人工智能发展报告范文

时间:2024-01-08 17:32:46

导语:如何才能写好一篇人工智能发展报告,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能发展报告

篇1

结合当前工作需要,的会员“egsm886”为你整理了这篇关于以人工智能赋能“四强”产业推动新经济发展情况的调研报告范文,希望能给你的学习、工作带来参考借鉴作用。

【正文】

临淄区现有规模以上“四强”企业195家,占全部规上企业63%,其中,新材料企业166家,新医药企业5家、电子信息企业9家、智能装备企业22家。截至10月底,全区规模以上“四强”企业工业增加值占全部规上工业增加值的比重达到了37.1%,较去年底提高了7.8个百分点。“四强”产业和人工智能已逐渐成为推动新经济发展的核心动能,不断助力全区工业高质量发展。临淄区人大高度重视以人工智能赋能“四强”产业推动新经济发展工作,组织省市区人大代表运用常委会视察、专题调研等多种形式进企业、看项目、提建议,对全区以人工智能赋能“四强”产业推动新经济发展工作把脉问诊。现形成调研报告如下:

一、人工智能赋能“四强”产业的基本情况

(一)政策叠加增信心。为推动工业企业特别是“四强”产业应用人工智能技术加快转型升级,自2019年以来我区相继出台了《临淄区制造业单项冠军企业培育提升三年行动计划》《临淄区制造业智能化技术改造三年优化行动方案(2020-2022年)》《临淄区大力推进“五个优化”传统产业转型升级三年倍增计划(2020—2022年)》等多项务实、高效、接地气的扶持政策,遴选一批业内领先的服务商,对规模以上企业开展全覆盖的智能化诊断,重点针对“四强”企业的智能化改造类项目,分装备、产线、车间、工厂等不同层次精准支持补贴20至100万元,政策力度在区县层面上位居前列。结合实际、因地制宜、量身定制的多元化政策充分发挥了财政资金引导作用,为应用人工智能的先行者增进信心,推动企业加速步入数字化发展快车道。

(二)标杆示范促转型。每年分智慧工厂、数字车间、智能产线等各个层级,选树10家左右人工智能成效良好的“四强”试点示范企业,组织全区规模以上工业企业现场对标参观交流。2019年至今,根据行业侧重点的不同,先后组织了对标齐翔、单项冠军、智能化改造等多个领域的现场会10余次,参与企业超500家次,打造了齐翔腾达、齐峰新材、英科环保、洁林塑管、巧媳妇、顺意电器等大中小不同规模企业标杆。企业间对标学习在全区营造了比学赶帮超的良好氛围,提升了企业开展智能化转型升级的积极性,有效加快了“四强”产业人工智能的发展进程。

(三)机制倒逼提质量。出台落实“零增地”技改项目工程优惠政策,对符合规划和安全环保要求的“零增地”技改项目给予大力支持,从而鼓励企业聚焦人工智能技术应用,利用有限的资源和生产要素创造更大的效益。印发《临淄区工业企业“亩产效益”评价改革实施方案(试行)》,高标准推进“亩产效益”评价改革,创新性地导入了“企业360”体系,将两化融合贯标、智能车间建设、智能改造投资等企业人工智能相关的发展情况纳入加分提档项,实行能源价格、用地指标、应急响应等差异化政策,倒逼落后企业在数字化转型和应用人工智能的道路上奋勇争先、提档进位。

(四)工业互联开新局。为加速“四强”产业数字化、协同化、智能化升级,加快推广人工智能技术与实体经济融合应用,培育和支持一批本地的优秀软件和信息服务企业发展,我区以推进工业互联网建设为切入点,与华为软件技术有限公司、山东爱特云翔信息技术有限公司签订三方协议,成立工业互联网发展中心,每年设立1500万元专项补贴资金,用于扶持我区企业购买使用发展中心提供的资源及服务,举办人工智能和工业互联网相关培训。未来五年时间,我们力争将全区30强企业全部改造一遍,将优秀企业家和人工智能人才培训一遍,以人工智能将“四强”产业全部赋能升级一遍,打造新经济发展的临淄样板。

二、人工智能赋能“四强”产业发展中存在的问题

虽然我区人工智能发展领先,“四强”产业整体向好,但在政策引导、产业布局、要素保障等方面仍存在一些短板和问题,主要包括:

一是政策专业性和导向性不够突出。目前我区出台的单项冠军企业培育、智能化技术改造、“五个优化”倍增计划等支持工业高质量发展的扶持政策,对“四强”产业和人工智能虽有一定倾斜,但对产业赋能的专业性和融合发展的导向性不强。

二是“四强”产业区域特色不够明显。目前我区新材料产业产值占“四强”比重约80%,在人工智能提升产品收率、提高产品质量、降低生产能耗等方面有较大需求,但我区产业赋能整体思路不够明确,缺少有区域特色的人工智能侧重点和突破点。

三是人才平台等新兴要素不够充裕。我市现行的“人才金政37条”和区级配套的人才政策,侧重于对高层次和高学历人才的一次性奖补和对创新平台的一次性扶持,存在唯职称、唯学历的弊端,对人工智能领域专业技术性人才的引进和培育能力偏弱,且部分人才仅在我区挂名或短期过渡,对人才长期发展的持续性支持不足。

三、加快人工智能赋能“四强”产业推动新经济发展的几点建议

第一,扩增量、提规模、做强优势产业链。加强“四强”领航企业和潜力企业培育,推动齐翔腾达、鑫泰石化、蓝帆医疗、齐都药业等领航企业深挖现有产业潜能,充分发挥纵向延伸、横向联合的能力,构筑具有较强竞争优势的特色产业集群,将现有产业价值“吃干榨净”。延链聚合做好大数据产业园、智能装备产业园、数字经济产业园等创新园区的上下游“双招双引”,抓好永聚医药、一清舜泰、爱特云翔等“四强”新秀企业的重点项目建设,稳投资、促发展,不断提高“四强”产业经济比重。加大“四强”产业技术改造投资力度,加快推进人工智能技术融合应用,做好“四强”企业智慧工厂和智能车间培育建设,加快衍生出一批能引发产业体系重大变革的“四强”高新企业,不断提升“四强”产业发展质量。

篇2

AI带来最大经济收益的国家将是中国(2030年GDP增长26%)和北美(14.5%),相当于10.7万亿美元,占全球经济影响的近70%。报告还了“AI影响指数”,对最容易受到AI影响的行业进行了排名,其中医疗和汽车并列第一位。

在人工智能发展初期,由于技术成熟度较高,且大批工作均可为发达技术替代完成,因此彼时北美的生产力增长速度将高于中国。然而十年之后,中国完成了相对缓慢的技术和专业知识积累,则将开始赶超美国。

欧洲与亚洲一些发达国家也将受益于人工智能,实现经济大幅增长(2030年GDP增长9-12%不等)。

发展中国家(包括拉美和非洲)由于人工智能技术的采用率预期较低,因此人工智能将会促使他们的经济适度发展(GDP增长低于6%)。

在此份报告中,普华永道还推出了“人工智能影响指数”这一概念,由于人工智能将提高生产力和产品价值,并推动消费增长,因而零售业、金融服务和医疗保健将是最大受益行业。至2030年,随着人工智能驱动消费大幅上升,产品性能得到更好完善,消费需求与行为随之转变,这将促使GDP增长9万亿美元。

此份分析报告还强调,为了发挥出最大潜能,人工智能创造的巨大商机需要强有力的管理和新的运营模式来巩固。人们需要在人工智能的设计和应用初期即介入,实行有效控制,以确保实现人工智能的积极潜能,同时应预警各方利益相关者,如超出合理控制范围运行将会引发的可能后果。

篇3

过去的一年里,AlphaGo与李世石的大战硝烟未平,它的升级版Master就在围棋网络对战中创下了连胜60局,打败+几位世界冠军的新纪录:阿里云小Ai成功预测了《我是歌手》总冠军:“最强大脑”王昱珩惜败百度小度……人工智能以一代网红的形象迅速而直观地走进公众视野。

这不过是人工智能应用的冰山一角。本届两会上,科技界的代表委员们谈到了更多的可能性。在他们看来,随着联网、云计算、物联网、大数据这些信息新环境的延展,人工智能已经告别略显笨拙的1.0时代,在性能升级、应用深入的道路上,跑向2.0时代(AI2.0)。

AI20的技术特征是什么?

