数学建模教学方法范文

时间:2024-01-10 17:50:07

导语:如何才能写好一篇数学建模教学方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模教学方法

篇1

数学建模 教学方法 自学能力

一、数学建模概述

1.数学建模的定义

数学建模(MathematicalModeling):数学建模是对现实世界的某一特定系统或特定问题,为了某个系统或特定问题,为了某个特定的目的做出必要的简化与假设,应用适定的数学工具得到的一个数学结构,它或者可以解释待定的现实状态,或者能提供处理对象的最优决策或控制。

通俗地说:数学建模就是用数学知识和方法建立数学模型解决实际问题的过程;数学建模解决实际问题的思维方法我们用下图表示:

2.数学建模的意义

数学建模的本质是训练学生的练习,是一种实验,这个实验的目的是让学生在解决实际问题的过程中学会运用数学知识,运用数学模型解决实际问题的能力,并能将所学的的知识运用到今后的日常生活和工作中。数学建模有以下特点:(1)高度的抽象性和概括性,必须能够抓住问题的核心;(2)应用的广泛性,适用于各个不同领域;(3)知识的综合性,必须具备问题相关的各个领域的知识背景。成功的数学建模需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。因而可以培养学生以下习惯和能力:(1)发现问题,并对问题做积极的思考的习惯;(2)熟练应用计算机处理数据的能力;(3)清晰的口头和文字表达能力;(4)团队合作的攻关能力;(5)收集和处理信息、资料的能力;(6)自主学习的能力;(7)社会适应能力。因此数学建模对完善学生的知识结构,提高综合素质和核心能力有着极大的促进作用。

二、数学建模在我校的开展情况

数学教研室自2004年成立数学建模组,开始数学建模的教学工作。开始只是普通的数学建模选修课,自2009年开始我们数学建模组开始进行有系统的数学建模的教学及竞赛辅导工作,具体安排如下:(1)数学建模在课程教学中的渗透;(2)数学建模选修课;(3)数学建模社团;(4)校内数学建模竞赛;(5)数学建模暑假竞赛集训;(6)教师的数学建模培训工作。

1.数学建模在课程教学中的渗透

当前教学实践在我国本科教学中的比例普遍较低。根据教育部,财政部《关于“十二五”期间实施“高等学校本科教学质量与教学改革工程”的意见》第四点:整合各类实验实践教学资源,遴选建设一批成效显著、受益面大、影响面宽的实验教学示范中心,重在加强内涵建设、成果共享与示范引领。支持高等学校与科研院所、行业、企业、社会有关部门合作共建,形成一批高等学校共享共用的国家大学生校外实践教育基地。资助大学生开展创新创业训练。这一本科专业教学质量“国标”和教育部《关于进一步深化本科教学改革全面提高教学质量的若干意见》【教高(2007)2号文件】精神,要:“高度重视实践环节,提高学生实践能力。要大力加强实验、实习、实践和毕业设计(论文)等实践教学环节,特别要加强专业实习和毕业实习等重要环节。列入教学计划的各实践教学环节累计学分(学时),人文社会科学类专业一般不应少于总学分(学时)的15%,理工农医类专业一般不应少于总学分(学时)的25%。推进实验内容和实验模式改革和创新,培养学生的实践动手能力、分析问题和解决问题能力。”

数学建模作为本科教学实践的重要组成部分,将起到越来越重要的作用。因此我们在课程教学的时候,应当把数学建模的思想渗透进去,有利于培养学生对数学建模的兴趣,同时反过来也加强了学生对大学数学的兴趣。

联系实际,挖掘教材内涵。在数学课程教学初期,开始灌输数学模型的概念,并在教学过程中结合教学内容介绍数学建模的初步知识和建模的基本方法,同时改变过去单纯强调演绎推理和技巧的数学教学,重视理论与实际应用相结合。尽量在教学过程中加入一些有启发性,有实际背景的例子。例如,在讲授《高等数学》的微分方程就可以通过实际问题建立微分方程模型。如经典人口模型Logisti模型的产生及该模型在生产,生活中的应用。并对解做定性分析,可以更好地了解解的形态。在学习《概率论》的时候,我们可以引入一些简单的概率模型,如决策模型,随机存储模型等,联系实际,加深对所学知识的理解,同时反过来引起对所学知识更加浓厚的兴趣。让同学们认识到“大学数学就在身边”。

2.数学建模选修课

作为以医学为主的本科院校,数学建模没有作为专业主干课开设,而是作为一门选修课开设,自2004年开设以来,学生选择这门选修课的人数从少到多,课程模块设置也从简单到复杂。数学建模选修课现在分为上下两个部分,《数学建模(上)》主要的授课对象是大一,大二的学生,对数学建模有兴趣的同学们;主要的内容是关于数学建模的所需一些基本理论知识(概率论,微分方程,线性代数等)和一些基本的算法;《数学建模(下)》主要的授课对象是有一定的数学建模基础的高年级学生;主要内容是数学建模中具有代表性的常用方法,重要内容以及数学软件的学习;数学软件在数学建模起着非常重要,因为在数学建模中所遇到的实际问题都要面临大量没有经过处理的原始数据因此应用计算机进行数据的挖掘和处理是数学建模的一个重要环节。因此在原有的数学知识下,我们需要加强对数学软件的学习,如Matlab,Mathematica,SAS等当今最优秀,应用最广泛的数学软件,这些软件以强大的科学计算与可视化功能,简单易用等特点,具有其他高级语言无法比拟的诸多优点:程序编写简单,编程效率高,易学易懂。同学们如果掌握了Matlab等现代化软件,一方面可以培养同学们的动手能力,激发同学们的兴趣,另一方面还可以培养同学们查找资料,解决分析问题的能力。对数学软件的学习,因为课时有限,主要是老师教导,以学生自学为主。

3.数学建模协会

数学建模协会是2009成立的,是由一些对数学有兴趣的同学们,在数学建模组老师的指导下成立起来的。有计划有步骤地开始学校数学建模的普及工作以及参赛队员的初级培训。每周数学建模协会都会组织活动,活动内容有数学建模知识讲座,数学软件培训等。学生主要以课外学习小组的模式辅助交流学习。

4.校内数学建模竞赛

校内数学建模竞赛,由数学建模组的老师出题,对象是全校学生;目的是选拔一些比较优秀学生参加暑期的数学建模集训,最后参加全国大学生数学建模竞赛。

5.数学建模暑期集训

数学建模的暑期集训分为两个时间段,总共1个月左右,第一时间段是安排在学期结束这段时间,主要内容是一些数学建模的常用算法,经典模型;第二时间段是安排在开学初期,主要内容是数学建模的真题训练。

6.教师数学建模培训工作

定期举办数学建模教师研讨班,利用假期参加数学建模教师培训班,提高教师的业务水平。

四、结语

实践证明,经过几年的努力,数学建模组的实际教学工作对我校学生参加全国大学生建模竞赛并取得的佳绩做出了重要贡献,学生通过系统的数学建模的培训,不仅在竞赛中取得了不俗的成绩,获得多个省级奖项,而且增强了自学能力和创新意识,提高了学生应用数学和计算机解决实际问题的能力。另一方面,数学建模涉及面很广,形式灵活,对教师的能力也提出了很高的要求,有助于师资水平的提高。

参考文献:

[1]姜启源。数学建模(第四版)[M].北京:高等教育出版社,2011.

