统包括是由工业机器人本体、相关的外部设备、控制器(供电系统、执行器等)计算机视觉系统主要由三部分组成:图像处理和获取、图像匹配、摄像机的定位等组成。通过借助OpenCV的视觉库进行VC++.NET实行,流程如下图表4所示。

在本视觉系统运行中,需要对摄像机实行定标,建立实际空间点和摄像机的对应点。在定标的过程中,就需要标记基准点,使摄像机在采集图像时可以准确的把这些基准点投放到摄像机的坐标上[3]。同时在采集卡的图像中,对图像进行处理并计算出该基准点图像的坐标,通过定标计算法,从而得出摄像机的参数。

在机器人系统中的反馈,计算机通过C语言的调节图像采集卡进行动态链接来控制函数[4]。同时,对摄像机中的数据、视频信号进行采集,构成数字化的图像资料,采用BMP格式存储进行计算,在计算机上显示活动视频,然后系统对获取的图像进行分析处理,以及对噪声的去除、图像的平滑等进行处理,利用二值化处理对那些灰度阀值的图像进行处理,同时检测计算机获取图像的特征量并计算[5]。在完成图像的处理后,就需要确立图像的匹配特征,对图像进行匹配[6]。如果两个图像不重叠,就需要建立3D数据库进行模型重新选择,再把模型进行计算、投影计算、坐标更换等指令,直到找到与图像相匹配的数据模型,才能真正得到真实有效的图像。重叠时,要获得有效的图像,以工业机器人识别物体为目的,才能建立机器人系统之间的通信。同时,通过三维图像重建,进行机器人空间定位[7]。如下图表5所示。

4结语

综上所述,计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。通过3D数据模型指定目标,机器人系统利用计算机视觉图像的采集装置来识别外界环境的数据,经过图像的姿态预算、影像的投影计算产生图像,通过图片的合成比较,以此来实现机器人在工作中对物体的识别。利用计算机系统对机器人进行有效的控制,在工业机器人工作中对事物目标的搬运、跟踪、夹持等指令。计算机视觉系统具备清晰的视觉功能,有利于提高工业机器人的灵活性以及适应性。

参考文献

[1]夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程,2014(06):221-223.

[2]华永明,杨春玉.机器人视觉系统在立体编织自动铺纱过程中的应用研究[J].玻璃纤维,2011(01):189-191.

[3]王培屹.基于多传感器多目标实时跟踪视觉系统在全自主机器人上的应用[J].软件导刊,2011(01):263-264.

[4]谭民,王硕.机器人技术研究进展[J].自动化学报,2013(07):123-125.

[5]鲍官军,荀一,戚利勇,杨庆华,高峰.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报,201(01):93-95.

篇10

关键词:计算机视觉;智能交通;监控系统

中图分类号:TP277

近些年来,随着我国人民生活水平提高,使私家车辆的数目急剧增长,并且车辆的增长速度远远超出市政建设的力度。这样的事实导致城市交通拥堵、违规通车、车祸增加,所以迫切的要求加快市政建设,实施高效率的交通监控措施,基于计算机视觉的智能交通监控系统也由此得到了相应的广泛的发展和应用。那么,计算机视觉技术下的智能交通监管系统究竟应该如何设计与实现呢?

1 计算机视觉下的智能交通监控系统

1.1 计算机视觉技术

计算机视觉技术即利用各种图像摄录设备将通过对视觉目标进行识别、跟踪、测量并将由此获取的视觉信息传输至计算机并进而利用图像技术进行视觉信息处理以达到进一步进行智能化处理的视觉处理技术。

1.2 智能交通系统(ITS)

智能交通系统(ITS)是指通过现代化的网络信息技术、自动控制技术等有效综合手段在一定范围内建立的全方位发挥作用的交通运输综合管理和控制系统。作为交通运输管理体系的一场新的革命,近年来,由此技术进一步开发形成的监控系统已经在各个道路的关键路口、路段和其他交通繁忙地域普遍建立,为交通运输管理提供了自动化、智能化的信息收集和处理等多方面的服务。但是,随着城市建设的迅猛发展和人流、车流量的猛增,更加智能化的交通管理系统的开发和利用显然也成为了当务之急。

2 计算机视觉下的智能交通监管系统的建立

正是基于新的发展需要,我们有必要把计算机视觉和智能交通监控系统进一步结合起来,首先通过计算机视觉分别对各个道路的关键路口、路段和其他交通繁忙地域等相应位置实时进行交通信息采集,然后,通过信息传输系统、或者进行处理后存入服务器并将处理过的实时交通信息及时传输到监控指挥系统,以实现对于各个道路的关键路口、路段和其他交通繁忙地域的实时监控和管理。由此,显然就需要设计以下各个子系统并共同构建为一个完整的体系。

