金属纳米材料的应用范文

时间:2024-01-10 17:57:19

导语:如何才能写好一篇金属纳米材料的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

金属纳米材料的应用

篇1

纳米材料和纳米技术是20世纪后期出现的新型材料和高新技术。由于纳米材料的小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,使它与常规材料相比具有独特的优异性能。随着纳米技术的迅速发展,各种类型纳米材料不断涌现,如纳米陶瓷粉末、纳米金属材料、纳米金属、纳米化合物、纳米生物材料等。在这些材料中纳米金属材料是重要的研究方向,在科研人员的不断探索中,纳米金属粉末的制备技术得到了不断革新和发展。许多纳米金属粉末作为新型抗菌材料(如抗病毒物质、抗菌材料、防污漆和抗真菌材料)的替代品被重点研究。纳米金属粉末也因其在冶金、催化和军事等领域中广泛的应用,成为研究人员的热点研究方向。

全书内容共分为12章:1.纳米金属颗粒的热力学数据的总体评价,从热力学背景知识出发,介绍纳米金属颗粒尺寸与材料性能的关系,并将实验和计算的熔解温度进行对比;2.单个纳米金属颗粒的数值模拟,包括分子动力学模拟、与尺寸相关的材料性质、两种纳米颗粒的烧结研究和纳米颗粒在氧气环境下的氧化研究以及具有核-壳结构的颗粒的加热和冷却等内容;3.放电爆炸下的纳米金属颗粒,主要介绍纳米金属的电爆炸丝生产技术;4.纳米金属粉末的电爆炸丝生产方法,包括如何用等离子技术对纳米颗粒进行再凝结、纳米铝粉的特征、纳米粉末的化学钝化、铝纳米颗粒的微胶囊化等内容;5.纳米金属颗粒团聚物的结构,包括表征团聚物结构的实验技术、力学稳定性、热稳定性、以及气体运输对反应速度的限速作用等内容;6.纳米金属粉末的钝化,包括理论和实验背景以及钝化纳米颗粒的特征;7.纳米金属粉末的安全,包括纳米颗粒在空气中氧化的基本现象、对静电放电的灵敏度、根据灾害分级对纳米粉末进行排序、包装要求等;8.铝粉末与液态水和水蒸气的反应,包括研究液态、气态水和铝粉末反应的实验技术和不同条件下的铝粉末的反应情况;9.基于硼烷氨和硼氢化钠的储氢系统的钴纳米催化剂,主要介绍物理化学方法;10.机械研磨对反应活性和亚稳态纳米材料的预处理;11.金属微粒燃烧的原位表征:非平衡诊断,包括固体材料的点火和燃烧、铝的反应机理、火焰管、火焰温度等内容;12.含能系统中的铝纳米粉末的表征和燃烧。

本书重点介绍纳米金属粉末的表征、氧化和燃烧、生产技术和安全知识。本书适合无机非金属材料工程、材料科学与工程、复合材料与工程、金属材料工程和纳米材料科学与技术等专业的研究生或相关领域的研究人员阅读和参考。

郭抒,博士生

(中国科学院理化技术研究所)

篇2

本书重点阐述了有关机械纳米结构化的先进研究方法和研究内容,如严重的塑性变形,包括高压扭转、等通道转角处理、循环挤压压缩、累积叠轧焊、表面机械研磨处理等。本书内容以工程应用为导向,提出的方法有利于集成到现有的生产工艺中。此外,为了发挥所期望的功能,本书也对结构―性质关系和影响纳米结构的方法进行了详细回顾。本书最后展望了未来发展,对机械工程和纳米结构各个领域的应用进行了概述。

本书共分三部分,31章:第一部分 纳米材料的机械性能,含第1-10章:1.纳晶材料的机械性能;2.纳米结构轻金属材料的优越机械性能和创新潜力;3.认识纳米结构贝氏体的机械性能;4.纳晶材料的本征强度;5.现代光学显微镜技术和纳米结构材料基于AFM的测量;6.强度和电导率纳米铜和SPD 115铜基合金;7.机械性能与等径弯曲通道挤压(ECAP)过程的转位边界机制;8.纳米粒子的机械性能:在透射电子显微镜内部原位表征纳米压痕;9.提高纳米结构的机械特性―特别考虑动力荷载条件下;10.生物纳米材料的机械性能。

第二部分 机械纳米结构化方法,含第11-21章:11. SPD过程-机械纳米方法;12.机械合金化/铣;13. 等径弯曲通道挤压(ECAP);14.喷丸加工获取纳米结构表面:过程和处理的表面的性能;15.纳米晶化表面机械研磨处理;16.制备纳米材料的机械研磨;17超声冲击处理-适用于金属材料表面纳米结构的有效方法;18.压缩条件下的金属纳米结构;19.铣削在合成纳米结构金属基复合材料粉体的应用;20.通过铣削加工的合成与纳米粉体特性;21.来自活性球磨的纳米结构。

第三部分 机械纳米结构化的应用与发展,含第22-31章:22.通向纳米级别的机械化学的途径(Mechanochemical Route);23.粉末微粒的气蚀解体;24.宝石中的金属纳米材料的独特性能应用;25.含高能球磨的电瓷复合材料混合处理过程;26.开发等径弯曲通道挤压技术应用于纳晶材料上细化;27. 机械处理制备的双极氧化物纳米粉体;28作为纳米材料合成与加工的通用方法高能球磨;29.合并机械合金化产品/粉;30.喷丸加工衍生的表面纳米结构技术:最新进展;31.机械化学合成的纳米材料用于能量转换和存储设备。