篇2

关键词:数学建模;大学数学;教学方法;兴趣;创新思维

引言

随着我国科学技术的不断发展,计算机应用技术给我们的生活带来了前所未有的便利,数学在我们日常生活中的应用变得越来越普遍,利用数学方法来解决我们的生活及工作中的难题将成为数学应用在未来的发展趋势。高校数学教学效率很大程度上取决于学生对数学的学习兴趣,将数学建模思想应用于数学教学中可以将数学问题形象化、简单化,将枯燥无味的数学课堂变得更加生动、有趣,从而激发起学生的学习效率,提高数学的教学质量。

一、数学模型应用概述

随着社会主义经济不断发展,数学已在各个领域得到广泛的应用,建立数学模型解决实际工作问题是大学生走向社会要经常运用到的基本技能。利用数学模型解决问题仅仅是具有数学知识和数学解题能力是不够的,它还需要大学生具有优秀的综合素质能力,而且具有这种优秀素质的专业人才在社会工作中会比数学专门人才受欢迎得多。高等学校的教育目标是为生产、服务以及管理前线输送高素质专业人才,因此数学建模的应用就成了高校数学专业学生择业的必备素质和技能[1]。

二、高校数学教学弊端

数学作为科学研究的基础工具,在知识性人才的培养方面具有不可替代的作用,但是当前我国高校的数学专业教学在教学内容和教学方式上存在着一定的弊端。从高校数学的教学内容来看,老师在教学过程中过于重视理论教育而忽视数学的实际应用问题;过于注重解析数学问题的小技巧,而忽视整个解题思路的训练;过于强调例题的经典性,而忽视对新案例的引进,不能对学生进行新思维的锻炼。从教学方式上来看,高校数学老师往往重视对知识的传授而忽视对学生学习方法的指导,使得学生根本不能独立的解决问题,缺乏独立思维能力,只要一遇上实际问题,学生往往会显得手足无措,不知道从哪开始下手。古人言“授之以鱼,不如授之以渔”只有学生学会了正确获得知识的方法,那么他们就能够进行独立自主的学习,在以后的生活和工作中都将受益无穷。从教学手段来看,由于高校学生从高中升入大学一直接受的是应试教育,应试的思维模式已经根深蒂固,习惯了填鸭式的教学方法,他们很不适应大学里提倡的自主学习模式,实践教学环境的缺失,使得学生学到的数学知识远离实际应用和社会需求,不利于创造型人才的培养,数学教育模式继续改革。实践调查证明,在高校数学教育中引入数学建模思想和教学方法,能够取得良好的教学效果,很多学生在建立数学模型的过程中逐渐地对数学专业产生了浓厚的兴趣,数学建模思想的引入促进了学生将理论知识与社会实践相结合的学习模式,使学生的学习效率有了显著的提高。

三、数学建模思想和方法在高校数学教学中的作用

数学建模就是指用数学语言和方法将现实信息进行翻译,并对所得数据进行整理、归纳所得出来的数学产物。数学模型经过演绎、推断和求解的过程,最后将得出的推论和结果回到社会现实世界当中进行实践验证,从而完成数学模型由实践到理论,再由理论到实践的有效循环过程。从高校数学教学的角度来看,指导学生运用所学到的数学知识建立数学模型是一种创新性的学习方法,这种方法的运用可以让学生体验综合运用数学知识和方法解决现实问题的过程,能有效激发学生的学习热情,有助于学生创新意识的培养,提高学生数学的综合运用能力[2]。

(一)数学建模思想有利于激发学生的学习兴趣

数学建模的思想过程符合学生对事物认知过程的发展规律,数学建模能有效提高学生学习数学,应用数学的积极性;数学建模从实践到理论再到实践的建造过程,不仅能帮助学生牢固的掌握数学知识,还能有效训练学生运用数学语言和数学方法的能力,帮助学生树立正确的数学观,有效促进了学生在生活中运用数学的意识。数学建模将枯燥无味的数学理论知识转化成了生动形象的现实案例,使学生非常清楚的感受到了数学在日常生活中的应用过程,能有效启发大学生们的数学灵感,提高学生的学习效率。数学建模思想的形成能够让学生在学习方面产生良好的学习习惯,即使在以后的工作及生活中都会受益无穷。

(二)数学建模思想有助于学生创新意识的培养

传统的教学理念主要强调老师在教学过程中的主导作用,老师一味地对学生进行理论知识的传授,将学生当作知识的储存器,过于偏重于知识的灌输,在课堂上留给学生自主思考时间很少,从而抑制了学生创新思维能力的发展。传统的数学教育模式主要注重对数学知识的演绎,对于数学归纳方法则不是太看重;虽然演绎法在数学学习中很重要,有利于学生对数学原理的学习和运用,但是它对学生创新思维意识的形成却没有太大帮助,不能很好的引导学生去创新。要想在数学学习中培养学生的创新思维必须重视数学中归纳法的学习,培养学生从社会现实中善于发现和归纳的能力。所以高校数学老师应转变教育观念,革新教育思想,在数学课堂中引入数学建模思想,有利于提高学生的创新能力。

(三)数学建模思想有助于提高学生的数学应用能力

美国科学院院士格林教授曾说过:“时代需要数学,数学需要应用,应用需要建立模型”。利用数学模型来解决实际问题,不仅需要大学里所学的数学知识,而且需要多方面的综合知识,包括熟练掌握计算机应用技术和对问题的建模能力。老师对学生数学建模能力培养,需要让学生掌握所运用数学知识产生的背景,加深对问题的深入了解,拓展学生的知识面,从多方面提高学生的数学知识水平。

四、数学教学中应用数学建模的具体方法和措施

在数学教学中引入数学建模思想需要以实例为中心,让学生在学习体验过程中掌握数学建模的中心思想和步骤,老师应丰富数学课堂的教学内容,将学生视为课堂主体,采用启发式教学为主、实践教学为辅的多种形式相结合的教学模式,充分让学生体验用数学知识解决实际问题的全部过程,并感受其中的学习乐趣。

(一)从实例的应用开始学习

学生对数学的学习不能只局限于对数学概念、解题方法和结论的学习,而更应该学习数学的思想方法,领会数学的精神实质,了解数学的来源以及应用,充分接受数学文化的熏陶。为了达到教学目的,高校数学老师应结合教学课程,让学生认识到平时他们所学的枯燥无味的教学概念、定理及公式并非空穴来风,而都是从现实问题中经过总结、归纳、推理出来的具有科学依据的智慧成果[3]。将教学实例引入课堂,从教学成果来看,数学建模思想可以充分的让学生理解数学理论来源于实际,而学习数学的最终目的却是将数学理论回归到实际生活应用中去,学生明白了学习数学的实际意义,有助于提高学习数学的兴趣,促进创新意识的培养。