计算机视觉下的智能交通监管系统

实时交通信息收集系统

监控指挥系统

高质量信息存储传输系统

图1 计算机视觉下的智能交通监管系统工作程序示意图

3 智能交通监控系统的实现

计算机视觉下的智能交通监管系统实现的第一步是通过实时交通信息收集系统实时进行交通信息采集,即通过对于运动物体的分割,在图像找出有意义的部分,抽出运动目标的特征,进而通过连续画面间的变化判断目标的运动状况。在这一系统运行中,首先可以“摄像头读入”的初始视频,使用相应的算法提取“背景”,然后通过原图与背景运算形成相应的“前景”,由此即可进一步通过矩形框的使用来达到“运动目标检测”与信息采录的目的。

图2 视觉监控系统原理图

3.1 系统功能实现

对运动物体的检测主要有光流法以及差分法两种方法,由于光流法比较复杂和耗时,实时检测很难实现,因而,现有实时交通信息收集系统一般通过差分法的应用来进行开发和实现。

3.1.1 帧间差分法

帧间差分法对运动目标进行分割处理过程中使用较多也最为简单实用的一种方法,其基本原理就是通过在连续的图像序列中两个或三个相邻帧间采用基于像素的帧间差分并且阈值化来提取图像的运动区域,进而通过逐象素比较获取前后两帧图像之间的差别来判断运动物体的移动状况。在实际操作中,一般可以假设用于获取序列图像的视频设备为静止物体,设视频中连续两帧的图像为It(x,y)和It+1(x,y),然后通过对连续两帧的图像相应的像素进行比较,利用Dt(x,y)=It+1 (x,y)-It(x,y)这一方程求出相应的阈值来检测出运动物体的移动状况:

Mt(x,y)=

当然,必须注意的是,由于帧间差分法所得到的差分图像在现实中并非由理想封闭的轮廓区域组成的,因而,运动目标的轮廓自然也就往往是局部的、不连续的,且其误差往往随着运动物体速度的增大而增大,因而,这一方法并不适于对于高速运动目标的有效检测。

3.1.2 背景差分法

与帧间差分法不同,背景差分法则是利用当前图像与背景图像的差分来检测物体运动状况一种方法。其基本原理是在可控制环境下,通过对于运动背景的固定假设,设待检测运动物体的图像为I(x,y),背景图像为B(x,y),通过输入图像与背景模型进行比较,利用D(x,y)=I(x,y)-B(x,y)这一方程求得到图像中的各像素的变化信息,进而检测运动物体的移动状况:

Mt(x,y)=

当然,在实际运用中,背景差分法的关键,是要建立一个背景模型,并更新模型。

3.2 程序功能的实现

本程序功能实现所主要使用的是OpenCV函数。OpenCV能够实现对图像数据的操作,包括分配、释放、复制、设置和转换数据,以及对摄像头的定标、对运动的分析等。在函数实现上,用到了Cv图像处理的连接部件函数,运动分析与对象跟踪中的背景统计量的累积相关函数等相关的函数。本系统就是运用图3介绍使用到的函数名及其功能和使用格式等来实现对视频流的运动车辆的轮廓检测的。

图3 寻找轮廓程序主要算法流程

实验证明,本系统能够较好地实现对视频流的运动目标的轮廓检测和对象跟踪,并能实时更新背景,车辆跟踪正确率在95%以上,虽然存在着轮廓检测正确率稍差的缺点,但其主要原因是由于摄像头所处的角度和运动目标靠近程度的影响,从根本上并不影响对于运动目标的实际检测。

4 结束语

加快城镇化进程是我国发展的大趋势,在这一趋势下,城市病的治理当然可以离不开现代化的科学技术。但是,必须注意的是,无论多么先进的管理系统,最终都只有通过人的行为才能够发挥有效的作用,在这个意义上,设计与使用先进的交通监控系统固然是解决交通问题的技术条件,但是,交通问题的解决,最终还必须依赖于人的素质的全面提高。

参考文献:

[1]戴俊乔.城市道路交通视频监控系统架构和性能的研究[J].科技与创新,2014(06).

[2]张伟龙,李刚,王雨翔.基于计算机视觉的智能交通监控系统[J].小型微型计算机系统,2014(07).

[3]庞其富.浅谈城市轨道交通视频监控系统设计方案[J].通讯世界,2014(01).