初中数学数学方法范文

时间:2024-01-10 17:51:05

导语:如何才能写好一篇初中数学数学方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

初中数学数学方法

篇1

【关键词】初中;数学教学;数学思想;数学方法

引 言

作为高中的过渡阶段,初中时期是基础期,同时也是夯实知识的关键时期。作为初中的一门必修课程,初中数学的难度逐步加深,同时涉及到一些规律性的数学思想。在初中数学教学中,教师应当指导学生形成一定的数学思想,同时将数学思想转化为解题方法,这样不但有助于学生快速解题,同时也提高了解题的准确率,对学生的数学思维起到了拓展的作用,从而大大提高学生对问题的分析与解决能力。

一、初中数学中的数学思想与数学方法重要性

(一)有助于学生形成数学思维

尽管从外在方面来看,事物之间有着极大的差别,但是事物内部的联系却可能极为丰富,甚至是两个事物的本质是相类似的。而数学题也是如此,初中数学的题目千差万别,且类型多不胜数,学生往往只能完成其中的一小部分。尽管同样能够完成相同数目的题目,但是有的学生能够举一反三,而有的学生则只是单纯的做题,无法做到触类旁通,这种差别是由于数学思维不同而造成的。作为一种规律性的思维方式,数学思想在规律方面的掌握等同于掌握了事物的本质,因此,思维习惯的养成,不仅有助于学生对数学的学习,同时也有利于学生在生活其他领域的分析以及解决问题能力的提高。从这个方面来看,培养学生的数学思维能够使学生终生受益。

(二)有助于学生构建知识体系

在学生学习过程中,构建知识体系有利于学生从整体上对学科知识的把握与了解。如果将知识体系作为一张网的话,那么网中连个每个知识点的脉络就是数学思想与数学方法。学生在数学思想与方法的指导下,能够将各个知识点融会贯通起来,从而构建出初中数学较为完善的知识体系。因此,在初中数学教学中,教师可以将数学思想与方法有意识的传授给学生,为初中学生今后的学习打下良好的基础,这样有助于学生未来的成长与发展。

(三)有助于学生完成压轴题的解答

在考试过程中,最后一道大题通常被称为压轴题,这类题型难度较高,与其他题目相比,压轴题更加注重对学生数学思想方法的考查。很多学生在考试过程中,面对压轴题都有一种无从下手的感觉,从而不得不放弃这道占分比极高的题目。如果在数学教学过程中,教师能够加强对学生数学思想以及方法的培养,就能够使得大大提高学生面对压轴题的解题率。并且根据步骤来给分,是一般数学题目的原则,当学生对每个步骤进行完成之后,就会获得一定的分数,因此,即使这部分同学没有将压轴题解答完毕,也不会得零分。

二、如何在初中笛Ы萄е猩透数学思想与方法

(一)教会学生使用四两拨千斤的“化归”

在初中数学中,常见的数学思想是化归思想。这种思想是将待解的题目经过转化后,成为已解决题目,同时还能够将复杂题目变成简单题目,在初中数学教学中这种思想应用十分普遍,尤其是在综合体题中的运用。当题目条件较为分散,且不容易找出解题正确途径的时候,利用化归思想充分挖掘题目中的隐藏含义,这样有助于学生更快的寻找到解题思路。例如在分式方程教学中,在解分式方程的过程中,可以先将分式方程转化为学会的一元二次方程,之后的计算就会变得较为简单。

(二)教会学生使用独辟蹊径的“数形结合”

与化归思想类似。数形结合同样既是一种思想,又是一种解题的具体方法.这种思想或方法的重要价值在于它在解题时非常有效,往往能够在山重水复疑无路时。给入柳暗花明又一村的感受。因为数与形一直都是数学领域的根基.把这二者结合起来后.不仅可以借由数量计算将图形的性质进行表示,而且可以通过比较直观的图形将数量关系表现出来。这就使得学生在解题时有了一种比较适用的备用思路.当一道代数题目看起来比较难时,就可以灵机一动,是不是可以转化成图形的形式?当一道几何题目看起来似乎无解的时候.也可以拿出备用思路,万一转化为代数形式会不会找到答案?当学生在日常的训练中形成了这种思维并加以磨炼后,考试当中什么题目可以进行数形结合几乎就有一种本能的感觉了。数形结合比较典型的例子是函数与图像问有比较明显的对应关系,另外。平面的点对应着有序的实数对等也是典型的数形结合,此外还有圆及统计图表等多种形式。在此就不一一列举了。