当下看来,它体现在4个方面:从传统知识表达技术到大数据驱动知识学习,转向大数据驱动和知识指导相结合的方式:从分类型处理视觉、听觉、文字等多媒体数据,迈向跨媒体认知、学习和推理的新水平:从追求“智能机器”到高水平的人机协同融合,走向混合型增强智能的新计算形态:从聚焦研究“个体智能”到基于互联网络的群体智能,形成在网上激发组织群体智能的技术与平台等。

到了AI2.0时代,在智能制造、智能医疗、智能城市、智能农业和智能国防5个重点领域实现全产业链智能化,才是一个国家将要面临的新一轮挑战。这意味着人工智能甚至会成为与土地、劳动、资本具有同等重要地位的新生产要素,成为衡量一个国家综合国力的标志之一。代表委员们纷纷建言,国家应把人工智能上升到战略层面,对其进行系统规划、加速布局,抢抓全球产业制高点。

事实上,在写入政府工作报告之前,人工智能已经是我国各界关注的热点。2015年7月,人工智能就被写入《国务院关于积极推进“互联网+”行动的指导意见》:2016年3月,又被写进“十三五”规划纲要:2016年5月,国家发改委等4部门联合下发《“互联网+”人工智能三年行动实施方案》……人工智能在我国逐渐迈开了步伐。

篇4

前言

2017年,人工智能全面爆发,资本大量涌入,政策不断加持,各企业趋之若鹜。在此时刻,中国完全掌握着弯道超车的良机,只是,我们更需要理性认知,毕竟健康发展、蹄疾步稳的人工智能发展才会对未来有益。

风口已来,静待腾飞……

在不久前结束的2018年全国研究生招生统一考试中,“人工智能对人类社会产生哪些影响,对经济发展带来哪些改变”成为管理类联考综合能力考试中一道分值很重的作文题目。这从一个侧面可以看出,2017年成为国家战略的人工智能之火热程度。

在浙江乌镇落幕的第四届世界互联网大会上,人工智能同样是最热门的话题,在以人工智能为主题的分论坛会场,已经到了人满为患、不得不限制进场人数的地步。

回顾2017年的科技创新,坦率地说并没有给人太多惊喜,最引人关注的,莫过于人工智能。这一年,人工智能全面爆发,成为国家战略。

2017年7月,国务院印发的《新一代人工智能发展规划》中,明确新一代人工智能发展分三步走的战略目标,到2030年使中国人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。这是中国首个面向2030年的人工智能发展规划。随着人工智能上升为国家战略,顶层设计框架搭建完成,产业发展有望持续提速,带来投资新机遇。

实际上,在政策出台前,对市场异常敏感的企业层面已经开始布局,2017年只是进入到了发轫期。

也许,不少“吃瓜群众”此刻方才明白,为何做搜索引擎的百度提出“all in”(全面进入)人工智能战略,阿里巴巴也提出了数据是生产资料的概念,而腾讯早已经开始“连接”一切。

“作为一项改变世界的技术,人工智能已经到了从实验室走入真实的生产环境和日常生活的‘临界点’。”阿里巴巴集团副总裁刘松说。

在政策信号如此明确的背景下,人工智能几乎到了“人人争说”的地步。如今的中国,人工智能缺的不是关注和热度,而是理性的思考,是对未来风向的把握。

人工智能发展如何脱虚入实?人才与核心技术瓶颈如何取得突破?法律伦理责任如何界定?将会砸了谁的饭碗?背后的算法歧视如何解决?梳理过去一年人工智能发展,理性看待目前的阶段,这五大关键之问可能将是人工智能发展的风向标。

与实体经济结合去泡沫化

到了2017年年尾,曾经让各界争得面红耳赤的实体经济和虚拟经济之辩似乎已经没有太多意义。因为“取代谁”在当下已经成为非常不明智的设问。答案已经越来越明晰:实体经济是根本,虚拟经济也需要结合实体。换句话说也许更清楚,脱离实体的人工智能发展很难不出现泡沫。

于是在2017年,我们看到,很多的互联网工程师开始进入工厂深度研究流水线,拜师高级技工,在工厂写代码,而结合了人工智能的生产线大大提高了生产率。

阿里云总裁胡晓明认为,人工智能的发展要去泡沫化,下一站将是“产业AI”。目前,该公司在城市、工业、零售、金融、汽车、家庭等多个场景推出ET大脑等“产业AI”方案,这些能力、产品和解决方案都通过虚拟的云端结合了扎实的工业流水线。

胡晓明告诉记者:“现在人工智能领域有种浮躁的氛围,有些企业靠AI讲资本故事、炒作股价。人工智能不应仅仅是实验室里的、PPT里的‘概念上的AI’,更应是‘产业AI’。”

人工智能若要健康发展,首先必须要有场景驱动,人工智能在解决什么问题、为这个社会的成本降低了多少、效率提高了多少;人工智能背后,是否有足够的数据来驱动AI能力的提升;是否有足够的计算能力支撑算法和深度学习?只有在这三个场景同时具备的前提下,人工智能才会有价值。

在2017年,工业大脑走进车间,突破了良品率提升、故障率预测等制造业核心难题,互联网与工业的结合帮助类似协鑫光伏、中策橡胶、天合光能、盾安新能源等大型制造企业创造利润数十亿元。在天合光能,工业大脑帮助其提升了电池片A品率达7%,而之前预设的目标是1%。

机器观察世界,机器学习规律,数据的积累、计算能力的提升,让人工智能由此变得真正聪明可用。

猎豹移动CEO傅盛认为,传统行业的智能化核心是把传统行业数据化,今天人工智能有机会把传统的物理世界数据化。物理世界的数据化是传统行业真正转型的核心。如果实体经济想实现10倍数增长,关键是要实现物理世界的数据化,用更多人工智能的方式,去获取更多来自于这个产业的数据。

2017年,时髦的城市大脑、工业大脑、无人驾驶、无人超市、无人机、语音识别、唇语识别,无一不是人工智能与实体结合的应用。

进入商店的每一张人脸,其实就是每一个访客的访问,在里面顾客拿起的每个动作都可以被识别。进入无人超市看上去是一个人脸识别签到,其实就是一个数据的来回流动。线上和线下没有界限,电商开始进军零售店,融合的前提就是数据化。

傅盛说自己的公司在美国硅谷只干了一件事,就是投了一个小基金,让它每次带自己去看硅谷的创业公司,从中可以知道美国企业在干什么。后来傅盛发现在数字化这一点上,美国公司在做的事情就是把物理世界数据化。

将物理世界数据化,与实体经济结合,降低社会成本,而不是空炒概念,数字对数字,将是人工智能未来健康发展的重要一环。

人才还得自己来培养

得人工智能者得天下,得人才者得人工智能。

人工智能火热自不待言,但是必须清醒认识到,在人才储备和核心技术方面我们尚存突破空间。

打开某知名招聘网站,搜索“人工智能”后马上会出现很多招聘岗位,具有诱惑力的薪酬让人眼前一亮。以人工智能算法工程师为例,该职位少则月薪一两万元,多则年薪百万元。

这种供需不平衡的现象,不仅在中国有,在美国硅谷亦是如此。

早在2016年,创新工场创始人李开复曾公开透露:“在硅谷,做深度学习的人工智能博士生,现在一毕业就能拿到年薪200万到300万美元的录用通知。”

据领英近日的《全球AI领域人才报告》显示,截至2017年一季度,基于领英平台的全球AI(人工智能)领域技术人才数量超过190万,其中美国相关人才总数超过85万,高居榜首,而中国的相关人才总数也超过5万人,位居全球第七。

然而,这些人才仍不能满足互联网行业的需求。不少互联网企业人士告诉记者,目前互联网行业中最稀缺的就是人工智能人才,甚至很多行业巨头会用月薪几十万元招聘人工智能顶级人才。

傅盛表示:“下大力气把海外人才引入中国是合理的,但核心人才还是要中国自己来培养。”

目前,业界对AI人才的争抢近乎白热化,但是“缺口”同样明显。来自第三方数据显示,过去一年中,人工智能人才需求量增长近2倍,2017年第三季度,人工智能人才需求量相较2016年同期增长高达179%。中兴研究院副院长董振江坦言:“去年招人非常困难,在人工智能领域,大家都在抢人,薪酬也一再加码。”

AI技术人才是主导这一变革的中流砥柱。人工智能的竞争说到底是对人才的竞争,在国内人才竞争中,数字挖掘、算法分析、语言识别、自然语言处理是人才竞争的核心。

而在核心技术方面,虽然我国已经取得了多项创新,但主要偏向应用和数据积累,在核心技术方面与美国尚存差距。我国虽然已从跟跑走向领跑,并有了弯道超车的机会,但美国仍是目前出台人工智能战略最多、核心技术和人才最多的国家。

如何在人才和核心技术方面取得突破,将是未来我国在人工智能发展中最需要注意的问题。

意味着更多从业机会

当机器越来越像人,能够做人的工作时,这是否意味着它们会抢走人类的饭碗?

