继电保护的原理范文

时间:2024-01-05 17:44:30

导语:如何才能写好一篇继电保护的原理,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护的原理

篇1

关键词:电力双回线路;继电保护原理;特点

中图分类号:TM762.2+6文献标识码:A

1 双回线路继电保护的特点

1.1 线间互感及跨线故障对继电保护的影响

除了在同一回线相间存在互感外,同杆双回线线间也存在互感的影响。故障情况下,双回线上的电压和电流不仅取决于本线路运行情况,而且还受另一回线电气量感应影响,其中以零序互感的影响最为突出。若不采取应对措施,可能导致接地距离保护和零序方向保护等发生拒动或误动。此外,在发生跨线故障时,电气量的变化特征与单回线故障时的情况也存在明显差异,给基于单侧电量的保护原理,如距离保护和功率方向保护等带来了许多新的问题。

1.2 不同运行方式下保护灵敏度的差异

同杆双回线有双回线同时运行、单回线运行、双线组合全相运行(准三相运行)、双回线(或单回线)非全相运行等多种运行方式。由于线间互感的存在,在不同的运行方式下发生故障时,线路的故障电压和故障电流存在很大的差异,进而导致在不同运行方式下的保护灵敏度并不相同。因此,需考虑保护配置方案和定值在不同运行方式下的适应性和灵敏度问题。

1.3 跨线故障选相

对于同杆双回线的异名跨线故障,保护装置存在误切双回线的可能,对系统稳定运行产生影响。例如,发生IA IIBG 故障时,应该由I回线两侧跳A相、II回线两侧跳B 相,但保护装置很容易误判为双回线都发生AB相间短路故障而同时跳开两回线,给系统稳定带来不必要的影响。因此需要研究有效的跨线故障选相方案,在系统发生上述类似故障时能够选跳线路,以维持两侧系统的联系。

1.4 自动重合闸

同杆并架线路发生跨线永久性故障时,应尽量避免两回线重合闸配合不当,导致重合于永久性相间故障,对系统造成严重的二次冲击。例如,发生IA IIBG永久性故障时,当I回线两侧跳A相、II回线两侧跳B相后,若两回线同时重合,相当于再次重合于ABG相间短路,将产生很大的短路电流,并导致两条线路同时切除,从而严重危及电网的稳定运行。此外,当两侧系统主要依靠双回线联系时,也需考虑如何协调两回线的重合闸方式,尽量保证跨线故障切除后,两侧系统仍能保持良好的互联运行,以提高电网的安全稳定运行水平。

1.5 更高的可靠性要求

相对单回线路而言,双回线传输功率更大,两侧系统联系更强,其安全稳定运行对系统稳定更为重要,这就对同杆双回线路的保护提出了更高的可靠性要求。需要保护装置能够更加快速、准确而又有选择性地切除故障线路。

2 同杆双回线路继电保护原理及应用

2.1 分相(分线)电流纵差保护

分相电流差动保护是指按相比较线路两侧电流的幅值及相位。如果两侧的电流差或者相位超过动作值时,线路两侧同时按相切除故障相。同杆双回线路每相都有两回出线,因此传统的分相电流差动保护在双回线中实为分线差动的形式。分相电流差动有良好的故障选相能力,保护效果不受系统振荡及负荷影响、对全相和非全相运行中的故障均能正确选相并跳闸。所以它是目前同杆双回线最理想和应用最为广泛的保护之一。在光纤通信条件满足的情况下,应考虑优先装设。分相电流差动保护应用于超高压长线路时,受线路分布电容的影响较大。

2.2 纵联距离(方向)保护

对于同杆并架双回线,当通道条件不具备,或为了满足主保护动作原理的双重化配置要求,常采用纵联距离(方向)保护作为线路主保护。同时,距离保护也广泛用于同杆并架线路的后备保护。线间互感的存在,使得双回线路中纵联距离和纵联方向保护的配置方案和整定相比传统单回线路复杂很多,邻线零序电流通过互感会对接地距离保护产生影响,使保护范围缩短或超越 ,因此在实际运行中常考虑缩短单侧距离保护的动作范围。为了减小零序互感的影响,提出了一种利用邻线零序电流进行补偿的距离保护方案。但采用相邻线路零序电流补偿时,仍存在故障相对健全相的影响如何、应该怎样补偿及健全相会不会误动等问题;同时还要考虑在故障相近侧跳闸后,健全相会不会因零序电流的影响而发生相继误动等问题。