篇3

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《NanostructuredMaterials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1dingBlocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

篇4

论文摘要:本文介绍了纳米技术、纳米材料的基本概念、原理、特征和各种纳米材料在涂料领域的应用;阐述了纳米材料在应用中所存在的技术问题,以及纳米技术在涂料领域的发展前景。

1 纳米技术及纳米材料

1.1纳米技术

纳米技术是20世纪80年代末诞生且正在崛起的新技术,主要是在0.1-100nm尺度范围内,研究物质组成的体系中电子、原子和分子运动规律与相互作用,其研究目的是按人的意志直接操纵电子、原子或分子,研制出人们所希望的、具有特定功能的材料和制品。纳米科技将成为21世纪科学技术发展的主流,它不仅是信息技术、生物技术等新兴领域发展的推动力,而且因其具有独特的物理、化学、生物特性为涂料等领域的发展提供了新的机遇。

1.2纳米材料

纳米材料主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关,使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态[1]。 狭义上,纳米材料是指粒径在0.1-100nm范围内的或具有特殊物理化学性能的材料。广义上,纳米材料是指在三维空间中至少有一维长度在0.1-100nm范围内的或具有纳米结构的材料。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料等。由于纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、电、磁等性能,将其用于涂料中后,除了可以改性传统涂料外,更为重要的是可以制备各种功能涂料,如具有抗辐射、耐老化、抗菌杀菌、隐身等特殊功能的涂料。

2 纳米材料在涂料领域中的应用

现阶段纳米材料在涂料中的应用主要为两种情况[2]:(1)纳米材料经特殊处理后,添加到传统涂料中分散后制成的纳米复合涂料(Nanocomposite coating),使涂料的各项指标均得到了显著的提高。将纳米离子用于涂料中所得到的一类具有抗辐射、耐老化、具有某些特殊功能的涂料称为纳米复合涂料。(2)完全由纳米粒子和有机膜材料形成的纳米涂层材料,通常所说的纳米涂料均为有机纳米复合涂料。目前,用于涂料的纳米粒子主要是某些金属氧化物(如TiO2、Fe2O2、ZnO等)、纳米金属粉末(如纳米Al、Co、Ti、Cr、Nd等)、无机盐类(CaCO3)和层状硅酸盐(如一堆的纳米级粘土)[3]。

2.1纳米TiO2在涂料中的应用

2.1.1随角异色效应

由于纳米二氧化钛晶体的粒径大约是普通钛白粉的1/10,远远低于可见光的波长,本身具有透明性,又对可见光具有一定程度的遮盖,透射光在铝粉表面反射与在纳米二氧化钛表面反射产生了不同的视觉效果。到1991年,全世界已有11种含超细二氧化钛的金属闪光漆。目前,福特、克莱斯乐、丰田、马自达等许多著名的汽车制造公司都已使用含有超细二氧化钛的金属闪光漆[4]。

2.1.2抗老化性能

提高材料抗老化性能的传统方法是添加有机紫外线吸收剂,纳米TiO2粒子是一种稳定的、无毒的紫外光吸收剂。因为用作涂料基料的高分子树脂受到太阳中紫外线的长期照射会导致分子链的降解,影响涂膜的物理性能,因此若能屏蔽太阳光中的紫外线,就可大幅提高漆膜的耐老化性能。郭刚[5]等研究发现利用金红石型纳米TiO2优异的紫外线屏蔽性能改性传统耐候型聚酯——TGIC粉末涂料可以大幅度地提高其耐老化性能。

2.1.3抗菌杀毒

纳米TiO2有抗菌杀毒作用,用于涂料是涂料发展中的一个重大成就。纳米二氧化钛具有高的光催化性,在紫外光的照射下能分解出自由移动的带负电的电子e-和带正电的空穴h+形成电子——空穴对, 该电子——空穴对能与空气中的氧和 H2O发生作用,通过一系列化学反应形成原子氧(O)氢氧自由基(OH), 这种原子氧和氢氧自由基具有很高的化学活性,能与细菌中的有机物反应生成二氧化碳和水,从而达到杀灭细菌的作用。[6]

纳米TiO2的抗菌杀毒作用已成为国内外关注的焦点。日本已有不少企业开发出纳米TiO2光催化涂料并实现了商业化生产。目前,由于国内对于纳米TiO2的研究大多还处于实验阶段,在涂料性能的提高和完善方面还有大量的工作要做,因此,对纳米涂料的研究要不断深入,以提高我国涂料的工业水平,推动纳米涂料的发展和应用。

2.2纳米SiO2在涂料中的应用

纳米SiO2具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且还提高了颜料的悬浮性,能保持涂料的颜色长期不变。在建筑内外墙涂料中,若添加纳米SiO2,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施工性能良好等优点,尤其是抗沾污性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料。

欲使纳米SiO2材料在涂料中真正地得到广泛应用,须解决纳米SiO2在涂料中的分散稳定性问题。通常的做法是加入表面活性剂包裹微粒或反絮凝剂形成双电层的措施。同时在分散时可配合使用超声波分散。

