化学中有机化合物的定义范文
时间:2024-01-08 17:43:50
导语:如何才能写好一篇化学中有机化合物的定义,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
有机化合物的同分异构相当复杂,又非常普遍,所以对机化学必须全面了解同分异构现象及性质。化学上,同分异构体是一种有相同化学式,有同样的化学键而有不同的原子排列。很多同分异构体有相似的性质。有机化合物的同分异构现象有机化合物有着非常丰富的同分异构现象,概括如下:有机化合物的分子结构包括三个层次,即构造、构型、构象。构造是指有机物分子中各原子或原子团之间的结合顺序或排列顺序;构型是指有机物分子中的各个原子或原子团在空间的排列方式;构象是指在有机物分子中,由于围绕单键旋转而产生的原子或原子团在空间的不同排列形象。
一、同分异构体的定义和性质
化学上,同分异构体是一种有相同化学式,有同样的化学键而有不同的原子排列的化合物。简单地说,化合物具有相同分子式,但具有不同结构的现象,叫做同分异构现象;具有相同分子式而结构不同的化合物互为同分异构体。很多同分异构体有相似的性质。
同分异构体的组成和分子量完全相同而分子的结构不同、物理性质和化学性质也不相同, 如乙醇和甲醚。 同分异构体简称异构体,有机物中的同分异构体分为构造异构和立体异构两大类。具有相同分子式,而分子中原子或基团连接的顺序不同的,称为构造异构。在分子中原子的结合顺序相同,而原子或原子团在空间的相对位置不同的,称为立体异构。 构造异构又分为(碳)链异构、位置异构和官能团异构(异类异构)。立体异构又分为构象和构型异构,而构型异构还分为顺反异构和旋光异构(又称对映异构)。
二、同分异构体
分子式相同,结构不同的化合物互为同分异构体。
1.对“分子式相同”的理解
1.1分子量相同的有机物一定有相同的分子式吗?不一定,如甲酸和乙醇(式量46)、乙酸和丙醇(式量60)、丙酸和丁醇(式量74)、壬烷(C9H20)和萘(C10H8)(式量128)等。
1.2组成元素相同且最简式也相同的有机物一定有相同的分子式吗?不一定,如环丙烷和乙烯、乙炔和苯、甲醛和乙酸和葡萄糖等。
1.3分子量相同、元素百分含量相同(或最简式相同)的有机物一定有相同的分子式吗?一定。
2.对“结构不同”的理解:这里的结构是指空间构型不同,要注意结构简式书写的等效性。如就是同一种结构,只是书写方式不同罢了。
3.对“化合物”的理解
3.1有机化合物之间可以互为同分异构体;有机化合物和无机化合物之间可以互为同分异构体,如NH4CNO和CO(NH2)2,前者为无机化合物,后者为有机化合物;无机化合物之间也可以互为同分异构体。
3.2既不是单质,也不是混合物,也不是原子,如O2和O3;H、T、D就不可以互称同分异构体。再者,如淀粉与纤维素,分子式均为(C5H10O5)n ,但是,他们分别都是混合物。又如, 聚1-丁烯和聚2-丁烯也都是混合物,所以他们都不能互称同分异构体。
三、同分异构体的结构
同分异构体的结构主要有碳链异构;(官能团)位置异构;(官能团)类别异构等三种异构形式,碳链异构是基础和核心,其他两类是扩展和升华。
1.碳链异构
在碳链异构中,首先必须掌握对等效氢原子(有机物分子中位置等同的氢)的判断:
1.1连在同一个碳原子上的氢原子是等效的;
1.2连在同一个碳原子上的甲基上的氢原子是等效的;
1.3处于对称位置或镜面对称位置的碳原子上连接的氢原子是等效的。
2.官能团位置异构
该法实际上是将同分异构体看成是由官能团取代烃中的不同氢而形成的。书写时常先写碳链异构,然后找等效氢,最后将等效氢原子用官能团取代即可。
3.官能团类别异构
通过将官能团进行拆分或重新组合,往往可以写出多种具有不同官能团的同分异构体,这样的方法叫类别异构。类别异构在有机物同分异构体的书写中非常普遍。它不但要求学生掌握常见的官能团,熟悉官能团的变化形式,还能根据所给信息迅速判断其变化和所处的位置。常见的官能团的变化形式有:烯烃和环烷烃;炔烃和二烯烃;醇和醚;醛和酮;羧基和酯;羧基和羟基醛;酚和芳香醇、芳香醚;硝基烷和氨基酸等。
四、判断有机物同分异构体的思路与方法
分享有机物同分异构体的推导与判断,是有机化学的难点,迅速地找出有机物的同分异构体,除了准确理解同分异构体的概念外,还要掌握推导同分异构体的一些方法和思路.,判断同分异构体的基本思路,在学习同分异构体时,普遍感到找同分异构比较困难,究其原因主要是思路不清、无序,往往用凑的方法去解决问题,东拼一个,西凑一个,这样的结果显而易见,不是重复就是漏写了。如何做到在推导同分异构体时不重复、不遗漏,关键是思维要有序,要掌握一定的方法。常见的同分异构现象有三类:、一类叫官能团异构(即类别异构),一类叫碳链异构,一类叫位置异构。含官能团的开链有机物可能这三种异构体都有,判断同分异构体时可按照先找官能团异构,再找碳链异构,后找位置异构的思维顺序去考虑,这样就不易出现混乱 判断官能团类别异构可借助有机物的通式,烃和烃的衍生物常用的通式和所代表的类别,可作为判断类别异构的常用手段.有机化合物的数量如此之多首先是因为碳原子相互结合的能力很强。碳原子可以互相结合成不同碳原子数目构成的碳链或碳环。一个有机化合物的分子中碳原子的数量少则仅一、二个,多则可达几千、几万甚至几十万个(有机高分子化合物)。此外,即使是碳原子数目相同的分子,由于碳原子间的连接方式有多种多样,因而又可以组成结构不同的许多化合物。分子式相同而结构相异因而其性质也各异的不同化合物,称为同分异构体,这种现象叫做同分异构现象。
同分异构现象在有机化合物中普遍存在。例如分子式C2H6O 就可代表乙醇和二甲醚两种不同结构因而性质也不同的化合物,它们互为同分异构体。
篇2
有机化学又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支,也是高等院校化学体系的四大基础课程之一。有机化学又可分为有机合成化学、生物有机化学、物理有机化学、元素有机化学和金属有机化学等分支。众所周知,任何生命体的结构都是有机元素构成的,我们生活的环境和能源物质也都是有机物,所以有机化学发展迅速,内容丰富且社会应用性强,在生命科学、材料科学、环境科学和能源科学等诸多学科领域中均有所体现。随着现代科学技术的迅猛发展,有机化学的教学内容虽然在持续增加,然而教学课时却有逐渐压缩的趋势,所以教学内容多、学时少也就随之成为教学工作中的矛盾主体。因此,作为一名化学学科的教师要传授给学生的不应该仅仅是定义、公式和实验方法,而是要尽可能提高学生学习热情的同时,让学生更多地了解各种化学现象在现实生活中的作用以及如何准确快速寻求到解决今后所遇到的化学问题的方法和思路。高校有机化学教学要适应新世纪对新人才的需求,迫切需要由理论公式型向现实应用型模式转变,以培养真正适应科技发展需要的复合型人才。
二、教学目的转变催生教学方法变革
著名教育学家陶行知先生曾经提出“生活即教育”的理论。学生不管接受何种形式的高等教育,最终都要学以致用、需要面向生活,融入社会为导向。教学的目的就是教给学生一技之长,让他们学会做人、学会做事,顺利过渡。在知识经济与信息更新飞速发展时代,很多毕业生面临着“刚毕业就失业”的现状,就业岗位更新快、技术淘汰快,再长年限、再宽泛的专业高等教育也无法把学生培养成一劳永逸、无须“更新升级”的人才,所以这就急需我们的高等教育从教育的根本目的开始转变,让学生把课堂上学到的东西真正的做到学以致用,才能少走弯路,更快的适应社会,融入新的工作中。
有机化学学科的特点是化学知识来源于生活,又走向生活解决问题,与日常生活息息相关。而我们的教学过程就是将有机化学知识蕴藏在生活问题中,使化学教学成为还原生活的过程。尽量从学生的衣食住行出发,帮助学生认识有机化学与人类生活的关系,激发学生的学习热情与兴趣,感受化学的魅力,促进学生素质的全面发展。摒弃传统教育填鸭式机械化的教学方式,寓教学于生活,以掌握解决现实问题的方法能力而不是掌握知识的数量多少为教学目的;无论是理论还是实验教学都要以了解生活本质,解决生活的实际问题为目的。例如,对我们最为重要的水与有机化学有什么关系?普通的自来水,纯净水,矿泉水,地下水等诸多种类水的界定标准是什么?其中挥发性(VOC)和半挥发性(SVOC)有机污染物分别会对人体产生怎样的危害,怎样避免这种危害?我们应该怎样健康的饮水?水源的污染对整个人类生存环境带来怎样的影响?如何有效的保护水源等都是学生感兴趣的教学点,虽然从表面看所涉及的知识似乎很浅显,但就像树的根系一样有着许多深层的有机化学知识点,从化学反应的方程式到最新的精密检测仪器的应用都可以包含在内,非常值得师生一起探讨研究。
三、教学内容转变是教学改革的精髓
教学内容和课程体系直接反映了教学目的和人才培养目标,是教育创新的核心。因此,要搞好有机化学的教学工作,提高教学效果,使学生轻松掌握教学大纲的知识,就必须对教学内容进行全面改革。这也是教学改革中的灵魂与精髓。
(一)教学内容改革以教材改革为起点
教材是开展教学的依据。实现教学内容改革,先要选定恰当的教材。根据自身院校以及专业的特点重新选定教材,根据不同专业特色合理安排教学内容,有所侧重的变化授课内容。有机化学教学内容丰富、理论深刻、实践性强、与其他各学科交叉渗透性强等诸多特点,但目前各高等院校所选用的有机化学教材可谓是纷繁芜杂,教材质量也是鱼龙混杂。这就需要教师用心甄别,充分考虑本专业实际和学生的接受能力,选择最为适合的教材,事半功倍。比如曾有环境专业的教师将“氨基酸”“蛋白质”“碳水化合物”“周环反应”等与本专业关系不强的内容和分析化学里边讲过的“四大谱”内容删去,把有限的教学学时充分分配给与本专业关系密切的必学内容。这样做的优点是有的放矢,既学到了学生认为有用的精华内容,同时也减轻了学生的课业负担。
(二)将前沿问题引入课堂是教学改革的点睛之笔
教学内容要站在学科前沿,紧跟时代步伐。将最新专业动态融入日常课程,是教育教学向前发展、培养高科技人才的必由之路以及有效途径。
科学技术日新月异的年代,随着国内外有机合成技术的迅速发展,新的有机化合物不断涌现,其种类和数量甚至正在以几何数列增长,其应用也是深入到了人类生活的方方面面,有机化学正在向全世界展现它无可替代的地位和旺盛的生命力。时代的发展呼唤创新,教学方法和教学内容的更新迫在眉睫。有机化学作为基础学科,广泛渗透在工业生产、科学研究、日常生活的各个方面,业已取得翻天覆地的变化。将国内外学科发展的前沿问题引入课堂教学,不仅能够丰富课堂教学,还能够促进教师能力发展提高。也将极大提高学生的学习兴趣,取得更好的教学效果。
在教学中,向学生推介诺贝尔化学奖中的前沿问题,尤其是与有机化学紧密相关的内容;或是在教材相关章节中,把自己的科研项目和研究成果的最新进展,向学生予以讲述介绍,既丰富了课堂内容,又对学生生动展现了从理论到实践的飞跃。教而不研则浅,研而不教则空,这充分说明了教学与科研亟需密切合而为一。教学中应该密切注意培养学生综合运用知识解决问题的能力和科研创新能力。
网络如此发达的今天,信息检索已不再是难题,全球范围内的有机化学前沿成果,最新的科技文章只需一台连接了互联网的电脑便尽收眼底,在讲授基础知识的同时向学生渗透一些最新的国际动态,不仅启发其创新思维并同时提高学习热情。教师自身的超前意识往往会潜移默化地给学生最为深刻的影响,例如,在讲授绪论部分时对航天材料中有机部分的介绍,结合我国最新的航天成果,将纳米塑料等概念引入课程中。或将最近北大在重碱土金属有机化学研究中取得新进展――首次实现了多氟戊搭烯衍生物的合成,以动态方程式的方式展示给大家,从而鼓励激发学生学习的兴趣和热情,以课程为纽带带动师生的互动,使学生深切感受到科学技术的飞速发展给社会发展带来的巨大变革。