2.3 横联差动保护

横联差动保护的基本原理是在同一侧比较双回线的电流,不需要增加额外的保护通信通道。根据电流的方向是否引入动作判据的差异,横差保护可分为横联方向差动保护和电流平衡保护两种形式。电流平衡保护只比较两回线电流的大小,适合安装于单侧电源供电的平行双回线的电源侧,而不能用于单电源双回线路的负荷端,在双电源系统中的弱电源端其保护的灵敏度往往是不够的。此外,当发生含同名故障相的跨线故障时,由于两相电流相等而会导致保护拒动。按保护功能的不同,横联差动还可以分为相间和零序(接地)差动两种形式。相间横差保护分别取不同相别的两回线的差流作为动作判据;零序差动保护则由两回线的零序电流作比较,将双回线两个零序电流的和或者差作为动作量的判据的都有应用。另外,零序横差保护定值应躲开相邻线路故障时流过双回线的零序差电流,如果双回线间互感较大而在定值整定中考虑不充分时,会导致横差保护误动。

3 同杆双回线路继电保护配置

目前我国已有一系列同杆双回线路投入运行,现结合相关文献对现有同杆双回线路保护的配置情况作分析探讨。

3.1 500kV电压等级的双回线路保护配置

洪龙线路是我国第一条全线同杆并架的500kV电压等级线路,全长180km。受当时技术条件的限制,最初保护装置配置和通道的组织并未考虑同杆双回线路跨线故障的选相问题,主保护配置采用微机高频方向保护和高频距离保护构成的双重化配置形式。在该保护配置下,当发生异名跨线故障情况时,会导致双回线同时三相跳闸,对电力输送效率和系统稳定带来影响。

3.2 330kV电压等级同杆双回线路保护配置实例

330kV南郊双回线路全长240km,属于局部同杆并架线路,同杆架设部分占整体线路的65%,于上世纪90年代初期投入运行。按当时的技术条件,双回线采用快速方向和快速高频闭锁距离保护构成主保护的双重化。在该保护配置下,系统发生的各类故障,保护基本都能正确动作。但保护在实际运行中存在一些缺陷,首先,双回线合环时如果运行线路的功率较大,合环点电压相角差过大,合环后会导致快速方向保护误动;其次,当安康侧机组全停为弱电源侧时,快速方向保护的阻抗元件灵敏度不满足要求,会造成保护拒动和选相失败,建议,当条件允许时,同杆双回线路可考虑选用纵差保护方案。

4 几点结论

结合本文对同杆双回线保护原理及工程应用的调研分析,可总结以下特点以及需要进一步开展的研究工作,供同行讨论与参考:

(1)分相(分线)电流差动具有良好的保护性能和故障选相能力,实际运行情况也一再表明,在通道条件允许的情况下,应该优先选用。

(2)出于保护双重化和后备保护的要求,目前尚需继续对受线间互感影响而复杂化的距离保护、零序保护等保护方案等开展更深入的量化研究,包括这些保护方案的合理配合。

(3)同杆双回线路保护的不正确动作情况主要是由于对线间互感情况下保护的整定计算缺乏更加量化的计算研究、保护装置本身以及所配置方案对双回线路复杂的系统结构和运行方式考虑不充分所致。

参考文献

[1]舒印彪,赵丞华.研究实施中的500kV同塔双回紧凑型输电线路[J].

篇2

关键词:电力设备;继电保护装置;故障原因;技术处理;管理体系

中图分类号: F407 文献标识码: A 文章编号:

前言

随着社会和经济的发展,各种类型的电力设备正出现在人们的视野中,并直接或间接地影响着生活和工作,如何能够提高这些电力设备的稳定性和功能性,就成为人们的需要,和电力科技工作和电力日常维护工作的重要内容。当前,电力设备的功能越来越多、体积越来越庞大,这就为电力设备提出了如何确保稳定运行的问题,一般电力设备普遍安装了继电保护装置,这对于电力设备安全性和稳定性的提高有重要的价值。但是继电保护装置本身也会因为质量、超负荷运行、维修工作不力等因素,会产生故障和隐患,特别是在电力技术不断发展,电力网络化、信息化大潮的不断影响下,继电保护装置故障将会被放大,进而影响到整个电力网络的稳定,因此,需要对电力设备继电保护装置故障和处理进行电力行业内的技术性研究。提高电力网络内各电力设备继电保护装置的运行质量和故障处理水平应根据电力设备继电保护装置管理和维护工作经验,在分析电力设备继电保护装置故障产生原因的基础上,找到技术上和管理上处理电力设备继电保护装置故障的要点,为确保继电保护装置的功能稳定、电力设备的性能实现起到技术上储备和积累的作用。