2.3纳米ZnO在涂料中的应用

纳米ZnO等由于质量轻、厚度薄、颜色浅、吸波能力强等优点而成为吸波涂料研究的热点之一。在阳光的照射下纳米ZnO在水和空气中具有极强的化学活性,能与多种有机物发生氧化反应(包括细菌中的有机物),从而把大多数细菌和病毒杀死。 ZnO也具有良好的紫外线屏蔽作用,粒径60nm的ZnO对波长300-400nm的紫外线有良好的吸收和散射作用,因此可以作为涂料的抗老化添加剂。日本已经开发出用树脂包覆的片状ZnO紫外线屏蔽剂[7]。在涂料中添加纳米ZnO可改善它的抗氧化性能,使其具有抗菌性能。

2.4纳米氧化铁在涂料中的应用

纳米氧化铁作为颜料无毒无味,具有很好的耐温、耐侯、耐酸、耐碱以及高彩度、高着色力、高透明度和强烈吸收紫外光的优良性能,可广泛用于高档汽车涂料、建筑涂料、防腐涂料、粉末涂料,是较好的环保涂料。紫外线分解木材中的木质素而破坏细胞结构导致木材老化,纳米氧化铁颜料分散于涂层中,由于颗粒直径小不会散射光线、涂层成透明状态且吸收紫外线辐射,起到保护木材的作用。左美祥[8]等研究发现:在树脂中掺入纳米级的TiO2(白色)、Cr2O3(绿色)、Fe2O3(褐色)、ZnO等具有半导体性质的粉体,会产生良好的静电屏蔽性能。日本松下电器公司研究所据此成功开发了适用于电器外壳的树脂基纳米氧化物复合的静电屏蔽涂料。与传统的树脂基碳黑复合的涂料相比,树脂基纳米氧化物复合涂料具有更为优异的静电屏蔽性能,而且后者在颜色选择方面也更为灵活。用纳米级Fe3O4与树脂复合制成了磁性涂料,目前这方面的制备工艺已有所突破而进入产业化阶段。

2.5纳米CaCO3在涂料中的应用

纳米CaCO3作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点,随着纳米碳酸钙的粒子微细化,填料粒表面的原子数目占整个总原子数目的比例增大,使粒子表面的电子结构和晶体结构都发生变化,到了纳米级水平。填料粒子将成为有限个原子的集合体,表现出常规粒子所没有的表面效应和小尺寸效应,使纳米材料具有一系列优良的理化性能。它添加到涂料胶乳中,加强了透明性、触变性和流平性。触变性是纳米CaCO3改善胶乳涂料各项性能的主要因素。同时能对涂料形成屏蔽作用,达到抗紫外老化和防热老化的目的和增加涂料的隔热性。

杜振霞[9]等研究表明:在纳米CaCO3改性的涂料中,如果CaCO3固相体积分数达到20%时,涂料的粘度曲线存在低剪切稀化幂律特征区和高剪切牛顿两个区域,而且有明显的触变性。当乳胶漆聚合物乳液的粒径为10-100nm,表面张力非常低,有极好的流平性、流变性、润湿性与渗透性,表现超常规的特性。

2.6其它新型纳米涂料

纳米隐身涂料(雷达波吸收涂料)系指能有效地吸收入射雷达波并使其散射衰减的一类功能涂料。当将纳米级的羧基铁粉、镍粉、铁氧体粉末改性的有机涂料涂到飞机、导弹、军舰等武器装备上,可使这些装备具有隐身性能,使它们在很宽的频率范围内可以逃避雷达的侦察,同时也有红外隐身作用。美国研制的超细石墨纳米吸波涂料,对雷达波的吸收率大于99%,其他金属超细粉末如Al,Co,Ti,Cr,Nd,Mo等,也具有很好的潜力。法国研制出一种宽频微波吸收涂层,这种吸收涂层由粘结剂和纳米材料、填充材料组成,具有很好的磁导率,在50MHz-50GHz范围内具有良好的吸波性能。我国也有相关的研究,如不同粒径的Fe3O4在1-1000 MHz频率范围对电磁波具有吸收性能,随着频率的增加,纳米Fe3O4吸收能效增加,且纳米粒径越小,吸收效能越高。

3 纳米涂料研究中存在的技术问题

首先是纳米材料在涂料中的稳定分散问题。由于纳米粒子比表面积和表面张力都很大,容易吸附而发生团聚,在溶液中将其有效地分散成纳米级粒子是非常困难的。寻找合适的分散剂来分散纳米材料,并采用合适的稳定剂将良好分散的纳米材料粒径稳定在纳米级,是纳米技术在涂料改性中获得广泛应用必须解决的最关键问题。其次, 纳米材料加入量的适度问题。一般而言,纳米材料的用量与涂料性能变化之间的关系曲线近似于抛物线,开始时随着纳米材料添加量的增加,涂料性能大幅度提高,到一定值后,涂料性能增幅趋缓,最后达到峰值:之后,随着纳米材料添加量的进一步增加,涂料的性能反而呈迅速下降的趋势,同时也增加了成本。因此,做好对比试验,选好纳米材料添加量也十分关键。最后,必须开展纳米涂料施工工艺的研究。纳米涂料就本身而言只是一个半成品,只有施工完毕后才真正成为最终产品,而现实情况是人们大都将注意力集中在纳米涂料产品本身,而忽略了施工工艺的研究,致使纳米涂料无法达到其应有的效果。

