关于数学建模的问题范文

时间:2024-01-05 17:44:39

导语:如何才能写好一篇关于数学建模的问题,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

关于数学建模的问题

篇1

把传统的应用题改为当前《义务教育数学课程标准(2011年版)》(以下简称《课标》)中的解决问题,当然不是一个简单的更改名称问题。《课标》编制组主要负责人之一孙晓天教授曾说过:“解决问题脱胎于应用题,但绝不同于应用题。”

在常人眼里看来,传统的应用题教学似乎应该是与数学建模格格不入的,实际上,如果我们仔细阅读《应用题的本质是数学建模》一文,就不难发现,“应用题的本质是数学建模”。

因此,无论是传A统的应用题也好,还是现在《课标》提倡的解决问题也好,其实质归根结底都是“数学建模”:“只有同时重视学生在解决问题中的思维跨度——完成两个转化,才能大面积有效地提高解决问题的能力”,才能真正实现《课标》中提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展”这个最根本的目的。

运用苏教版教材初次教学速度时,本人意识到,这是小学生初次接触速度这个概念,首次建构相关的数学模型。因此本人结合教师用书中的教材编写的意图、教学目标、教学建议,结合《课标》中关于数学课程的说明,结合多年的具体教学经验,在具体教学时应非常明确地贯彻“解决问题的前提是理解概念,解决问题的关键是建构模型,解决问题的途径是学会策略”的理念。

查找资料,精心准备。在初次进行速度教学时,本人特意事先布置学生了解、测量自己步行、跑步的速度(为方便起见,没有采用时速,而是以一分钟为例,毕竟分钟也是一种单位时间),除此之外,还布置学生通过不同的渠道查找自己知道的一些交通工具的运行速度。这些由学生查找出来的交通工具的时速,都可作为本单元学习的资源。

创设情境,理解概念。具体教学时,可由学生熟悉的“比快慢”入手。在“比快慢”时,教师可有意识地引入学生现实生活中的例子,一组是路程相同时,比什么;一组是时间相同时,比什么。这样一来,既可以比快慢,更重要的是,可以借助这两组例子,引导学生明白,快慢(也即下文的速度)同路程、时间有密切的联系。

在学生回答的基础上,教师进行引导:路程相同时,比时间;时间相同时,比路程。也就是说,速度同路程、时间有关,确切地说:“物体在单位时间内通过的路程的多少,叫作速度。”

建构模型,解决问题。教师出示现实生活中的三个情境问题,分别同步行、骑自行车、开小汽车有关,分别要求学生在已知两个量的情况下,学会求第三个量。在上述基础上,引导学生刻画速度、时间和路程三者关系的模型:速度×时间=路程。教学时,侧重于将书本上的例题与学生生活中的实例有机结合起来,让学生从自己熟悉的物体简单运动的常识出发归纳出速度、时间和路程之间的关系,并用这个关系去解决实际问题。通过解决简单行程问题,引导学生自主探索速度、时间和路程之间的关系,构建数学模型:速度×时间=路程。

行程问题在小学五六年级当中多次出现,并且呈现出越来越细、越来越深、越来越难的趋势。因此,行程问题需要我们教师在教学时,除了大家公认的分析法和综合法之外,还要引导学生学会一些常用的解决问题的具体策略:

(1)动手模拟。有这样一种类型的行程问题应用题:假设一列自身长度为200米的火车运行速度为40米/秒,它通过长为3600米的隧道需要多少时间?

这一类题目,不少学生不仔细审题,马上会想当然地认为是3600÷40=90(秒)。因此,在具体教学时,我往往是引导学生“模拟操作”——以书本作为隧道,橡皮作为火车,看看到底什么时候才算真正意义上的通过。只要这样“模拟操作”,绝大部分学生就能够恍然大悟,只有当火车车尾通过隧道,火车才算真正意义上的通过。

采取“模拟操作”的策略,有助于学生在亲自动手的过程当中真正理解题意,了解有关路程这个变量的确切数值,从而有利于学生顺利解题。

(2)学会画图。画示意图比起模拟操作已经抽象了一步,它等于是去掉了题目中的次要成分,抓住问题的主要成分,有利于学生更加清楚地思考问题,提炼题目中的数量关系。

(3)抓住关键。教师在教学行程问题时,应该引导学生学会抓住关键语句,进而有助于学生理解行程问题中牵涉到的时间、速度、路程三者之间的数量关系。还是以前面所述“火车过隧道”的例题为例,当学生出现错误时,教师同样可以引导学生抓住有利于分析、解决问题的关键语句——“通过”一词。真正理解了“通过”一词的含义,才能够明白题目当中的“路程”不仅仅是指隧道的长度3600米,而应该是隧道长度外加火车自身长度(3600+200=3800米)。只有这样,才能够正确解题。

篇2

一、小学数学模型思想

在整数的运算中,学生掌握的整数四项基本单向运算的方法是小学接触的数学模型,十进制是表示数的基本模型,是日常生活中使用最多的计数方法。一年级学生接触的“凑十法”与“破十法”就是以其为基础“一看(看大数)、二拆(拆小数)、三凑十、四连加”的思考过程,实际上就是学生在教师指导下建立的较为复杂的数学模型。因此,在小学生的数学教学过程中,不可避免地要用到数学建模思想。