1常见的电力设备继电保护装置故障

1.1电力设备继电保护装置的运行故障

电力设备继电保护装置的运行故障是最为常见且危害性最大的故障形式,具体表现为:电力设备继电保护装置的主变差动,保护装置的开关拒合工作失误,特别在电力设备处于长期超负荷运行,这会导致继电保护装置出现温度上的积累,产生局部高温,引发继电保护装置的误动或失灵,在变压器工作中继电保护装置的电压互感器的二次电压回路容易出现故障,这对于整个电网运行有着重要的影响。

1.2电力设备继电保护装置的产源故障

电力设备继电保护装置的产源故障通俗地讲,就是电力设备继电保护装置由于元器件质量不高、精度差、材质不合格等原因,产生了电力设备继电保护装置的故障,在实际的电力设备继电保护装置运行中,元器件质量与产源型故障的发生成标准的负相关。

1.3电力设备继电保护装置的隐形故障

电力设备继电保护装置的隐形故障也称既发故障,就是应电力设备继电保护装置故障引发的电力设备或电力系统范围更大、影响更深远的故障,对于电力设备继电保护装置的隐形故障电力企业的工作人员应该予以高度重视,不单单因为电力设备继电保护装置的隐形故障可能产生大规模停电事故和电力火灾,而且因此电力设备继电保护装置的隐形故障可能导致整个电力网络的崩溃。

2电力设备继电保护装置故障的技术处理

为了实现电力事业又好又快地发展,进一步提高电力行业的经济和社会效益,提升电力企业的运行与管理水平,必须针对危害性较大的电力设备继电保护装置故障进行深入调查、分析和研究,制定科学、合理和有效的电力设备继电保护装置故障的处理技术和措施,丰富国内电力设备继电保护装置故障的技术经验,提高电力企业的技术和管理经验。当前应该做好以下技术性工作作为提高电力设备继电保护装置故障处置质量的突破口:

2.1加强电力设备继电保护装置的日常巡查工作

日常巡查以执行电力设备继电保护装置故障的直观检查法为核心,电力设备继电保护装置的巡查人员根据日常巡查的技术要求,对电力设备继电保护装置进行颜色和气味等简便的方法判定继电保护是否出现故障。一般直观法主要应用于:无法使用专业电子仪器进行测试和检查的故障;继电保护系统中某一插件发生故障时,因暂时缺少备用的产品,而采取的一种临时性处理措施。

2.2加强电力设备继电保护装置的保护性检修工作

保护性检修以更新元件法为核心,电力设备继电保护装置电保护工作中检修、更新元件法是预防、检查和解决保护装置内部故障的主要方法。在电力网络的运行管理中,电力设备继电保护装置保护人员定期进行变配电系统中各类电力元件的检查与维修,以防止在电力系统运行中出现较大的故障。当发现电力设备继电保护装置中某些原件出现严重故障时,必须及时进行更换,以保证电力设备、继电保护装置和电力系统的安全、稳定运行。

2.3建立电力设备继电保护装置故障的技术管理体系

首先,电力企业必须明确继电力设备继电保护装置故障管理责任和技术管理体系。其次,电力企业应注重电力设备继电保护装置巡视和维修人员专业素养的提高。其三,电力企业应提高自身监控系统的改造与升级。最后,继电保护人员还应熟知电力设备继电保护装置故障的技术管理体系,掌握电力设备继电保护装置故障汇报渠道、故障处理分界与延误故障处理等责任的归属,以保证电力设备继电保护装置故障的及时、有效和科学性。

结语

综上所述,电力设备继电保护装置的日常维护和故障排除应该加强技术元素的应用,应该在对常见电力设备继电保护装置故障进行分类和研究的基础上,以提高电力设备继电保护装置检验的技术含量,建立电力设备继电保护装置故障的处理措施等措施,构建电力设备继电保护装置故障的发现和处理体系,以技术加管理的综合性手段提高电力设备继电保护装置故障的检出率和维修效率,在确保电力设备继电保护装置稳定的前途下,确保电力网络供电的质量和整体安全。

参考文献:

[1]周进平.继电保护装置的运行原理探究[J].南京理工大学学报,2009,11.

[2]黄子军.继电保护的分类与常见故障形式分析[J].电力学报,2009,10.

[3]徐学明.技术维修在继电保护故障中的处理方法[J].科技创新导报,2008,03.