4 纳米技术在涂料领域的应用展望

今后纳米涂料的发展主要将体现在以下几个方面:(1)新的纳米原材料的开发和商品化。即根据不同材料的物理化学性能,开发研制出新纳米改性材料,使之具有更多更新的功能。(2)研究纳米材料在涂料中的分散和稳定性。即探索纳米材料颗粒与涂料间的相互作用和混合机理,并根据纳米粉体在涂料中分散成纳米级和保持分散稳定性的原理,开发新的表面改性剂和稳定剂,以提高纳米材料在涂料中的改性效果。(3)加强纳米材料表征方法和测试技术的研究。即为了能更好地利用纳米材料的特殊性能,必须研究新的测试手段对纳米材料进行研究,并将传统纳米材料的测试方法进一步完善和标准化。降低成本,并逐渐实现纳米技术的工业化、商品化,从而改变我国高档、高性能涂料大量依赖进口的状况,是将来的研究重点。

参考文献

[1] Gleiter.H, On the structure of grain boundaries in metals [J].Materials Science and Engineering,1982, (52):91-102.

[2] 卞明哲.纳米材料在建筑涂料中的应用[J].江苏建材,2001,(4):11-12.

[3] 柯昌美,汪厚植.纳米复合涂料的制备[J].涂料工业,2003,33(3):14.

[4] 张浦,郑典模,梁志鸿.纳米TiO2应用于涂料的研究进展[J].江西化工,2002,(4):20-22.

[5] 郭刚,汪斌华,黄婉霞.纳米TiO2的紫外光学特性及在粉末涂料抗老化改性中的应用[J].四川大学学报,2004,36(5):54-61.

[6] Marye Anne Fox, Maria T, Dulay. Heterogeneous phototocatalys[J].Chem Rev, 1993,(93):341-357.

[7] P.Stamatakis. Optional Particles Size of Titanium Dioxide and Zinc Oxide for Attention of Ultraviolet Radiation[J].JCT, 1990,62 (789) :95.

[8]左美祥,黄志杰,张玉敏.纳米在涂料中的分散及改性作用[J].应用基础,2001,(29):1-3.

篇5

关键词:纳米材料,化工,应用

1前言

纳米材料(又称超细微粒、超细粉未)由表面(界面)结构组元构成,是处在原子簇和宏观物体交界过渡区域的一种典型系统,粒径介于原子团簇与常规粉体之间,一般不超过100nm,而且界面组元中含有相当量的不饱和配位键、端键及悬键。其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。近年来,纳米材料在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

2纳米材料特性

2.1具有很强的表面活性

纳米超微颗粒很高的“比表面积”决定了其表面具有很高的活性。免费论文参考网。在空气中,纳米金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂、贮气材料和低熔点材料。将纳米微粒用做催化剂,将使纳米材料大显身手。如超细硼粉、高铬酸铵粉可以作为炸药的有效催化剂;超细银粉可以成为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结效率,超细微颗粒的轻烧结体可以生成微孔过滤器,作为吸咐氢气等气体的储藏材料,还可作为陶瓷的着色剂,用于工艺品的美术图案中。免费论文参考网。

2.2具有特殊的光学性质

所有的金属在超微颗粒状态时都呈现为黑色。尺寸越小,颜色越黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米厚度的膜就能起到完全消光的作用。利用这个特性可以制造高效率的光热、光电转换材料,以很高的效率将太阳能转变为热能、电能。另外还有可能应用于红外敏感元件、红外隐身材料等。

2.3具有特殊的热学性质

大尺寸的固态物质其熔点往往是固定的,超细微化的固态物质其熔点却显著降低,当颗粒小于10纳米量级时尤为突出。例如,金的常规熔点为1064℃,当其颗粒的尺寸减小到10纳米时,熔点会降低27℃,而减小到2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,完全可采用塑料。采用超细银粉浆料,可使片基上的膜厚均匀,覆盖面积大,既省材料又提高质量。

2.4具有特殊的磁学性质

小尺寸磁性超微颗粒与大块磁性材料有显著不同,大块纯铁的磁矫顽力约为80安/米,而当颗粒尺寸减小到2×10-2微米以下时,其矫顽力可增加1000倍。若进一步减小其尺寸,大约小于6×10-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已制成高储存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等;利用超顺磁性,人们已将磁性超微颗粒制成了用途广泛的磁流体。

2.5具有特殊的力学性质

因为纳米材料具有较大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性和一定的延展性,这样就使纳米陶瓷材料具有了新奇的力学性质。研究表明,人的牙齿之所以具有很高的强度,就是因为它是由磷酸钙等纳米材料构成的,这也足以说明大自然是纳米材料的成功制造者。纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。金属——陶瓷复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。

2.6宏观量子隧道效应

由于电子既具有粒子性又具有波动性,因此它存在隧道效应。近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者说它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。目前研制的量子共振隧道晶体管就是利用量子效应制成的新一代电子器件。

3纳米材料在化工生中应用

由于纳米材料的特殊结构和特殊性能,使纳米材料在化工生产中得到了广泛的应用,主要应用在以下几方面。

3.1橡胶改性

炭黑纳米粒子加入到橡胶中后可显著提高橡胶的强度、耐磨性、抗老化性,这一技术早已在橡胶工业中运用。

纳米技术在制造彩色橡胶中也发挥了独特的作用,过去的橡胶制品一般为黑色(纳米级的炭黑较易得到)。若要制造彩色橡胶可选用白色纳米级的粒子(如白炭黑)作补强剂,使用纳米粒子级着色剂,此时橡胶制品的性能优异。