(三)教会学生使用抽丝剥茧的“分类讨论”

在数学教学中,应用较为广泛与普遍的数学思想还包括分类讨论,在初中数学中,随着对象属性的变化,很多问题也会随之改变,从而导致结果的不同,在这种情况下,就需要学生根据不同问题来进行具体的分析,将题目可能涉及到的情形分类,化繁为简,从而将事物的本质呈现出来。通常情况下,分类讨论的数学思想与方法适用于综合题目的解答中,这样也对学生思考的全面性进行了考察。从分类讨论方法的掌握情况来看,很多教师将这种思路传授给学生之后,大部分学生能够很快适应并应用这种解题思路,这也是由于初中数学的分类讨论题目特征大部分还是较为明显的。

三、结语

从上述分析中可以看得出来,初中数学在初中阶段的课程中占据了十分重要的地位,是为高中阶段打下基础的关键时期。在初中数学教学中,数学知识、数学思想与数学方法是密不可分的三个方面,彼此之前互相联系互相依存。为了能够使学生更好的学好初中数学知识,需要教师在数学教学过程中将数学思想与数学方法传授给学生,从而使得学生在数学知识学习过程中能够起到事半功倍的效果,这样也有助于学生形成数学思维,从而适应我国素质教育的发展步伐。

参考文献:

[1]王美玲.初中数学课程教学中数形结合思想的运用探讨[J].数学学习与研究,2015.

[2]冼常福.初中数学教学中培养学生的数学思想[J].新课程:中学,2016.

篇2

【关键词】初中数学;数学思想;数学方法

一、初中数学中的数学思想和数学方法分析

初中数学中的数学思想和数学方法主要有以下几种:

(一)数形结合思想

数形结合思想是初中数学最基本、最重要的思想之一,对数学问题的解决有重要的作用。在初中数学教材中,以下内容体现了数形结合思想。一是数轴上所有的点和实数之间是一一对应关系。二是平面上所有的点和有序实数是一一对应关系。三是函数式和图像的关系。四是线段的和、分、倍、差问题。五是在三角形求解时,在边长和角度计算中,引入了三角函数,以代数方法解决三角形求解问题。六是在“圆”章节中,圆的定义,圆的位置关系,圆与点的关系都是通过数量关系进行处理的。七是在统计中,统计的第二种方法和是通过绘制统计的图表来处理,通过图表能够反映出数据情况和发展趋势。

(二)类比思想

在初中数学中,类比思想的应用也比较普遍。但两个数学系统元素的属性相同或是相似时,可以采用相同或者相似的思维模式。主要表现在以下几个方面:一是不等式。二是二次根加减运算。三是角的比较,角平分线,角的度量可以与线段知识进行类比分析。四是相似三角形与相似多边形。

(三)整体思想

整体思想主要运用于图形解答中,将图形作为一个整体,对已知条件和所求结果之间的关系进行分析,从通过有意识、有目的的整体处理来解答问题。整体思想能够避免局部思考的困惑,简化问题。

(四)分类讨论思想

在数学问题解答过程中,由于解答对象属性的差异,导致研究问题结果会有很大不同,这就需要对解答对象的属性进行分类分析,在研究过程中,如果出现了不同的情况,也应该将其独立出来进行分析。通过分类讨论思想,能够化繁为简,让事物的本质能够显现出来,这样能够方便问题的解决。在综合题目解答时,通过已知条件,对图形变化情况进行分析,找出解决问题的方法,在几种方法的对比分析中,归纳出正确答案。

(五)化归思想

化归思想是一种比较常见的数学思想,通过转化过程将未解决的为题转化为已解决的问题,将复杂为题转化为简单问题,将陌生问题转化为熟悉问题。化归思想在初中数学中的应用范围非常广泛,尤其是在综合题解答时,题目所给出的已知条件比较分散,很难找出简单的解题方法,这时就可以采用化归思想,对题目中的已知条件进行分析,在转化过程中缩短与结论的距离,这样能方便找出解题的方法。化归思想主要体现在以下几个方面:一是在求解分式方程时,可以将分式方程和转化成一元二次方程进行解答。二是在直角三角形解题中,可以将非直角三角形转化成直角三角形进行解答。三是在多边形或者三角形面积或线段解答时,可以将其转化为相似比问题进行解答。