二、开展数学建模活动的途径

数学建模活动的开展是为了培养学生的思维能力以及创新能力,因此,在小学数学教学中要革新思想,用数学建模的思想去进行数学教学。开展数学建模活动需要老师和学生的共同努力,老师要加强对数学建模的重视,在教学过程中渗透建模思想,学生要积极配合老师,团结合作共同完成建模过程。

数学建模的过程离不开资料的收集,因此,教师可以结合教材创造数学情境,让学生在学习的过程中获得“搜集资料、建立模型、解答问题”的体验。例如,西师版教材中三年级上的第九章的总复习――数学文化:中国的四大发明之一――指南针,四面八方,平年、闰年的来历,可以通过让学生收集资料,并解答相应的问题,通过合作、收集资料、解答的过程体验数学建模。

上好实践活动课程对学生模仿建模有很好的指引作用,老师在教学过程中给学生提供信息资料,引导学生进行问题分析以及资料的收集,提高学生的思维能力。结合教材内容,对教学内容进行整合,并融入生活中。例如,西师版教材中实践活动――做一个家庭年历,结合生活实际,同时在要求学生理解年、月、日概念的情况下,考虑当下的问题背景:今年是什么年份,有几月,一月有几天,并对年历进行设计规划,是一个很好的建模过程。

改编教学习题,使数学建模成为一种自觉行为。例如,在西师版小学数学中关于圆柱体和正方体体积的计算中,通过建立数学关系,探讨圆柱与正方体的关系,在体积相同时,圆柱的底面半径、周长、高与长方体的长宽高的联系(圆柱的底面半径等于长方体的高,底面周长等于长方体的长,圆柱的高等于长方体的宽),进而解决练习题中关于圆柱和长方体体积的转变计算。

三、数学建模思想在小学数学教学中的应用

篇3

建模思想小学数学教学应用一、建模思想简述

要把建模思想应用到小学数学教学中,首先要解决的就是什么是数学建模。所谓的数学建模,就是利用数学模型对现实世界的某一特定对象,为了某个特定目的,根据特有的内在规律,做出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。它或者能解释特定现象的现实状态或者能预测对象的未来状态,或者能提供对象的最优决策或控制。在这里,数学模型被看成是一个能够实现某个特定目标的有用工具。从本质上说,数学模型是一个以“系统”概念为基础的,关于现实世界的一小部分或几个方面抽象的“映像”。也有人说,所谓的数学模型就是应用数学的艺术。

二、将建模思想应用到小学数学教学中的策略

接下来根据建模思想的内容以及小学数学教学的实践经验,简单地介绍一下将建模思想应用到小学数学教学中的方法,主要有以下三点:

1.感知积累表象,学习铺垫进行思想渗透

要建模,首先就要对想要进行建模的对象有一定的感知基础,找出事物之间的共性,并根据他们的共性进行数学建模。教师应该充分提供有利条件,锻炼学生的感知能力,为学生感知事物的共性创造可能,进而为准确地建立数学模型提供必要的前提。教师们在教学的过程中也要注意新旧知识的联系,应用旧的知识为新的知识的学习进行铺垫,进一步降低数学知识的抽象程度,使得学生更容易掌握新的知识。例如在认识分数的时候,教师可以运用不同的模型去引导学生,如把绳子平均断成几段,平均分苹果等,也可以采用涂方格等方法,从不同的角度运用不同的模型对学生进行引导,并且引导学生找到这些不同模型的共同点,这样做可以帮助学生积累足够的表象,从而提高感知程度,寻找不同模型的共性,加深学生对分数的理解和认识,帮助他们更好地学习数学。

2.认识事物的本质问题,应用建模思想建模

建模的思想与过程并不是独立在数学教学之外的,他和数学的教学过程是紧密相连的。数学建模,是帮助认识事物、学习数学的一个工具,是运用数学建模思想建立数学模型并且来解决数学难题的一个过程。所以要将他和数学教学组成一个有机的整体,教学过程中不仅要帮助学生完成建模,更要带领学生认识到数学建模的本质,领悟到数学建模思想的真谛,传授建模思想并逐渐引导学生使用数学建模,更加容易地解决数学学习过程中遇到的问题,帮助学生更好地学习数学知识,提高对数学学习的兴趣,锻炼学生解决数学问题的能力。例如,在学习平行线的过程中,如果仅仅使用五线谱、双杠、斑马线等一些素材,而没有透过现象看本质,就失去了意义。教师在教学过程中可以提出问题,平行线为什么不能相交,然后让学生动手测量两条平行线之间的垂直距离。经过这样的一系列过程,学生就可以自主构建起关于平行线的模型,认识到了平行线的本质内容,达到了教学的目的。

3.优化建模过程,对建模进行外部拓展

教师在教学过程中教材是必不可少的工具之一。教师在教学的过程中要充分利用教材,小学课本上有很多生动的实例,这些实例都是和教学主题相关度很高、很典型的实例,并且这些实例贴近生活,而且在小学生接受的范围之内。由这些事例可以引申出很多的数学模型供在教学中使用。对教材要进行深度的把握,充分挖掘教材在建模上的作用。例如,在学习加减法的时候,教材上会有很多关于数小鸡小鸭的例题,其实这些实例本身就是很好的数学模型,在教学中,教师可以使用数手指,数班级人数等的方式来建立数学模型,这样的数学模型更加贴近生活,更加贴近教材,更加容易被小学生接受,并且这样建立数学模型可以提高学生的参与程度,提高他们的学习兴趣,对于数学模型的理解也更加深刻。