3.2塑料改性

3.2.1对塑料增韧作用

纳米粒子添加到塑料中,对增加塑料韧性有较大的作用。用纳米级SiC/Si3N4粒子经钛酸酯处理后填充LDPE,当添加量为5%时冲击强度最大,缺口冲击强度为55.7kj/m2,是纯LDPE的2倍多;断裂伸长率到625 %时仍未断裂,为纯LDPE的5倍。用纳米级CaCO3,改性HDPE,当纳米级CaCO3含量为25%时,冲击强度达到最大值,最大冲击强度为纯HDPE的1.7倍,断裂伸长率在CaCO3含量为16%时最大,约为660%超过纯HDPE的值。

3.2.2塑料功能化

塑料在家用电器及日用品中的应用非常广泛,在塑料中添加具有抗菌性的纳米粒子,可使塑料具有抗菌性,且其抗菌性保持持久。现已应用此技术生产了抗菌冰箱,实际上就是在制造冰箱塑件时,使用的塑料原料中添加了某种纳米粒子,利用该纳米粒子的抗菌特性,使塑料具有抗菌杀菌的功能,国内某公司采用该项技术率先开发出无菌塑料餐具、无菌塑料扑克等产品,受到市场的欢迎。

3.2.3通用塑料的工程化

通用塑料具有产量大、应用广、价格低等特点,但其性能不如工程塑料,而工程塑料虽性能优越,但价格较高。在通用塑料中加入纳米粒子能使其达到工程塑料的性能,用纳米技术对通用聚丙烯进行改性,其性能达到了尼龙6的性能指标,而成本却降低1/3。

3.3化学纤维改性

近年来出现了各种新型的功能性化学纤维,其中不少是应用了纳米技术,如日本帝人公司将纳米ZnO和纳米SiO2混入化学纤维, 得到具有除臭及静化空气功能的化学纤维,这种化学纤维被广泛用于制造长期卧床病人和医院的消臭敷料、绷带、睡衣等;日本仓螺公司将纳米ZnO加入到聚酯纤维中,制得了防紫外线纤维, 该纤维除了具有防紫外线功能外,还具有抗菌、消毒、除臭的功能。

3.4涂料改性

在各类涂料中添加纳米材料,如纳米TiO2,可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,广泛应用于医院和家庭内墙涂饰。可制造出防紫外线涂料,应用于需要紫外线屏蔽的场所,例如涂在阳伞的布料上,制成防紫外线阳伞。还可以制造出吸波隐身涂料,用于隐形飞机、隐形军舰等国防工业领域及其他需要电磁波屏蔽场所的涂敷。在涂料中添加纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍提高,涂料的质量和档次大大升级,据称,纳米改性外墙涂料的耐洗刷性可由原来的1000多次提高到1万多次,老化时间延长2倍多。纳米ZnO 添加到汽车金属闪光面漆中,可制造出汽车专用变色漆。

3.5在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒子作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

3.6在其它精细化工方面的应用

纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。如在橡胶中加入纳米SiO 2 ,可以提高橡胶的抗紫外辐射和红外反射能力。免费论文参考网。国外已将纳米SiO 2 ,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。在有机玻璃中加入Al 2 O 3 ,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO 2 具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。纳米SiO 2 能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境科学领域还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。

4结束语

篇6

关键词:纳米材料;纳米技术;特性

纳米技术是上世纪出现的新技术,在当前社会的诸多领域都得到了广泛应用。纳米材料则是纳米技术的重要组成部分,从上世纪八十年代纳米技术问世以来,在之后的技术发展速度比较迅速,对应用领域的进一步发展起到了积极促进作用。通过从理论上加强纳米技术的研究分析,对纳米材料的实际应用就能提供理论支持。

1.纳米材料的特性以及制备的方法分析

1.1纳米材料的特性分析

纳米材料的类型是多样化的,在使用的常规材料方面尺寸都相对比较大,材料有着宏观陛。而纳米材料则与之不同,倘若是三维方向是几个纳米长的就是3D纳米微晶,在二维方向则是纳米级。从纳米材料的制造方法角度来看,只要是人工方式进行制造的就是人工纳米材料。纳米材料有着比较特殊的物理化学性能,由于其特殊性能,就在高分子材料领域有着广泛应用。从纳米材料的表面效应层面来看,主要是纳米粒子表面原子数和总原子数比会随着粒子粒径减小从而大幅度增大。在纳米粒子的表面能与表面的张力也会随之增加,这样就使得纳米粒子的性质有着很大变化,比较容易和其它的原子趋于稳定,这一材料的吸附特性也比较突出。

纳米材料的量子尺寸效应特性方面,在纳米粒子热能以及电能和磁场能等能级比平均的能级问还要小的时候,纳米材料就和宏观物质的特性有着不同。在量子隧道效应特性层面,纳米材料有着波粒二象性,所以就会有着隧道效应。当前的改性涂料使用的纳米材料通常是纳米半导材料。

除此之外,纳米材料的小尺寸效应特性也比较鲜明。在纳米材料的晶体尺寸和光波的波长以及传导电子德布罗意波长等物体特征尺寸相当以及比其小的时候,这样一般的固体材料就会以成立的周期性边界条件,将破关以及声和热等电磁特征显示出小尺寸的效应。