(三)注重交叉学科的课堂教育是教学改革的重要组成
诸多化学学科中,有机化学这门课涉猎其他学科最为广泛,集历史性、趣味性、实用性为一体。为了培养学生学习有机化学的兴趣,可以在学期初绪论部分重点介绍有化学的发展史、著名科学家所作出的贡献、有机化学研究的新领域、各种国际化学奖项中最新的有机化学研究成等以及相关学科的发展简史。教师在备课过程中,除要保持知识的准确性外更要力求每堂课都注入新的知识动态,结合专业特点丰富课堂教学内容,联系日常社会生活,有意识的将食品学、生物学、材料学、物理学甚至艺术等其他专业融入有机化学的教学中,从多角度、多层次诠释每一个知识点,让学生不再觉得化学是枯燥乏味的,而是一门令人充满探索热情的、魅力四射的学科。多学科交叉学习有机化学不但能解释大部分生活中的化学现象,还能提高学生整体素质,是行之有效的提高教学质量的方法。
四、教学改革呼唤教学形式的转变
(一)授课形式多样化是现代有机化学教育的基本要求
有机化学知识点繁杂,公式变化多样,如果教师仍然拘泥传统的以信息传递为主的教学方法(讲授法,谈话法,讨论法,读书指导法等)必定会使学生感到枯燥乏味,但是若将以直接经验为主的教学方法(参观法,演示法,实习法,练习法等)引入课堂必将收效显著,中国的学生普遍动手能力差,大学中的实验科目又大部分是教师在准备和教授,如何有效地增强学生的创造能力和分析解决问题能力是当今高校教育亟需改善的通病。教学的组织形式也可以由以往普遍的班级授课适当转变为分组教学、个别教学,道尔顿制或特朗普制的形式,相信多样化的授课形式一定会令学生每次课程都有所期待,激发了好奇心从而锻炼了思维能力,同时带动了课程知识点的学习。
(二)多媒体技术在教学中的广泛应用是现代化学教育的内在要求
有机化合物以分子结构复杂、反应条件严格、副反应多、反应机理难掌握而著称,多媒体及网络技术的迅猛发展为有机化学教学注入了活力,有望改变有机化学难学、难懂的观念,极大地改善传统教学模式的弊病。
多媒体课件作为辅助教学手段,具有很多优点。首先,它使现代化学教育更形象更生动。它具有高信息涵盖量、色彩丰富、呈像生动、动感形象等长处,作为高科技教学手段,其引入与应用,积极促进了现代有机化学教学改革的发展。Flash对化学实验的图像解构,将微观世界里的有机化学反应形象而又生动地呈现出来,使对各种反应机理的描述不再晦涩抽象难懂。
其次,多媒体教学可以使有机化合物空间立体结构更加形象直观,其动画功能可以利用不同颜色、不同大小、不同形状代表各化合物上的原子或基团,把有机反应过程直观地表现出来,变静态为动态过程。多媒体演示可用于代替昂贵但高效灵敏的仪器的操作,如气象色谱-质联联用仪(GC-MS),液相色谱-质谱联用仪(HPLC-MS)等。
价格昂贵一般学校难以引入课堂教学实验之中,但利用CAI课件即可向学生模拟这些仪器的操作,让学生对有机测试先进手段有更加直观的理解,任何教学手段都是为教学内容服务的。
再次,多媒体教学手段为师生之间沟通提供了便捷途径。通过开拓网络教学平台,可实现教师在线答疑,学生可根据自己在学习过程中遇到的问题在网上与教师交流讨论,也可以与其他同学进行讨论。这种教学平台的应用弥补了大学教师科研任务重、不坐班,学生在课余时间找不到教师答疑的缺点,在空间上和时间上相对自由。目前网络平台辅助教学在我们的教学工作中得到了良好的运用,用于答疑、公布教学信息和教学资源共享等方面。今后将进一步研究完善教学平台的应用,以实现无纸化提交、批改作业,提高工作效率。
篇3
关键词:必修与选修;整合;衔接;交融;教学有效性
笔者结合新课标改革的理念,认为教师作为教与学双边关系中的引导者,可以将教学内容部分的必修与选修相联系的内容进行衔接和交融,以促进高中化学教学的有效性。
一、明辨之:云在青天水在瓶――现状思考
当前来说,高中化学教学的开展依旧不如预期的理想,很多时候,新课标的改革发展理念仅仅成为一句口号。针对高中阶段的学生来说,学生所要学习的内容包括选修和必修共有九门功课。学生的学习压力大、负担重、学习时间紧张。化学学科作为其中的一门功课,笔者认为选修和必修部分的教学其实有着一定的联系,必修教学部分,可以说是打基础的阶段,这个时期为学生的化学学习打下扎实的基础,不仅有助于激发学生学习化学的欲望和兴趣,还有助于学生在今后的选修学习阶段节约时间,达到事半功倍的成效。然而当前来说,高中化学教学中突出的几个问题,主要呈现在以下几个方面:
首先,学生的学习兴趣不浓郁。在必修课阶段,多数教师采用传统的教学方法,使得在教学开展过程中,学生的学习方式比较传统,学生的学习积极性不浓郁,加上学生的学习负担较重,多数学生有些顾不上。
其次,学生的学习方法不科学。纵观鲁科版必修和选修的内容,有一些内容是重合的、相关的,但是不少教师在教学的过程中,没有进行适当的拓展和融合,而是抱着书上写到哪里就讲到哪里,学生学习知识点的时候浅尝辄止。到了选修阶段,学生再度重新开始学习复习相关知识点,浪费了大量的时间和精力。
再次,学生的学习自主性没有强化。不少学生到了化学选修学习的阶段时,由于没有掌握科学的学习方法,多数学生都是被动接收知识点,老师讲到哪里就学到哪里,没有自主学习的积极性,更没有充分激发自身的主观能动性。
结合上述现状,当前高中化学的选修和必修课程没有得到融合和拓展,而浪费了大量的时间和精力,这是比较遗憾的地方。
二、深思之:站在天平的两端――深度解读
作为教师,在必修阶段,还不清楚哪些学生今后会进入化学选修部分的学习,多数教师抱着这样的想法,在必修课堂教学阶段,没有针对教学内容进行适当的整合拓展,这是一种错误的教学理念。
高中化学新课程标准提出:“高中化学课程应有助于学生主动构建自身发展所需的化学基础知识和基本技能,进一步了解化学学科的特点,加深对物质世界的认识;有利于学生体验科学探究的过程,学习科学研究的基本方法,加深对科学本质的认识,增强创新精神和实践能力;有利于学生形成科学的自然观和严谨求实的科学态度,更深刻的认识科学、技术和社会之间的相互关系,逐步树立可持续发展的思想……”
由此可见,一方面是学生繁重的学业压力,另一方面是教师有限的教学时间和教学精力。关于必修与选修教学内容之间的融合,犹如站在天平的两端,笔者认为,只有将学生从压力中解放出来,运用统筹方法,即将必修与选修教材的内容进行有效的整合,最终提升高中化学教学的有效性。
三、笃行之:唯有源头活水来――实践案例
笔者以鲁科版高中化学教材为例,以下是关于笔者针对选修内容与必修内容进行整合、的几个实践案例:
1.寓教于乐,以经验激活整合
所谓好之者不如乐之者,兴趣是激发学生主观能动性的最原始的动力,也是激发学生有效参与学习的最有力的方法。在教学中,笔者结合寓教于乐的方法,一般来说,必修阶段是在学生高一年级的时候进行,这个时期需要充分激发学生的兴趣度。高中化学与初中化学相比,难度增加了很多,很多学生进入高一参与化学学习的时候,最明显的感悟就是难度很大,多数学生会出现畏难情绪。教师则可以运用自己的经验激活整合,将化学必修课的知识点与选修的知识点充分整合,引导学生在寓教于乐的过程中,以“授人以渔”为目的,激发学生自身的主观能动性。
比如笔者在教学中将《必修2》的第三章重要的有机化合物和选修《有机化学基础》知识进行了相结合教学。以笔者多年的教学经验,通过这两个部分的整合,既让学生的基础知识有了牢固的积淀,也让学生们感受到学习过程的快乐。学习《必修2》的第三章重要的有机化合物时,讲完甲烷、乙烯、苯和乙醇后,可以把“官能团”的定义从选修提到必修来讲,让学生体会学习有机化学的方法;在介绍完乙烯的加成反应后,可以拓展反应机理很相似的加成聚合反应,让学生重视有机化学反应机理的学习;必修中苯的取代反应除了介绍硝化反应外,可以通过多媒体视频的演示拓展选修部分的溴代反应和磺化反应,再介绍苯的加成反应和与酸性高锰酸钾溶液不反应的事实,让学生深刻理解由苯的特殊结构所带来的“易取代,能加成,难氧化”的特殊性质,到选修部分就扩展到苯的同系物性|的讲解,既复习了苯的性质也理解了基团和基团之间的互相影响;在学习酯的水解前必修课本上安排了一个乙酸乙酯的水解实验,可以用选修的肥皂的制备视频代替,让学生对酯的水解反应和学习选修《有机化学基础》产生兴趣。学习选修《有机化学基础》的知识时注重与必修内容的衔接,尽可能从学生已有的知识出发提出问题,让他们带着问题线索进入新的学习内容中去。比如必修中同分异构现象重点介绍碳骨架异构到选修部分扩展到官能团的位置异构和官能团的类型异构。
2.见缝插针,以问题驱动整合
传统的教学课堂基本上成了教师的“一言堂”,多数学生都是在被动的模式下参与课堂,对于教师的提问也是被动进行解决。在必修阶段,如果一些老师不进行适当的延伸,不少的结论及规律只能让学生死记硬背,这样学生会越来越厌学。笔者认为,问题是教学的核心。在教学过程中,要引导学生将被动变为主动,就要引导学生积极质疑。可以通过见缝插针的方式,以问题驱动整合,在理解后进行记忆效果会更好。笔者在教学中运用问题驱动的方式,将一部分必修课程与选修课程之间的内容加以交融、完善,提升课堂教学的有效性。
在教学中,笔者以问题驱动整合,比如⒀⌒蕖段镏式峁褂胄灾省分械诙章第四节分子间作用力提到《必修2》教授离子化合物和共价化合物时进行,为了解释由分子构成的共价化合物为什么熔沸点比较低;氢键则提到选修《有机化学基础》教授醇的熔沸点和溶解性时进行,让学生理解饱和一元醇的沸点比与其相对分子质量接近的烷烃或烯烃的沸点要高,以及多元醇沸点高、易溶于水的性质。
3.开放思维,以巩固提升整合
在教学中,有一些学生出现屡教不会的现象,针对课堂上的知识点不能快速进行吸收和消化,笔者认为产生这种现象的根源在于人的思维。所以在必修课的授课阶段,笔者更在意的是教给学生一种思维,引导学生在学习知识点的过程中,形成一种开放思维,自己发现问题,自己找出答案。
在教学中,笔者将《必修2》第一章原子结构与元素周期律和选修《物质结构与性质》第一章原子结构的衔接。为了巩固提升,笔者提一些开放性的问题,比如化学必修课程中只介绍了元素周期表的周期与原子的电子层数有关,每周期所能容纳的元素种数是数出来的,而通过问题让学生在核外电子排布的基础上深化知识,能用鲍林近似能级图解释周期的划分和每一周期所能容纳的元素种数。再如在必修课程的基础上,从原子结构的量子力学模型出发,用电离能、电负性定量地衡量元素原子得失电子的能力,引导学生从核外电子排布的角度理解元素性质的周期性变化。最终达到让学生更高层次理解“结构决定性质”的化学基本理念,感受元素周期表的魅力与强大。
笔者还将《必修2》的第二章化学键化学反应与能量与选修《化学反应原理》第一、二章的相关知识衔接。比如实现反应所释放能量向电能转化的单液原电池衔接到尽可能减少副反应发生的使反应所释放能量更加有效地向电能转化的双液原电池;影响化学反应的限度和速率的外界条件由必修的定性结论到选修的定量分析、从必修的经验型化学向选修的理论性化学过渡,都促进学生从多因素、定量的角度思考问题,对结论规律的理解记忆、分析问题解决问题的能力都有所巩固和提高。
四、领悟之:黄沙吹尽始得金――远景展望
总而言之,在教与学的双边关系中,教师是这个过程中的引导者,学生是这个过程中的主体。教师与学生之间只有相互配合,很好的将必修教材与选修教材中有联系的内容进行有效整合,充分利用多媒体,提升教学的有效性,才能真正引领高中化学课堂教学有效性得到全面的提升。笔者坚信,根据学生的实际情况控制教学的深度和广度,在整合教学理念的运用之下,实现基础知识与拔高知识的良好衔接及交融,培养学生学习化学的兴趣,真正实现高中化学教材新课改的目的,高中化学课堂教学定会绽放有效的花朵。
参考文献:
[1]周鑫荣,高中化学新课程必修与选修的衔接教学,[J],化学教育,2009年12期.