来自互联网业界的声音相对乐观,一个普遍的观点是:人工智能对就业的冲击正在发生,但被取代的主要是重复性的工作。实际上,人工智能也会带来新的职位,让人类可以从事更多创造性的工作。

阿里巴巴集团副总裁刘松对记者说,人工智能将是人类历史上的第四次工业革命,其实每次新的工业革命到来的时候,都有类似“砸饭碗”的恐慌,事实证明,创新带来的更多的是机会。

他认为,未来人工智能意味着更多从业机会。确实会有很多职业被人工智能取代,但人类可以空出来更多时间做创造性的东西,或是享受创造性的内容。这将为设计师、艺术从业者带来更多可能性。

“什么人才最缺,可能是艺术类的创造者,而大量简单重复类工作会遇到冲击。”刘松表示。

数据似乎同样在支撑这样的说法。来自智联招聘的一份研究报告显示,程式化、重复性、依靠反复操作实现的熟练工种已经开始受到冲击,投资银行业务、校对录入这两个典型职位在过去三个季度连续出现大幅同比负增长。咨询公司德勤的报告也显示,人工智能已经在英国取代了80万个低技能工作岗位,但同时也创造出350万个新就业机会,后者的年收入比前者多1.3万英镑。

人工智能的研发者认为,机器永远不可能取代人的作用,人工智能只能解放人类,让人类从事更多的创造性和服务性工作。机械化程度越高的工作,人们越希望由人工智能完成,而需要创作的工作,则需要人类来完成。

问题的关键在于,这些“新饭碗”谁来端?

懂得学习、勇于迎接挑战的人,将是未来端“新饭碗”的人。具体而言,艺术创造者、心理医生等精神层面的从业者,未来将越来越受欢迎,而高危和恶劣环境的稳定岗位将大量被人工智能取代。

相关法规需要不断突破

伴随人工智能的应用不断落地,法律责任的划分和承担是人工智能发展面临的首要法律挑战。其涉及如何确保人工智能和自主系统是可以被问责的。

百度创始人李彦宏第一次正式介绍百度无人车时就遇到了这一问题——他驾驶无人车到会场后不久,就收到了交管部门的罚单。而最近百度无人车在河北雄安进行试驾,当地相关部门特别出台了临时交通规则让其上路,这就是法规上的突破。

由此说明,伴随着人工智能的进步,法规也需要不断取得突破。“无人车收到罚单了,距离大规模上路还会远吗?”李彦宏如此认识这个问题,而在世界各国,关于无人驾驶的立法也正在不断取得突破。

然而,当此人工智能的发轫期,有一个绕不过去的法律问题就是数据隐私保护。

人工智能的发展越来越依赖大量的数据分析,大规模的数据收集、分析和使用,使传统社会走向透明化,在万物互联、大数据和机器智能三者叠加后,人们或许不再有隐私可言。

如今,商家越来越夸大大数据、人工智能给人类的生产、生活带来的极大便利,而用户本身也往往忽视了这些新技术新应用对隐私和个人数据带来的危害。

人工智能能带来精准营销,而精准营销的背后可能就是“精准诈骗”。因此,在发展人工智能的过程中,个人隐私和数据保护是国际社会长期以来重点关注的内容。近年来,随着大数据、云计算以及人工智能新技术的快速发展和应用,给现有个人信息保护法律制度带来了新的挑战,各国立法、修订法律活动更加频繁。

人工智能时代要负起责任

今日头条是过去一年各界争相关注的一个信息平台,基于一种设计后的算法,今日头条作为信息集合平台为用户推荐最感兴趣的内容。由于对用户注意力的精准抓取,今日头条取得了巨大成功,其身价不断增高。

今日头条的成功之处,在于其所谓基于算法的精准推送,但问题的关键还在于,这种算法已经越来越成为一种“看不见的正义”。这种算法是不是用户真正所需要的?对此,一些用户抱怨,往往因误点了一两条新闻,或者仅仅出于好奇点了一下相关新闻,就导致之后不断大量地被推送相关内容的新闻。这实际上也变相剥夺了用户的选择权。

必须明确的是,就目前发展阶段而言,认为算法可以为人类社会中的各种事务和决策工作带来完全的客观性只是一厢情愿。无论如何,算法的设计都是编程人员的主观选择和判断,他们是否可以不偏不倚地将既有法律和道德原封不动地写入程序,值得深究。

算法歧视由此成为一个值得重视的问题。

今日头条的出现说明这样一个问题,算法开始越来越多地左右着移动互联网,比如可以决定你看到什么新闻,听到什么歌曲,看到哪个好友的动态。那么,算法可以做到公平正义吗?

互联网上的算法歧视早已有之,图像识别系统就曾犯过种族主义大错,比如,谷歌公司的图片软件曾错将黑人的照片标记为“大猩猩”。

英国《卫报》曾发表评论指出,人工智能可能已经开始出现了种族和性别偏见,但这种偏见并非来自机器本身,而是计算机在学习人类语言时吸收了人类文化中根深蒂固的观念,从而出现了种族和性别偏见。这些发现令人担忧现有的社会不平等和偏见正在以不可预知的方式得到强化。

篇5

企业纷纷拥抱“智能+”

“在今年年底的时候,您接到一个电话,听起来服务很好,不一定是人,可能是人工智能通过外呼打电话,完全跟人类一样的思考模式和声音,让人分辨不出来是人工智能,还是真正的人。”在近期举行的第二届世界智能大会上,京东集团董事局主席兼执行官刘强东说。

刘强东介绍,京东发展人工智能客服已有6年时间,50%以上的服务是由背后的机器人帮客户提供服务的。特别是客户在使用在线交流工具的时候,90%是利用人工智能技术。“第二代人工客服已经可以精确地对人的情绪进行感知,客户是高兴不高兴,感知非常精准。”

除此之外,京东还把人工智能广泛应用于各个领域。刘强东介绍,京东有57%的产品订单从采购到库间的调拨、销售的预测全部是由人工智能处理,根 本没有人管理。“今年年底的目标是实现94%-95%的SKU(库存量单位)全部实现人工智能进行采购、定价、库间的调拨、补货管理。”

刘强东介绍,京东金融自成立之初就使用人工智能,使得客户审核和放款效率大幅提升。“去年我们放出了将近1万亿贷款,所有来贷款的用户,点个按钮1分钟之内可以收到现金。”

京东只是中国企业纷纷“触碰智能”“转型智能”,实现“智能+”的一个缩影。

“今天语音合成可以模仿任何人说任何声音。”科大讯飞董事长刘庆峰介绍,目前科大讯飞的人工智能翻译达到了大学六级口语水平,预计到2019年底可以达到专业八级水平。最新推出的讯飞翻译机2.0,能支持中文与33种语言互译,许多方言也都能翻译成外语。

“我们的财务服务有一个会计机器人。通过采集、传送各种原始的核算数据,机器人服务可以自动进行识别、智能制单,实现自动记账、形成报表、核算 报税数据。”用友网络董事长兼CEO王文京介绍,用友网络借助人工智能技术,在业务和运营流程自动化、知识工作智能化、数据智能等三个层面为企业“赋 能”,一些客户的工作效率得以提升10%到20%。

与此同时,一些企业还积极利用人工智能推荐内容进行内容创作。北京字节跳动科技公司副总裁马维英介绍,借助移动互联网和智能手机,今日头条可以随时给用户提供需要的信息,可以做到精准定位、精准推送、精准推荐,让用户在任何时候都得到想要的信息。

马维英介绍,今日头条已在体育、财经、房产、商品等垂直领域尝试机器写作。“我们借平台上大量的数据训练机器自动写作。目前这类内容占比相对来说比较低,但是我相信在未来数年,这种机器创作生成的内容会不断增加。”马维英说。

除此之外,人工智能产业正与制造业深度结合,“智能+制造业”成为重要发展趋势。

“TCL目前已经和谷歌、百度、讯飞、腾讯、商汤等人工智能领先企业合作,研发了能够调度多种人工智能技术的开放式平台,推出一系列搭载智能语 音识别AI的人工智能电视和智能AV产品,为用户提供了多种智能服务体验。”TCL集团董事长、CEO李东生介绍,今年第一季度,TCL智能电视在海外市 场持续保持强劲势头,销量同比大幅增长51%。