1.2纳米材料制备的方法分析

对纳米材料的制备过程中,需要在方法上科学应用。纳米材料的制备的方法比较多,其中的气相法就是比较突出的方法,是直接将气体以及通过各种手段把物质变成气体,然后在气体状态下发生物理变化以及化学反应。气相法的应用方法类型也比较多,比较重要的有化学气相反应法以及气体中蒸发法等。气体中蒸发法重要是在惰性气体或者是在活泼气体当中把金属以及合金等蒸发汽化,接着和惰性气体进行冲突以及冷却等从而就形成了纳米微粒。采用这一气体冷凝法进行制备纳米微粒表面清洁以及粒径分布相对比较窄。

通过液相法的应用也能对纳米材料进行制备,这一方法的应用主要是通过均相溶液作为出发点的,然后在各种途径的实施下,将溶质和溶剂进行分离,这样溶质就能形成相应形状以及大小的微粒。对溶胶以及凝胶的方法应用是比较多的,这是对纳米材料制备的特殊性工艺,对微粉以及纤维等复合材料能加以制备。由于这一方法的应用相对比较简单,对设备的应用要求也比较低,在未来的应用前景比较广阔。

纳米材料制备方法中的化学气相凝聚法也是比较重要的方法,这是上世纪末提出的新型纳米微粒合成技术。这一方法应用中,主要是通过气态原料在气相当中通过化学反应来形成的基本粒子,以及实施冷凝合成纳米微粒。当前采用这一方法对碳化硅以及二氧化锆等纳米微粒进行了合成。

2.纳米材料的应用领域

纳米材料在当前的应用领域比较多样,其中将纳米材料在建筑涂料中的应用,对建筑涂料的性能改变有着影响,能起到抗老化以及耐候性的作用效果。涂料的康老虎以及耐候性主要是涂膜受到紫外线以及阳光照射等因素影响出现的褪色以及变色等,在纳米材料的应用下,就能将SiO2、TiO2、ZnO、Fe2O3等都是在实际中比较优良的抗老化剂,对建筑涂料的抗老化以及耐候性的性能提高有着积极促进作用。

纳米材料应用到化学电源当中也比较广泛。纳米材料其庞大表面积以及特异电催化性能在化学电源当中的开发应用比较突出,纳米轻烧结体是电池电源的性能质量提高的重要保障,这是将纳米微粒构成的密度只有原物质十分之一块状海绵体作为化学电池以及燃料电池电极,从而能有效增加以及电解质溶液和反应气体接触表面和对效率有效提高。

例如:镍和银的轻烧结体作为化学电池等的电极在实际当中已经得到了应用。TiO2纳米微粒的烧结体作为光化学电池和锂电池的电极得到了广泛的研究和开发。通过纳米材料和电源相结合,就能创造出新的电源类型,在电源的性能方面也能有效提高。

纳米材料在结构材料中的应用也比较广泛,纳米结构材料应用主要是对纯金属纳米材料的研究,在当前的多元合金和纳米复合材料的应用发展也比较突出。在纳米陶瓷材料的应用上就是比较重要的,其耐高温以及高强度性能在生活中的应用比较广泛,将其在高温发动机当中加以应用在当前已经得到了实现,对燃料的热效率增加也起到积极作用,对污染就能有效降低。

可以将纳米材料作为光催化剂加以应用。在半导体的光催化效应的发挥上比较突出,在光照下价带电子跃迁到导带以及价带空穴能将周围环境中烃基电子夺过来,从而烃基就成为了自由基,能作为强氧化剂加以应用。

篇7

21世纪是知识经济科技新时代,高新技术是又“高”又“新”,其科学原理似乎非常深奥,而信息技术、生物技术更是日新月异,不断给人惊奇。其实,高新技术离我们并不遥远,已经深入渗透到社会生活的各个领域,正从形式到观念上改变着我们日常生活的衣食住行、生老病死等方方面面。

纳米,如今大家已不陌生,在家电、医药、美容等广告中,经常见到应用“纳米材料”防腐、防霉、保鲜、抗污染、高渗透、高效、高强等诸多美誉。但是,很多人对这具有“神功奇效”的纳米材料、纳米技术,还是有点说不清楚、讲不明白。

纳米本意是一长度单位,表示十亿分之一米(10-9米),相当于三四个原子的宽度,用“nm”来表示。一根直径0.1毫米的头发,用纳米来量度就是10万纳米(l000 000nm)。这样的尺寸度量单位,显然在我们的日常生活中是难以应用的,没有什么实用意义。如果你要买2米衣料,对售货员说扯20亿纳米……人家一定认为你“有病”。但是,在化学、物理学和材料科学上,纳米意义重大。研究决定物质性能的物质结构时,在原子、分子范畴,就用得上纳米。因为,大部分的原子、分子只有几纳米到几百纳米大小。

当我们把物质越磨越细后,物质开始表现出一些新的性能。如一般的铝粉是烧不起来的,而超细的铝粉,可以成为“固体燃料”;咖啡磨细到一定程度后,可以完全“溶于水”而不再有渣。从科学上讲,这些新的性能与原来的性能是有联系的,只是原来没有充分显示出来。铝本来就是容易氧化的物质,但形成的三氧化二铝薄膜会保护铝不再氧化,所以氧化反应不会连续而很剧烈。但超细铝粉表面积大,同时反应就会形成高温积聚,高温又破坏了氧化层使反应连续下去,形成剧烈的放热氧化反应。剧烈的氧化反应就是燃烧,可以用来熔化金属进行焊接,也可以用作火箭的固体燃料。而咖啡磨细后,可以在水中悬浮不沉下去,就没有“渣”了。国外的“速溶咖啡”用中国云南、海南的咖啡豆做原料,靠着“磨细”的技术大大赚钱。而我们为什么磨不细呢?原来靠机械物理方法磨到一定细度后,很难再细下去了,这当中涉及很多物理、化学原因。