[2]张水m、左香华,从必修和选秀教材的衔接谈高中化学的教学――以化学反应的快慢和限度在必修和选修教材中的编制为例,[J],化学教育,2006年11期.
篇4
关键词:苯酚;探究性学习;教学设计
文章编号:1008-0546(2013)09-0064-03 中图分类号:G633.8 文献标识码:B
新课程背景下的化学教育改革的基本思路之一就是提高学生科学探究的能力,使学生在知识和技能、过程与方法、情感态度与价值观三个方面都得到发展。《高中化学新课程标准》要求学生“具有较强的问题意识,能够发现和提出有探究价值的化学问题,敢于质疑,勤于思索,逐步形成独立思考的能力,善于与人合作,具有团队精神”,“发展学习化学的兴趣,乐于探究物质变化的奥秘,体验科学探究的艰辛和喜悦,感受化学世界的奇妙与和谐”。[1]
《美国国家科学教育标准》对探究的定义是:“探究是多层面的活动,包括观察;提出问题;通过浏览书籍和其他信息资源发现什么是已经知道的结论,制定调查研究计划;根据实验证据对已有的结论做出评价;用工具收集、分析、解释数据;提出解答,解释和预测;以及交流结果。探究要求确定假设,进行批判的和逻辑的思考,并且考虑其他可以替代的解释。”[2]
综合国内外对探究性学习的定义,结合高中化学教学实际,我们认为探究性学习是指:在动态、开放、主动、多元的学习环境中,学生在教师引导下,仿照科学探究的过程,发挥主观能动性,学习科学内容和技能,体验、理解和应用科学探究方法,培养科学健康的情感态度和价值观的一种学习方式。探究性学习是实施素质教育的最佳途径,是新课程改革中的一个亮点。以“苯酚”为例尝试探究性学习实践如下:
一、 核心内容教学价值分析
1. 课程标准对选修5《有机化学基础》的教学要求
根据“结构决定性质”的基本思想方法,设计苯酚的结构和性质的探究,并迁移到酚类的结构和性质,运用多种教学手段帮助学生对知识的理解,培养学生的能力。依据《有机化学基础》模块的功能定位,通过对苯酚课例的设计思路的分析,探讨如何在课堂教学中落实科学探究,实现三维目标。在教学中设计通过源于学生生活的情境设计,尽量把学生带入真实的问题情境中,提出有效的问题,来激发学生的探究欲望,最后用实验验证苯酚的性质。
2. 核心内容的学科分析
醇和酚是重要的烃的含氧衍生物,都含有羟基官能团。苯酚和醇的性质有相似之处,又有不同之处,通过本节课的对比学习,学生对酚羟基和醇羟基的性质将有一个更全面的认识,理解官能团的性质与所处的化学环境有一定的相互影响,从而学会全面地看待问题,更深层次地掌握知识。
二、 核心内容学生分析
1. 从知识层面看
在必修阶段已经具备有机化学基本的类别概念,知道一些典型有机物的性质。在选修5第一、二章的学习过程中对官能团决定有机物的化学性质、基团的相互影响都有了一定的认识,但有待完善。
2. 从能力层面看
具备了一定的分析、解决问题的能力;设计分析简单实验的能力;对“结构决定性质”这一普遍规律比较熟悉,因此具有性质预测的知识基础,知道研究有机化合物的一般方法和流程,具备进行探究活动的能力。
本节课授课对象是实验班学生,他们乐于展示自我,生生交流、师生交流容易展开。但他们自主探究的意识、合作创新的精神还有一定程度欠缺,需要老师引导和支持。
三、 核心内容学生学习和发展空间分析
经历探究过程以获取理智能力的发展和深层次的情感体验,建构知识,掌握解决问题的方法,是探究学习要达到的三个目标。其中经历探究过程显然是最重要的,为确保能开展探究,就必须给学生充足的时间、空间和自由度,特别是苯酚的酸性的探究,尽可能使学生经历一个比较完整的探究过程。化学课堂教学在模式上更加倡导学生主动参与、乐于探究、勤于动手的课堂氛围,教师更加注重培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。
四、三维教学目标
(1)知识与技能:能认出酚类的结构特征;能描述苯酚的物理性质;能书写酚羟基弱酸性的相关化学方程式和离子方程式、苯酚与浓溴水的取代反应化学方程式、知道苯与氯化铁的显色反应并且能简单应用;能比较醇羟基和酚羟基的化学性质差异,能比较苯与苯酚中苯环的化学性质相似和差异,了解羟基对苯环的影响。
(2)过程与方法:通过对苯酚性质学习,认识有机化合物结构与性质的关系;通过苯酚与苯、醇的比较学习,培养猜想和预测能力和比较学习的思想;通过实验活动,培养实验能力和表达能力;通过差异性比较,认识基团间的相互影响。
(3)情感态度价值观:通过实验体验化学科学的学习方法;通过酚类物质的应用,认识酚类物质在生产生活中的应用价值;通过工业含酚物质排放引发的环境问题,养成关注环境,树立良好的环保意识观及安全使用化学品的观念。
五、教学重点难点
重点:酚羟基的弱酸性、苯酚的取代反应。
难点:羟基与苯环相互影响对苯酚性质的影响,与醇、苯性质比较的差异。
六、核心内容的教学流程
七、核心内容教学设计
1. 醇和酚结构的比较
2. 苯酚物理性质的学生活动与自主探究
[学生活动探究]
实验1:观察苯酚的颜色、状态,闻一闻苯酚的气味。
实验2:在试管中加入少量水,逐渐加入苯酚晶体,不断振荡试管。继续向上述试管中加入苯酚晶体至有较多量晶体不溶解,不断振荡试管,静置片刻。(提醒同学实验过程中接触苯酚一定要注意安全及出现情况的处理方法)
实验3:将上述试管放在水浴中加热。从热水浴中拿出试管,冷却静置。
实验4:取少量苯酚于试管中,加入酒精溶液,充分振荡。
3.苯酚化学性质的学生活动与自主探究
[学生活动探究]阅读苯酚软膏使用说明书,找出体现苯酚化学性质的关键词,推测苯酚酸性
[药品名称]苯酚软膏[性状]本品为黄色软膏;有苯酚特臭味。
[药物组成]本品每克含主要成分苯酚0.02克。
[作用类别]本品为皮肤科用药类非处方药药品。
[药理作用]本品为消毒防腐剂,其作用机制是使细菌的蛋白质发生凝固和变性。
[注意事项]1.避免接触眼睛和黏膜。2.用后拧紧瓶盖,当药品性状发生改变时禁止使用,尤其是色泽变红后。
[药物相互作用]不能与碱性药物并用。
[学生活动探究]如何设计实验探究苯酚的酸性?记录学生提出的实验方案。
[学生活动探究]
实验1:试管中取2mL苯酚溶液,滴加石蕊试剂,观察现象。
实验2:在试管中取2mL氢氧化钠溶液,滴加2~3滴酚酞试液,再加入少量苯酚浊液,振荡,观察颜色变化。
实验3:在两支试管中分别加入2mL苯酚浊液,并分别向其中滴加碳酸钠溶液、碳酸氢钠溶液,充分振荡,观察并比较现象(注意观察加盐溶液的试管中是否有气泡)
实验4:取苯酚溶液2mL,边振荡边逐滴加入氢氧化钠溶液,至恰好澄清,再持续通入二氧化碳气体(简易装置制备),溶液又变浑浊。
[学生小结]苯酚俗称石炭酸,具有弱酸性,酸性介于碳酸和碳酸氢根离子之间。由于苯酚的酸性太弱,以至于不能使石蕊试剂变红。
[学生活动探究]在浓溴水中逐滴加入苯酚稀溶液,并不断振荡,有白色沉淀生成。
[学生质疑与讨论]苯环能发生加成和取代反应,推测该反应是取代反应还是加成反应呢?请设计探究方案证明你的推测。
[学生活动探究]用电导率实验测定苯酚与溴水反应的导电性变化(或测定反应前后的pH变化)。
[学生小结]对比苯和苯酚跟溴的反应,苯和溴发生取代反应的条件:用液态溴,并用铁屑作催化剂,生成一元取代物。苯酚的取代反应条件:溴水,不需要催化剂,生成三元取代物。学生分析酚羟基对苯环的影响。苯酚的上述反应,灵敏而快速,并且产生三溴苯酚不溶于水,因此可以用于苯酚定性检验和定量测定。
[学生活动探究]苯酚与三氯化铁溶液的显色反应。
[学生小结]这个反应也能用来检验苯酚
4.学生分析含酚废水处理工艺流程,回答相关问题,并总结本节课相关知识点
[学生展示图片]苯酚和酚类物质的制取和应用。
[学生展示]人为非法排放酚类物质造成水体等环境危害案例——说明酚类物质的毒性。
[学生分析讨论]含苯酚的工业废水处理的流程图如下:
八、教学反思
本节课从开始的知识回顾,到已有知识的迁移应用,最后建立了新的知识体系,设计了“尊重认知—丰富认知—应用认知”的方法线。教师不仅要了解学生的认知,还要通过不懈的努力不断扩大学生的认知,才能更好地进行新的教学,实现良性循环。反思整个教学过程,还有一些生成性的问题没有解决,有待今后的思考和提高。总之,化学课堂教学在模式上应该更加倡导学生主动参与、乐于探究、勤于动手的课堂氛围,教师应更加注重培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。
参考文献
篇5
【关键词】教材 教学方法 环境
升入高中后,由于教材、教学方法、环境等方面的因素,学生往往需要一个适应期,而高一正是初中和高中的一个过渡年级,高一衔接的好坏将直接影响一个学生整个高中的学习,所以做好高一教学的衔接至关重要。所以如何做好初高中的衔接,是每一个高一老师都需要认真考虑的问题。
我认为化学这门功课要做好初、高中衔接着重需要注意下面三点:一是初高中教材的衔接;二是教学方法的衔接;三是学生学习方法、学习心理的衔接。
1 初高中教材的衔接
高一老师首先应该认真钻研教材,熟悉初、高中全部教材的体系和内容。明确哪些知识点在初中已经基本解决;哪些知识点应在初中解决而实际并未完全解决;哪些知识点在初中已解决,应在高中拓宽和加深等。例如在初中,对于根据物质组成进行分类已经讲过,高一教师只需要强调酸、碱、盐的定义,不需要花过多的时间;而对于原子中质子、电子的计算大多数初中是不讲的,所以在讲物质的量关于质子、电子的计算时需要将这一内容补充,告诉学生计算方法。又比如在讲“物质的分离和提纯”时,对于过滤和结晶,初中化学已经讲过,大多同学已经会的,只要一带而过,而对于萃取和蒸馏初中根本没讲过,就需要详细讲。最好在刚进入高一时搞一次摸底测验,要全面了解学生学习的现实情况,做到心中有数。
另外要紧扣高中化学教学大纲,采用“集中复习”和“穿插复习”相结合的方法,做好知识的查漏补缺工作,以创造一个较为整齐的教学起点。对于学生在初中化学模棱两可的知识一定要重新讲透。在吃透大纲和教材,摸清学生思想、知识、能力等基本素质情况和学习中的现实情况以后,再“对症下药”,采取有效措施,顺利地做好了初、高中化学教学的衔接工作。当然在初、高中教材衔接时还要注意把握时机和尺度,通过相关知识的衔接要让学生能从更高层次上来准确理解初中化学知识,力求做到对今后的高中化学学习有所帮助。