篇3

关键词:电动机;保护器;保护原理;应用

一、引言

电动机是当前应用最广泛的动力设备,是其他机电设备的动力源泉,电动机正常的输出是其驱动的机电设备正常工作的前提,如今已被广泛应用于工农业、交通运输、国防等领域。电动机所带的负载种类繁多,且往往是整个设备中的关键部分,因而确保电动机的正常运行就显得十分重要。电动机保护器(电机保护器)是发电、供电、用电系统的重要器件,是跨行业、量大面广、节能效果显著的节能机电产品[1]。电动机保护器的作用是给电机全面的保护控制,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、接地、轴承磨损、定转子偏心时、绕组老化予以报警或保护控制。如今电动机保护器几乎渗透到所有用电领域,在国民经济和节能事业中有着不可替代的重要地位和作用。

二、电动机保护器的保护原理与构成

对电动机来说,其故障形式从机械角度可以分为绕组损坏和轴承损坏两方面。造成绕组损坏的主要原因有:1.电动机长时间的电、热、机械和化学作用下,绕组的绝缘老化损坏,定转子绕组匝间短路或是对地短路。2.电网供电质量差,电源电压三相不平衡、电压波动大、电网电压波形畸变、高次谐波严重或者电动机断相运行。3.电源电压过低使得电动机启动转矩不够,电动机不能顺利启动或者是在短时间内重复启动,电动机长时间承受过大的启动电流导致电机过热。4.因机械故障或其它原因造成电动机转子堵转。5.某些大型电机冷却系统故障或是长时间工作在高温高湿环境下造成电机故障。

电动机保护原理的研究是保证电动机保护器性能高低的关键,根据三相对称分量法的理论,三个不对称的向量可以唯一分解成三组对称的向量,分别为正序分量、负序分量和零序分量。对称分量的计算公式如下:

根据(1)式,电动机在发生对称故障和不对称故障时,电动机的三相电流都会发生变化。电动机故障条件流过绕组的电流过大,超过电动机的额定电流,因此可根据这一特征来对电动机过电流进行保护。电机过载、断相、欠压都会造成绕组电流超过额定值。电源电压欠压,运行电流上升的比例将等于电压下降的比例;电机过载时,常造成堵转,此时的运行电流会大大超过额定电流。针对以上情况,电动机保护器可通过对三相运行电流进行检测,根据运行电流的不同性质来确定不同的保护方式,从而对电机予以的断电保护。电动机的故障类型分为过流保护、负序电流保护、零序电流保护、电压保护和过热保护等几种。

通过对电动机保护器的保护原理分析可以看出,理想的电动机保护器应满足可靠、经济、方便等要素,具有较高的性能价格比。经过发展和更新,如今电动机保护器一般由电流检测电路、温度检测电路、基准电压电路、逻辑处理电路、时序处理电路、启动封锁及复位电路、故障记录电路、驱动电路、电动机控制电路组成。电动机保护器的构成原理如图l所示。

图1 电动机保护器组成模块和构成原理图

三、电动机保护器的类型及应用分析

目前我国普遍采用的电动机保护器主要有热继电器、温度继电器和电子式电动机保护器。热继电器是五十年代初引进苏联技术开发的金属片机械式电动机过载保护器,它在保护电动机过载方面具有反时限性能和结构简单的特点[2]。但存在功能少,无断相保护,对电机发生通风不畅,扫膛、堵转、长期过载,频繁启动等故障不起保护作用。这主要是因为热继电器动作曲线和电动机实际保护曲线不一致,失去了保护作用。且重复性能差,大电流过载或短路故障后不能再次使用,调整误差大、易受环境温度的影响误动或拒动,功耗大、耗材多、性能指标落后等缺陷。温度继电器是采用双金属片制成的盘式或其他形式的继电器,在电动机中埋入热元件,根据电动机的温度进行保护,但电动机容量较大时,需与电流监测型配合使用,避免电动机堵转时温度急剧上升,由于测温元件的滞后性,导致电动机绕组受损。温度继电器具有结构简单、动作可靠,保护范围广泛等优点,但动作缓慢,返回时间长,3KW以上的三角形接法电动机不宜使用。目前在电风扇、电冰箱、空调压缩机等方面大量使用。电子式电动机保护器通过检测三相电流值和整定电流值,采用电位器旋钮或拔码开关操作来实现对电动机的保护,电路一般采用模拟式,采用反时限或定时限工作特性。