三、结语

总之,数学建模思想是非常重要的一种数学教学思想,它的应用之广,效率之高,就可以反映出来它的重要性。运用数学建模思想进行教学,目前的发展还不是很成熟,需要广大教师的共同努力,在不断地进行教学实践过程中进行经验总结。随着社会的不断发展,人们对数学的认识肯定是越来越成熟,建模思想在数学研究上发挥的作用肯定越来越大。在小学数学教学中不断地渗透数学建模思想,是符合时代的要求和数学发展模式的要求的。伴随着它不断地成熟,数学建模思想会在数学发展史上留下辉煌的足迹。

参考文献:

篇4

关键词:数学建模 日常生活 数学化生活

一、数学模型和数学建模基本含义

数学模型:在准确把握事物系统内部具体突出特征和关系的基础上,整合抽象关系表现,运用数学语言进行近似概括和表达,生成一种数学结构系统。数学模型的建立是类似性反映客观存在形式和各种复杂关系的方式。[1]

数学建模:是在现实生活中建立数学模型来解决问题。

二、数学建模程序

数学建模在理论上只是对于具体数学模型的宏观规范,需要在实际操作中进行必要具体问题的具体分析,达到数学建模形式的灵活运用。[2]

数学建模的一般程序:

1.准备模型。此阶段的实现是建立在对于实际问题的熟悉基础上,熟悉问题出现的原因、背景,明确数学建模所要实现的目的。

2.建立模型。在准备的基础上,对于收集的数据和资料进行分析和处理,利用数学语言找出假设条件,保证数学语言的相对精确性。具体问题所涉及到的相关变化因素以及其中的不确定关系需要数学工具的恰当协作,建立起数学模型。其具体数学模型可以包含方程、不等式、图形函数和表格等。注意在建模时,为了达到模型的广泛普及和推广,应该力求数学工具的简单化。简单化的建模工具可以贴近现实生活,可以广泛被采纳、接受和运用。

3.求解模型。求解模型需要利用数学工具,数学工具可能使用到方程、逻辑推理和证明、图解等直观或间接方式。模型求解的结果需要根据实际问题各因素关系的正确分析加以确定,结果分析中需要根据结果预测数学公式、完成最优决策的选择和控制的最佳实现。最优决策的选择是解决实际问题中比较常见的难题,在综合衡量多种选择的前提下,进行最优的选择是关键的决定,而数学模型的建立可以在数学工具的辅助下,更快、更简洁、更直观的实现选择最优化,解决实际问题。

4.检验模型。模型建立后综合分析的结果完成后,需要及时将分析结果归于实际生活中,进行检验。检验模型建立的正确性和科学性要利用实际现象和数据对模型相对应的数据和结果进行对比分析,分析其吻合性和出入性,准确把握数学模型的合理性和实用价值。数学建模的成功性认定,一般要求模型在解释已知现象的基础上,还有进行超越性的预测未知现象的能力和价值。建模检验过程中,模型假设可能存在问题,其确定原因一般来源于检验过程中,结果与实际不符合,但是求解过程无差错的情况。模型假设错误的弥补措施主要是及时修改和适当补充,以弥补其错误性。在修改和补充模型假设时,当结果相符合,精度达到规定要求时,可认定为模型假设可以使用,那么模型也可以实现其应用价值和推广功能。

三、数学建模与生活中最优化问题

最优化问题包括工农业生产、日常生活等方面,方案优化的选择、试验方案的制定等均涉及到数学建模的应用。对于最值问题,一般的方法是通过建立函数模型的方式,将实际问题和方案转化为函数形式,求最值问题。方案的最优化类似也是建立起不同方案的相应函数。[3]

例如:

1.有关房间价格最优化问题

星级旅馆有150个客房,其定价相等,最高价为198元,最低价为88元。经营实践后,旅馆经理得到了一些数据:当定价为198元时,住房率为55%;定价为168元时,住房率为65%;定价为138元时,住房率为75%;定价为108元时,住房率为85%。如果想实现旅馆每天收入的最高值,每间客房应怎样定价?