(二)在实际生活中对数学定理进行验证

高校数学教材中的很多定理是经过实际问题抽象化才得出来的,但正是因为定理和公式过于抽象使得学生们在学习时特别枯燥和乏味。因此数学老师在讲授定理时,首先要联合实际应用对数学定理进行大概的讲解,让学生们有个直观的印象,然后结合数学建模的思想和方法,把定理当中的条件当作是模型的假设,根据先前设置的问题情境一步步引导学生推导出最终结论,学生经过运用定理解决实际问题切实的感受到了定理运用的实际价值。例如,作为连续函数在闭区间上性质之一的零点存在定理,在高等数学的学习中有着非常重要的意义。零点定理的应用主要有两个方面:其一是为了验证其他定理而存在,其二是为了验证方程是否在某区间上有根。学生学习这个定理时会有这样的疑问:一个定理是为了验证另一个定理而存在,那么这个定理还有没有实际的应用价值呢?所以我们高校数学老师在讲完定理证明之后,最好能够结合现实生活中的问题来验证定理的实际应用。

(三)结合专业题材,强化应用意识

数学学习涉及到高校的各个专业,拿电子科技类专业来说,毕业生毕业后主要从事有关工程和科学的职业,这些工作要求学生必须具有数学技能和解决科学问题的能力。学生学习数学的目的主要是为了培养利用数学思维分析问题的能力以及解决工作中出现的具体问题的能力,这种职业要求决定了高校学生理解数学思维并使用数学的重要性。因此在大学数学教学中老师需要结合专业的相关知识,根据专业的不同有目的性地选择典型问题进行教学,去掉数学教材中的一些纯数学的案例,能够有效地激起学生的求知欲,在数学建模过程中强化数学思维及数学应用意识,提高学生的专业能力。

五、结束语

综上所述,在大学数学教学中贯穿数学建模思想,等于传授给学生一种良好的学习方法,更是为学生架起了一座从数学知识到实际问题的桥梁,学生只有大量接触与专业有关的现实实例,才能够建立正确的数学观念,提高整体的数学课堂教学效果,拓宽学生解决问题的思路,提高学生分析并解决实际问题的能力,强化专业知识,提升人才培养的力度,为社会各界输送高质量的人才。

参考文献

[1]陈龙.数学建模思想在高等数学教学中应用价值的研究[J].亚太教育,2016(4).

[2]刘君.在高等数学教学中融入数学建模思想的探讨[J].科技视界,2016(5).

篇3

【论文关键词】数学建模 教学策略 应用

【论文摘要】目前在很多高校都已经开设了“数学建模”课程,大学数学建模方法教学策略也逐渐成熟,那么在中学可设“数学建模”课程或进行教学也成为了新课改下的热门话题,但如何把大学数学建模方法教学策略应用到中学教学中,还需要加以研究。

数学建模是指根据需要针对实际问题组建数学模型的过程,也就是对某一实际问题,经过抽象、简化、明确变量和参数,并依据某种“规律”建立变量和参数间的一个明确的数学关系(即数学模型),然后求解该数学问题,并对此结果进行解释和验证,若通过,则可投入使用,否则将返回去,重新对问题的假设进行改进,所以,数学建模是一个多次循环执行的过程。鉴于目前很多高校都开设了“数学建模”课程,数学建模课程的开设对高校教育改革起到了很大的作用,在新课改的背景下,数学建模也将被引入到中学教育之中。研究大学数学建模方法教学策略并探讨其在中学教学中的应用很有必要。

1.大学与中学在数学建模教学上的联系

大学教育面对的是成年学生,而中学教育面对的多是未成年学生,在年龄上,两者有着区别;大学生是已经受过中学教育的学生,而中学生尚未完成中学教育,所以在受教育程度上两者有很大差别,但尽管如此,两者都是在校学生,都还处在教育系统之中,所以两者及两种教育环境仍然具有一些相同之处。

1.1两者教学环境大同小异

无论是大学教育,还是中学教育,采取的教学方式都是课堂授课教学,都有固定的场所,特定的老师和相配套的课本教材等等,在这一点上来讲,两者区别并不大,都处在相同的教育系统中,只是两种环境中的老师水平不同,学生受教育的程度以及教学深度不同罢了。

1.2数学建模模式相同

数学建模,本身内涵已经固定,既适合在大学教育中设立此类课程,也适合中学生进行学习,其目的都是一样,都是要解决实际的现实问题,都具备数学建模的实用化特征,但由于所用数学知识有所差别,解决的实际问题大小有差异,但都是解决问题。

1.3中学生和大学生都具备接受知识的能力

数学课程在小学就已经开始设立,到中学教育程度时,相比小学生,中学生的数学能力有大幅度提高,已经能够进行很好的知识理解,虽然并没有大学生的理解力那么高,但学习简单的数学建模的能力已经具备。

1.4中学数学建模学习能为以后更深的学习打下基础

在中学开设数学建模课程教学,能为以后高层次的数学建模培养人才,从早就打下良好的数学基础,能够减少将来遇到的各种问题。

2.可应用于中学数学建模中的大学教学策略

数学建模,是提高学生的数学素质和创新能力的重要途径,是提高教师的教学和科研水平的有效手段。从以上的介绍可知,大学数学建模方法教学策略可以很好的应用于中学数学建模教学过程中。目前,大学课程中开展数学建模教学的途径与方法很多,其中,能够很好的应用到中学数学建模课程中的也有很多,下面着重叙述比较常用且很奏效的主要途径和方法:

2.1充分利用教材,对教材进行深度把握

教师在课堂教学过程中要充分利用手中的教材工具,对教材进行深度把握,提高教材利用的效率。教材是专家学者在对理论深层地把握的基础上结合生活中的实际经验总结研究出来的,教材内容既是理论的实践化,又是生活的理论化,其中要讲授和阐明的问题都是非常具有代表性的,因此教材具有很高的利用价值,要懂得充分利用。但教材中并没有告诉教师具体的教学方法,只是安排了需要进行教授的课程,因此在教学过程中,教师要使用合理的教学方式进行授课,如在对教材内容讲解后可以考虑把教材中的问题换一种方式进行重新提问和思考,变换问题的条件,更改提出问题的方式,对因果进行互换,结合新的问题进行重新提问。数学本身就是生活的提炼,是对生活中的实际问题的一种简化,通过反刍的方式,把数学模型重新应用到实际问题中,对理解数学模型的构建和内涵都具有很大的作用。  2.2利用案例教学,设计精良的案例