李东生举例说,“比如华星光电是TCL旗下智能化生产水平最高的产业,目前已经实现了制造、管理和决策等全流程的数据化、自动化及一定的智能化。通过实现智能制造,华星全面提升了生产运营效率,使成本降低25%、产品研发周期缩短30%、生产效率提高25%。”

产业迈向集聚发展

工业和信息化部副部长陈肇雄介绍,截至2017年底,我国人工智能相关企业达到2000多家,人工智能核心产业规模超过180亿元,相关产业规模达到2200亿元。人工智能产业在长三角、珠三角、京津冀三大城市群呈爆发式增长,初步形成了产业聚集的发展态势。

丰富的应用场景与人工智能技术正形成互相促进的“良性循环”。中国科协主席万钢认为,中国新一代人工智能在图像识别、语音翻译、行为分析等方面 已经进入了世界前列;在智能机器人、无人商店、机器翻译、共享汽车、自动驾驶等行业的新产品世人瞩目;在城市规划、智能交通、社会治理、卫生健康、农业科 技和国家安全等领域的应用各具特色。

爱波瑞集团董事长王洪艳认为,目前人工智能与精益管理正为制造业赋能。物联网、自动化领域的最佳应用,无一不是在全价值链精益化的基础上进行的数字化、智能化延伸应用。

华为技术有限公司云BU副总裁陈崇军认为,目前我国人工智能的创新主要是集中在应用创新上。应用创新的核心就是帮助企业处理海量数据,通过行业 专家的训练调优,解决实际问题、产生实际效果。人工智能在企业中的广泛使用可以帮企业管理解决重复劳动自动化的问题、降低管理成本,可以对经营过程中的不 确定性和模糊性进行智能识别和智能决策。

陈肇雄认为,人工智能作为新一轮产业变革的核心新动力之一,成为产品制造业高质量发展关键支撑。

中国工程院院士徐南平等业内人士认为,新一代人工智能技术不断突破和广泛应用,不仅将创造智能化的新需求、新产业、新业态、新应用,而且全面改造经济活动的各个环节,将为我国建设现代化经济体系、实现高质量发展提供支撑。

发展短板亟待解决

与此同时,许多业内人士认为,在看到我国人工智能产业长足进步同时,我国人工智能产业已暴露的问题也需引起关注,需解决“应用强、基础弱”“功能强、防护弱”等问题。

第二届世界智能大会上的《新一代人工智能科技驱动的智能产业发展》报告显示,截至2017年6月,中国累计获得1.57万项人工智能领域的专利,居世界第二。报告同时显示,我国77.7%的智能企业分布在应用层,基础层和技术层企业占比相对偏低。

首先,人工智能技术仍处初级阶段,高端人才培养上仍处劣势。陈崇军认为,人的智能包括识别、理解、推理和判断,人工智能目前只是在某些识别领域 具备了人的能力,适合于具体的特定场景,特别是语音识别、图像识别、翻译等方面。相比人而言,它确实处于初级阶段,只能在已知环境、目标明确、行动可预测 的环境下使用。

美国辛辛那提大学教授李杰说,当前,全世界人工智能人才缺乏,美国保守估计缺乏20万相关人才,而中国的缺口或达100万。由于合格AI人才培 养所需时间高于一般IT人才,缺口很难在短期内得到有效填补。阿里巴巴董事局主席马云也表示,迈向人工智能时代,专业人才是中国和世界共同欠缺的,中国的 人才培养方式亟待转变。

其次,底层技术革新恐被“甩在后面”,“缺芯少魂”极易被“卡脖子”。

徐南平认为,我国人工智能的基础研究还比较薄弱,在基础理论、核心算法以及关键设备高端芯片重大产品与集成,技术材料、元器件、元件等方面有较大的差距。

王文京认为,近年来,我国人工智能产业在应用层面发展较快,产业在企业数量和整体规模上和最发达国家虽有一定差距,但更重要的差距在最底层的理论和技术方面。

《新一代人工智能发展白皮书(2017)》认为,国外企业正凭借领先的技术优势展开全产业链布局。目前,基础层产业的核心技术大部分仍掌握在国 外企业手中,为我国企业自主开展研发带来了不利的壁垒封锁。当前,国内企业及科研机构进一步加强了对传感器、底层芯片及算法等基础层技术的研发力度,以寒 武纪、深鉴科技、云知声为代表的一批国内初创企业在智能芯片和算法模型方面已推动展开相关研发工作,已取得了一定的技术积累。

在人工智能芯片由非定制化向定制化方向发展的过程中,中国仍有被“甩在后面”的风险。曙光信息产业有限公司总裁历军说,我国似乎在一些人工智能 的算法方面不算落后。但人工智能技术的基础是一套先进的面向未来的计算系统,面向未来,中国的人工智能技术的发展基础、硬件、芯片以及它的编程环境可能会 再次出现需要更多依赖国际企业的情况。

中国工程院院士倪光南认为,核心技术是我们最大的“命门”。短期来讲能够从市场上买到一些硬件软件,但是这有可能被人“卡脖子”。大量智能设备出来以后,必须要重视安全性。

紫光集团有限公司董事长兼首席执行官赵伟国说,即使是在智能世界,产业也是脆弱的。“中国要在基础科技领域建立起强大的产业基础。”

第三,“万物皆可互联”带来网络安全风险。

篇6

今年“两会”,“人工智能”首次被写入了政府工作报告,也成为两会代表委员热议的话题之一。

浪潮集团董事长孙丕恕、腾讯创始人马化腾、百度创始人李彦宏、科大讯飞创始人刘庆峰、复星集团董事长郭广昌等代表委员在两会发言中纷纷为人工智能发展建言献策。

如果仔细阅读孙丕恕、李彦宏、马化腾、刘庆峰、郭广昌等代表委员关于人工智能的提案议案,你会发现,他们既是为推动人工智能产业发展发声,也是为各自企业抢占人工智能先机造势。

业界一致认为人工智能技术商业化的拐点已经到来,哪些企业最有机会?显然是那些技术嗅觉敏感、已率先布局的企业更有机会抢占先机。

具有应有场景

和大数据优势的

互联网巨头

BAT是目前国内人工智能的重量级玩家。BAT企业中,百度布局最早,投入力度最大。李彦宏在两会上提交的三项提案均聚焦人工智能。

人工智能已成为百度的核心战略。百度大脑、百度无人车、被称为“人工智能权威”的百度新任总裁陆奇等都成为百度人工智能战略的重要布局,受到业界的高度关注。

据李彦宏介绍,去年和前年,百度的研发投入各有100亿元左右。在李彦宏看来,人工智能技术正在快速发展,大投入才可能有大收益。

与百度在战略上高举高打、重金豪赌不同,腾讯、阿里对人工智能的布局更加现实,主要从现有场景入手,将人工智能结合到现有产品中。

阿里的人工智能是放在阿里DT大商业体系内,配合云计算、大数据对阿里的电商物流乃至物联网体系展开。腾讯则将人工智能紧密围绕内容、社交、游戏三个核心应用场景展开,把人工智能落地在微信、游戏、新闻里面,提升用户体验。腾讯和阿里一样,也把人工智能与腾讯云进行了结合,面向企业市场推出了基于AI的云服务。

由于人工智能技g研发投入大,BAT企业从互联网向AI布局,具有技术实力和资金实力。同时,BAT企业拥有十几年的产品与数据积累,为发展人工智能提供了天然条件。它们在搜索、电商、社交等领域的用户积累和应用场景也有助于人工智能产品实现落地。

给人工智能建设提供“装备”的

IT企业

在互联网投入和建设时期,受益最大的是像思科这样给互联网“淘金者”提供“水”、“铁锹”等工具的互联网设施提供商。当年思科因为抓住了互联网先机快速崛起,当时思科CEO钱伯斯也因此被称为“互联网先生”。

国内老牌IT企业浪潮也是互联网大发展的受益者。伴随中国互联网市场的高速成长,浪潮已成为中国最大的服务器厂商,BAT等企业的数据中心运转着浪潮的服务器和存储产品。

在人工智能建设时期,浪潮也要为“人工智能淘金者”提供“养料”和“装备”。浪潮为此已较早进行了准备和布局。

技术出身、对技术发展脉络有深刻把握的浪潮董事长孙丕恕,较早就看到大数据和云计算的机会,在三年前,浪潮提出做“中国领先的大数据和云计算服务商”,向大数据和云计算领域转型。