二、在初中数学教学中,数学思想和数学思维渗透的方法

(一)抓住渗透契机,及时引导学生

初中学生的数学知识还比较频发,其抽象思维能力、空间想象能力较差,在数学方法、数学思维独立出来进行学习还比较困难。这就需要教师在教学过程中,抓住数学思维和数学方法在课堂教学的渗透契机,重视数学公式、法则、定理、概念的形成发展过程,让学生在学习过程中能够开拓思维,在数学思想和数学思维的领悟过程中,解决具体的数学问题。在数学思想、数学方法渗透过程中,教师应精心设计,在潜移默化中引导学生发现各种数学思想和方法。以二次不等式为例,在解答二次不等式问题时,可以结合二次函数的图像来帮助学生记忆和理解,总结归纳出了二次不等式的解集应为“两根之外”“两根之间”两种。通过数形结合思想,不仅有利于二次不等式的学习,还能巩固二次函数的知识,完成新旧知识之间的过渡。在概念、定理、法则、公式等数学结论导出的过程中,教师应创设必要的问题情境,为学生提供各种感知材料,让学生明白数学结论的产生发展过程,在这一过程中,还能通过观察、归纳、类比、检验、假设、尝试等方法完成数学思想、数学方法渗透的过程。

(二)分阶段分层次组织教学

(1)分阶段组织教学。主要分为孕育阶段和形成阶段。在孕育阶段,数学思想和数学知识的渗透主要基于数学内容的组成结构。从数学教学内容来看,一般是由两条线索组成的。因此,在数学学习中,应特别重视知识的积累,教师应积极引导学生寻找数学知识中包含的数学思想和数学方法,在横向联系中感受到数学的魅力。以一元一次方程为例,学生在解答此类问题时,一般只注重解题步骤,而忽视了解题的思想。通过变形处理,将方程转化成ax=b(a≠0)。由于学生对化归思想不了解,导致方程训练的目标并不理想。在形成阶段,指的是学生对数学知识有了一定的了解和掌握,能够逐步形成数学思想和数学方法,并有意识地将数学思想和数学方法运用到解题中去。在这个阶段,教师应有意识地引导学生总结、概括性的数学知识,引导学生发现数学知识隐藏的数学思想和数学方法。以二元一次方程组为例,在该章节中,化归思想的应用比较普遍,将二元方程组转化成一元方程来解答。在教学过程中,教师可以列举一个实例,学生通过一元一次方程能够解答这个问题,再要求学生以二元一次方程组进行解答,通过对比发现,通过消元处理,能够让学生认识到化归思想的精妙之处。

(2)分层次组织教学。在初中数学教学中,教师应熟悉数学教材,挖掘数学思想和数学方法,对这些知识进行认真研究。再根据学生的认知能力、知识掌握程度、理解能力和年级差异进行由易到难、由浅入深贯彻数学思想、数学方法。数学学习是通过课堂教学、复习巩固和练习题的过程完成的。因此,数学思想、数学方法需要长期的数学学习才能形成。同时,在数学学习中,应重视对旧知识的巩固,形成一个完整的数学体系。如在一次函数的学习中,可以采用乘法公式进行类推处理。在二次函数学习时,可以将一元二次方程结合起来,在重复性学习中,让学生真正理解和掌握数学思想和数学方法。

三、总结

随着新课程标准的推行,初中数学的教学理念和教学方法发生了很大变化。在教学过程中,如果只注重数学知识的传授,而忽视了数学思想、数学方法的教学,对学生数学学习会产生不利影响。数学是一门抽象性、概括性较强的学科,数学知识的学习很难让学生系统性地掌握数学学科的全部内容,学生的学习也仅停留在知识学习的表面。而忽视知识的学习会导致数学教学流于形式,因此,在数学教学中,应将数学思想、数学方法与数学知识的教学活动有机结合起来,才能提高数学教学的效果,实现素质教育的人才培养目标。

参考文献:

[1]高海霞.浅谈数学思想和数学方法的教学[J].教育实践与研究:中学版(B),2011,(17):64-64

[2]曾锦华.初中数学教学中数学思想和方法训练探析[J].成才之路,2011,(35):39-39

[3]蓝国坚.浅谈在初中数学中渗透数学思想和数学方法[J].中国科教创新导刊,2010,(27):61-62

[4]张建梅.浅析数学思想和方法在初中教学中的重要性[J].商情,2012,(42):92

[5]闫波.小议初中数学教学中的数学方法和数学思想[J].文理导航(中旬),2012,(12)

篇3

关键词:数学思想 数学方法 数学教学

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性概括和认知。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。要全面提高学生的数学素质,形成创新思维能力,掌握科学的学习方法,就必须紧紧抓住数学思想和数学方法的教育和培养这一重要环节。

按照人们认识事物的认知规律,由感性认识到理性认识,由感性的积累到理性的飞跃,才能形成一个完整的认知过程,从而在此基础上开始又一轮的更高程度的认知。数学学习也是这样,运用数学方法解决数学问题的过程,就是感性认识不断积累的过程。当感性认识量的积累达到一定程度时,就会产生理性认识质的飞跃,从而上升为数学思想。在数学教学中,我们也要遵守这样的认知规律,由方法的积累到思想的飞跃,而不能违背科学的认知规律。

一、渗透“方法”,了解“思想”

初中学生的数学知识还相对贫乏,抽象思维能力还有待于训练和提高。因此必须将数学知识作为载体,把数学思想和数学方法的教学逐步渗透到数学知识的教学中。教师要把握好渗透的时机和渗透的程度,举一反三循序渐进。重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程。使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题的能力。忽视或压缩这些过程,一味向学生灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中数学七年级上册课本《有理数》这一章,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了数形结合的思想,学生易于接受。

二、训练“方法”,理解“思想”

数学思想的内容是丰富多彩的,方法也有难易之别。因此,教师在渗透数学思想和数学方法的过程中,必须遵循循序渐进的原则,有重点有步骤地进行渗透和教学。教师要全面熟悉初中三个年级教材的编排体系、知识结构、能力层次、重点难点。认真钻研教学大纲,吃透教材,努力挖掘教材中进行数学思想和数学方法渗透的条件和因素。对数学知识从思想方法的角度进行认真分析、系统归纳、科学概括,形成全面完整的认知和梳理。同时要对三个年级不同学生的年龄特点、认知能力、接受能力、知识能力基础有一个全面而准确的了解和把握。由易到难、由浅入深、分阶段、分层次地进行数学思想和数学方法的渗透。

如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法。在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯就会起到重要作用。

三、掌握“方法”,运用“思想”

数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。学习一次函数的时候,我们可以用乘法公式类比;在学次函数有关性质时,我们可以和一元二次方程的根与系数性质类比。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。

四、提炼“方法”,完善“思想”

篇4

【关键词】初中数学;数学思想;数学方法

一、数学思想和数学方法

数学思想是人们对数学这门学科的基本规律的一种理性认识,包括对数学知识、数学方法本质上的认识和理解。数学方法则是我们解决数学问题的所使用的方法,往往都体现着不少的数学思想。数学思想是数学教学的内核和重中之重,而数学方法则是数学教学的更为具体的内容。学生在不断运用数学方法解决数学问题的过程之中所积累的经验,会逐步地抽象和升级为数学思想。在初中数学的教学过程中,数学思想和数学方法一样的重要,因此教师在具体的数学教学中要加强对学生进行数学思想和数学方法的训练。

二、初中数学教学中如何加强对学生的数学思想和数学方法的训练

初中数学教师在具体的课堂教学中,要想着重训练学生的数学思想和数学方法,就需要认真做好以下几个方面的工作:

1.把握新课标要求,实行层次教学法

在初中数学的新课程标准中,提出初中数学教学对培养学生的数学思想和数学方法又三个不同层次的要求,分别是了解、理解和应用。学生只需要了解的数学思想主要包括函数思想、数形结合的思想、类比、分类讨论的思想以及化归思想等。数学教师在具体的教学中,要注意将这些抽象的数学思想渗透到课堂教学中,将数学思想用具体的数学问题和方法表现出来,使得学生能够更容易了解这些数学思想。例如化归思想在初中数学中就较为常用,因此笔者在教授“一元一次方程”章节时,就着重了化归思想在解方程时的具体应用,解方程的每步都是为了要将方程变为x=a这种形式,将未知数变为已知数。此外,按照新课标的规定,学生应当了解分类法和反证法等数学方法的基本使用情况,而学生应当理解和掌握的数学方法则主要包括待定系数法、配方法、消元换元的思想、图像法等等。教师在授课时要根据新课标的要求,准确把握好了解、理解和应用的这三个不同的层次,既不能对学生过高要求而影响学生的学习积极性,又不能放低对学生的要求,脱离新课标的基本要求。