长期以来,把物质分离成超细颗粒的努力,一直没有重大突破。直到20世纪80年代,科学家利用气相沉淀等物理、化学方法,终于制取成功为数不多的l~l00nm大小的“纳米级”颗粒材料。就是这为数不多的纳米材料。使我们真正开始着研究“分子尺寸”的物质,并掀起了席卷天下的“纳米热潮”。研究发现,纳米材料的性能大大不同于原来的物质,如本来化学性“稳定”的,变成非常“活泼”;本来“绝缘”不导电的,变成“导体”或“半导体”;本来强度不大、硬度不高,变得坚韧无比,硬度甚至超过金刚钻;纳米“金属”材料居然可以燃烧、爆炸……同样的材料变为“纳米材料”后,似乎有了新的物理、化学性能,这确实令人大吃一惊。

但是,纳米材料的制取并非想象中那么容易。一般的机械粉碎、研磨根本得不到“纳米级”超细微颗粒,必须通过有针对性的、特殊的高技术物理、化学设施,才能制取“纳米材料”。目前,纳米材料还没有成熟的规模生产手段,不同材料的纳米级超微粒的制取仍是一道难题。目前的纳米材料制造成本相当高,用“一克千金”形容并不夸张。而要进一步推动纳米科学和纳米技术的研发深化,必须有充足的纳米材料做基础。所以,世界各国都把“高效制取纳米材料”作为纳米科技研发的重要先导基础项目。

纳米材料在陶瓷材料、生物工程、微电子技术、化工、医药等方面的研究开发,最近已有了可喜的进展。不同的纳米材料,确实有许多意想不到的“神奇”性能。

篇8

关键词:纳米材料;物理方法;化学方法

一、引言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《NanostructuredMaterials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1dingBlocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

二、纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

三、结论

纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

参考文献

[1]LuY,LiawPK,Themechanicalpropertiesofnanostructuredmaterials.JOM,2001,53(3):31.

[2]GaryStix,微观世界里的大科学,科学,2001,(12):1820.

[3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[J].物理化学学报,2005,2(11):12541288..

[4]李英品,周晓荃,周慧静,等.纳米结构MnO2的水热合成、晶型及形貌演化[J].高等学校化学学报,2007,28(7):12231226..

[5]LedenstoyNN,Crystallinegrowthcharacteristics,MaterProg,1998,35(24):289.

[6]王结良,梁国正,纳米制备新技术研究进展[J].河南化工,2003,(10):7l0.

篇9

Abstract: With the characteristics of large surface area, low melting point, nanomaterials has far-reaching significance in materials science. This paper expounds preparation and characteristics of nanomaterials systematically, and makes the prospects for its future application.

关键词: 纳米粒子;纳米材料;制备方法

Key words: nanoparticles;nanomaterials;preparation method

中图分类号:TB3 文献标识码:A 文章编号:1006-4311(2012)24-0021-02

0 引言

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其在短短三十年发展迅猛,已引起一场技术革命。纳米技术包括纳米材料学,纳米工程学等,其中纳米材料学是关键。纳米材料是指结构单元尺寸介于1~100nm范围之间,其和普通材料相比,具有许多优良的特性。而纳米材料的制备是纳米材料学的核心,目前,制备纳米材料的方法众多,归纳起来,无外乎两种,即物理方法和化学方法。

1 纳米粒子的特性

纳米粒子是由数目较少的原子或分子形成,在热力学上是不稳定的,所以被视为一种新的物理状态,是介于宏观物质和微观原子、分子之间的一种状态,使其具有许多奇异的特性,除正在探索的性质以外,已经发现有:

1.1 比表面和表面张力较大

平均粒径为10-100nm的纳米粒子的比表面积可达10-70m2/g,纳米粒子内部会产生很高的压力,造成纳米粒子内部原子间距比块材小,所以表面张力较大。

1.2 纳米粒子的熔点降低

例如块状金的熔点为1063℃,但粒径为2nm的纳米时则金熔点降低到300℃左右,所以可在较低温度时发生烧结和熔融。

1.3 磁性的变化

晶粒的纳米化可使一些抗磁性物质变为顺磁性,如金属Sb通常为抗磁性,而纳米Sb则表现出顺磁性,此外,纳米化后还会出现各种显著的磁效应、巨磁阻效应等。

1.4 物理性质变化

金属纳米粉末一般呈黑色,而且粒径越小,颜色越深,即纳米粒子的吸收光能力越强;当其颗粒尺寸小于50nm时,位错源在通常应力下难以起作用,使得金属强度增大[1]。粒径约为5-7nm的纳米粒子制得的铜和钯纳米固体的硬度和弹性强度比常规金属样品高出5倍。