所谓案例教学法,是指教师在课堂教学中用具体而生动的例子来说明问题,已达到最终目的的一种教学方式。而数学建模教学中的案例教学法,则对应的是在数学建模教学过程中,结合案例进行数学建模问题的讲解,达到让学生对数学建模的建模过程和方法以及建模的具体应用有清晰的认识的目的。数学建模教学中应用案例教学法主要应该包括三个部分,即事前、事中、事后三个部分。事前是指教师在数学建模开始之前选择合适的问题,讲解问题的环境,也就是介绍清楚问题的背景资料,所掌握的数据信息,建模可能用到的数学方法和模型,以及问题的最终目的。事中是指在教师讲解清楚问题的准备工作之后,教师与学生,学生之间针对问题进行讨论,讨论的目的是要搞清楚问题的实质是什么,可以利用哪些方法和模型工具,探讨那一种方法最为合理,最终决定使用的具体模型工具。事后则是指模型的最后检验,模型是否合理需要通过最后对模型结果的检验做标准,可以在两种以上不同的模型得出的结果之间进行对比,考察其存在的差距。

2.3强化课堂教学效果,课后进行实践

课堂上进行数学建模的教学和探讨,课后要补以实践进行强化训练。课堂教学一定程度上停留在理论阶段,虽然数学建模具有很大实用性,但是学生进行建模的时候只是通过教师所提供的数据信息和建模方法,尽管学生也参与了一定的讨论,却仍然无法能让学生对用模能够有比较直观的感受和了解,因此实践训练成为了数学建模一个必不可少的构成部分。数学建模实践主要可以通过两种形式进行,一种是实验室实践,学校应该建立健全数学建模专用实验室,实验室可以看做是现实的理想化环境,在理想化的实验室里可以很好的对认模、建模等过程的认识。由于中学生对理解问题的能力还处于初级阶段,实验室可以不用那么复杂,这样既可以节约实验室建设成本,也能同时达到实践训练目的。一种联系实际进行实践。教师要从较为简单的实际问题出发,让学生自主选择和他们自己比较相关的问题,进行简单的数学建模练习,然后以作业的形式上交给教师,教师进行逐个批复,然后就发现的新问题进行讨论与解决。

2.4开展数学建模活动,鼓励学生积极参与

为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的,也可以是非竞赛制的,但对成绩比较优秀的学生都要给一定的奖励,以提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程要保证学生不受干扰,竞赛要保证公平、公开。

2.5巩固学生基础,开发学生学习兴趣

数学建模首先需要的是扎实的数学功底,学生的数学基础知识要过关,同时学生要具备较好的理论联系实际的能力以及抽象能力,因此教师必须要抓好学生的基础知识学习,从一开始就打下坚实的基础,在日常的教学过程中要有意加强学生的理论联系实际的意识和能力。还有就是要开发学生的学习兴趣,兴趣是他们最好的老师,如果教学过程过于枯燥无味,那么学生们就无法提起兴趣进行学习,会产生厌倦情绪,不利于学习效果。数学建模过程本身应该是一个比较有趣的过程,是对实际生活进行简化的一个过程,它应该是生动的,有实际价值的。应该鼓励学生间的交流,鼓励学生用建模的思维方法去思考和解决生活中发现的小问题,对做的比较好的同学可以予以适当的奖励。■

参考文献

[1]黄乐华.中学数学建模的理论与实践思考[J].龙岩师专学报.2003(12).

篇4

“减数分裂”是必修2教材的重点和难点,是理解孟德尔遗传规律、可遗传变异、人类遗传病和生物进化的本质等知识的基础。在传统的教学方法下,学生普遍反映该内容太抽象、太复杂,尤其是对染色体的行为变化,以及DNA和染色体的数量变化曲线难以掌握。因此在讲述本节课知识时,我尝试使用概念模型、物理模型、数学模型来突破这些难点,以达到培养学生解决问题能力的目的。

难点1:同源染色体的概念

所谓同源染色体是指大小形态相同,一条来自母方,一条来自父方的两条染色体。学生总是对同源染色体的来源弄不清楚,以至于在做识图题时总是分不清楚。为帮助学生理解,我自制了两条大小、形态相同,颜色不同的染色体模型(红色代表来自母方,绿色代表来自父方)。当把红色和绿色的染色体放在一起时,学生便明白了什么叫做同源。这样用直观的教具解决了一部分学生认为的难点。

难点2:减数分裂过程染色体的行为

染色体行为的变化对于孟德尔遗传定律,以及伴行遗传的学习非常重要,如果学生对染色体行为不清楚,那么在解决很多习题时将会困难重重。在教学时,如果能让学生动手摆出染色体的行为变化,比枯燥讲授将会起到事半功倍的效果。在教学中,我首先带领学生熟悉教材中所讲述的初级精母细胞中同源染色体的联会,四分体的形成、同源染色体排列在赤道板、同源染色体分离、染色体数目减半、染色体着丝点排列在赤道板、染色体着丝点分裂,姐妹染色单体分开成为染色体等行为变化。汇总如下图。

当学生掌握了染色体的行为变化之后,进行分组活动,模拟染色体的行为变化:

(1)每两人一组;

(2)每组一张大纸板和两张小纸板(大纸板代表初级精母细胞;两张小纸板分别代表两个次级精母细胞;纸板上标注出两组中心粒的位置,便于学生找到赤道板的位置);

(3)两对大小不同的同源染色体(绿色代表来源父方,红色代表来源母方;染色体的材料选择海绵纸,便于学生在后期进行折叠);

首先让学生根据所学的知识动手摆出染色体的行为变化:四分体、同源染色体排列在赤道板、同源染色体分离、染色体着丝点排列在赤道板、着丝点分裂等行为。在教师巡视过程中发现不正确的要及时对学生进行纠正和评价,最后让学生展示他们摆出的各种行为变化(如下图)。在展示过程中引导学生说出各个时期染色体的行为变化,以便对所学知识进行强化记忆。

当学生自己体会了在减数分裂过程中染色体的各种行为变化之后,可以给学生准备好空白的细胞图,让他们把刚才摆出的各个时期染色体的行为在细胞图中补充完整,以此来检验学生对染色体行为变化的掌握情况。

(1)教师要不时引导学生观察同源染色体的行为时,注意观察非同源染色体的行为。

(2)注意观察每个细胞中染色体、DNA,以及染色单体的数量变化情况。

(3)对于学生在画图出现问题时,不要急于纠正,可以引导学生再次摆出所错时期的染色体行为,然后让其改正。

难点3:染色体和DNA的数量变化

让学生以一对同源染色体为例画出各时期染色体行为变化图总结出减数分裂过程中染色体、核DNA、染色单体数目的变化规律,并转化成二维坐标曲线图(数学模型),使学生进一步理解孟德尔遗传规律的实质。

学生通过概念模型、物理模型和数学模型的构建,对于减数分裂知识的掌握情况要明显比传统教学方式有所提高,在做题过程中也能在脑海中构建出染色体的行为及数量的变化情况。

篇5

关键词:概率统计;数学建模;途径

中图分类号:G642 文献标识码:A 文章编号:1674-9324(2012)06-0047-02

一、引言

数学建模的基本思想方法是利用数学知识解决实际问题。《概率论与数理统计》是一门应用数学课程,有大量抽象的概念和理论知识,在其教学过程中融人数学建模思想方法,将部分概念、性质、理论寓于一些实际问题当中,选择有现实意义、应用性较强、又便于操作实现的实例,让学生运用学过的概率统计知识去解决,从而激发学生学习的主动性和积极性,提高他们的运用能力。