由于数学方法是较为具体的,是数学思想的载体和实施的方法和手段;数学思想则较为抽象,需要渗透在具体的数学教学和数学方法中才能得到进一步的体现,因此教师在具体的数学教学中,要利用数学方法和数学思想的互相促进来培养学生的数学思维,提高学生的数学方法的运用能力。教师应当先将一定的数学方法教给学生,让学生在反复运用和理解这一方法之后,逐步了解和掌握这种渗透在其中的数学思想。数学思想将学生所遇到的问题都归为一类,能提高学生解决实际问题的能力和效率。比如,笔者在给学生讲授化归这一数学方法时,就是先让学生先做相似类型的大量练习题,通过这些习题的练习学生对化归思想也有了一个较为直观和生动的认识,在教师的指导下学生知道了化归思想的运用方法,在以后的学习中,学生就能根据自身的理解利用化归思想来解决同类的问题。这样一来,不仅数学思想能指导数学方法的教学,数学方法的教学又能深化数学思想的理解。

2.遵循教学和认知规律,切实提高学生的综合能力

在素质教育的大潮下,传统的应试教学方法已经不能满足提高学生综合能力的需求,得分能力的培养已经不是数学教学的最重要目标,综合素质的提高取而代之成为了初中数学教育的首要目标。数学是一门严谨、优美的学科,数学学习可以有效地培养学生的科学思维习惯和理性思维。就如初中数学的新课程标准所要求的那样,学生的创新素质等的培养在数学教学中变得更加的重要,因此在具体的数学教学中,教师应当把握好以下的一些原则:

将数学思想和数学方法的训练结合起来,互相渗透。初中生的理性思维能力还较弱,而数学思想又很抽象,因此要在具体的数学教学中将数学思想和数学方法渗透在一起。数学思想和数学方法不能作为单独的课程加以讲授,而应当以数学知识为承载对象,在具体的课堂教学中将二者融会贯通。不仅如此,要通过数学方法的运用,让学生将对数学思想的感性理解上升为理性理解。数学思想抽象而丰富,表现形式也很多样,学生如果只将对数学思维的理解停留在思想的表面的话,很容易淹没在无边的数学题目中,因此要加强对数学思想的本质的把握。在具体的数学教学中,教师首先应当充分研读教材,将数学教材中所渗透和运用到的数学思想和数学方法按照难易程度和知识掌握的要求进行区分,再进一步将其运用和渗透到具体的课堂教学中去。这样一来,学生对知识的理解和掌握也就能遵循一个由浅入深、从易到难的过程提高学习的效率,扎实基础。

此外,教师要把握好教学方法的运用。要遵循学生的认知规律,了解学习的渐进性,通过课堂教学、课后习题等方式帮助学生吸收和掌握学习到的数学知识。数学是一门严谨的学科,容不下一丝的侥幸,因此教师在具体的教学过程中要扎实学生的基本功和对知识的掌握。通过有意识的专门训练,逐步培养学生的数学方法和数学思想的自觉运用习惯,让学生能够形成一套适合自己的解题方法和数学思维。教师要加强创新教学方法的运用,精心准备教学内容,要在平时的教学中不断加强总结和提升。比如在讲述类比思想的时候,教师就可以引入鲁班造锯的故事,提高学生的学习热情;而通过司马光砸缸的故事,学生可以提炼出逆向思维等等。

总之,初中数学教学并不只是为了让学生拿到更高的分数,更重要的是让学生能够通过数学学习,逐步培养自身的数学思想,提高自己的数学方法的运用能力。古语有云:授之于鱼,不如授之于渔。教师在新课程的标准下,要加强对学生的数学思想和数学方法等的训练和培养,培养学生用数学来分析和解决实际问题的能力,提升学生的综合能力和素质。

参考文献:

[1]董仲超.在高职数学教学中渗透数学思想方法[J].考试周刊.2010年51期

[2]李鸿权.初中数学教学中寓数学思想、方法融为一炉[J].魅力中国.2005年05期

[3]王丽香.在初中数学教学中渗透数学思想和教学方法[J].网络科技时代.2007年16期

篇5

数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

二、教学中如何实现数学思想与数学方法相互渗透

1、明确基本要求,渗透"层次"教学。初中数学中渗透的数学思想、方法大致可划分为三个层次,即"了解"、"理解"和"会应用"。在教学中,要求学生"了解"数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由"一般化"向"特殊化"转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。为此要求的方法大致有:分类法、类经法、反证法等。要求"理解"的或"会应用"的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好"了解"、"理解"、"会应用"这三个层次。不能随意将"了解"的层次提高到"理解"的层次,把"理解"的层次提高到"会应用"的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们丧失信心。

2、从"方法"了解"思想",用"思想"指导"方法"。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使"方法"与"思想"珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

三、实现数学思想与数学方法完美结合必须遵循的项原则

1、通过"方法"了解"思想"。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节——"有理数大小的比较",而它的要求则贯穿在整章之中。在数轴教学之后,就引出了"在数轴上表示的两个数,右边的数总比左边的数大","正数都大于0,负数都小于0,正数大于一切负数"。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。

篇6

关键词:数学思想方法 思想方法的内涵 教学渗透

九年义务教育初级中学数学《新课程标准》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

新课程把数学思想、方法作为基础知识的重要组成部分。在数学《新课程标准》中明确提出来,这不仅是课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。

目前初中阶段,主要数学思想方法有:数形结合的思想、分类讨论的思想、整体思想、化归的思想、转化思想、归纳思想、类比的思想、函数的思想'辩证思想、方程与函数的思想方法等。要提高学生的数学索质、指导学生学习数学方法,就要指导学生紧紧抓住掌握数学思想方法这一数学链条中的最重要的一环。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要。

一、数学思想方法的内涵及教学意义

所谓数学思想,是数学基础知识与基本技能的本质体现,是数学知识的升华和结晶,是形成数学能力和数学意识的桥梁。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。因此,人们把它们合称为数学思想方法。重视对数学思想方法的考查既是中考命题的一个宗旨,也是数学学科自身的需要,同时它也是检查学生基础知识与基本技能状况的重要组成部分。

另外,随着新课标的实施,其基本理念对数学命题产生了重大影响,近年来的中考命题在不断地加强对数学思想方法的考查力度。 数学思想方法已成为每年中考必考的重点之一。

二、数学思想方法教学的措施

根据新课标的教育思想,学生学习不是一个被动的接受过程,而是一个主动的建构过程。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。 即“学生学习并非是一个对教师所授予知识的被动的接受过程,而是一个以学习者已有知识和经验为基础的主动的建构过程”。其核心观点是:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。而在实现这一教学目标的过程中,数学思想方法对于打好“双基”和加深对知识的理解、培养学生的思维能力有着独到的优势,它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁。

因此,在数学教学中,教师除了帮助学生真正理解和掌握基础知识和基本技能外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。为此教师可实施如下措施:

1、首先教师必须更新观念,提高对数学思想方法教学的认识。从备课入手,从数学思想方法的高度深入钻研教材,通过对概念、公式、定理等的研究与探讨,挖掘有关数学思想方法,将数学思想方法的教学要求与有关知识、技能的教学要求同时明确地提出来。如,在“因式分解”这一章中,我们接触到许多数学方法――提公因式法、运用公式法、分组分解法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万个多项式因式分解的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。除此而外,在教学过程中,还要重视数学思想方法的训练。在教学小结时,要注意让学生把数学思想方法归纳出来。使学生通过训练总结,从数学思想方法的高度把握知识的本质。总之,要把数学思想方法的渗透,贯穿于整个教学过程。

2、重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法。数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。

3、数学思想方法教学所采用的主要方法是渗透,所谓渗透,就是有机地结合数学知识的教学,采用教者有意,学者无心的方式。要不失时机地抓住机会,密切结合教材,不断地、一点一滴地再现有关数学思想方法,逐步地加深学生对数学思想方法的认识。在实施这一过程中应遵循以下原则:①渗透性原则,②渐进性原则,③发展性原则,④学生参与原则。在课堂教学上要注意引导启发学生探索知识的发展过程。在概念、定义的引入,例题的讲解之中,恰到好处地指出相关的数学思想方法,或在其旁用彩笔醒目地注出“转化”,“数形结合”等,虽然用字不多,却起到了“画龙点睛”的作用,经过反复渗透,公开介绍和应用强化,久而久之,学生就能获得知识上的飞跃,自觉地运用之。