如今,浪潮已具备人工智能的三大支撑能力――计算资源、算法资源和大数据资源。

在计算方面,浪潮已经布局多年。无人车测试中,百度实现近90%的识别准确率,这背后依托着采用GPU协处理加速的浪潮服务器。腾讯、阿里、搜狗、今日头条等企业发展人工智能,背后都有浪潮计算力的支撑。

在大数据方面,浪潮从2010年开始投入大数据,目前浪潮的天元数据网已经采集了50PB的高价值数据。人工智能需要大数据“喂养”,浪潮拥有大数据积累。据孙丕恕介绍,浪潮将以天元大数据为依托,加速大数据双创行动在人工智能领域落地。

在云计算方面,浪潮已投资100亿元在全国建设7大云计算数据中心,以行业云的形式提供云计算服务。意识到人工智能在云计算建设中机会巨大,浪潮下一步计划结合人工智能应用,进一步发力云计算市场。

看来,成名于PC时代、成长于互联网时代的老牌IT企业浪潮,有望在人工智能时代焕发新生机。

聚焦某个专业领域的专业人工智能公司

典型企业:科大讯飞

科大讯飞是国内智能语音和人工智能专业领域的领导者。随着在语音技术越来越深入应用,这家曾多年默默无闻的企业,越来越走向前台、受到关注。

在去年10月锤子科技新品会上,锤子科技创始人罗永浩现场演示科大讯飞语音输入功能,随后说了一段话,识别结果一字不差,惊艳全场。

应该说,科大讯飞作为国内早期专注于智能语音和人工智能领域的企业,经过18年的厚积薄发,已进入丰收的季节。科大讯飞不仅拥有大量使用“讯飞语记”的2C用户,更有锤子、华为、IBM这样的2B用户。科大讯飞的产品既可能直接提供给终端用户,也可通过集成到合作伙伴的产品和方案中实现商用落地。

随着人工智能商业化的加速和资本的热捧,会出现更多专业领域的专业人工智能创新公司。比如,上个月被百度收购的渡鸦科技和2016 年2 月由英特尔研究院原院长吴甘沙参与创办的驭势科技,都属于这样的专业人工智能公司。

积极拥抱人工智能“AI+”的各行业企业

典型企业:复星实业

复星集团董事长郭广昌的2017年两会提案主要关注医学人工智能领域,也与复星布局医疗人工智能有关。据了解,复星医药已经在布局达芬奇机器人等产品线。根据财报数据,在去年前三季度复星医疗旗下的达芬奇手术机器人于中国内地及香港地区的手术量达到约8000台,同比增长约49%。

郭广昌非常看好“人工智能+医学”,他认为人工智能也是医学应用的制高点。去年12月10日,复星医药与美国Intuitive Surgical签订战略合作,共同注资1亿美元在上海成立合资企业,主要研发、生产针对肺癌的早期诊断及治疗的基于机器人辅助导管技术的创新产品。Intuitive Surgical据称是全球机器人辅助微创手术的领导者。

和复星实业希望通过人工智能技术抢占医疗制高点一样,奇瑞汽车通过自主研发,并与百度、科大讯飞等合作,加大在无人驾驶、智能汽车领域投入,希望抢占智能汽车市场先机。

可以预见的是,随着人工智能在各行各业的普及,积极拥抱人工智能的传统企业更有机会获胜。

慧眼识珠的产业投资、风险投资、中介等企业

典型企业:创新工场

创新工场的创始人是先后任职微软和Google的李开复。李开复是学人工智能专业出身,他肯定不能放过挖金人工智能的机会。创新工场先后投资了旷视科技(Face++)、驭势科技以及第四范式和地平线机器人(Horizon Robotics)等人工智能公司。根据李开复的判断,人工智能投资已进入“黄金时代”。创新工场还成立了自己的人工智能工程院,由李开复亲自担任院长。

还有一家新成立仅一年多的创司在人工智能圈很知名,它叫“将门创投”。能在短短时间迅速出名,一是因为它聚焦在火热的人工智能领域,二是因为它的管理团队来自微软创投加速器的创始团队,已经积累很多创始企业资源和行业资源。

任何一个有商业化“钱景”的新技术都会受到资本的青睐,人工智能也不例外。

篇7

关键词:人工智能技术;电气自动化控制;应用;探讨

中图分类号:F407.6 文献标识码:A 文章编号:

随着时代的进步与社会的发展以及人们生活水平的提升,对社会生产力的发展水平提出了更高更好地要求。而电气自动化产业作为推动社会经济发展的动力之一,在实际的发展过程中存在着一些问题,需要进行创新与改革,以提升电气自动化产业的生产力水平。将人工智能技术应用到电气自动化控制领域中,不仅有助于优化电气自动化产业的生产控制流程,降低企业的生产成本,而且有助于提升企业的生产效率,增强企业的市场竞争力。

关于人工智能技术的研究

(1)关于人工智能技术含义的研究

所谓人工智能(AI),是指研究开发用于延伸、模拟、扩展人的智能的方法、理论、技术以及应用系统的一门技术科学,属于计算机科学的分支。其意图了解并掌握智能的实质内容并开发生产出一种以人类智能相似的方式作出反应的职能及其,其内容包括语言识别、机器人、自然语言处理、图像识别、专家系统等。其涉及控制论、信息论、仿生学、自动化、心理学、生物学、语言学、数理逻辑、哲学以及医学等多门学科。人工智能技术是指以通过利用机器设备达到智能效果并依赖机器完成复杂性、危险性、难度高的工作的技术。

(2)关于人工智能技术特征的研究

人工智能技术的特征内容包括:人工智能技术伴随着计算机技术的产生与发展而产生,可以在生产生活中代替人类复杂性的脑力劳动,运用计算机设置的编程程序来有效解决难度高、复杂的问题,比如说信息的收集与识别、图形文字的识别,根据数据分析结果制定相应的解决方案,将人类从繁重的工作中解放,减轻人类的劳动强度,提升生产与生活水平。

针对电气自动化存在问题的研究

(1)问题之一——电气自动化的监视系统存在问题

电气自动化的监视系统存在问题的主要表现是:传统的电气自动化监视系统不能完全实现对企业内部电气自动装置与微机机电保护装置的故障报告的监视,操作人员不能直接检查这些信息,对装置设备的运转情况不能完全掌握。同时很多企业对电气自动化设备的监视主要采取中央信号光字牌的手段,但由于电气自动化设备的更新换代速度较快,监视系统对设备运转与故障信息的报告力度已经不能满足企业生产发展的需要。

(2)问题之二——电气自动化的控制系统存在问题

电气自动化的控制系统存在问题的主要表现是:一是很多发电厂的升压站隔离开关操作依然使用较为传统的按钮操作方式,一旦传统的开关接点出现异常状况,会影响整个生产操作流程无法进行;二是很多企业的断路器与隔离开关采取硬操作的方法,不仅无形中延长了操作时间,提升了操作成本,而且增加了操作技术难度与操作人员的工作量。

针对人工智能技术在电气自动化控制中应用的研究

(1)应用之一——人工智能技术在电气控制中的应用

人工智能技术在电气控制中的应用表现:电气控制在电气领域的生产发展过程中发挥着至关重要的促进作用,将人工智能技术应用其中有助于降低电气控制成本,提升日常工作效率。其中模糊控制、神经网络控制、专家系统控制属于人工智能技术在电气控制应用中的主要体现。模糊控制主要通过交流传动与直流传动在电气控制流程中的电气传动过程中发挥应有的作用,其中模糊控制器替代常规性控制器来解决交流传动中存在的难点,而模糊逻辑控制在电气直流传动控制过程中的应用拨款Mamdani 与Sugeno,前者在调速控制中应用最为广泛。而Mamdani控制器的内容包括反模糊化、知识库、模糊化、推理机等。

(2)应用之二——人工智能技术在电气设备中的应用

人工智能技术在电气设备中的应用表现:由于在电气自动化的生产过程中,电气自动化系统的正常运转需要涉及多方面的学科知识与领域,需要专业速度高、业务能力好、富有责任感的操作人员进行驾驭,以保障电气设备的安全运行。而将人工智能技术应用其中,主要通过计算机网络编程与程序进行操作,不仅有助于将操作人员从繁重的手动操作工作中解放出来,代替脑力劳动,而且有助于降低生产成本与人力资源成本,提升电气自动化生产工作效率,提升企业的经济效益。