二、《概率论与数理统计》教学中融入数学建模思想方法的途径

1.通过概念的实际背景融入数学建模思想方法。《概率论与数理统计》课程中的很多概念都是从实际问题中抽象出来的,在教学中应注重让学生看到如何从实际问题抽象出概念、模型,增强学生数学建模的意识与能力。例如,在讲概率的统计定义时,我们可以让学生作“抛硬币”试验,观察出现正面的频率,让学生看到:抛硬币次数较小时,频率在0,1之间波动,其幅度较大,但随着抛硬币次数增大,频率总是在0.5附近摆动,其幅度较小,即频率总是稳定在0.5附近摆动,再给出概率的定义。这样可以让学生理解概率与频率的关系,加深对概率的概念的理解。再比如,讲解“数学期望”这个概念时,我们可以从生活中的“算术平均数”、“加权平均数”引入,加深学生对“数学期望”就是“均值”的理解。

2.通过实例融入数学建模思想方法。《概率论与数理统计》是一门应用性很强的学科,教师应充分利用教材中的实例或自己设计实例进行讲解。使学生学会如何收集、分析数据,建立模型解决实际问题。

例1 如何估计池中的鱼的个数?

问题的分析:池中的鱼的个数是不可能一一数出来的,但可以通过抽样来估计。即先从池中钓出r条鱼,作上记号后放回池中;再从池中钓出s条鱼,看其中有几条标有记号(设有m条)。然后再根据收集到的资料进行估计。

问题的解决:设池中有N条鱼,第二次钓出且有记号的鱼数是个随机变数记为ξ,则

P(ξ=k)=■,k为整数,max(0,s-N+r)≤k≤min(r,s)

记L(k,N)=■,应取使L(k,N)达到最大值■作为N的估计值。但用对N求导的方法相当困难,我们考虑比值R(k,N)=■

可以看出当且仅当N<■时,R(k,N)>1,即L(k,N)>L(k,N-1);当且仅当N>■时,R(k,N)<1,即L(k,N)<(k,N-1),故L(k,N)在■附近取得最大值,于是■=■

这个例子不仅使学生学会了如何收集、分析数据,建立模型解决实际问题的方法,也加深了学生对最大似然估计的理解,增加了学生学习概率统计的积极性和主动性。

例2 (摸球模型)摸球模型是指从n个可分辨的球中按照不同的要求,依次取出m个,计算相关事件的概率。一般来说,根据摸球的方式不同,可分四种情况讨论:

把可分辨的球换成产品中的正、次品,或换成甲物、乙物等就可以得到形形的摸球问题,如果我们又能灵活地将这些实际模型与表中的模型对号入座,就可以解决很多有关的实际问题,例如产品的抽样检查问题、配对问题等。

例3 (质点入盒模型)质点入盒模型是指有n个可分辨的盒子,m个质点,按照不同的方式,把m个质点放入n个盒中,计算相关事件的概率。一般来说,根据放入的方式不同,可分四种情况讨论:

质点入盒模型概括了很多古典概率问题。如果把盒子看作365天,(或12个月),则可研究个人的生日问题;把盒子看作每周的7天,可研究工作的分布问题(安排问题);把人看作质点,房子看作盒子可研究住房分配问题;把粒子看作质点,空间的小区域看作盒子又可研究统计物理上的模型;把骰子看作质点,骰子上的六点看作盒子,可研究抛骰子问题;将旅客视为质点,各个下车站看作盒子,可研究旅客下车问题,等等。

3.通过开展社会调查融入数学建模思想方法。把概率统计思想方法应用到实践中去,这是我们教学的最终目的。有意识地组织学生开展一些社会调查活动,如指导学生收集当地科技、经济、金融及管理等数据资料,运用概率统计知识,建立相应数学模型,进行分析与预测,这个过程就是数学建模的整个过程,这不但增强了学生数学建模的意识与能力,而且培养了学生运用概率统计知识解决实际问题的能力。

总之,在《概率论与数理统计》课程教学中融入数学建模思想方法,不但搭建起概率统计知识与应用的桥梁,而且使得概率统计知识得以加强、应用领域得以拓广,是提高学生学好概率统计课程的有效途径。

参考文献:

[1]姜启源.数学模型[M].北京:高等教育出版社,1993.

篇6

【关键词】组件对象模型;COM;组件开发技术;可重用性

中国分类号:TP311.1 文献标识码:A

1、引言

在软件行业蓬勃发展的今天,不同软件之间相互利用是一个常见的事情[1]。软件之间或软件内部的相互利用常常会涉及到组件的重用。组件对象模型(COM)的最秒之处是很容易对某些代码实现一次编写和多处应用[2]。重用性是指当一个程序单元能够对其他的程序单元提供功能服务时,尽可能地重用原先程序单元的代码。组件对象模型的可重用性是指一个组件对象如何重用已有的组件对象的功能,而不是重复实现老的功能服务[3]。组件对象模型的可重用性是任何对象模型的实现目标,尤其是对于大型的软件系统,可重用性是非常重要的。但是,对于高职软件技术专业的学生来说,组件对象模型(COM)的可重用性与面向对象编程语言中的重用性在实现过程不同,较难掌握。

像我们很熟悉的面向对象编程语言如C++,它的重用性位于源代码一级,它是通过继承来实现重用,一个类继承于另一个类,实现父类功能的重用。继承可以使已经存在的类无须修改就可以适应新应用,继承是比过程重用规模更广的重用,是已经定义的良好的类的重用[4]。但对于组件对象模型的可重用性则情形有所不同,因为组件对象模型是建立在二进制代码基础上的标准,所以其可重用性也必然建立于二进制代码一级。按照组件对象模型的标准,实现这种可重用性有两条途径:包容或者聚合,这是组件对象模型两种重用模型[3]。

包容和聚合的重用思路基本一致,只是在实现方法上有所不同。包容是外部组件的接口直接包含内部组件接口的指针,它将使用内部组件的接口来实现它自己的接口。聚合就是直接将内部组件的接口直接暴露给客户,而客户并不知道这是内部组件的接口,始终认为这是外部组件的接口,客户直接通过外部接口使用内部组件对应的功能[5]。在教学过程中发现,对于组件对象模型(COM)的可重用性的现,有程序设计经验的学生来说比较容易,但是对于那些没有经验的初学者来说,难度却不小。本文从软件技术专业初学者的角度,阐述了组件开发中二种可重用模型的实现方法。

2、用包容模型实现学生组件的重用

假定我们现在已经实现了一个COM学生对象,它实现了学生管理的功能。它的接口定义如下:

由于更新,我们实现了一个新的COM学生对象,它既要实现新的接口,也要实现学生管理功能的接口,而新对象的学生管理功能与老对象学生管理功能基本一致。因此我们在实现新对象的过程中考虑到可以重用老对象的功能。虽然接口对象的是采用面向对象语言来进行定义的,但是重用的方法上却不能采用类的继承来实现功能的重用的。应该采用组件对象的重用模型来进行重用。对于包容模型的重用。我们应该要明白,老对象的创建和释放都是在新对象的内部进行的,而客户所看到的只是新对象暴露出来的接口,因此客户并感觉不到老对象的存在。对于包容模型的实现,老对象并不要求进行什么特殊处理,只有新对象要进行包容老对象的特殊处理。实际上新对象是老对象的客户,负责老对象的创建、调用和释放工作。新对象实现包容的关键代码如下:

在Init成员函数中,新对象调用API函数创建了老对象,只要创建成功,数据成员m_pStudentInner记录了老对象的IStudent接口指针。新对象实际上通过指针调用老对象相应的成员函数。

3、用聚合模型实现学生组件的重用

如果我们采用聚合实现对象的重用。首先,对于老对象就与包容模型重用实现有所不同。要实现聚合模型重用,老对象就必须要适应能在被聚合的情况下进行一些特殊的处理。所谓特殊的处理也就是当客户向老对象请求IUnknown接口时,它必须能把控制权交给新对象,由新对象来决定客户程序的请求结果。在实现过程中也就是由委托IUnknown和非委托IUnknown来实现聚合情况下的特殊处理。能够适应在被聚合的情况下进行特殊处理的老对象的委托IUnknown和非委托IUnknown定义如下:

在Init成员函数中,对于创建老对象的API函数,我们要注意它的第二个参数。一般我们可以根据第二个参数的值,来确定它们是使用什么样的对象重用模型。当第二个参数是指向新对象的IUnknown指针时,说明它是采用聚合模型来实现组件的重用;当第二个参数是为NULL时,说明它是采用包容模型来实现组件的重用。在对象的重用过程中,我们可以在一个对象中同时混合使用包容模型和聚合模型。

4、结束语

以上这些,都是我在授课过程中的一些心得和体会,可能比较肤浅,但是从软件技术专业初学者的角度来看,是很有必要的。如何让一名软件技术专业初学者尽快摆脱日常的思维定式,更加透彻地理解和掌握组件对象模型(COM)程序设计中的基本思想,以及更加深刻的领会组件对象模型(COM)程序设计的精髓,是组件开发技术这门专业课程在讲授过程中,应该时刻关注的问题。希望这篇文章能在这方面能起到一点借鉴作用。

参考文献:

[1] 沈树茂.COM组件技术的应用[J].电脑知识与技术,2010(6-3):1718-1719

[2] 邱仲潘译. COM与COM+从入门到精通[M].北京:电子工业出版社;2000

[3] 潘爱民.COM原理与应用[M].北京:清华大学出版社;2008

[4] 钱能.C++程序设计(第二版)[M].北京:清华大学出版社;2009

篇7

【关键词】数学建模教学;教学方法;数学建模竞赛;教学效果

1研究生数学建模培训教学在我校深入开展

我校自2007年6月开始组织研究生参加数学建模竞赛,培养研究生200余人,教师们利用双修日、暑期授课,给参加培训的研究生讲解数学方法的应用,从实际问题出发的建模能力,模型求解与数学软件的编程等。研究生数学建模培训教学的深入开展,有力地推动了研究生数学基础课程的教学改革。

2研究生数学建模培训教学方法

为了改变以往课堂教学“填鸭式、注入式”的教学方法,研究生数学建模培训教学更多地采用自学指导法与研讨探索法进行教学。

2.1自学指导法

自学指导法是由教师根据教学目的和教学内容,研究生已掌握的知识和智能发展水平制定授课方案,课前向研究生讲明教学的目标,再根据研究生心理活动的逻辑规律,创造良好的教学环境,促使研究生的思维处于积极活动状态,使他们在积极的思维活动中自我阅读教学内容,掌握新知识,发展智能和创造力。自学指导法的基本步骤一般是:确定目的、自学、指导、练习。(1)确定目标。教师讲课前,向研究生讲明学习的目的和达到目的的方法与途径,并提出学习中要思考的问题,为实现学习目标做好心理准备,引起研究生积极的心理活动。(2)自学。研究生有目的地阅读教学材料,初步掌握新课的基本内容,并记录阅读中出现的疑难问题,在这一教学环节中,教师应启发研究生提出问题。(3)指导。教师启发、引导研究生利用已掌握的知识和积累的经验,主动地研讨、学习新的知识,找出规律,发展智能和创造力。在这一教学环节中,教师要注意在方法上指导研究生学习,及时解答研究生学习中遇到的各种疑难问题。(4)练习。布置作业由研究生独立完成,教师及时检查研究生作业情况,了解作业中出现的问题,研究生完成练习后,教师及时组织讲评。

2.2研讨探索法

研讨探索法就是开始上课时,教师提出某一课题,让研究生3个人一组去分析研究该课题,研究生可以查阅文献资料,从而获得对问题的感性认识,初步了解该问题的内部机理;然后组织研究生课堂讨论,让研究生讲出自己在分析研究过程中的发现和形成的观点,互相交流,互相启发,互相质疑,进行必要的争论,促使研究生尽快由感性认识上升到理性认识,形成一定层次水平的科学概念,建立数学模型,解决实际问题。研讨探索法的基本步骤:(1)提出课题。教师提出一个开放性题目,由3个研究生一组共同去分析题意,了解问题背景。(2)分析研究。每一个研究生小组围绕教师给出的课题,查阅文献资料,分析实际问题中的数量关系,如应用处理连续量、离散量、随机量的数学方法,建立数学模型,通过计算机求解,回答有关问题,写出论文初稿。(3)课堂讨论。将研究生小组集中起来,组织研究生在课堂上开展讨论,研究生可以自愿上讲台讲授自己的观点、模型、解决问题的思路等。每个研究生小组都有一个代表首先上讲台讲授自己小组的论文,回答课题中的有关问题,然后研究生自由发言,不同的解法、思路要充分表达出来。教师参加讨论,主要是对需要拓展的知识进行补充讲解。(4)总结。教师对讨论的问题进行讲评,研究生根据讨论情况及自身对问题的分析和理解写出科技论文,解决所提出的问题。在近几年来研究生数学建模培训教学工作中,我们采用了自学指导法和研讨探索法教学。研究生通过学习掌握了新知识,智能和创造力得到发展,也培养了他们的自学能力。