数学建模分析:

据数据,定价每下降30元,入住率提高10个百分点。也就是每下降1元,入住率提高1/3个百分点。因此,可假设房价的下降,住房率增长。

建立函数模型来求解。设y为旅馆总收入,客房降低的房价为x元,建立数学模型: y=150×(198-x)×0.55+x 解得,当x=16.5时,y取最大值16 471.125元,即最大收入对应的住房定价为181.5元。这里建模的关键是把握房价与住房率的关系,模型假设二者存在着某种线性关系。

2.生活中的估算―挑选水果问题

关于挑选水果挑选最大个的水果合理性问题分析与思考

首先从水果的可食率角度分析。水果尽管种类繁多形状不规则,但总体来说较多的近似球形。因此,可以假设水果为球形,半径为R,从而建立一个球的模型。

挑选水果的原则是可食率较大。依据水果的果肉部分的密度是比较均匀的原理,可食率可以表示为可食部分与整个水果的体积之比。

2.1对于果皮厚、核小的水果,如西瓜、橘子等。假设水果的皮厚度差异不大,且是均匀的,厚为d,可推得:可食率==1-

2.2对于果皮厚且核大的水果,如白梨瓜等。此类水果可食率的计算需要去掉皮和核,才能保证其可食率计算的准确性。设核半径为k*R(k为常数)。那么,可推知:可食率==1-3-k3 ,其中d为常数,R越大说明水果越大,水果越大,其可食率越大,越合算。

2.3有些水果皮薄,但出于卫生考虑,必须去皮食用,如葡萄等。此类水果与(1)类似,可知也是越大越合算。

关于挑选水果最大合理性的数学建模的关键在于:首先从可食率切入,模型假设之前分析水果近似球形的较多这一特性,假设球型,建立数学模型,将求算可食率转为求算水果半径R的便捷方式。

生活中涉及到数学建模的应用很多,初等数学知识是解决实际问题的重要途径和有效方法。数学建模应该紧密的联系生活实际,将数学知识综合拓展,使数学学科的魅力和情景呈现出新的形式和样貌,充满时代特征。数学建模生活中的应用有利于解决实际生活的种种难题,进行最优选择和决策,同时还可以培养思维的灵活性和深刻性,增加思维方式转变的速度和知识的广泛性和创造性。

参考文献:

[1] 《中学数学应用》 金明烈 新疆大学出版社 2000

篇5

【关键词】数学建模;基础课程

一、现状及存在的问题

最近一些年来,数学建模活动日益受到国家和教育部的重视。教育部连续多年委托全国大学生数学建模竞赛组委会组织全国性的数学建模竞赛活动。可以说,参与数学建模的积极性和所取得的成绩,越来越成为评价一所高校数学教学和科研水平的重要指标;数学建模活动本身也已经成为高校展现自我风采,树立学校形象的重要舞台。除了社会层面的积极影响外,数学建模活动对于推动高校内部的教学改革也起到了至关重要的作用。数学建模将抽象理论与社会实践相结合,不仅提高了学生学习数学的积极性、主动性,而且调动了教师不断提高自身业务水平,积极参与教学改革的动力。目前数学建模活动在各高校有着广泛而良好的师生基础。学校老师参与的积极性也很高。每年都有参赛队伍获得国家和地区的数学建模竞赛大奖,为学校赢得了荣誉。然而,在取得巨大成绩的同时,我们也应该看到,数学建模活动还存在一定的改进和提升空间。这主要体现在以下三个方面。第一,目前数学建模相关课程设置存在一定的局限,主要表现在课程数量较少,并且大部分是以大班选修课的形式授课,因此难以挖掘优秀的数学建模人才,难以做到有针对性的教育和对优秀学生的重点培养。第二,既有的建模课程一般采用单独讲授建模相关知识的方式,而与现有的数学基础课程如高等数学、线性代数、概率论等内容分离。第三,关于数学建模的课外活动匮乏,致使参加全国数学建模大赛的参赛队伍都是赛前集中培训,缺乏系统连贯的日常积累。基于数学建模活动的实际情况,通过组建数学建模课外活动小组的方式,达到以下目的:第一,将数学学习从课堂延伸到课外,帮助同学将课堂所学的抽象数学知识,在课下得以应用。从社会实际问题出发,让学生亲自参与到问题解决的过程中。第二,在活动中,教师研究课外活动组织形式的有效性,增强学生间、师生间的有效互动,进而提高学生自主创新能力。第三,研究数学建模活动对基础课程体系改革的辅助作用,使之成为数理知识体系改革的有利工具。

二、数学建模活动与数学基础教学内容关系的研究

数学基础课程和数学建模活动之间存在着密不可分的关系,课堂上教师讲授的知识是数学建模活动得以顺利进行的保障。将数学建模小组的相关活动内容与数学基础课程教学内容联系起来,通过数学建模活动去展现理论教学内容的实际应用,可以起到既提高学生课程学习的兴趣又提高他们的建模能力的双重作用。初级建模教学活动主要选用高等数学中定积分、定积分应用,线性代数中矩阵、线性方程组四大知识模块去解决现实生活中的相关问题。如“怎样合理负担出租车费”、“红绿灯管制的设计”、“住房问题”等。研究和探索与日常教学相关联的数学建模知识,能够让学生体会到“学以致用”的乐趣,进一步可以提高基础课程知识的理解,提高课程成绩。此外在初级建模活动中,要着重强化学生对数学软件的学习和使用。数学软件是数学建模活动的有力工具,强大的数据、图像处理功能可以让学生比较直观地感受数学的应用。在常用的数学软件中,Matlab是应用广泛、功能强大、容易掌握的一个数学软件。它不但可以进行数值计算,还具有良好的图形功能,可以作为学生学习的主要数学软件。