(3)应用之三——人工智能技术在日常操作中的应用

人工智能技术在日常操作中的应用表现:传统的电气化设备操作流程与步骤十分严格与复杂,一旦出现操作失误会造成严重的操作故障,不仅影响企业的生产进度,而且影响人们正常的工作、学习与生活,甚至会影响社会的稳定与发展。将人工智能技术应用其中,有助于优化电气化领域的操作流程与步骤,或者对家用计算机进行改革以实现对家庭电气设备的远程操作。另外通过有效简化电气化领域的界面操作步骤,存储重要的资料信息,有助于为以后的电气化操了提供资料参考。

(4)应用之四——人工智能技术在故障与事故诊断中的应用

人工智能技术在故障与事故诊断中的应用表现:由于电气自动化领域在生产发展过程中会由于各种各样的原因产生各种类型的故障,如果不能及时地给予准确判断,会给企业或者个人造成较为严重的经济损失。但传统的故障与安全事故诊断方法的步骤相对较为繁琐,且诊断结果的精确率较低。比如说变压器出现故障,很多技术人员所采取的方法是从变压器的油箱中提取少部分油,对其进行分解提取其中的气体,运用化学方法对气体进行实验分析,根据实验结果判断故障的类型与位置。这种类型的方法不仅浪费时间又浪费精力,不利于故障的有效排除。同时在诊断的过程中还可能出现由于故障原因分析错误而导致巨大经济损失的问题。而神经网络、模糊理论、专家系统作为人工智能技术的重要内容,三者相互配合,不仅有助于避免传统诊断事故与故障方法中存在的问题,而且有助于提升故障与事故诊断的工作效率与降低人力资源成本。

(5)应用之五——人工智能技术在电气传动控制过程中的应用

人工智能技术在电气传动控制过程中的应用表现:人工智能技术在电气传动控制过程中的应用主要表现在直流传动与交流传动两个方面,前者包括人工神经网络与模糊逻辑控制,后者包括神经网络与模糊逻辑。其中人工神经网络具有一致性的非线性的函数估计器,在电气传动控制系统的应用过程中不需被控制系统的数学模型,对噪音不具有敏感性。再加上人工神经网络所特有的并行结构适应于各种传感器的输入,比如说诊断系统与监控系统。

(6)应用之六——人工智能技术在电气设备设计中的应用

人工智能技术在电气设备设计中的应用表现是:由于电气设备的设计工作涉及到电路、设计、电气等多个学科的理论知识,运用传统的老技工手工凭经验设计或者实验方法很难达到最好的设计效果。而将人工智能技术应用其中,采取优化设计的方法从产品的研发、设计、成品出售等各个环节进行优化,有助于优化配置企业的人力、物力、财力资源,减少设计时间与研发周期,全面提升产品的质量。其中优化设计的方法包括专家系统法与遗传算法,其中遗传算法以决策变量的编码作为运算的对象,以适应度作为搜索信息,自动获取与指导优化的搜索空间,有助于优化电气设备设计的方案与流程,促进电气自动化控制的发展。

四、结语:

随着科学技术的发展与生产力的进步,电气自动化控制系统在社会生产与生产各个方面中应用较为广泛,给人们的生产生活带来极大的便利。但在现实生活中,电气自动化控制系统在应用过程中存在着一些问题与矛盾,严重影响着电气自动化产业的发展进程。将人工智能技术应用其中,有助于降低电气自动化产业生产过程中的人力资源与物质成本,提升电气自动化产业的生产工作效率,推动电气自动化领域的创新与改革,增加企业的社会效益与经济效益。

参考文献:

[1]周超.人工智能技术在电气自动化控制中的运用[J].硅谷[J],2012(08)

[2]赵勇.关于人工智能技术在电气自动化控制中的运用探讨[J].城市建设理论研究,2011(13)

篇8

2016年3月,在全世界超过一亿观众的关注下,Alpha Go战胜围棋世界冠军李世石,这场赛事是人工智能领域一个重要的里程碑,同时也让人工智能广受社会关注。金融业作为数据高度集中的行业,在人工智能快速发展的时代,也在经历着深刻的变革。

二、人工智能相关概念及发展现状

人工智能(Artificial Intelligence)简称AI。有着人工智能之父之称的约翰?麦卡锡最早提出过关于人工智能的概念,他将其描述为“结合科学技术和机械手段制造出智能机器的过程。”这个概念被沿用至今。我国《人工智能辞典》将人工智能定义为“使计算机系统模拟人类的智能活动,完成人用智能才能完成的任务。”此外,人工智能是计算机学科的一个分支,它是人们运用计算机编程技术实现机器自主学习的过程,从而模仿人类做出决策的一种技术。

从1956年约翰?麦卡锡首次提出人工智能的概念以来,人工智能已经取得了很多的发展成就,除了前文提到的进行棋类对弈,还有自动驾驶汽车,大数据挖掘,生物识别技术以及对金融业影响深刻的各种基于人工智能算法的交易系统。

三、人工智能在金融业的应用现状

(一)金融服务的变革

人工智能的出现虽说没有颠覆传统的金融业的服务,但对于诸如银行业前端业务、证券投资顾问业务、企业和个人的信贷业务都产生了深刻的影响。2015年交通银行推出的智能网点机器人,是国内采用人工智能技术进行金融服务的先导之一,其利用人脸识别、声音识别技术,针对用户需求进行业务引导,甚至可以判断客户的情绪进行工作;国内外很多证券公司都推出了自己的智能投顾,基于对数据的统计分析由计算机系统进行投资组合的管理;很多金融机构的信贷业务办理也可以由客户与智能客服的交互去完成。

(二)风险控制的应用

风险控制作为金融业一个至关重要的环节,也随着人工智能的发展出现了很多新的变化。蚂蚁金服通过分析用户的网购记录数据,针对用户进行信用评级对客户进行授信管理,不论从覆盖范围还是处理效率都远高于人工。京东白条基于高纬的数据模型为依据,应用超过500个消费金融系统中的风控模型,用到超过4万个风控目标,从而判断风险进行授信。这些海量数据靠人工显然是不现实的,但是人工智能的应用很好的解决了这些问题。

针对海量的金融?稻荩?具有深度学习能力的人工智能程序从金融历史数据中自行发现潜在的风险点,如分析信用交易数据,识别欺诈交易,并总结相关经验预测交易变化的趋势,提前进行风险防控。大数据的挖掘还可以应用在与金融业相关的上下游产业分析中,多维度针对具体行业、项目进行风险控制。

(三)资产管理另辟蹊径

人工智能在资产管理中的作用也愈发受到行业重视,深度的机器学习可以分析海量的金融交易数据,并24小时不间断的进行工作,完成高频的投资操作。花旗银行近期就研究报告,从2012年至2015年底,人工智能管理的资产规模从0升至290亿美元,未来管理资产的规模更是有望呈几何级增长,预计会达到5万亿美元。欧美等发达经济体已经有在市场中成熟运行的人工智能资金服务管理机构,Wealthfront和Betterment两家公司就是通过人工智能对资产进行管理,截至2016年2月Wealthfront已经管理了近30亿美元的资产。量化对冲基金的出现也为投资者提供更加多元化的选择,虽然其实际盈利能力还未经过很长时间的考验,但未来量化基金发展、增加已经成为行业趋势。

(四)金融业生物识别技术的应用

从最早的指纹识别开始,人们就在不断探索便捷的身份认证方式。人工智能学科的发展,为生物识别技术带来了前所未有的革新。金融作为私人信息、财富信息密集的行业,更是对客户、机构的身份认证有迫切的需求。面部识别、声音识别、虹膜识别等都是基于复杂的算法对目标进行身份识别管理,通过这些技术的应用大大提高了金融机构管理的安全性,同时也为客户办理业务节省了时间成本。互联网科技的普及为人工智能大展手脚已经奠定了一定的基础,人们可以通过面部识别体统进行取款,登录金融机构的交易软件,完成交易操作,这些应用对于防范金融犯罪有很好的作用。现在各类金融机构都在推出自己的人工智能产品,很多银行已经开始部署智能银行网点,客户进入网点后,通过人机交互即可完成各类业务的办理。对于金融机构来说,可以节省成本并且提供全天候的服务。对于客户来说,可以安全高效的办理业务。