2 教学方法的衔接
初中化学的教学方法由于受到初中生知识水平及初中化学做为入门学科的限制,较多的采用灌输式的讲解方法,进入高中时,教师要抓住学生生理从少年向青年转变,学习心理自“经验记忆型”的被动接收知识向“探索理解型”主动学习知识的转变时期,在教学方法上则应更多地采取启发式,启发学生主动地进行学习、引导学生从本质上理解所学内容。改进教学方法,善用启发式教学。例如,学生在刚刚接触“物质的量”这一知识点时,都会感觉难,而且不能理解,这是老师应该从一个微粒向1mol去启发,由少到多,让学生逐步理解,直到最后开窍弄懂。又如,在讲“二氧化硫的性质“时,可以由二氧化硫作为酸性氧化物性质与二氧化碳相似,启发同学们自己写出二氧化硫的一些化学方程式。这样,不仅有助于复习前面的内容,还利于学生理解二氧化硫的性质。
除了启发式教学,还要充分利用教材上的图表、演示实验、教学模型等直观材料,结合当前社会热点,让学生认识到化学与社会、化学与生活、化学与经济等有着重要的联系,以此培养学生学习化学的兴趣。例如讲授“硫酸”时,可利用投影介绍有关环境污染的严重为危害、环境保护的重要性及我国的有关环境政策;而在讲有机化学知识的时候应注意结合球棍模型,让学生通过直观材料理解有机化合物结构的异同。
3 学生学习方法、学习心理的衔接
课堂上教学生学会某些知识,是为了课外学生会学更多的知识。学生学习方法的指导应贯穿于教学的各个环节中,应结合课本各内容给学生各种知识予具体指导。但不管什么方法也比不上兴趣这个最好的老师。高一老师要在摸清高一新生的心理变化情况和素质情况后,尽可能地激发学生学习化学的兴趣,发展良好的思维能力。良好的学习兴趣是求知欲的源泉,是思维的动力,也是提高高中化学教学质量的关键。高一新生正处于不成熟向逐步成熟的过渡阶段。一个实验、一个人、一件事、一本书都可激发起他们心中的热情。如在进行无机元素化合物知识的讲解时,如果结合一些适当的演示实验,对于一些简单的实验还可以让学生自己动手操作,这样会让学生对化学越来越有兴趣。另外,在讲授时注意结合一些实际的例子,同样也会吸引学生。比如,我们在讲氯气、二氧化硫等有毒气体时,可以设计一个小的情景:假设气体发生泄漏,你应该如何逃生?并且可以现场演示,这样不仅教会学生知识,而且可以增强他们应对危险的能力,同时也可以让他们喜欢上化学课,对化学越来越有兴趣。因此,在化学教学中要发挥各种优势,使学生一开始就“迷”上化学,并将学习兴趣转化为学习的动力。除此之外,老师也要注意加强自身修养,用自己的人格魅力去感召学生,让学生喜欢你,从而喜欢你的课。
初中学生学习化学的方法主要是记忆、重现、简单模仿。这种较为机械、死板的方法不仅容易遗忘,而且也不能适应高中注重能力及创新的要求。高一教师有责任指导学生改进学习方法,改死记硬背的记忆方法为理解后记忆,对于同类型的物质注意比较,有的只要记一类,这样不仅节省时间,还不易遗忘,这样也便于学生适应高中化学的学习。学习方法的正确与否是决定能否学好化学的重要一环。当然,学生学习方法的转变是一项艰苦的劳动,要有一个逐步适应的过程,决不能操之过急。在高一对学生铺设的问题台阶不要一下子就很高,要使他们能上得去,以防发生两极分化。要通过耐心细致的引导,教会学生从比较中学习,发现相似,寻求规律,逐步培养思维的敏捷性和严密性。在做和练中,不断找出好的学习方法。
古人说:授人以鱼,只备一饭之需;授人以渔,则可终生受用。教学生如何学习,使学生能有效、正确地进行各种知识及技能的学习是授人以渔之举,也是高一老师的责任,也是对高一老师能力的考验。
高一一年与初中教学各方面的衔接问题,应是相辅相成、互为促进的。在教学实践中要重视其内在联系。特别是要寓学习方法指导于课堂教学中,能力培养要贯穿于整个教学过程中,这样才能做到事半功倍,也有利于学生的学习。
篇6
关键词 空气理化检验 PM2.5 教学改革
中图分类号:G424 文献标识码:A
随着我国的经济飞速发展,以煤炭为主的能源消耗大幅攀升,机动车保有量急剧增加,经济发达地区氮氧化物(NO)和挥发性有机化合物(VOCs)排放量显著增长,臭氧(O3)和可入肺颗粒物(PM2.5)污染加剧,京津冀、长江三角洲、珠江三角洲等区域 PM2.5 和 O3 污染加重,灰霾现象频繁发生,能见度降低。为进一步完善环境空气质量监测与评价工作,改进环境质量评估办法,努力消除公众主观感受与监测评价结果不完全一致的现象,环保部对执行了11年的环境空气质量标准及其评价方法进行了新一轮修订。《环境空气质量标准》(GB3095—2012) (以下简称“新标准”),调整了污染物项目及限值,增设了PM2.5 平均浓度限值和O3 八小时平均浓度限值,收紧了PM10 等污染物的浓度限值,收严了监测数据统计的有效性规定,更新了污染物项目的分析方法。
目前,我们使用的是2006年出版的全国高等医药教材建设研究会和卫生部教材办公室于2005年开始组织编写的国内第一套供卫生检验专业使用,并于2006年出版的规划教材《空气理化检验》,其中检测技术和方法大部分是国内外常用的标准方法,但这些标准方法随着新问题、新设备、新技术的出现而不断变化。因此,教材中有些内容难免滞后,要求我们在进行课堂设计时将有关标准的变化及学科发展动态纳入教学,及时调整教学内容及更新教学内容。笔者对比研究了新旧标准,现将有关环境空气质量新标准下的《空气理化检验》教学内容调整的建议归纳如下,也可为新一版的教材修订工作提供一些建议:
1 需要引入空气质量指数(AQI)的概念
2006版《空气理化检验》教材中,第一章第二节中,提到一个重要概念:空气污染指数(air pollution index, API),是表示空气综合质量状况的指标,是将常规监测的集中空气污染物浓度简化成为但一定概念性指数值形式,并分级表征空气污染程度和空气质量状况,适合于表示城市的短期空气质量状况和变化趋势。并指出PM10、SO2、NO2、CO和O3为所选择的评价因子,其中PM10、SO2、NO2为必测因子;我国空气污染指数可分为五级(优、良好、轻度污染、较差和重度污染)。而2012年2月29日新颁布的《环境空气质量指数(AQI)技术规定(试行) 》(HJ633—2012)中,提出了新的定量描述空气质量状况的无量纲指数的指标:空气质量指数(air quality index, AQI)。且AQI所选择则的评价因子较多且AQ1分为六级(优、良、轻度污染、中度污染、重污染、严重污染)。因此在教学中,为适应新标准,教师需要对比讲解 API 与 AQI,包括两者的概念、范畴与区别,让学生对我国日益严谨的空气质量标准有深刻的认识。
2 澄清各类空气颗粒物的概念
2006版 《空气理化检验》教材中,编者罗列了多种空气颗粒物的分类标准(第五章,第六节),然而不同分类标准中却存在混淆不清的情况。如:在教材106页,提到根据 ISO 和我国《环境空气质量标准》,可吸入颗粒物和PM10的定义一致,即悬浮在空气中,空气当量直径 ≤10%em 的颗粒物;在可吸入颗粒物(PM10)的测定这一节中,又提到测定的是空气动力学当量直径
2008年我国开始对《国家环境空气质量标准》(GB 3095- 1996)及其修改单进行修订,最终在《国家环境空气质量标准》(GB 3095-2012)中规定三项颗粒物术语:总悬浮颗粒物(TSP)指能悬浮在空气中,空气动力学当量直径 ≤100微米的颗粒物;将可吸入颗粒物规定为颗粒物(粒径小于等于10微米),英文名称为particulate matter(PM10);将细颗粒物(PM2.5)规定为颗粒物(粒径小于等于2.5微米),英文名称为particulate matter(PM2.5)。同时,规定 PM10指环境空气中空气动力学当量直径≤10 微米的颗粒物,PM2.5指环境空气中空气动力学当量直径≤2.5微米的颗粒物。因此笔者建议在实际教学中,可依照新的标准进行讲解,以免学生混淆理解。
3 增加PM2.5概述及检测技术
随着我国经济的快速发展,城市大气污染日益严重,以PM2.5为特征的二次污染呈加剧态势,由于PM2.5来源复杂,呈多污染源叠加的复合型污染特征,导致各地区空气能见度降低,地面臭氧浓度升高,大气氧化性增强,灰霾天频率上升,集群现象又加剧了污染物在城市间的扩散,最终使大气污染由传统、单一的煤烟型污染向多种污染物共存、相互影响、相互交织的复合型大气污染转变,呈冬春灰霾、夏季臭氧、春夏灰霾和臭氧并存的污染格局。
在《国家环境空气质量标准》(GB 3095-2012)中,我国2012年制定了PM2.5的相关标准,指出相应的手工分析方法为重量法,自动分析方法为微量震荡天平法,%[射线法。然而,我国对PM2.5 的PM2.5监测、控制工作尚处于起步阶段,2006 版的教材中,有关PM2.5的内容也涉及很少。笔者在教学中发现,学生对PM2.5这一热点问题非常重视,因此在教学中,应该增加有关PM2.5的内容,特别是补充PM2.5检测技术的内容。
4 加强自动监测分析的内容
新标准中将各类污染的分析方法明确划分为手工分析方法和自动分析方法两类.并新增二氧化硫、二氧化氮、一氧化氮、一氧化碳、臭氧、PM10、PM2.5氮氧化物的自动分析方法,所应用的自动分析技术有:紫外荧光法、化学发光法、差分吸收管光谱分析法、气体滤波相关红外吸收法、非分散红外吸收法、微量震荡天平法、%[射线法。2006 版的教材中,针对自动检测技术仅用较小的篇幅(第八章第六节:空气质量自动检测技术简介)介绍了几种空气质量自动监测仪器的原理,并未对具体的检测方法进行讲解,因此,在实际教学中,应该加强自动监测分析的内容。
5 结语
此上仅就空气理化检验课程的教学改革提出一些浅见。环境空气日益恶化,相应的质量标准也日益收紧,检测技术也日新月异,因此,针对空气理化检验这门理论和实践并重的专业课程,要取得好的教学效果,需要任课教师不仅精通该门课程涉及的教学内容,还需要在教学过程中不断更新教学内容,培养出知识面宽、基础扎实、操作技能强的能满足社会要求的实用及创新型人才。
东莞市科技计划项目:2011108102022,广东医学院教育教学研究课题 JY1243的资助
参考文献
[1] 环境保护部.GB 3095-2012环境空气质量标准[S].北京:中国环境科学出版社,2012.