1.5 纳米离子的导电性增加

研究表明,纳米CaF2的离子电导率比多晶粉末CaF2高约一个数量级,比单晶CaF2高约两个数量级。

此外,纳米粒子还具有化学反应性能高、比热容大,在低温下有良好的热导性,作为催化剂效率高、随着粒度减小,超导临界温度逐渐提高等特点。

2 纳米粒子的制备方法

制备纳米粒子的方法归纳起来,无外乎两种方法,即物理制备方法和化学制备方法,两种方法的本质都是将块状的或者较大颗粒的物质变成颗粒更小的纳米级的粒子。

2.1 物理制备方法

根据物理化学原理,物质的分散度越高,即颗粒越小,其表面吉布斯自由能会越高,此时,形成的颗粒会自发聚集变大,也就是说粉碎到一定程度时就不能再被粉碎。我们可以通过一些物理方法,比如表面活性剂、改变温度压强等方法来制备纳米粒子。

2.1.1 低温低压制备方法 对于由固体物质来制备纳米粒子,可以在低温下进行粉碎,可采用液氮或者干冰来进行温度控制,这种方法缺点:在制备过程中容易引入杂质,并且粒子的颗粒大小难以控制,并且生成的粒子容易发生聚集。

对于由液体物质来制备纳米粒子,可以在低温低压下进行,先将溶液雾化冷冻,再在低温低压下干燥,然后将溶剂生化后得到纳米级尺度粒子。这种方法优点是操作简单,可制的10-50nm的微粒;缺点是一旦形成玻璃态,就无法生华溶剂。

2.1.2 表面活性剂作用下制备 由固体物质来制备 用纯度优于99%的粉状石墨和粉状金属按原子比为1:1的混合粉末,在氩气保护下置于容积为120mL的钢罐中,选用WC球(ф12mm),球与粉的质量比为18:1,然后在行星或球磨机上高能球磨,经过110h后得到粒径约为10nm的纳米粒子。加入表面活性剂作为助磨剂,可以获得力度更小的纳米粒子。该法可以制备高熔点金属碳化物TaC,NbC等。再如,可将颗粒较小的粉末状物质装入不锈钢容器内,再加入乙醇作为表面活性剂,用氮气作为保护气体,在45atm下进行超声波进行粉碎,亦可以得到纳米粒子(0.5μm)。这种方法已制备出SiC等超微粉末,操作简单可靠。

由液体物质来制备其操作步骤主要有:将所要制备物质原料和煤油按照1:1体积比混合,然后在高温条件下(不低于170℃)缓缓加入乳化剂,并在搅拌过程中将溶剂蒸发掉,并且进行干燥,最后经分离,对无水盐类物质进行加热分解即得到纳米级粉末。这种方法,目前已制备出橄榄石型超微纳米粉末。

2.2 化学制备方法

篇10

【关键词】纳米材料;纳米技术;应用

有人曾经预测在21世纪纳米技术将成为超过技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。

一、纳米材料的特殊性质

纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、剂等领域。

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

(二)磁学性质

当代机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。

(五)光学性质

纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料。

(六)生物医药材料应用

纳米粒子比红血细胞(6~9nm)小得多,可以在血液中自由运动,如果利用纳米粒子研制成机器人,注入人体血管内,就可以对人体进行全身健康检查和,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒,杀死癌细胞。在医药方面,可在纳米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的药品纳米材料粒子将使药物在人体内的输运更加方便。

二、纳米技术现状

在欧美日上已有多家厂商相继将纳米粉末和纳米元件产业化,我国也在国际环境下创立了一(下转第37页)(上接第26页)些影响不大的纳米材料开发公司。美国2001年通过了“国家纳米技术启动计划(NationalTechnologyInitiative)”,年度拨款已达到5亿美圆以上。美国战略的重点已由过去的国家通信基础构想转向国家纳米技术计划。布什总统上台后,制定了新的纳米技术的战略规划目标:到2010年在全国培养80万名纳米技术人才,纳米技术创造的GDP要达到万亿美圆以上,并由此提供200万个就业岗位。2003年,在美国政府支持下,英特尔、蕙普、IBM及康柏4家公司正式成立中心,在硅谷建立了世界上第一条纳米芯生产线。许多大学也相继建立了一系列纳米技术研究中心。在商业上,纳米技术已经被用于陶瓷、金属、聚合物的纳米粒子、纳米结构合金、着色剂与化妆品、元件等的制备。

目前美国在纳米合成、纳米装置精密加工、纳米生物技术、纳米基础等多方面处于世界领先地位。欧洲在涂层和新仪器应用方面处于世界领先地位。早在“尤里卡计划”中就将纳米技术研究纳入其中,现在又将纳米技术列入欧盟2002——2006科研框架计划。日本在纳米设备和强化纳米结构领域处于世界先进地位。日本政府把纳米技术列入国家科技发展战略4大重点领域,加大预算投入,制定了宏伟而严密的“纳米技术发展计划”。日本的各个大学、研究机构和界也纷纷以各种方式投入到纳米技术开发大潮中来。

在上世纪80年代,将纳米材料列入国家“863计划”、和国家基金项目,投资上亿元用于有关纳米材料和技术的研究项目。但我国的纳米技术水平与欧美等国的差距很大。目前我国有50多个大学20多家研究机构和300多所企业从事纳米研究,已经建立了10多条纳米技术生产线,以纳米技术注册的公司100多个,主要生产超细纳米粉末、生物化学纳米粉末等初级产品。

三、前景展望

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现腾飞奠定坚实的基础。整个人类将因纳米技术的发展和商业化而产生根本性的变革。