三、初级建模知识基础上培养解决综合建模问题的能力

在基本数学建模知识学习的基础上,引导学生解答综合性的社会问题,具体研究的对象可以是一些非数学领域的问题,如存储问题、经济问题、传染病问题、交通问题等。具体案例如“公交车调度”、“交通堵塞疏导”、“艾滋病疗法的评价”等。这类问题是多学科知识的综合应用,因此需要数学基础知识向专业知识的扩展。基于这一思路,以高等数学、线性代数两门课程为知识中心向其他相关学科扩展,如计算方法、化学工程、经济管理学等等。其他学科内容教师可以做选择性介绍,根据所解决的实际问题,介绍重要的知识要点,抛砖引玉,让学生在知识要点的基础上自主学习其他所用知识,寻求解决方案。

四、数学建模活动组织形式研究

除明确的教学活动内容外,数学建模活动的组织方式也非常重要。课堂学习主要由教师传授知识,而课外建模活动则更强调学生的自主参与性。基于这一认识,除传统的教师讲授学习外,学习方式还应该包括以下几个方面:第一,邀请其他专业的老师进行数学建模知识讲座,增强不同学科之间的融合。第二,邀请有数学建模竞赛经验的同学开展数学建模知识交流会,增强学生之间的交流、合作。第三,邀请学校老师作评委,在学校内部开展数学建模竞赛,作为高教社杯数学建模竞赛的选拔赛。第四,网络教学资源的使用。如今很多高校已经推出网络教学资源,如网上答疑系统、作业系统、考试系统等。借助网络系统为学生数学建模知识的自学、相互交流搭建平台。同时还为课外老师与学生之间交流提供了便利。通过积极探索数学建模活动组织方式,将常规的课堂讲学延伸到课外活动,为数学建模活动提供一个良好的组织、学习、发掘和培养建模人才的平台。

五、结束语

数学建模教学活动的研究,对于推动大学数学基础教学改革,加强数学建模课程建设,培养具有创新能力的综合型人才具有重要的意义。教师可以通过数学建模和数学基础教学活动的高质量结合,研究提高学生处理综合问题能力的有效方法,进而不断提升自身的教学研究能力。同时研究数学建模活动与数学基础课程体系之间的关系,使数学建模成为基础课程体系改革的有利辅助工具。

【参考文献】

[1]姜启源.数学实验与数学建模[J].数学的实践与认识,2001.31(5):613~617

篇6

关键词:数学建模;高校数学;课程建设

中图分类号:O242.1 文献标识码:A 文章编号:1674-120X(2016)26-0037-02 收稿日期:2016-06-30

课题项目:江西省教育科学“十二五”规划课题“基于建模思想的高等数学教育质量提升研究”(15YB200)。

作者简介:葛 毓(1983―),女,江西南昌人,讲师,硕士,研究方向:教育教学研究。

随着社会的发展和技术的进步,数学的重要性愈发凸显。数学为其他学科提供了科学的语言、观念和方法,被广泛地应用于社会生产、生活的一切领域,来解决科技和生产领域中遇到的实际问题。数学建模是数学的重要组成部分,所谓数学建模是指运用数学知识和思维方法,将现实中的实际问题加以提炼,利用数学符号、程序、图形等工具对数学问题进行抽象而简洁的刻画,来预测事物发展的规律或解释客观现象。数学建模是定量分析的重要方法,当人们需要从定量角度分析实际问题时,需要通过数学建模对研究的问题进行调查研究、提出假设,进而用数学形式和符号将其表述为数学形式,因而数学建模应用十分广泛。

一、数学建模在高校课程建设中的价值

1.提高大学生的语言和文字能力

近年来,大学生语言和文字表达能力差饱受社会诟病,尤其是理工科的大学生,由于缺乏人文学科的教育和熏陶,其语言能力相对薄弱,综合素质还有待提高,距离创新型和复合型人才的要求相差甚远。数学是一门严谨性较强的学科,通过数学建模的学习,可以帮助大学生认识自己知识的缺陷,提高语言表达的精确性和简洁性。另外,很多高校都组织学生参加数学建模大赛,大赛要求参赛队伍撰写论文,阐述自己解决问题的方法、思路和结果,这就需要大学生查阅大量的文献资料,合理安排论文思路,组织好论文内容,讲究语言的严谨性,这个过程潜移默化地提高了学生的语言和文字表达能力。

2.提高大学生计算机应用能力

数学建模是利用数学知识和工具,通过建立模型,来解决现实中遇到的各种问题。对于高校数学教学而言,数学建模研究的主题通常具有针对性、复杂性和挑战性。例如“某地水质的评价和预测”“公交车的调度”“最佳捕鱼策略”,等等,这些题目包罗万象,很多都是大学生知之甚少甚至从未听说的,这就需要学生积极查阅互联网、电子期刊等,来搜集、整理和分析大量的信息资料,锻炼了学生互联网搜集和获取信息的能力。同时,数学建模通常用计算机编程来完成,常用的软件包括Matlab、Lingo、Mathematicia和SAS等,大学生必须熟练地掌握这些软件,能利用这些软件来绘制函数图形、对数据进行计算等,提高了其计算机应用能力。