3研究生数学建模培训教学安排

我校研究生数学建模培训每年11月份启动,次年5月组织研究生参加江西省研究生数学建模竞赛,9月组织研究生参加全国研究生数学建模竞赛。首先由研究生院组织各学院有关专业的研究生自愿报名参加数学建模培训班;其次信息工程学院数学建模教练组根据研究生报名情况组建数学建模培训班,必要时组织报名研究生进行选拔考试,选拔优秀的研究生参加数学建模培训班;再次由数学建模教练组根据有关数学建模竞赛要求,制订研究生数学建模培训班教学方案,确定培训内容,选择讲课教师,开展培训教学;最后组织研究生参加江西省研究生数学建模竞赛及全国研究生数学建模竞赛,根据参加竞赛、获奖情况,及时总结培训教学与竞赛效果,对教学内容、教学方法、教学手段进行改进,为下一轮的培训教学与组织参赛打下坚实的基础。

篇8

一、高等数学教学中存在的问题

1.陈旧的教学观念

我国高校中的高等数学课堂存在过分看重学生计算能力和逻辑思维能力培养的现象,这样就导致高等数学课堂非常乏味和枯燥,学生在课堂上很难提高学习兴趣和主动学习的能力。一些高等数学教师在传统的教学观念的影响下,在课堂上只是单纯地引入一条条的数学概念和定义,而]有进行详细的实例讲解,这样不仅会造成学生在学习的时候没有足够的积极性,而且当进入社会参加工作以后遇见一些问题的时候,他们常常不能利用相关的数学知识解决相关难题。

2.不恰当的教学内容

目前我国大多数高等院校教师在进行高等数学教学的时候,教授的内容只是经过简化之后的数学分析。例如,在函数微积分的教学中,拥有较强的技巧性和灵活多样的计算方法的不定积分的教学占了几个课时,学生课上学习之后,还需要再花费大量的课下时间进行练习,这样会给学生造成很大的学习负担,而且并没有很强的应用性。

3.落后的教学方法

高等院校的高等数学学习,其教学效果与教学方法有很大关系,所以在目前的高等数学教学中应该改进落后的教学方法。现在的高等数学教学方法属于传统的教授形式,在这样的课堂中教师给学生灌输一些数学知识和相应的定义,十分乏味和枯燥,同时也对学生的创新意识有很大的束缚作用。

二、在高等数学教学中融入数学建模思想

1.融入数学建模思想的重要作用

在高等数学教学中融入数学建模思想,是我国教学改革中的一项重要内容。融入数学建模思想,能够让高等数学教师认识到高等数学教学的重要性,从而明确高等数学中的教学重点内容。把数学建模思想融入高等数学课堂教学中,能够让高等数学课堂变得更加完整,学生对数学知识的理解更加全面,同时还能够培养学生的学习积极性和自主学习的能力。

2.融入数学建模思想的基本原则

在高等数学课堂中融入数学建模思想,首先要能够分清二者的主次关系,虽然融入数学建模思想能够使高等数学课堂气氛变得更加融洽,但是课堂的主要内容还应该是高等数学,而不要把高等数学课堂变成数学建模课。其次,不要生搬硬套数学建模课程,而需要有机地把高等数学课堂和数学建模思想相结合。最后,将数学建模思想融入高等数学课堂上不是一朝一夕就能够完成的,需要教师和学生共同努力,循序渐进来完成。

3.融入数学建模思想的教学案例

在高等数学教学课堂中融入数学建模思想,要能够根据每节课知识点的具体内容补充相应的具体案例,这样能够让学生在课堂建模过程中学会高等数学的具体应用方法。例如,在学习连续函数的零点存在定理的过程中,教师可以提出“登山问题”来让学生进行相应的思考。

在我国高等数学的教学中融入数学建模思想是我国高等院校进行改革的重要内容,能够促进学生综合素质的提高,对加强我国的创新型人才培养有着非常重要的作用。

参考文献:

篇9

关键词:数学;建模教育;改革

1.数学建模教育对高校数学教学的重要作用

(1)加强学生理论基础知识的掌握。数学建模教育是将实际问题转换为数学问题,并通过数学方式来进行解答问题的教育。进行数学建模的前提是学生具备一定的数学理论基础知识。另外,数学建模使得学生将实际问题与数学理论知识相结合,这样一来,学生能够更好地将数学理论知识应用于实际,而且数学建模能够降低学生对抽象、枯燥的数学理论知识的抵触心理。

(2)开发学生的创新能力。我国高校数学提倡在教学中培养学生灵活使用理论知识,用所学知识来解决实际问题的能力。但是在实际教学中,学生难以灵活运用数学知识,而且学生在枯燥的理论知识学习中很难形成良好的学习习惯,会对学生未来的成长造成不利影响。[1]在教学中引入数学建模教育,能够改变传统的教学方式,在教学过程中加强教师与学生的互动,让学生参与到讨论研究当中,并学会灵活地使用理论知识解决实际问题,增强学生的综合能力。通过数学建模教育,能够将理论与实际结合,让学生在解决实际问题的过程中,培养多角度思考的能力,提升创新能力。

(3)推动其他学科学习效果。数学建模教学能够提升学生在数学方面的能力,丰富学生的数学知识,由于数学建模教学需要解决实际问题,而这些实际问题通常还包含着经济、工程等其他学科的问题,因此在教学中,教师对这些实际问题进行分析研究,从而使数学与其他学科良好地融合在一起,学生在这样的教学方式下所获得的知识面更广,门类更多,能够更好地完善自己。

2.当前数学建模教育存在的问题

(1)落实情况较差。我国很多高校在数学建模教育方面仍然处于探索阶段,数学建模教育仍然停留在表面。很多教师在教学中仍然坚持原有的教学方法,教师不改变教学方法,学校不深入教学模式的改革,数学建模教学方式在推广上缺乏全面的改革方案,没有针对性的落实措施。

(2)教师不适应建模教育。改革开放后,我国的高等教育事业得到快速发展,高层次与高水平的人才不断涌现。高校教师的能力也普遍得到了提升。但是由于我国多年实行的是应试教育制度,高校教师习惯原有的教学模式,不能迅速地适应当前推行的教学方法,难以满足教学需求。而学生学习时间有限, 教师不得不继续使用传统的教学方法来进行教授,面对这种情况,尽快对高校教师进行专业培训有很大的必要性。[2]

(3)学科间难以相互渗透。我国高校数学教育以本学科知识为主,与其他各学科间相互难以建立交叉应用。这种情况的出现使得建模教学只能针对本学科的实际问题进行研究分析,难以使学生建立全面的知识体系,限制了建模教育的覆盖范围,数学理论知识难以在交叉学科中得到应用,不利于数学理论知识的实际应用,束缚了学生实际问题分析能力的提高。

3.发展数学建模教育的策略

(1)树立教学理念。高校数学教师应该树立正确的教学理念,在当前的社会环境下,加强学生解决实际问题的能力是发展趋势,高校数学教育引入建模教学是数学教育的必然走向。因此,广大高校数学教师应该形成正确的认识,具备与时俱进的思想,学习建模教育教学方法,将建模教学应用在实际授课当中,借以提高学生的学习效果。

(2)建立建模教育教学体系。高校数学教师在进行教学前,要制定有效的建模教育体系。教学中,教师要引导学生注意验证、演示性试验,学生在推导的过程中,教师应给予学生鼓励,使其自主思考,引导其灵活使用数学理论知识,提升学生运用理论知识的能力。[3]

在参与中教师要激发学生的学习积极性提高其参与度。教师在教学中应多引入交叉学科的实际问题,对学生进行指导,引导学生对问题进行分析并建立模型,求解模型,最终获得结果。

实行高校数学建模教学,需要教育工作者、各高校共同参与。在新课改下,教师是教学的引导者,高校数学教师要提升自身能力,适应建模教学模式,引导学生能力得到提升。高校学生应该突破传统教学的束缚,积极参与到课堂分析研究中,提高自身能力和素质。

参考文献:

[1]温绍泉.略论数学建模教育与高校数学教学方式改革[J].佳木斯教育学院学报,2012(08):130.