四、存在的风险及展望

人工智能作为一个新生事物,对于金融有着很多积极的影响,但其和任何事物一样都存在着两面性,所以对于人工智能潜在的风险我们也要给予高度的重视。

(一)系统性风险

如果较多市场主体采用了相同或者类似的算法,其“协同”效应将被放大,在交易进行中基于同样的因素采取了相同大量的交易操作,这就有可能导致市场偏离正轨。除此之外,所使用的程序也容易成为被攻击的对象,程序、设备的故障也会增加整个系统的风险。

(二)信息安全风险

人工智能需要对大量的数据进行分析、学习,而这些信息的获取本身就可能成为一种风险。对交易数据、用户信息的深度挖掘,若不是建立在用户授权的情况下,信息来源主体的利益就会受到潜在的威胁。这其中往往包含了很多个人的隐私信息,所以对于信息源头的甄别、管理是人工智能技术能否真的造福客户的一个关键因素。

(三)监管难度的增加

人工智能是计算机通过分析自主决策,所以对于权责主体的界定不是非常清晰,监管所面临的复杂性也随之提高。这就要求监管层面也要根据技术的发展提出应对措施,比如对于交易规则的建立,开发人员的责任划分,操作过程的监控,都是值得思考的。

篇9

一、主要国家支持人工智能发展的政策

以美国、欧盟、日本为代表的发达国家的人工智能技术领先全球。人工智能从诞生开始就没有离开政府的支持,近年来各国政府更是加大了对人工智能技术的科研投入力度,通过公共投资引导人工智能产业的发展。

人工智能的概念起源于美国,最早由约翰・麦卡锡(John McCarthy)和马文・闵斯基(Marvin Lee Minsky)等人1955年提出,随后两人在麻省理工学院创立人工智能研究室,使人工智能成为一门科学。因此,人工智能的技术和应用前沿也位于美国。美国国防部高级研究计划局(Defense Advanced Research Projects Agency,DARPA)、美国战略与国际研究中心、兰德公司均认为,人工智能及其相关的量子计算机、机器人是可能产生新兴技术和颠覆性技术的领域。国际金融危机后,美国制定了一系列重振制造业的政策,以期增强创新能力,确保美国在先进制造业的领先地位。由于先进制造业的知识密集度不断提高,越来越依赖于信息技术、模型和模拟,因此机器人、人工智能等领域成为美国产业政策的支持重点。在2011年的“先进制造伙伴关系计划”中,美国就将先进机器人技术列为关系美国全球竞争力提高的新兴技术,并投入7000万美元支持新一代机器人研发。在2013年初的国情咨文中,美国总统奥巴马宣布投入30亿美元在10年内绘制出“人类大脑图谱”,从而促进人工智能、机器人和神经形态计算系统的发展。2015年10月美国国家经济委员会和白宫科技政策办公室联合了新版《美国国家创新战略》将计算计算技术前沿(高效计算)列为大力支持的战略领域之一,以推动经济竞争力、科学发现和创新。2016年2月,机器人有史以来第一次成为年度《总统经济报告》的关注对象,希冀美国制造业凭借机器人获得复兴。

欧盟在2013年初将“人脑项目”(Human Brain Project)列入“第七框架计划”(FP7)中的信息通信技术(ICT)研究子计划,10年投入10亿欧元,力图为基于信息通讯技术的新型脑研究模式奠定技术基础,加速脑科学研究成果转化。在此基础上,开发将神经形态计算装置与常规超级计算技术相结合的综合技术,推动神经形态计算和神经机器人技术的发展以及在家庭、制造业和服务业的应用。“第七框架计划”在2013年底结束后,欧盟新的研究与创新框架计划――“地平线2020”启动,将在“未来和新兴技术”(FET)领域投入26.96亿欧元,以期在具有可持续性、竞争力和增长优势的未来科技领域占据领导地位。FET划分为“开放基金”、“探索基金”和“旗舰基金”3类基金,其中探索基金支持的重点就包括未来机器人和其他人工智能系统。2014年,欧盟启动“火花”计划,到2020年投入28亿欧元用于民用机器人的研发。

日本在机器人产业具有明显的国际优势,世界四大机器人巨头中有两家位于日本,分别是发那科和安川电机(另两家是瑞士的ABB和德国的库卡),而且在服务机器人领域全球领先,日本软银公司Pepper人形机器人能够进行语音交流和客户服务。为确保世界机器人创新基地和世界第一机器人应用国家地位、引领迈向世界领先的机器人时代,日本政府在2015年初《机器人新战略》,计划到2020年累计投入1000亿日元用于机器人扶持项目。由于机器人与信息技术日益融合的趋势,特别是人工智能技术将使机器人能够适应智能制造、服务和家庭生活更多的场景,日本文部科学省在2016年拿出100亿日元预算用于支持研究机构和大学开展人工智能研究,如护理型机器人的人工智能程序、无人驾驶汽车、智能化的农业机械等。

二、主要企业人工智能的发展情况

鉴于人工智能技术的巨大发展潜力,一大批ICT领域的著名企业纷纷发力,新兴企业也如雨后春笋般成立。目前全球人工智能企业近千家,其中IBM、谷歌、微软、Facebook等美国信息和互联网企业居于领先地位。

IBM很早就开始人工智能的研究。早在1997年,IBM的超级计算机“更深的蓝”就在与世界国际象棋大师卡斯帕罗夫的对弈中获胜;2011年,IBM的超级计算机“沃森”又击败美国电视智力竞赛节目《危险边缘》的两位人类冠军。此后IBM斥资10亿美元推动沃森系统的产业化应用,例如为癌症患者推荐个性化治疗方案,协助理财规划师提供更好的理财建议,帮助金融机构发现风险与客户需求。2016年,IBM与美国劳伦斯・利弗莫尔国家实验室签署首款类脑超级计算平台的订单,该平台基于IBM TrueNorth 的突破性神经突触计算机芯片,能耗更低、体积更小,能够比传统芯片更高效地处理复杂的认知任务,除用于国防安全领域外,在因电力和容积问题而导致计算能力受限的条件下具有广泛的应用前景。

AlphaGo战胜李世石使谷歌在人工智能领域的名声大震。实际上,谷歌2011年就在其著名的Google X实验室建立了内部代号为Google Brain(谷歌大脑)的人工智能项目。2013年6月,谷歌使用1000台电脑创造出包含10亿个连接的“神经网络”,在没有外界输入“猫是什么样的”情况下,就能通过机器学习的方式在图片中找出有猫的图片。2014年,谷歌在人工智能领域进行了一系列收购,包括神经网络创业公司DeepMind Technologies、机器自我学习式图片搜索方案提供商Jetpac、专注于计算机深度学习和自然语言处理的Dark Blue Labs、专注于计算机深度学习和视觉识别的Vision Factory,从而在深度学习、神经网络、计算机视觉、语言识别和自然语言处理等人工智能前沿领域占据优势。谷歌基于人工智能技术的无人驾驶汽车已进行了累计150万公里的路测。

Facebook为了应对支撑超过十亿用户的巨大计算量,在2013年成立了人工智能研究室(Facebook Artificial Intelligence Research,FAIR),2015年又成立了机器学习应用团队(Applied Machine Learning team),负责运行一个覆盖全公司的机器学习内部平台――FBLearner Flow。Facebook也开发了一套围棋人工智能系统,代号为Darkforest,在2016年世界规模最大的电脑围棋大赛UEC杯中获得第二(第一是日本团队开发的Zen,AlphaGO并未参赛)。微软在2014年推出了虚拟个人助理服务Cortana和人工智能对话系统“小冰”展示了具有强大图片识别能力的全新人工智能系统“亚当”(Adam),并在测试一款名为Tay.ai的新型聊天机器人。

国内互联网公司也在积极推动人工智能技术的发展。2013年除,百度成立深度学习研究院,2014年在硅谷成立深度学习研究中心。目前,“百度大脑”已具备大约相当于2至3岁孩子的智力水平,百度图像识别能力已达到国际一流。阿里巴巴集团的云计算部门阿里云推出名为DT PAI的人工智能服务,该平台整合了阿里巴巴的机器算法和深度学习技术,为开发者提供云测用户行为的服务。阿里云的人工智能系统“小Ai”成功预测了在今年4月9日举行的《我是歌手》第四季总决赛歌王。腾讯在4月初宣布研究长达11年之久的人工智能系统贝塔鹅(Betae)即将上线使用。