3.培养大学生团结协作精神

数学建模是一个复杂的工作,涉及数据的搜集、模型建立、过程推理和结果的验证等工作,工作量很大。而且要求学生具备数学知识、计算机编程、软件应用以及论文撰写等能力,单靠一个学生是很难完成的,因此数学建模的教学通常采用小组合作的学习模式,一般3个同学组成一个建模小组,大家分工明确、相互配合、互相学习,发挥他们各自的优点和特长。在这个过程中,大家有问题互相讨论,倾听别人的想法和建议,既学习了别人的思路和想法,也锻炼了团结意识和协作精神。

4.培养大学生的创新能力

创新是社会进步和发展的驱动力。目前,世界之间的竞争主要是创新型人才的竞争。与传统的数学课程不同,数学建模是利用数学工具来研究现实中的实际和热点问题,需要大学生从数学角度出发将实际问题转化为抽象的、简化的数学模型,这个过程并没有标准答案,给大学生提供了广阔的想象空间,需要他们开动脑筋,充分发挥自己的想象力和创造力,从不同的视角来分析问题,大大提高了大学生的创新能力。

二、提高数学建模教学有效性的措施

1.在教学中渗透数学建模思想

数学建模是培养数学应用能力的绝佳平台,数学建模意识的建立和能力的培养是个长期过程,需要数学教师在授课过程中潜移默化地对学生进行熏陶。事实上,现实生活中有很多问题都有数学建模的影子,数学教师要善于发现、提炼和总结,立足大学生所学专业和关心的热点话题,将数学建模的知识渗透到日常教学中,学会选择与所学专业相关的数学建模模型,调动学生学习的积极性,让学生感受到数学建模无处不在。

2.建立数学建模竞赛基地,提供实践环境

数学建模竞赛带有明显的实践性,参加数学建模竞赛是激发学生学习兴趣、检验数学建模教学水平的重要措施。目前很多高校都组织队伍参加全国数学建模大赛,但由于条件的限制,参加全国建模竞赛的同学数量是极少的,绝大部分同学并没有得到系统的数学建模训练,这样并不利于学生整体建模能力的提高。鉴于此,高校应该建立校内竞赛和全国大赛协同发展的制度,一方面激发广大学生的兴趣;另一方面也可以通过校内竞赛,为参加全国大赛选拔优秀的队员,还可以促进教师建模教学水平的提高。这就需要高校不断优化校内建模竞赛基地的建设,保证基础设施的齐备,包括数学建模实验室、数据分析实验室、电子设计实验室等,只有在优越的物质环境下才能为大学生模拟真实的竞赛环境,保证校内竞赛训练的高效性。另外,为了加大对数学建模竞赛的宣传力度,让更多的学生了解和参与进来,高校要成立一些数学建模竞赛协会和兴趣小组等,鼓励不同专业、不同年级的学生加入。协会或兴趣小组要积极开展一些关于数学建模的课外活动,邀请专家进行数学建模的专题讲座,定期举办一些关于数学建模的小型比赛,激发起大家对数学建模的好奇心,从而积极参加进来。

3.优化数学建模的师资队伍

数学建模虽然是以数学知识作为基础内容,但题目所涉及的范围十分广泛,而且需要多个学科知识来支撑,这就对数学教师的素质和能力有了较高的要求。教师水平的高低直接决定着数学建模教学能否达到预期的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。为了提高教师的水平,首先可以多派教师“走出去”进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者,等等。其次可以多请著名的专家、教授“走进来”做建模学术报告,为师生增长知识、拓宽视野,了解学科发展的新趋势、新动态。最后,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时展的要求。

总之,数学建模是高校培养创新型和应用型人才的主要途径,通过数学建模的学习可以激发其学习积极性和主动性,提高大学生的计算机能力、创新能力和团队协作能力。这就要求高校数学教师在日常教学中积极渗透数学建模思想,采取各种教学方法和手段提高建模教学的有效性,促进学生的全面发展。

参考文献:

篇7

一、建立教学模型的教学方式

数学建模应结合常用的数学内容进行切入,以教材为载体,以改革教学方法为突破口,通过对数学内容的科学加工处理,达到“在学中用,在用中学”的目的,从而进一步培养学生的数学应用意识及分析和解决实际问题的能力。例如:已知a,b,m∈R■,且a

二、建立数学模型的教学步骤

数学建模课程指导思想是:以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高分析问题和解决问题的能力,提高学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。高中数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为今后的学习打下坚实的基础。在教学时把数学建模中最基本的过程教给学生:利用现行的数学课本,给学生介绍我们常用的、常见的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。还可以通过教材中出现的一些不太复杂的应用问题,与学生一起来完成数学建模,让学生初步体验数学建模的过程。

三、培养学生的建模意识与方法

教师应该利用教材这个有利资源,培养学生的建模解题的思路。教师要有意识地在教学过程中进行建模的渗透,努力寻找知识点与数学模型之间的联系,培养学生用发散思维思考问题的习惯。如在学习数列的相关问题时,把彩票和信用贷款联系起来,让学生了解相关的问题在解答时要参考数列中的数学公式,把数列变成这类问题解答的一个模型。又如学习立体几何的过程中,可以培养学生对于圆柱体和长方体的模型意识,正方体就是长方体的特殊变形。所以,正方体问题的解答也要在长方体模型的范围之中。引导学生在遇到问题时首先想到的就是关于这些解题模型的相关概念,在解题过程中渗透这种模型意识,在应用中领悟这些模型的具体内涵,激发学生的建模兴趣。其次,培养学生建模能力,教师应该结合一些专题化的复习模式来进行。在经过一段时间的学习后,不妨开设以某一问题为讨论对象的探讨课,引导学生总结出这类问题的“模型”。如可以开设“图像解题法”,通过对于一些有着典型性问题的解决,来引导学生建构一个图像式解题模型,并且找到可以用这个模型来解答的具体问题类型。