[2] 吕昌银.空气理化检验[M].北京:人民卫生出版社,2006.
篇7
关键词:生物炭;蔬菜;重金属污染;环境污染;食品安全
近年来,由于采矿冶炼、污水灌溉、塑料薄膜的大量使用、农药和化肥的过量施用、汽车尾气及生活垃圾的不断排放,土壤和水体中的重金属污染日益加剧。环境中的重金属可以通过各种途径进入作物和人体内并富集,使人产生头晕、贫血、精神错乱、代谢紊乱等症状,且重金属有致癌作用,对人类的健康有极大威胁。目前,我国一些蔬菜、粮食种植区正遭受着重金属污染的威胁,农产品重金属超标事件屡见不鲜。研究如何净化土壤和水体,减少重金属元素在陆生和水生植物体内的累积愈来愈成为国内外的科研热点。当前,国内外都在积极寻找有效的重金属修复方法,如卓有成效的电动修复、植物修复、生物降解法等,但是各种措施也都有各自的局限性。
生物炭是生物质通过热裂解的方法在缺氧或者低氧条件下制备的一种富含孔隙结构、含碳量高的碳化物质[1],其性质优良,具有较好的农用效益和环境污染修复潜力,已有研究表明,生物炭能够直接或者间接地降低土壤中重金属的生物有效性,因此有关将生物炭应用于重金属污染土壤的生态修复引起了广泛的关注。制备生物炭的原料来源广泛,农林业废弃物如木材、秸秆、果壳及有机废弃物等都可以作为原料[2,3],同时,其具有碳封存的潜力,因而生物炭的应用可作为我国农林废弃物资源化利用的有效途径。全球已举办过多次有关生物炭的会议,并成立了许多生物炭协会、学会、相关企业与研究机构,其中最著名的机构是国际生物炭协会(International Biochar Initiative,IBI)。总之,作为一种新型环境功能材料,生物炭在作物安全生产方面正展现出广泛的应用潜能。本文概括性地介绍了蔬菜重金属污染的现状和目前用于治理重金属污染的各项措施,通过综述生物炭的特性及其在重金属污染治理上的研究应用进展,展望了生物炭在减少蔬菜重金属污染、提高蔬菜产量、质量和安全性方面的应用潜力以及尚待解决的关键问题,为生物炭应用于蔬菜的安全生产提供有力的理论支持和实践参考。
1 蔬菜重金属污染现状
重金属在化学上是指密度大于4.5 g/cm3的约46种金属元素。环境污染上所说的重金属是指铬(Cr)、镉(Cd)、汞(Hg)、铅(Pb)以及类金属砷(As)等生物毒性显著的金属,即重金属“五毒”。重金属或其化合物造成的环境污染称为重金属污染。近年来,随着工农业的快速发展,大量重金属污染物通过各种途径进入土壤、水体和大气中,土壤和水体重金属污染引起的蔬菜及其他农作物重金属超标问题日益成为影响人类生活质量、威胁人类健康的环境和社会问题。研究结果表明,蔬菜重金属污染主要是人为因素所致,重金属可经由各种路径进入人体内(图1)。
随着生活水平的提高,人们对无公害蔬菜、绿色食品的呼声越来越高。为使蔬菜产业向着高产优质的方向发展,很多设施菜地、无土栽培技术、有机生态农业等已在全国各地蓬勃发展。其中,作为无公害蔬菜和绿色蔬菜的评价指标之一,重金属含量在生产基地、生产过程和产品中都有严格的限定标准。无土栽培基质也较容易受到重金属污染,如李静等[4]发现煤渣是引起基质重金属含量超标的主要因素,通过寻找理想的无土栽培基质来解决重金属超标问题,也是无公害蔬菜生产的重要任务。
1.1 蔬菜重金属污染为害及研究现状
世界各国都存在不同程度的重金属污染,如日本20世纪50年生的水俣病(汞污染)、骨痛病(镉污染),防治重金属环境污染已成为一个刻不容缓的世界性课题[5]。我国的重金属污染问题较为严峻,国家环保部数据显示,2009年重金属污染事件致使4 035人血铅超标、182人镉超标,引发32起[6],其中的典型案例有陕西宝鸡市凤翔县长青镇的血铅超标事件、湖南浏阳市湘和化工厂镉污染事件等[7]。仲维科等[8]研究发现,按食品卫生标准,我国各主要大中城市郊区的蔬菜都存在一定的重金属超标现象,其中Cd、Hg、Pb的污染尤为明显。迄今为止,国内已对北京、上海、天津、贵阳、大同、蚌埠、成都、寿光、哈尔滨、福州、长沙等大中城市郊区菜园土壤及蔬菜中重金属污染状况进行过较为系统的调查研究。蔬菜农药残留和重金属超标问题已成为我国发展蔬菜出口中的忧中之忧。随着中国加入WTO,蔬菜出口面临着巨大的绿色壁垒[9] 。
国内外众多学者对蔬菜的重金属污染问题进行了研究,其中对十多种陆生和水生蔬菜的镉、铜、锌、铅、汞、镍、铬及砷等重金属的为害进行了分析研究。土壤中的重金属元素通过抑制植物细胞的分裂和伸长、刺激和抑制一些酶的活性、影响组织蛋白质合成、降低光合作用和呼吸作用、伤害细胞膜系统,从而影响农作物的生长和发育。王林等[10,11]先后研究了Cd、Pb及其复合污染对茄果类蔬菜辣椒和根茎类蔬菜萝卜生理生化特性的影响,发现辣椒的生长发育、氮代谢、膜系统、根系和光合系统都受到一定的伤害,萝卜的生理生化指标也受到明显抑制,细胞膜透性显著升高,并且Cd、Pb复合污染的毒害作用始终比单一污染强,说明Cd、Pb复合污染表现为协同作用。他们的研究结果与秦天才等[12]研究的Cd、Pb及其复合污染对叶菜类蔬菜小白菜的影响结果一致,小白菜除出现植株矮化、失绿和根系不发达等直接毒害表现外,还出现叶绿素含量降低、抗坏血酸分解、游离脯氨酸积累、硝酸还原酶活性受到抑制等现象。
1.2 陆生蔬菜地重金属污染现状
蔬菜是易受重金属污染的作物之一,对重金属的富集系数远远高于其他农作物,因此蔬菜重金属污染问题更加突出。目前全国主要大中城市的菜地土壤和蔬菜重金属污染的状况已基本掌握[13]。土壤和蔬菜中重金属污染以砷、铬、镉、汞、铅、铜(Cu)、镍(Ni)、锌(Zn)等为主。一般对同一类蔬菜来说,Cu、Cd、Zn为高富集元素,Hg、As、Cr为中等富集元素,Ni、Pb为低富集元素[14]。其中,城市中的矿区周围、污灌地和交通干线两侧农田的重金属污染程度较严重,蔬菜中的重金属含量超标更为严重。黄绍文等[15]研究发现,河北定州市北城区东关村城郊公路边菜田土壤Cu、Zn、Pb 和Cd总量和韭菜可食部分Pb含量总体上均随与公路距离的增加呈降低的趋势。而且,不同的土壤类型,其有机质含量、孔隙度、酶活性、pH值、CEC值(Cation exchange capacity,阳离子交换量)等理化特性不同,直接影响重金属在土壤中的迁移与固定,从而影响蔬菜对其的吸收与富集[16]。一般认为土壤胶体带负电荷,而绝大多数金属离子带正电荷,所以土壤pH值越高,金属离子被吸附的越多,进入蔬菜体内的越少。土壤中的腐殖质能提供大量的螯合基团,对很多重金属元素有较强的固定作用,使进入蔬菜中的重金属减少。因此,我们可以依据不同蔬菜对不同重金属的富集差异以及不同的土壤条件选择相应的蔬菜类别,合理布局种植地,也可以通过施用土壤改良剂、有机肥等改善土壤理化性质,降低重金属离子的活性,从而减轻重金属的污染。
1.3 水生蔬菜重金属污染现状
水生蔬菜通常是指生长在淡水中、产品可作蔬菜食用的维管束植物。我国是众多水生蔬菜的发源地,栽培历史悠久,主要包括莲藕、茭白、荸荠、水芹、慈姑、莼菜、芡实、菱、水芋等[17]。作为我国的特产蔬菜,水生蔬菜已成为农业种植结构中的重要组成部分[18],国内现有栽培面积有66.7万hm2以上,主要集中在长江流域、珠江流域和黄河流域,我国水生蔬菜栽培面积和总产量均居世界前列。我国也是世界水生蔬菜的主要生产国和出口国,全国已有众多特色鲜明的水生蔬菜基地[19,20]。
相对陆生蔬菜而言,水生植物不仅可以从根部摄入重金属,而且因其维管组织、通气组织发达,更容易从生长环境中吸收或转移重金属元素,并长久的富集于体内。国家食品标准规定了水生蔬菜产品重金属最大限度As、Pb、Hg、Cd、Cr分别为0.5、0.2、0.01、0.05、0.5 mg/kg,和其他蔬菜作物相同[19]。水生蔬菜各器官对重金属的吸收也受多种因素影响,如环境中重金属浓度、重金属的有效性、水体富营养化以及不同水生蔬菜对各重金属元素特有的富集特性等[21]。如许晓光等[22]研究发现,随着Cd、Pb浓度的增加,莲藕各器官的重金属累积量也相应增多,并且随着生长期的延长,莲藕各器官中Cd、Pb含量逐渐增加。但是,由于蔬菜、重金属和土壤类型不同,生长环境条件、重金属性质与含量不同以及重金属的存在形态、复合污染等种种复杂因素,使得重金属的为害呈现出复杂性,例如不同蔬菜对同种重金属、同种蔬菜对不同重金属以及同种蔬菜的不同器官中对重金属的吸收和累积均存在着差异。李海华等[23]检测了Cd在12种粮食和蔬菜作物不同器官的含量后发现,除了萝卜,Cd在其他作物的根部中含量是最高的;不同种类重金属在莲藕各器官中的累积量也不同,如Cd含量为匍匐茎>荷叶>藕>荷梗,而Pb含量为匍匐茎>荷梗>藕>荷叶,这些研究为我们有效控制水生蔬菜重金属污染提供了可靠的依据和科学指导。
2 土壤重金属污染治理及其研究进展
目前,国内外治理土壤重金属污染的主要措施包括工程措施、物理修复措施、化学修复措施、生物修复措施以及农业生态修复措施。
①工程措施 主要包括客土、换土、去表土、排土和深耕翻土等措施,其中排土、换土、去表土、客土被认为是4种治本的好方法。工程措施具有效果彻底、稳定等优点,但是工程量大、费用高,破坏原有土体结构,引起土壤肥力下降,并有遗留污土的问题。
②物理修复措施 主要有电动修复和电热修复等。前者是在电场的各种电动力学效应下,使土壤中的重金属离子和无机离子向电极区运输、集聚,然后进行集中处理或分离[24];后者是利用高频电压产生的电磁波和热能对土壤进行加热,使污染物从土壤颗粒内解吸并分离出来,从而达到修复的目的。此两种方法都是原位修复技术,不搅动土层,并缩短修复时间,但是操作复杂,成本较高。现在,一些发达国家还在污染严重地区试行玻璃化技术、挖土深埋包装技术、固化技术等,但是限于成本高等原因,普及率不高。
③化学修复措施 目前常用的是施用改良剂(抑制剂、表面活性剂、重金属拮抗剂等)、淋洗、固化、络合提取等。施用改良剂主要通过对重金属的吸附、氧化还原、拮抗或沉淀作用,来降低重金属的生物有效性。淋洗法是用清水淋洗液或含有化学助剂的水溶液淋洗被污染的土壤。固化技术是将重金属污染的土壤按一定比例与固化剂混合,经熟化后形成渗透性低的固体混合物。络合提取是使试剂和土壤中的重金属作用,形成可溶性重金属离子或金属-试剂络合物,最后从提取液中回收重金属并循环利用提取液。化学修复是在土壤原位上进行的,简单易行,但不是永久性修复,它只改变了重金属在土壤中的存在形态,重金属元素仍保留在土壤中,容易被再度活化,不适用于污染严重区[25]。