[2]陈和平.略论数学建模教学与大学数学教学方式改革[J].数学学习与研究,2013(05):52.

篇10

随着我国基础教育课程改革的不断深入,数学建模越来越受到重视。模型思想对于学生学习数学具有重要意义,尤其是随着教育改革的不断深入,数学建模也受到了越来越多的关注,在小学数学教学中注重建模教学的开展,注重学生模型思想的培养也越来越重要。本文将尝试分析现行小学数学“数学建模”教中存在的问题,从而找到更为有效的教学方法。

关键词:

小学数学;建模;教学

一、数学建模思想及其意义

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象,简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段,其对于学生学习数学具有非常积极的意义。首先,通过培养学生数学建模的能力可以开拓学生的思维能力,使学生在思考问题时思维更为发散,反应更加敏捷。其次,由于数学建模对于教师和学生来说都是相对新颖的教学方式,可以很大程度上调动起学生的积极性,加强学习效果。同时因为数学建模最主要的意义在于解决实际问题,因此教师在教学过程中运用数学建模思想,可以培养学生的应用意识,提高其利用所学知识解决实际问题的能力。

二、数学建模在教学中存在问题及原因分析

1、存在问题

教学目标不够明确。由于数学建模对于大部分教师来说也是一个新领域,因此许多教师在教学设计中对于什么是数学建模,如何让学生了解建模思想,如何让学生能够使用建模思想解决实际问题存在模糊的地方,对于学生应该掌握到什么程度,即数学建模教学的课堂效果也没有明确的目标,例如教师在讲解“线段图”时并没有将其作为数学模型来考虑,而仅仅是讲解知识点让学生掌握画线段图的能力,而没有对其进行数学模型思想的渗透。这就难免会导致教学难以获得良好的收效。教学环节单一陈旧。课程导入,知识点讲解,练习巩固,课堂总结,这种传统而单一的课堂形式已很难引起学生兴趣,即使教授的内容是数学建模这一相对新颖的概念,枯燥的环节也很难带来实际的收效。再者,部分教师在教学过程中只是使用课本上的例题进行讲解,而没有运用生活中的具体事例进行举例和引导,这既与数学建模的思想相悖,又不能提高学生的积极性。

2、原因分析

造成数学建模在实际教学中难以有效开展的最主要原因,我认为是教师自身的建模思想相对薄弱。一些教师教学中大多依赖于以往的教学经验,对新概念没有认真学习掌握,也没有观摩其他人的教学,导致自身的教学没有得到更新,没有相关的教学经验,在目标设计、方法选择、事例选取等方面也就难以满足教学要求,从而导致建模教学效果差。

三、数学建模教学方法探讨

1、创设生活化情境

要想充分利用数学建模的思想和方法,首先还是要考虑到小学生的数学基础以及其对于事物的认知能力。数学与生活息息相关,因此,创设出一个生活化的情境对于小学生掌握数学建模的思想和方法是一个很好的选择。选取与日常生活紧密联系的问题与事例,例如:植树问题,站队问题,分配问题等等。通过这样学生们熟知的问题进行数学建模的讲解,不仅能吸引学生的兴趣,提高其积极性,而且因为易于理解,可以很大程度上加强学生的理解,使得教学收到良好的效果。

2、注重实践,让学生亲身参与到模型建立的过程

实践是最为直接的教学方式,也是最易于学生理解记忆的教学方式。在数学建模的教学中也是如此,让学生亲身参与到模型的构建当中,引导其积极地进行思考,结合老师总结出的数学模型可以更为直观具体的传授给学生。例如植树问题,要在全长100米的小路上栽种树木,每隔10米栽一棵(两端要栽),问一共需要栽多少棵树。学生很容易得出100÷10=10(棵)的错误结论。而若想纠正学生这一错误结论,单纯的讲解远不如利用数学模型直观且简明易懂。让学生通过“线段图”帮助其进行思考,总结出一般规律后在较短的距离上进行验证,从而最终建立起建立一条线段两端栽树的问题的数学模型:棵数=间隔数+1。这样让学生自己参与到数学模型建立的过程中的方法,不仅有利于其更好的了解问题,解决问题,更有利于培养其利用数学模型进行思考的能力,为更深层的数学学习奠定良好的基础。

3、引导学生利用数学模型解决实际问题

任何学科最终的意义都是作用于生活实际,数学建模的教学也是如此。运用数学模型高效地解决实际问题,不仅有利于学生更好的理解数学模型,还可以使其学以致用,培养其利用所学知识解决实际问题的能力。因此,小学数学模型教学实践中,教师不仅应教授学生构建数学模型的方法,更应该鼓励学生学以致用,培养其将理论落实到实践的能力。建立数学模型实际上就是将问题中的数量关系用恰当的数学语言表达出来,通过合理的分析,列出正确的数学表达式,从而得出正确结论。例如::有一块平行四边形的麦田。底是250m,高是84m,共收小麦14.7吨。这块麦田有多少公顷?选取日常生活中的问题激起学生兴趣,使其不断调动起已有知识,理解题意,找出相关数据,然后利用数学模型平行四边形的面积S=ah,其中a=250m,h=84m,从而得出S=250*84=21000(平方米)的结论。类似这样通过将理论与实际相结合的训练,让学生体会到学习的乐趣,提高其学习积极性,感受数学模型的实际作用,增强利用数学模型解决实际问题的意识。

四、结语

综上所述,在小学数学的教学过程中加入数学模型的方法和思想的教育是必要的。随着教学改革的不断深入,教育已不仅仅满足于书本知识的书面考查,更多的是注重学生的思维及实际运用的能力。而数学建模能够打破传统数学教学模式,并注重思维培养与实际运用。因此,在小学数学的教学过程中应有意识的注重数学模型的教学,采取灵活多样的教学方法,创设生活化的情境,鼓励学生亲身参与到数学模型的构建活动中,使其在学习过程中更好地理解和利用数学知识,真正做到学以致用。

参考文献:

[1]李祥立.数学教育:澳门教育文选[M]中国社会科学出版社.2012

[2]刘勋达.小学数学模型思想及培养策略研究[D].硕士学位论文.华中师范大学.2013