四、在实践中培养学生建模能力

实践是检验真理的唯一标准。教学中教师要“以人为本”,切实为学生提供“学数学、做数学、用数学”的环境,多创造动脑思考、动手实践的机会。注意对原始问题进行分析、假设、抽象等加工过程,模型的求解、验证、再分析、修改假设、再求解的循环过程。教师应自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身学生使用,贴近学生生活实际的数学建模问题,同时注意问题的开放性与可扩展性,尽可能地创设一些合理、新颖、有趣的问题情境来激发学生的好奇心和求知欲,使学生积极参与到数学建模的实践活动中。通过开展数学实践活动,培养学生的数学应用意识与建模应用能力,利用课外活动时间开展数学实践活动,这是建模教学不可缺少的部分。如:尽可能选择较多的方法学会测量建筑物的高度。测量高度较高建筑物的高度属于开放型的建模题,看起来难度不大,但实际操作很难,通过分析、思考,学生会想出很多方法,教师应该总结这些方法,与学生一起评价他们建立的模型是否切实可行,这样就能提高学生数学建模兴趣,从而提高他们的建模水平。

五、建模要联系相关学科加以运用

篇8

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此

由可知

于是问题转化为:当时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(三)在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

参考文献:

1.《问题解决的数学模型方法》北京师范大学出版社,1999.8

2.普通高中数学课程标准(实验),人民教育出版社,2003.4

篇9

评教方式落后。现在的小学生教学试卷中,我们很难发现关于学生建模能力方面的锻炼题目,从中可以看出小学教学中对于数学建模思想的不够重视。所有这些方面都说明小学教学领域,教学设施、师资力量、教学方法、教学理念以及教学评价等方面的研究不够,开展建模教学的意识比较单薄。

二、小学教学中教学模型的构建探索

1.大力扶植开展下乡支教活动,改善农村教学条件现状。我国大多农村学校生活条件较为艰苦。所以,师资力量相对来说也就会比较低,为了缓解这种现象,我国积极开展了下乡支教的活动,鼓励毕业大学生到农村支教。可是,这项活动的开展对我国农村地区教育力量的强大并没有起到实质性的作用,去支教的老师往往在几年之后就会回到城市中,乡村的孩子们还是没有老师。为了解决这个问题我们可以加大对下乡支教老师的补助力度,不论从经济上还是政策上都要给予老师相应的补助,以缓解老师对农村艰苦条件的抵触心理。说到根本上,要想改变这种师资力量薄弱的现象,首先要做的就是发展当地的经济。当地农村的经济好了,人们生活水平提高了,这些问题就都会迎刃而解。

2.构建合理的问题情境。一个好的问题情境能为建模策略的现实化提供背景依据。例如,老师可以设置问题:四名男生、五名女生分别为一组进行套圈游戏,而哪个组的成绩较为好一些呢?老师说:“那么我们以每组中最好的成绩为依据吧。”这就遭到了所有同学的反对。这时,老师就问:“那我们怎么评价成绩呢?”这个时候平均数的概念就可以很自然的引出了,此时构建平均数的模型也成为同学们当下的需求,对于此建模内容的应用也有所了解。

3.提供充分的资料、培育建模基础。数学建模的构建是基于大量具有相同特性的事物,因此,老师为了培养学生的建模思想,应该提供很多丰富的感性的材料,多方面多维度的让学生发现特点,自觉地建立数学模型。例如,我们在学习角度的课题时,老师就可以通过提供众多资料的方法引导学生,培养学生产生建模的思想。老师可以说:“来,大家来看这张照片。”于是,老师便拿出一张比萨斜塔的照片,并且标注斜塔与地面之间的角度。然后老师说:“谁能告诉我那个数字什么意思?”这时老师又拿出一张照片,一张工程方面的制图,上边也标注有密密麻麻的角度数字等照片。

篇10

【关键词】数学教学;建模意识;培训

一、引言

经济的发展提高了人们的眼界,科技的进步也加大了对人才培养的要求,高等教育在我国教育体系中十分重要,关系到学生人生的成长,数学在人们日常生活中发挥了很大的作用,在高等教学中也意义重大,为了使学生的思维更加开阔,提高其创新和解决实际问题的能力,需要努力培养大学生的数学建模意识,改进方法,使大学生能够更好的使用与数学相关的能力和知识,促进其抽象思维的建立。

二、数学建模内涵

高等教学中的数学建模主要是通过假设、分析、研究和探讨等过程,利用数学的相关符号系统,把研究对象转变成一定的数学模型的方法和过程。教师将一些别人建构的数学模型和关于建模的方法与思想等传授给学生,使学生拥有使用数学建模方法解决相关数学问题的能力。其基本流程如下:首先需要把面临的问题抽象化,简化成相关的数学模型;然后找出其数学解并利用检验和释义等手段求得现实解;最后利用现实解对现实中的问题进行分析,这就是其完整的过程。随着我国教学改革的发展,数学建模思想也对高等教育中的数学产生巨大影响,成为人们日常生活中不可分割的一部分。