④生物修复技术 主要集中在植物和微生物两方面。国内对植物修复研究较多,动物修复也有涉及,而国外在微生物修复方面研究较多。植物修复技术是近年来比较受关注的有效修复技术,根据其作用过程和机理又分为植物提取、植物挥发和植物稳定3种类型[26]。a.植物提取,即利用重金属超累积植物从土壤中吸收重金属污染物,随后收割植物地上部分并进行集中处理,连续种植该植物以降低或去除土壤中的重金属;b.植物挥发,其机理是利用植物根系吸收重金属,将其转化为气态物质挥发到大气中,以降低土壤重金属污染;c.植物稳定,利用耐重金属植物或超累积植物降低重金属的活性,其机理主要是通过金属在根部的积累、沉淀或利用根表吸收来加强土壤中重金属的固化。
微生物修复技术的主要作用原理有5种类型。
a.通过微生物的各种代谢活动产生多种低分子有机酸直接或间接溶解重金属或重金属矿物;b.通过微生物氧化还原作用改变变价金属的存在状态;c.通过微生物胞外络合、胞外沉淀以及胞内积累实现对重金属的固定作用;d.微生物细胞壁具有活性,可以将重金属螯合在细胞表面;e.微生物可改变根系微环境,提高植物对重金属的吸收、挥发或固定效率,辅助植物修复技术发挥作用。
但生物修复受气候和环境的影响大,能找到的理想重金属富集植物比较少,并且这类植物的生长量一般较小,修复周期长,很难有实际应用价值[27]。
⑤农业生态修复 包括农艺修复和生态修复两方面。前者主要指改变耕作制度、调整作物品种,通过种植不进入食物链的植物等措施来减轻土壤重金属污染;后者主要是通过调节土壤水分、养分、pH值和氧化还原状况等理化性质及气温、湿度等生态因子,对重金属所处的环境进行调控。但是此修复方式易受土壤性质、水分条件、施肥状况、栽培方式以及耕作模式等情况的影响,结果有很大的不确定性[25]。
国内现阶段对土壤重金属污染治理采用较多的措施是施用化学改良剂、生物修复、增施有机肥等。国外对改良、治理重金属污染土壤较先进的方法主要有固定法、提取法、生物降解法、电化法、固化法、热解吸法等。尽管这些方法都具有一定的改良效果,但都有局限性。土壤重金属污染的治理依然任重而道远,如何阻止蔬菜、粮食作物吸收的重金属通过食物链富集到人体成为亟待解决的焦点问题。
3 生物炭的特性及其修复重金属污染土壤的研究进展
3.1 生物炭及其特性
①生物炭(Biochar)定义 生物炭是生物质热解的产物。由于生物炭的广泛性、可再生性和成本低廉,加上生物炭本身的优良特性,使其在土壤改良和污染修复上体现出很大的优势。国内外对生物炭的科学研究真正始于20世纪90年代中期[3],目前对生物炭并没有一个统一固定的概念,但是国内外文献中生物炭的定义中包括生物质、缺氧条件(或不完全燃烧)、热解、含碳丰富、芳香化、稳定固态、多孔性等诸多关键词[28~35],这些关键词反映了生物炭的来源、制备条件和方式、结构特征。而国际生物炭倡导组织在定义中指定了其添加到土壤中在农业和环境中产生的有益功能,强调其生物质原料来源和在农业科学、环境科学中的应用,主要包括应用于土壤肥力改良、大气碳库增汇减排以及受污染环境修复。
②生物炭特性 a.孔隙结构发达,具有较大的比表面积和较高的表面能[36]。不同材料、不同裂解方式产生的生物炭的比表面积差别很大[37~39],较高的热解温度有利于生物炭微孔结构的形成。张伟
明[40]通过比较花生壳、水稻秸秆、玉米芯以及玉米秸秆4种材质在炭化前后的结构,发现炭化后所形成的碳架结构保留了原有主体结构,但比原有结构更为清晰、明显。原有生物炭的部分不稳定、易挥发的结构在热解过程中逐渐消失或形成微小孔隙结构。陈宝梁等[41]用橘子皮在不同热解温度下制备得到生物炭,经过元素分析、BET-N2表面积、傅里叶变换红外光谱法测试,对比生物炭的组成、结构,并结合其结构分析生物炭对有机污染物的作用。
b.表面官能团主要包括羧基、羰基、内酯、酚羟基、吡喃酮、酸酐等,并具有大量的表面负电荷以及高电荷密度[42],构成了生物炭良好的吸附特性,能够吸附水、土壤中的金属离子及极性或非极性有机化合物。但是生物炭的表面官能团也会随热解温度的变化而不同。陈再明等[43]研究发现,水稻秸秆的升温裂解过程是有机组分富碳、去极性官能团的过程,随着裂解温度的升高,一些含氧官能团逐渐消失,这与其他生物质制备炭的过程一致[41,44]。
c.pH值较高。生物炭中主要含有C(含量可达38%~76%)、H、O、N 等元素,同时含有一定的矿质元素[45],如Na、K、Mg、Ca等以氧化物或碳酸盐的形式存在于灰分中,溶于水后呈碱性,加上其表面的有机官能团可吸收土壤中的氢离子,添加到土壤中可提高土壤的pH值,Yuan等[46]研究证明,生物炭能够显著地提高酸性土壤的pH值,增加土壤肥力,因而可用于酸性土壤的改良。但一般来说,生物炭的pH值取决于其制备的原料[45],如灰分含量较高的畜禽粪便制成的生物炭比木炭或秸秆炭有更高的pH值。此外,裂解温度越高,pH值也会越高[47]。
d.阳离子交换量(CEC值)较高。这与其表面积和羧基官能团有关[48],当然与其生物质原料来源密不可分[49]。生物炭的CEC值高,容易吸附大量可交换态阳离子,提高土壤对养分离子Ca2+、K+、Mg2+和NH4+等的吸附能力,从而提升土壤的肥力,减少养分的淋失,提高营养元素的利用率。
e.化学性质稳定,不易被微生物降解[50],抗氧化能力强。生物炭具有高度的芳香化结构,有很高的生物化学和热稳定性[51],可长期保存于环境和古沉积物中而不易被矿化。生物炭氧化分解缓慢,如Shindo[52]研究发现,经过280 d培养,添加草地放火形成的生物炭的土壤与没有添加生物炭的土壤排放的CO2量相近,说明生物炭分解非常少。
3.2 生物炭降低重金属的有效作用机制
生物炭降低重金属的生物有效性,主要是通过降低植物体内重金属的含量、促进植物的生长来体现。研究显示,将生物炭添加到受重金属污染的土壤中后,生物炭不仅可以直接吸附或固持土壤中的重金属离子,从而降低土壤溶液中重金属离子浓度,还可以通过影响土壤的pH值、CEC值、持水性能等理化性质来降低重金属的移动性和有效性,减少其向植物体内的迁移,降低其对植物的毒性,从而减少对动物及周围环境造成的影响。
生物炭具有很大的比表面积、表面能和结合重金属离子的强烈倾向,因此能够较好地去除溶液和钝化土壤中的重金属。安增莉等[53]将生物炭对土壤中重金属的固持机理主要分为3种,①添加生物炭后,土壤的pH值升高,土壤中重金属离子形成金属氢氧化物、碳酸盐、磷酸盐沉淀,或者增加了土壤表面活性位点[54];②金属离子与碳表面电荷产生静电作用;③金属离子与生物炭表面官能团形成特定的金属配合物,这种反应对与特定配位体有很强亲和力的重金属离子在土壤中的固持非常重要[55,56]。周建斌等[57]试验表明,棉秆炭能够通过吸附或共沉淀作用来降低土壤中Cd的生物有效性,使在受污染土壤上生长的小白菜可食部分和根部Cd的积累量分别降低49.43%~68.29%和64.14%~77.66%,提高了蔬菜品质。Cao等[55]发现生物炭对Pb的吸附是一个双Langmuir-Langmuir模型,84%~87%是通过铅沉淀,6%~13%是表面吸附,添加未处理的粪便和200℃热解产生的生物炭处理中,铅主要以β-Pb9(PO4)6形式沉淀,而在350℃热解产生的生物炭处理中则是以Pb3(CO3)2(OH)2形式存在,其中200℃热解产生的生物炭,吸附效果最好,达到680 mmol/kg,是遵循简单Langmuir吸附模型的一般活性炭的6倍。Wang等[58]发现竹炭对水溶液中Cd2+的吸附行为最适合Langmuir吸附模型,最大吸附力是12.8 mg/g;而刘创等[59]发现竹炭对溶液中镉离子的吸附行为符合Freundlich吸附模型;陈再明等[60]研究了在不同热解温度下制备的水稻秸秆生物炭对Pb2+的吸附行为,符合准一级动力学方程,其等温吸附曲线适合Langmuir方程。吴成等[61]还发现,玉米秸秆生物炭对重金属离子的吸附与水化热差异有关,金属离子水化热越大,水合金属离子越难脱水,越不易与生物炭表面活性位点反应。
重金属进入土壤后,通过溶解、沉淀、凝聚、络合、吸附等各种反应形成不同的化学形态,并表现出不同的活性[62]。但是土壤化学性质(pH值、EH值、CEC值、元素组成等)、物理性质(结构、质地、黏粒含量、有机质含量等)和生物过程(细菌、真菌)及其交互作用都会影响重金属在土壤中的形态和有效性。已有众多研究显示,将生物炭施加到土壤中可改善土壤的理化性质,提高土壤孔隙度、表面积、土壤离子交换能力[42]、pH值[63],降低土壤容重,增强土壤团聚性、保水性和保肥性[64,65],为土壤微生物生长与繁殖提供良好的环境,并增强微生物的活性[66~68],减少土壤养分的淋失,促进养分的循环,并且可以增加土壤有机碳的含量[69] 。这些性质的改良都有利于促进土壤中有害物质的降解和失活,使土壤中的重金属离子形态发生变化。
3.3 影响生物炭降低重金属污染有效性的因素
①生物炭的原料和制备温度 生物炭来源是决定其组成及性质的基础,Shinogi等[70]证明动物生物质来源的生物炭比植物生物质来源的生物炭C/N比更低,灰分含量、阳离子交换量和电导率更高。Uchimiya等[71]还发现山核桃壳制备的酸性活性炭和生活垃圾制备的碱性生物炭在酸性土壤中对Cu2+的吸附好于在碱性土壤中。但是,关于生物炭热解温度对其特性的影响还存在争议,如Cao等[72]认为与由粪肥制造的生物炭随温度变化的特点相似,比表面积、含碳量以及pH值都随着温度的升高而升高,吸附的Pb2+随温度的升高可达到100%。而吴成等[73]却发现Pb2+或Cd2+吸附初始浓度相同时,热解温度为150~300℃的生物炭中极性基团含量增加,生物炭吸附Pb2+和Cd2+的量增大;热解温度为300~500℃的生物炭中极性基团含量减少,生物炭吸附Pb2+和Cd2+的量降低。目前,普遍认为热解温度升高,生物炭比表面积、灰分含量增大[72],而在CEC值方面还存在争议。