三、促进我国人工智能发展的建议

人工智能作为一项通用目的技术,不但自身具有发展成为巨大产业的潜力,而且将广泛应用于国民经济的各个产业、家居生活和国防安全等领域,成为影响国家综合实力和产业国际竞争力的关键。近年来,受人口红利消退、生产要素成本快速上涨的影响,我国制造业建立在低成本基础上的价格优势正在被削弱。在发达国家重振制造业和低成本发展中国家大力发展劳动密集型产业的双重挤压下,我国产业结构调整和制造业的转型升级迫在眉睫,人工智能将是拓展新兴产业领域、提高制造业生产效率的重要手段。同时作为一项新兴技术,我国与发达国家的差距并不显著,且我国已经形成一批世界级的互联网公司、拥有巨大的市场容量,是我国抢占产业制高点的历史契机。

篇10

【关键词】少子老龄化人工智能时代现状应对策略

引言

人口老龄化是指一个国家“岁以上人口占总人口的比例超过7%,这表明人类可以活得更健康、更长久。但与此同时,新一代人口增长速度低于上一代入口自然减少的速度也带来了一系列严峻的挑战。日本是世界上少子老龄不巨见象最严峻的国家之一。日本政府借力人工智能所带来的“第四次产业革命”的红利,着力解决少子老龄化带来的社会和经济问题。近20年来,日本实施一系列的少子老龄化对策,希望提高总和生育率,降低人口缩减的速度,解决少子老龄化危机下的人口老化、劳动力短缺、医疗及养老等社会问题。

一、人工智能时代的来临

人工智能(ArtificialIntelligence),亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。人工智能的发展是不可逆转的潮流,各国政府纷纷采取积极的态度,在政策和资金上大力扶持人工智能产业的发展。日本作为全球科技最发达的国家之一,更是将人工智能作为刺激经济增民和解决少子老龄化问题的关键。日本政府制定了“人工智能战略”,在“人工智能技术战略会议”上,提出人工智能产业化路线,将2017年确定为人工智能关键年,各政府部门对人工智能的研发给与资金支持。此外为了避免人工智能对社会道德、法律等带了的消极影响,日本政府了《人工智能网络化的影响与风险:实现智慧网络社会需解决的问题》报告和《人工智能与人类社会》报告,旨在使人工智能的使用更加合理,避免恶意使用人工智能的情况发生。

二、日本少子老龄化的现状

少子老龄化是指一方面由于总和生育率降低以及医疗发达、国民平均寿命延民等原因,儿童占总人口比重降低,另一方面“岁以上老龄人口的比例提高的社会现象。根据联合国世界卫生组织的传统标准,60岁以上公民被定义为老年人,一个地区60岁以上老年人达到总人口的10%则被视为步入老龄化社会。65岁以上人口比率超过21%的话,就可以被称为“超老龄化社会”。根据日本国立社会保障人口问题研究所的预测,日本老龄人口比例在2020年将达到26.9%,2035年老龄人口比例将达到33.4%,日本已经毫无疑问地步入了“超老龄化社会”。

另一方面,二战结束后的1947年至1949年,日本出现了第一个生育高峰,平均每年有270万人出生。随着第一次生育高峰的出生人群进入适婚年龄,1971年至1973年日本又出现了第二次生育高峰,最高时每年出生人口达210万。但此后无论是出生人口数量还是总和生育率都在下降。如果一个国家的总和生育率超长时间内低于维持人口长期稳定发展的更替水平(2.1),被称为少子化;如果长时间内低于1.3,则被称为“超少子化”。2005年日本《少子化社会白皮书》指出,日本已经进入“超少子国家”。

根據日本国立社会保障人口问题研究所的调查估计,日本的总人口预计2030年为,亿1,662万人,2048年将不足一亿,下降到9,913万人,2060年预计达到8,674万人。按照这样的人口总数来看,劳动力人口到2060年将降到至50.9%,与此相对应老龄人口将上升至39.9%。也就是说,1位老龄人口需要2位劳动力人口支撑,可以说成为非常严峻的社会问题。15岁至64岁被誉为“劳动力人口”,65岁以上可以从现在从事的工作上退休下来,被称为“老年人”。在日本,国民20岁成年后需要交纳年金的保险费,到“岁后可以获取年金。实际上是现在的劳动力缴纳的年金成为老龄人口的年金。那么随着少子老龄化的推进,会出现什么社会问题呢?因为缴纳年金的劳动力人口变少,获取年金的老龄人口增加,所以人均缴纳的保险费变高。这样就导致经济负担加重,在经济上养育孩子的经济能力变小,形成恶性循环。

三、日本少子老龄化的应对策略

2018年日本原总务大臣、创成会议主席增田宽也在清华大学的讲座“日本的人口减少及其应多策略”中提到“要解决人口问题还需要举全国之力,从国家层面做出政策,而且仅靠中央政府还不够,还需要地方政府一起努力,各个部门互相协作。例如,要想解决老年人护理问题,一是要有足够的从财政支持,二要有专业护理人才,此外还需要通过新技术包括人工智能、机器人等提升护理水平。最后,还应在城市设计和建设上充分考虑老龄化的影响,这其中就包括了财政部、负责劳动合同人口政策的部门以及相关技术产业部门和负责城市开发建设的部门。”

(一)年金保险制度改革

随着人口老龄化,每年用于支付年金的财政支出越来越多,另一方面,少子化导致的劳动力人口减少劳动力人口养育子女的经济负担增大。日本政府认识到少子老龄化是日本迫在眉睫需要解决的社会问题。在日本社会保障制度方面,进行了一系列改革。

首先,社会保障制度的收取方式进行改革。2004年开始,日本政府开始调整给付年龄,延迟退休这一提议开始兴起。按照劳动法的规定60岁退休,如果本人申请,可以延迟退休年龄,同时导入“继续雇佣制度”。随着少子老龄化的推进,到2025年将要面临更加严峻的少子老龄化问题。日本政府甚至提案将老龄人口的那个界限由65岁提高至70岁至75岁。另外也有提案将年金的领取年龄提高至70岁以后开始。其次,提高了劳动力人口的保险费用金额,增加了劳动力人口的保险费负担。为了应对不断增加的保险费用额度,采取了增税的形式。同时以发行国债的方式来实现。

(二)海外移民玫策调整

日本现在少子老龄化问题进展下去的话,劳动力人口越来越少,老龄人口越来越多。劳动力人口不足、医疗、养老护理等方面将面临人手不足、养老金支出带来的政府财政压力等严重问题频发。为了解决这一系列问题,日本调整了海外移民政策,如2006年的“永久居留新准则”、2006年和2007年的“经济伙伴关系协定(EPA)”批准、2008年的"30万交换生午餐计划”、2010年的“面向第三世界的难民的相关计划”、2012年的“技术移民积分制度”等。内阁府通过反复调查论证指出,如果每年引入20万人的话,日本人口能够维持在1亿人以上,在一定程度上缓解老龄化问题。但是,海外移民也会带来“日本的文化信仰危机”、“社会治安问题”,所以日本政府在全面开放外人劳动力人籍、永住政策以及接受国际难民等方面,持保守态度。

(三)改善育儿养老环境,大力发展老龄产业

2003年被誉为日本少子化对策元年,日本政府开始推进积极的少子化的应对政策,制定了《关于培养支援下一代的当前方针》;2004年进一步具体花了相关政策,出台了《少子化社会对策大纲》;2013年内阁府通过了《少子化危机紧急对策》。少子化政策实施20多年来,日本社会的保育机构,女性在职育儿保障制度及育JL补贴等各个方面不断完善,对缓解少子化进程发挥了一定作用。

在20世纪七十年代,日本政府提出了老龄产业的概念,2000年开始,老年人长期护理相关产业逐渐成为新领军行业,与养老产业相关的医疗、福利相关产业得到了快速发展,老年服装、食品、保健、养老看护等服务行业,形成了有一定市场规模、相对成熟的老龄产业。

(四)导入人工智能及机器人

日本政府高度重视人工智能的发展,为了弥补劳动力不足,机器人及人工智能得到了广泛的关注,被称为“第四次产业革命,’。还在国家层面建立了相对完整的促进机制,希望通过大力发展人工智能,保持并扩大其技术优势,逐步解决人口老化、劳动力短缺、医疗及养老等社会问题。日本政府设立“人工智能技术战略会议”,由总务省、文部科學省和经济产业省协作推进入工智能技术研发及应用。比如,无人售货的商店里没有收银员,机器人和人工智能在汽车制造业的导入,能够提高生产率。将人工智能技术应用于养老产业、医疗护理产业,让老龄劳动能够继续工作,从而缓解日本社会劳动力不足。

四、结语