三、培养大学生数学建模意识的意义

1.目前我国高等教学的数学教育普遍比较枯燥,学生学习效率低下,兴致不高,加强对数学建模意识的培养可以提高学生学习的兴趣,增强其学习的动机,从而使学生参与到教学中来,体会到数学的神奇与魅力。还能够使高等教学中普遍存在的脱离实践问题得到解决,使理论和实践充分结合。传统的高等数学教育经常是教师教给学生大量枯燥的公式、定理等理论性的知识,课堂无趣乏味。数学建模则可以使课堂教育变得生动、活泼,理论与实践相结合,提高学生理论与实际相联系的水平。

2.可以促进学生的能力得到全面的提高。培养学生的数学建模意识可以使学生有综合运用相关知识的能力,使用相关数学的方法对现实问题进行计算和分析,有利于现实问题的解决,增强学生使用数学语言进行表达的能力。而且,数学建模意识的培养还可以提高学生的创新能力,提高观察问题的能力与想象力,使学生能够自如的运用已有的科研成果,促进学科的发展与进步。此外,数学建模意识的培养还可以加快我国高等教育改革的步伐,当代高等教育中的数学教学不仅仅是培养学生掌握关于数学的基本方法与知识,还要使学生具备一定的数学素养,使之能够解决现实中的问题,提高其综合水平。传统数学的教学方法不注重培养学生的创造能力,忽视其主体地位。所以数学建模的出现则弥补了传统数学教学的不足,推动我国的教育事业发展。

四、对大学生数学建模意识培养的方法

1.数学教师要树立相关的数学建模理念。要想培养大学生拥有良好的数学建模意识,首先教师要拥有建模理念。目前我国高等教学中,数学专业的学生基础普遍较低,需要教师加强对他们的引导,把相关建模方法渗透到日常教学中,促进学生对数学学习兴趣的提高,从而促进对学生数学建模意识与方法的培养。教师在进行数学建模的教学时,要注意少使用逻辑性和专业性较强的语言,学生对这些难以理解或理解错误都会影响教学质量。所以教师要根据现实教学情况,根据学生的实际能力和水平,把一些现实问题引入教学,使用通俗易懂的语言,深入浅出的进行讲解,还可以通过一些简单的比喻等手段,直观的对现实问题进行推演,把数学内的一些公式或定理摘出来,用简单的语言描述其主要内容,学生掌握这些知识后,再使用理论性较强的语言讲解。这样可以使学生掌握住这类问题的本质,有助于对这些数学问题建模方法的学习,如果学生再遇到此类问题,可以自主选择有用的数据信息,从而建立相关的数学模型,使问题得到解决。老师在讲解和演示时,需要使学生有效的认识到数学的魅力和深奥,数学可以和多种其他领域相结合,产生巨大的能量,要让学生通过数学的建模过程体验到数学之美,引导学生规范数学用语,这样才能切实提高对学生数学建模意识和方法的培养,激发学生学习数学的兴趣,促进我国数学教学的发展。

2.教师在进行学生建模意识与方法的培养过程中,要注意选用合适的例题,使学生的问题解决能力得到提高。我国的高等数学教育旨在为国家培养专业性、实用性人才,从而为我国的发展做贡献,所以教师在教学过程中,要注意对学生的问题解决能力进行培养,使用恰当有效的手段,提高学生综合素质。教师在上课时,可以选用一些贴近生活的、紧跟时代潮流的例题,建立合适的数学模型,对学生进行演示和推理,提高学生使用数学建模来解决实际问题的能力与意识,选择例题时要遵循现代性、应用性的宗旨,可以对教材中的部分例子进行合理的取舍,加入一些更生动、活泼、与学生的生活更接近的例子,这样建立的数学模型才能真正的使学生印象深刻,可以使学生更好的掌握和理解所学知识,增强其解决现实问题的能力,并在解决问题的过程中感受到学习的乐趣,培养其形成良好的数学建模意识与方法。

3.培养学生的数学建模意识应该注意的一些问题。高等教育中的数学教学,其相关的定理、定义都是独立的数学模型,所以教师在数学建模时要使理论与实际相联系,选择容易接受且趣味性更强的数学模型,在使用这些模型时,要注意讲清哪些模型可以解决哪些现实中的问题,以便学生实际应用。教师要设计一些新奇、符合时展的例题,加大对学生创新能力的培养;教学时还要注意例题不能过多,要注意对学生的引导,潜移默化的对学生进行渗透,提高学生数学建模的能力。

五、结论

高等教育中数学教学的质量直接影响大学为国家输送人才的质量,大学的数学教育必须与教学改革目标相适应,把数学建模思想融入到日常教学中,提高学生的数学建模意识,从而促进大学生综合素质的提高,促进社会的全面发展。

参考文献:

[1]哈申.大学数学教学过程中数学建模意识的培养[J].高教视野,2012,(1).