②生物炭本身的pH值、CEC值、有机质含量以及表面官能团的性质 通常情况下,土壤pH值、CEC值、有机质含量越高,越不利于重金属向有效态转化。由于生物炭本身具有较高的pH值、CEC值和有机质含量,故将其施加于土壤中可以提高土壤的pH值、CEC值和有机质含量[74]。Wang等[58]的试验证明,pH值高(≥8)有利于Cd2+的吸附和去除。祖艳群等[75]进行大田调查也发现,提高土壤pH值有助于降低蔬菜中镉的含量,并认为对于土壤重金属镉污染严重的地区,通过提高土壤pH值降低蔬菜中镉含量是可行的。王鹤[76]通过试验证明了生物炭不仅可以通过简单吸附来降低有效态铅含量,还可以通过提高土壤pH值和有机质含量来促进有效态铅向其他形态转化,从而降低土壤中铅的生物有效性。Uchimiya等[56]用不同温度生产的生物炭对水中和土壤中的Cd2+、Cu2+、Ni2+和Pb2+进行了研究,发现高温热解能够使生物炭表面的脂肪族等基团消失并形成吸附能力强的表面官能团,同时随着生物炭的pH值升高,其对重金属离子的吸附和固定加强,也说明了生物炭对重金属的吸附与生物炭的表面官能团和pH值有关。官能团可能与亲和特定配位体的重金属离子结合形成金属配合物,有些亲水性含氧官能团还能使生物炭吸附更多的水分子,形成水分子簇,可有利于重金属离子向生物炭微孔扩散,从而降低重金属离子在土壤中的富集;而土壤pH值的升高,促使重金属离子形成碳酸盐或磷酸盐等而沉淀,或者增加土壤表面的某些活性位点,从而增加对重金属离子的吸持。
③重金属的形态与性质 重金属的形态是指重金属的价态、化合态、结合态和结构态4个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。重金属形态是决定其生物有效性的基础。重金属的总量并不能真实评价其环境行为和生态效应,其在土壤中的形态、含量及其比例才是决定其对环境造成影响的关键因素。对于重金属形态,目前比较常用的是欧洲共同体参考局(European Community Bureau of Reference,BCR)提出的标准,分为酸溶态(如可交换态和碳酸盐结合态)、可还原态(如铁锰氧化物结合态)、可氧化态(如有机物和硫化物结合态)和残渣态4种,所用提取方法称为BCR提取法。研究表明,酸溶态是植物最容易吸收的形态,可还原态是植物较易利用的形态,可氧化态是植物较难利用的形态,残渣态是植物几乎不能利用的形态。前两者即为重金属有效态,生物有效性高;后两者为重金属稳定态,迁移性和生物有效性低[77,78]。关于生物炭对重金属生物有效性的影响,已有研究结果[79~82]认为,生物炭的施入对土壤中重金属离子的形态和迁移行为有明显作用,即生物有效性高的水溶态、交换态、碳酸盐结合态和铁锰氧化物结合态重金属的浓度都显著下降,而植物较难利用的有机结合态、残渣态重金属的浓度显著上升,从而降低植株体内的重金属含量。
④土壤类型 在生物炭―土壤―植物系统中,土壤的砂、黏、壤质类型不同,理化性质差异很大,对重金属有效性和生物炭的作用发挥会产生不同影响。例如,Uchimiya等[71,83]研究生物炭修复土壤中Cu2+的吸附等温线及阳离子的释放时发现,在黏土和碱性土壤中,生物炭对Cu2+有显著的吸附能力,在侵蚀土壤、酸性肥沃土壤中,生物炭对Cu2+的吸附能力很弱。Beesley等[84,85]在被As、Cd、Cu、Zn等污染的棕色土地区和含As、Cd、Cu、Pb和Zn较高的城市土中,添加450℃热解硬木材产生的生物炭(生物炭体积比30%),发现在柱淋溶试验中,Cd和Zn的量分别减少300倍和45倍。佟雪娇等[86]用添加4种农作物秸秆制备的生物炭提高了红壤对Cu2+的吸附量,有效降低了Cu2+在酸性红壤中的活动性和生物有效性。黄超等[87]研究发现,施加生物炭到贫瘠的红壤中能明显降低土壤酸度,增加盐基饱和度,提高土壤团聚体数量和田间持水量,降低土壤容重,明显提高红壤的速效氮、磷、钾含量,增加土壤保肥能力,改善植物生长环境,并发现施用生物炭对肥力水平较低的红壤改善作用更明显。
4 生物炭对蔬菜产量的影响
国内已有学者系统综述过施用生物炭对土壤的改良作用、作物效益[88]以及肥效作用[49]的研究进展。施用生物炭可改善土壤肥力和养分利用率,维持农田系统的高产、稳产。许多研究表明,生物炭对许多作物生长和产量有促进作用,其中,对增产效应方面主要研究的蔬菜有菜豆[89]、豇豆[90,91]、萝卜[92,93]、菠菜[94]、白萝卜[95]等。关于施用生物炭使作物增产的原因包括提高了土壤pH值,增加了有效磷、钾、镁和钙含量,降低了重金属元素的有效性;为养分的吸附和微生物群落的生存提供了较大空间;可以作为滤膜,吸附带正电或负电的矿物离子;增加了土壤孔隙度和土壤持水性,改善了土壤物理性状,促进植物和根系的生长;增加了土壤电导率、盐基饱和度及可交换态养分离子等;促进了原生菌、真菌等的活性,从而促进了作物生长[96]。单施生物炭就能够促进作物生长或增产,将生物炭与肥料混施,或复合后对作物生长及产量促进作用更显著,因为将生物炭和肥料混施或复合施用,可以发挥两者的互补或协同作用,生物炭可延长肥料养分的释放期,减少养分损失[34],反之肥料消除了生物炭养分不足的缺陷[97]。也有众多学者研究过生物炭对粮食作物的增产作用,如Major[98]施加生物炭于哥伦比亚草原氧化土中,通过4 a的种植,发现玉米第2,3,4年分别增产28%、30%、140%。但是,还缺乏在不同土壤类型上种植不同作物的大田试验来进一步验证这些增产效果。
然而在需要人为添加营养的无土栽培中,情况有所不同。Graber等[99]添加不含营养成分的木质生物炭到椰纤维+凝灰岩的无土基质中,种植的番茄和辣椒生长量增加既不是因为直接或间接的植物营养成分含量的提高,也不是因为无土基质持水性增强,推测和验证了2个可能机制,一是生物炭可引起微生物群体向有益植物生长的方向转变;二是生物炭中的化合物引起毒物兴奋效应,因而具有生物毒性的化学物质或者高浓度生物炭就会刺激生长并引起系统抗病性。Nichols等[100]证明了生物炭比其他水培基质性能更优越,并且能够通过再次热解进行杀菌,从而破坏潜在的致病菌。Elad等[101]也验证了添加生物炭可以促使辣椒和番茄对灰霉病菌和白粉病菌产生系统抗性,并使辣椒具有抗螨性。可见生物炭不仅可以通过影响土壤pH值、CEC值、盐基饱和度、电导率、交换态氮和磷有效性,提高钾、钙、钠、镁等营养物质的利用率,从而提高作物产量[102],而且可以运用到无土栽培中杀菌抗病,促进植物生长。目前市场上交易的生物炭多用于改良栽培基质和促进粮食作物增产,将其应用于蔬菜安全生产必然有广泛的应用前景。
5 展望
种种研究表明,生物炭对重金属污染土壤和水体的治理效果明显,促进作物生长的潜力巨大,张伟明[40]系统研究了生物炭的理化性质(结构与形态、比表面积与孔径特征、因素组成以及吸附性能等)及其对不同作物生长发育的作用、对土壤理化性质的影响以及炭肥互作对大豆生长发育和产量与品质的影响,初步探讨了生物炭对重金属污染农田修复的作用,再一次有力地证明了生物炭优良的理化性质对土壤系统的改良作用、对促进作物产量与品质的有利影响以及修复重金属污染土壤的巨大潜力,并指出中国的生物炭应用技术已具备了一定基础,且处于快速发展时期。但是将生物炭广泛应用于蔬菜生产安全上,仍有几个关键点需要解决。
①虽然已有研究认为生物炭能产生良好的农用和环境效益,但是对于生物炭的最优施用条件、最佳施用量及相关机理还没有明确定论。比如,有些试验在较低用量下即产生影响,有些则显示高用量下才有效果,甚至还有些产生不良影响[87],不同作物、不同地域、不同基质和不同管理条件等可能表现出不一样的结果;生物炭对重金属等污染物的作用是络合、螯合、吸附、截留或沉淀等都尚不明确。
②生物炭对施入环境的有益作用已受到人们的广泛关注,但是其对生态环境可能产生的负面效应还不十分明确,如生物炭在热解过程中可能产生少量有毒物质,生产的高温分解过程也会增加温室气体的排放等[103]。
③由于生物炭是直接施加到土壤和溶液中的,吸附或固持了污染物之后依然留在其中,不清楚污染物以后是否会被重新释放出来而恢复生物毒性。成杰民[104]认为,除了研究吸附剂的氧化稳定性、吸附稳定性和释放规律外,最安全的方法就是将吸附后的钝化剂从土壤中彻底移除,但目前还没有相应的措施。
④生物炭的老化或氧化分解问题。Uchimiya
等[105]认为,生物炭的老化主要表现在对环境污染物尤其是对天然有机物吸附的减少,及其自身的氧化分解作用。但由于生物炭稳定性高,氧化分解的速度缓慢(分解机理尚不明确,生物降解和非生物降解过程可能共存),在有限的试验周期内还无法观察到其氧化后的结果,对生物炭施用后的长期效应方面的研究亟待开展。
⑤目前国内关于生物炭方面的研究,还停留在实验室和田间阶段[103],并没有得到大规模的生产和应用,推广和使用所需要的技术支持也还处于起步阶段。降低生物炭的生产成本,也将关系到生物炭未来发展的应用潜力。
参考文献
[1] Lehmann J. A handful of carbon[J]. Nature, 2007, 447: 143-144.
[2] Jonker M T O, Koelmans A A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations[J]. Environmental Science and Technology, 2002, 36(17): 3 725-3 734.
[3] 何绪生,耿增超,佘雕,等.生物炭生产与农用的意义及国内外动态[J].农业工程学报,2011,2(27):1-7.
[4] 李静,赵秀兰,魏世强,等.无公害蔬菜无土栽培基质理化特性研究[J].西南农业大学学报,2000,22(2):112-115.
[5] 郑喜,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[6] 周锐.中国环保部长:“重金属污染“今年将被集中整治[EB/OL].(2010-01-25)http:///cj/cj-hbht/news/2010/01-25/2090643.shtml.
[7] 陈明,王道尚,张丙珍.综合防控重金属污染 保障群众生命安全――2009年典型重金属污染事件解析[J].环境保护,2010(3):49-51.