三、渗透数学思想方法教学的几点尝试

初中数学中的数学思想、数学方法很多,主要有整体思想、分类讨论思想、转化思想、数形结合思想、方程与函数思想、统计思想。这里仅就初中教材中和中考试题中常见的分类讨论思想、转化思想、数形结合思想作些探讨。

1、分类讨论思想

篇7

关键词 初中数学 数学观 教学 方法

《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。把数学思想、方法作为基础知识的重要组成部分对学生实施创新教育、培训创新思维的重要保证。

在初中数学教材中集中了大量的优秀例题和习题,作为一个执教者,要善于挖掘例题、习题的潜在功能。数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。

一、数学教师应认识数学本质,树立科学的数学观

随着新课程的实施,数学教师的教学理念得到了进一步优化,但还是有相当一部分教师,对什么是数学,数学的本质是什么以及数学教学如何培养创新精神等问题缺乏清楚的认识。因为数学的本质问题是学习和研究数学所不能回避、首要的和最基本的问题。当代对数学本质的较为普遍的描述是:数学是研究现实世界空间形式、数量关系、模式和秩序的科学。

二、树立新课程理念下开放的数学教材观

像水有液态、气态和固态三种形态一样,数学有原始形态、学术形态和教育形态三种基本形式。原始形态是指数学家发现数学真理、证明数学命题时所进行的繁复曲折的数学思考。数学的学术形态主要运用符号和逻辑系统对抽象模式和结构进行严密的演绎和推理,各部分知识紧密联系,形成严格的科学体系。数学的教育形态把数学的学术形态适当返璞归真,回到现实生活中去,回到数学家当初创新发明的状态,把数学的学术形态知识的线性排列“打乱”,融合当代科学技术的最新成果,融合不同学科的相关知识,融入教师的理解,对教材所呈现的内容进行重新编排裁剪、充实、活化教学内容,赋予数学知识新的意义、价值。这样就把数学的学术形态激活,使数学知识变成生动、有趣、形象、直观和容易理解的数学的教育形态。

三、把握教学方法

初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。

运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

(一)渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。如初中数学七年级上册课本《有理数》这一章,与原来部编教材相比,它少了一节“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了数形结合的思想,学生易于接受。

(二)训练“方法”,理解“思想”。教师全面地熟悉初中三个年级的教材,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

(三)掌握“方法”,运用“思想”。数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。

篇8

关键词:初中数学 数学思想 数学方法

一、教学方法

所谓的数学思想,就是对数学知识和方法的根本认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的程序过程,是数学思想的客观反映。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程度时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一座宏伟大厦,那么数学方法相当于建筑施工的手段,而大厦的构建过程就相当于数学思想。

1、明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的教学思想、教学方法划分为三个层次,即“了解”、“理解”和“应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识并运用新知识解决问题的过程中的,方程的解法中,就贯穿了由“一般”向“特殊”转化的思想方法。

在整个教学过程中,教师不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学知识抽象难懂,高深莫测,从而导致他们失去信心。

2、从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的教学思想和方法的内涵,目前尚无明确的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样教学才能才能达到一定的成效。

二、创新教育

在初中的教学中应遵循以下几项原则:

1、由于初中学生数学知识比较缺乏,抽象思想能力也较为有限,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。

2、数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。

3、数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。比如 ,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。

篇9

关键词:初中数学 数学思想 数学方法

一、了解《大纲》要求,把握教学方法

1、明确基本要求,渗透“层次”教学。

《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何第三册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。

2、从“方法”了解“思想”,用“思想”指导“方法”。

关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。

二、遵循认识规律,把握教学原则,实施创新教育

要达到《教学大纲》的基本要求,教学中应遵循以下几项原则:

1、渗透“方法”,了解“思想”。

由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。

2、训练“方法”,理解“思想”。

数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

3、掌握“方法”,运用“思想”。

篇10

一、初中数学思想方法

数学思想作为人们对数学理论和内容的本质认识,将直接支配着数学的实践活动,它是学习数学知识的基础;数学方法是数学活动中的手段、程序和途径,是应用数学知识的基础,它具有可操作性、层次性和程序性等特点。在数学思想和方法中,思想是灵魂而方法是表现形式,两者密不可分,也正因如此,通常我们都以数学思想方法来对其进行称呼。

在初中数学教学中,教学的目的不光是要让学生学会基础的数学知识和解决常见问题的基本技能,还需要让学生形成一定的数学学习习惯和自我发展意识。这其中,数学思想方法就是基础,它不但能激发学生学习数学的兴趣、加深对“双基”知识的理解,还能有效地促进学生由知识向技能的转化、培养学生解决问题的能力和促进学生的全面发展。因此,数学教学中渗透数学思想方法是必不可少的,也是值得我们去研究的一个问题。

二、初中数学思想方法的种类

数学方法在初中数学教学中应用较为广泛,但因其内隐性而不易被察觉,对数学思想方法进行分析,有助于教师了解其特点,并在教学中有效地进行渗透。

1.分类讨论的思想方法。分类讨论是对学习对象进行本质属性的分类,从而找出它的异同,将具有相同属性的对象归入一类,再将具有不同属性的对象归入另一类的方法。分类讨论的思想方法能将纷繁的数学知识进行数学科学化的分类,对学生系统性知识的构建有着积极作用。

如在圆的学习中,对圆心角和圆周角的大小定义为“在同一圆中,一条弧多对应的圆周角等于它所对应的圆心角的一半”。而这只是一种假设,要进行验证,教学中教师可以带领学生经过圆心和圆周角的顶点来将圆进行对折,此时可能产生①折痕是圆周角的一条边;②折痕在圆周角内部;③折痕在圆周角的外部。在验证的过程中,教师引导学生分三种情况来进行分类讨论,最后进行总结归纳,这正是分类讨论思想的应用表现。

2.数形结合的思想方法。这是初中数学中应用最广泛的一种思想方法,特别是在函数教学中,这一思想方法更得到了较好的体现。数与形表面上是相互分离的,而实质上两者是相互联系的,数量问题可以向图形问题进行转化,同样地,图形问题也可以转化为数量问题。如有理数的学习中,相反数就可以在数轴上进行表示;再如点与圆的位置关系,可以通过对点到元的距离与圆半径两者之间的大小比较来进行;利用图像求二元一次方程组的近似值等等。

数形结合的数学方法将直观与抽象进行结合,不但有利于学生的问题的分析,更能帮助学生找到更多解决问题的方法,培养学生数形结合的思想,对学生利用数形转化来解决问题无疑具有积极意义。

3.方程思想方法。方程思想其实就是建模,这一方法在初中数学的应用题中得到了广泛应用。在建模中,通过对未知数的设置来进行问题的解答,不但数量关系会变得清晰,整个解题步骤也会变得更加简单。

4.比较思想。对研究对象的性质进行分析对比,从而突出其不同点,比较思想要求学生能找到两个比较对象之间的属性进行比较,从而思考其联系和区别。如在因式分解教学中,对复习整式乘法,首先让学生比较两种运算的不同之处,在明确因式分解和整式乘法是恒等变形,又是互逆运算。如(a+b)(a-b)=a2-b2是整式乘法,而a2-b2=(a+b)(a-b)则是因式分解;再如当两个相似三角形的比为1时,就成了全等,这就可以将三角形的相似和全等进行对比;图形学习当中的轴对称、旋转对策、中心对称也可以进行对比。

对比的思想能突出对象的特点,有利于学生找到新旧知识之间的衔接点,也有利于树立学生相互转化的能力。

三、教学中渗透数学思想的方法

首先,教师在教学中要提高渗透的自觉性。数学的一些概念、定义、法则是很明显地写在教材上的,而思想方法确实暗含在这些外显的形式上的。学生的知识能力有限,不能通过现象而看到本质东西,因此,教师要在教学过程中去自觉的渗透思想方法,甚至从备课环节开始,就要将思想方法的渗透贯穿其中。教师不能因为赶教学、抓成绩而忽视了这一点。

其次,要掌握渗透的度。毕竟数学思想有一定的抽象性,如何才能让学生理解,渗透到什么程度才是最佳的,这都需要教师根据教学内容和学生实际而进行。