[8] 仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
[9] 唐仁华,朱晓波.中国蔬菜生产面临的机遇和挑战[J].中国农学通报,2003,19(1):131-135.
[10] 王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报:自然科学版,2005,36(1):107-112.
[11] 王林,史衍玺.镉、铅及其复合污染对萝卜生理生化特性的影响[J].中国生态农业学报,2008,16(2):411-414.
[12] 秦天才,吴玉树,王焕.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
[13] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.
[14] 施泽明,倪师军,张成江.成都城郊典型蔬菜中重金属元素的富集特征[J].地球与环境,2006(2):52-56.
[15] 黄绍文,韩宝文,和爱玲,等.城郊公路边菜田土壤和韭菜中重金属的空间变异特征[J].华北农学报,2007,22(z2):152-157.
[16] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J]. 湖南农业科学,2002(4):45-48.
[17] 江解增,曹碚生.水生蔬菜品种类型及其产品利用[J].中国食物与营养,2005(9):21-23.
[18] 孔庆东.中国水生蔬菜基地成果集锦[M].武汉:湖北科学技术出版社,2005.
[19] 柯卫东,刘义满,吴祝平.绿色食品水生蔬菜标准化生产技术[M].北京:中国农业出版社,2003.
[20] 柯卫东.水生蔬菜研究[M].武汉:湖北科学技术出版社, 2009.
[21] 熊春晖,卢永恩,欧阳波,等.水生蔬菜重金属污染与防治研究进展[J].长江蔬菜,2012(16):1-5.
[22] 许晓光,卢永恩,李汉霞.镉和铅在莲藕各器官中累积规律的研究[J].长江蔬菜,2010(14):53-56.
[23] 李海华,刘建武,李树人.土壤―植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34.
[24] 王慧,马建伟,范向宇,等.重金属污染土壤的电动原位修复技术研究[J].生态环境,2007,16(1):223-227.
[25] 徐应明,李军幸,孙国红,等.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
[26] 骆永明.金属污染土壤的植物修复[J].土壤,1999,31(5):261-265.
[27] Ernst W H O. Phytoextraction of mine wastes-options and impossibilities[J]. Chemie Der Erde-Geochemistry, 2005, 65: 29-42.
[28] 陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89.
[29] Sohi S, Lopez-Capel E, Krull E, et al. Biochar, climate change and soil: A review to guide future research[J]. CSIRO Land and Water Science Report, 2009, 5(9): 17-31.
[30] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems-A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[31] Hammes K, Smernik R J, Skjemstad J O, et al. Characterisation and evaluation of reference materials for black carbon analysis using elemental composition, colour, BET surface area and 13C NMR spectroscopy[J]. Applied Geochemistry, 2008, 23(8): 2 113-2 122.
[32] 李力,刘娅,陆宇超,等.生物炭的环境效应及其应用的研究进展[J].环境化学,2011,30(8):1 411-1 421.
[33] 谢祖彬,刘琦,许燕萍,等.生物炭研究进展及其研究方向[J].土壤,2011,43(6):857-861.
[34] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.
[35] Antal M J Jr, Gr?nli M. The art, science, and technology of charcoal production[J]. Industrial Engineering Chemistry Research, 2003, 42(8): 1 619-1 640.
[36] Duku M H, Gu S, Hagan E B. Biochar production potential in Ghana-A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3 539-3 551.
[37] ?z?imen D, Ersoy-Meri?boyu A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials[J]. Renewable Energy, 2010, 35(6): 1 319-1 324.
[38] Chun Y, Sheng G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science and Technology, 2004, 38: 4 649-4 655.
[39] 崔立强.生物黑炭抑制稻麦对污染土壤中Cd/Pb 吸收的试验研究[D].南京:南京农业大学,2011.
[40] 张伟明.生物炭的理化性质及其在作物生产上的应用[D]. 沈阳:沈阳农业大学,2012.
[41] Chen B L, Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere, 2009, 76(1): 127-133.
[42] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1 719-1 730.
[43] 陈再明,陈宝梁,周丹丹.水稻秸秆生物炭的结构特征及其对有机污染物的吸附性能[J].环境科学学报,2013,33(1):9-19.
[44] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science and Technology, 2008, 42(14): 5 137-5 143.
[45] Gaskin J, Steiner C, Harris K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Trans Asabe, 2008, 51(6): 2 061-2 069.
[46] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1):110-115.
[47] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3 488-3 497.
[48] Cheng C H, Lehmann J, Thies J E, et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry, 2006, 37(11): 1 477-1 488.
[49] 何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011,27(15):16-25.
[50] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil[J]. Biogeochemistry, 2009, 92(1/2): 163-176.
[51] Glaser B, Haumaier L, Guggenberger G, et al. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics[J]. Naturwissenschaften, 2001, 88(1): 37-41.
[52] Shindo H. Elementary composition, humus composition, and decomposition in soil of charred grassland plants[J]. Soil Science and Plant Nutrition, 1991, 37(4): 651-657.
[53] 安增莉,方青松,侯艳伟.生物炭输入对土壤污染物迁移行为的影响[J].环境科学导刊,2011,30(3):7-10.
[54] 宋延静,龚骏.施用生物质炭对土壤生态系统功能的影响[J].鲁东大学学报:自然科学版,2010,26(4):361-365.
[55] Cao X D, Ma L N, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009, 43(9): 3 285-3 291.
[56] Uchimiya M, Lima I M, Klasson K T, et al. Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived biochars in water and soil[J]. J Agric Food Chem, 2010, 58(9): 5 538-5 544.
[57] 周建斌,邓丛静,陈金林,等.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,17(5):1 857-1 860.
[58] Wang F Y, Wang H, Ma J W. Adsorption of cadmium (Ⅱ) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J]. J Hazard Mater, 2010, 177(1/3): 300-306.
[59] 刘创,赵松林,许坚.竹炭对水溶液中 Cd (Ⅱ) 的吸附研究[J].科学技术与工程,2009,9(11):3 009-3 012.
[60] 陈再明,方远,徐义亮,等.水稻秸秆生物炭对重金属 Pb2+ 的吸附作用及影响因素[J].环境科学学报,2012,32(4):769-776.
[61] 吴成,张晓丽,李关宾.黑炭吸附汞砷铅镉离子的研究[J]. 农业环境科学学报,2007,26(2):770-774.
[62] 魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(1):65-72.
[63] Rondon M A, Lehmann J, Ramírez J, et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions[J]. Biology and Fertility of Soils, 2007, 43(6): 699-708.
[64] Karhu K, Mattila T, Bergstr?m I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J].
Agriculture, Ecosystems and Environment, 2011, 140(1/2):309-313.
[65] Laird D A, Fleming P, Davis D D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.
[66] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300(1/2): 9-20.
[67] Fowles M. Black carbon sequestration as an alternative to bioenergy[J]. Biomass and Bioenergy, 2007, 31(6): 426-432.
[68] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review[J]. Plant and Soil, 2010, 337(1/2): 1-18.
[69] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos: 1.Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1/2): 81-84.
[70] Shinogi Y, Yoshida H, Koizumi T, et al. Basic characteristics of low-temperature carbon products from waste sludge[J]. Advances in Environmental Research, 2003, 7(3): 661-665.
[71] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1.Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1 431-1 437.
[72] Cao X D, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010, 101(14): 5 222-5 228.
[73] 吴成,张晓丽,李关宾.热解温度对黑炭阳离子交换量和铅镉吸附量的影响[J].农业环境科学学报,2007,26(3):
1 169-1 172.
[74] 陈红霞,杜章留,郭伟,等.施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J].应用生态学报,2011,22(11):2 930-2 934.
[75] 祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.
[76] 王鹤.施用硅酸盐和生物炭对土壤铅形态与含量的影响[J].农业科技与装备,2013(4):10-12.
[77] 黄光明,周康民,汤志云,等.土壤和沉积物中重金属形态分析[J].土壤,2009,41(2):201-205.
[78] 韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1 499-1 502.
[79] 王汉卫,王玉军,陈杰华,等.改性纳米碳黑用于重金属污染土壤改良的研究[J].中国环境科学,2009,29(4):431-436.
[80] 林爱军,张旭红,苏玉红,等.骨炭修复重金属污染土壤和降低基因毒性的研究[J].环境科学,2007,28(2):232-237.
[81] 苏天明,李杨瑞,江泽普,等.泥炭对菜心―土壤系统中重金属生物有效性的效应研究[J].植物营养与肥料学报, 2008,14(2):339-344.
[82] Hua L, Wu W X, Liu Y X, et al. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment[J]. Environmental Science and Pollution Research, 2009, 16(1): 1-9.
[83] Uchimiya M, Klasson K T, Wartelle L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 2.Copper desorption isotherms[J]. Chemosphere, 2011, 82(10): 1 438-1 447.
[84] Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environ Pollut, 2011, 159(2): 474-480.
[85] Beesley L, Moreno-Jiménez E, Gomez-Eyles J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6): 2 282-2 287.
[86] 佟雪娇,李九玉,姜军,等.添加农作物秸秆炭对红壤吸附 Cu(Ⅱ)的影响[J].生态与农村环境学报,2011,27(5):37-41.
[87] 黄超,刘丽君,章明奎.生物质炭对红壤性质和黑麦草生长的影响[J].浙江大学学报:农业与生命科学版,2011, 37(4):439-445.
[88] 王典,张祥,姜存仓,等.生物质炭改良土壤及对作物效应的研究进展[J].中国生态农业学报,2012,20(8):963-967.
[89] Yan G Z, Kazuto S, Satoshi F. The effects of bamboo charcoal and phosphorus fertilization on mixed planting with grasses and soil improving species under the nutrients poor condition[J]. Journal of the Japanese Society of Revegetation Technology, 2004, 30(1): 33-38.
[90] Lehmann J, da Silva J P, Steiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the central Amazon basin: fertilizer, manure and charcoal amendments[J]. Plant and Soil, 2003, 249(2): 343-357.
[91] Topoliantz S, Ponge J F, Ballof S. Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics[J]. Biology and Fertility of Soils, 2005, 41(1): 15-21.
[92] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1/2): 235-246.
[93] Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment[J]. Soil Research, 2008, 45(8): 629-634.
[94] Asaki T. Utilization of bamboo charcoal in spinach cultivation[J]. Agriculture and Horticulture, 2006, 81(12): 1 262-1 266.
[95] Chan K Y, Van Zwieten L, Meszaros I, et al. Using poultry litter biochars as soil amendments[J]. Soil Research, 2008, 46(5): 437-444.
[96] 张文玲,李桂花,高卫东.生物质炭对土壤性状和作物产量的影响[J].中国农学通报,2009,25(17):153-157.
[97] 姜玉萍,杨晓峰,张兆辉,等.生物炭对土壤环境及作物生长影响的研究进展[J].浙江农业学报,2013,25(2):410-415.
[98] Major J. Biochar application to a Colombian savanna Oxisol: Fate and effect on soil fertility, crop production, nutrient leaching and soil hydrology volume I[EB/OL]. (2013-08-19)http://1813/13491.
[99] Graber E R, Harel Y M, Kolton M, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 2010, 337(1/2): 481-496.
[100] Nichols M, Savidov N, Aschim K. Biochar as a hydroponic growing medium[J]. Practical Hydroponics and Greenhouses, 2010, 112: 39-42.
[101] Elad Y, David D R, Harel Y M, et al. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent[J]. Phytopathology, 2010, 100(9):913-921.
[102] Oguntunde P G, Fosu M, Ajayi A E, et al. Effects of charcoal production on maize yield, chemical properties and texture of soil[J]. Biology and Fertility of Soils, 2004, 39(4): 295-299.
[103] 刘霞.生物炭能否给地球降降温? [N].科技日报,2009-07-12.
- 上一篇:调研的工作的收获和体会
- 下一篇:艺术史类专业就业方向