除了上述三种常见的电动机保护器,磁场温度检测型继电器和智能型电动机保护器也在电动机故障保护中得到普遍应用。磁场温度检测型保护器通过在电动机中埋入磁场检测线圈和温度探头,根据电动机内部旋转磁场的变化和温度的变化进行保护,主要功能包括过载、堵转、缺相、过热保护和磨损监测,保护功能完善,缺点是需在电动机内部安装磁场检测线圈和温度传感器。智能型电动机保护器能实现电动机智能化综合保护,集保护、测量、通讯、显示为一体。整定电流采用数字设定,通过操作面板按钮来操作,用户可以根据自己实际使用要求和保护情况在现场自行对各种参数修正设定,采用数码管作为显示窗口,或采用大屏幕液晶显示,能支持多种通讯协议,目前高压电动机保护均采用智能型

四、电动机保护器应用选择原则

选用电动机保护装置的目的,既能使电动机充分发挥过载能力,又能免于损坏,而且还能提高电力拖动系统的可靠性和生产的连续性。合理选用电机保护装置,既能充分发挥电机的过载能力,又能免于损坏,从而提高电力拖动系统的可靠性和生产的连续性。具体的功能选择应综合考虑电机的本身的价值、负载类型、使用环境、电机主体设备的重要程度、电机退出运行是否对生产系统造成严重影响等因素,力争做到经济合理。在能满足保护要求的情况下首先考虑最简单保护装置,当简单的保护装置不能满足要求时,或对保护功能和特性提出更高要求时,才考虑应用复杂的保护装置,做到经济性和可靠性的统一。

五、结束语

如今电动机保护器已发展到了微电子智能型时代,电动机保护器也朝着多元化方向发展。这就需要我们的工作人员在选型时应充分考虑电动机保护实际需求,超前、准确、及时地判断电动机的故障,合理选择保护功能和保护方式,实现对电动机的良好保护,达到提高设备运行可靠性,减少非计划停车,减少事故损失的目的。

参考文献

篇4

[关键词]电力系统;继电保护;影响因素;事故处理办法

[DOI]10.13939/ki.zgsc.2016.32.074

继电保护工作的顺利完成需要具备及时且准确高效的故障分析与处理能力。这也就成了继电保护工作者需要专项研究的问题,在不断实践中提高自己的继电保护工作的能力,当发生电力系统故障时,应当从以下方面分析考虑影响继电保护工作的因素。

1 继电保护可靠性因素

1.1 软件因素

继电保护系统的软件是指电力保护装置的中心指挥程序,如果软件出现问题则会直接影响到装置设备的正常运行,出现混乱、误动或拒动。其原因主要是终端的分析定义以及数值设定、结构设计出现了问题,在进行测试检验时不够规范标准等。

1.2 硬件装置因素

①继电保护装置。即从控制电的开端到结束部分的运行设备都属于继电保护的装置。其中包括电源、信息的中央处理、继电数字量输入、输出等多个模块。②二次回路。属于继电保护工作中的常见问题,是由于线路长时期没有检测,或没有及时维修而老化或者接地出现的短路或断路。③辅助装置。这些辅助装置一般包括继电器或者电压切换箱,这对于电力系统中各个环节的调节都具有关键性作用。④装置的通信、通道及接口。不论是光纤还是微波通信系统都要及时疏通、管理,如果没有实时地检测与修理将很容易产生问题,从而使继电保护工作出现偏差。⑤断路器。它是电流的开关装置,对电源线路及电动机等进行保护,它能在切断故障电流后一般不需要变更全部的零部件,因而在继电保护工作中受到广泛的应用。可见,其对电力系统的意义是非同一般的,在硬件系统得以保障的前提下,电力系统的工作也有了可依赖的运行工具。

1.3 人为因素

工作人员的操作失误或者专业水平不高、心理素质过差都会导致继电保护出现问题,是最终影响电网的因素。据调查,人为因素在220kV的电力系统中出现故障的比例占到了38%,可见其重要性。

2 继电保护事故的处理办法

2.1 充分利用微机技术

继电保护的一些问题并不是不可排除或者只有等当发生时才能被解决的,一些故障是能够提前避免的,科学计划地进行故障预防将在很大程度上解决这个问题。

(1)正视人为事故。人为事故往往与工作人员不够认真负责或者逃避责任的态度有关,当继电事故发生后,若装置提醒或者指示功能不能显示出真正的故障原因,也不能判定是人为还是设备原因时,如果是人为事故的,工作人员一定要及时反映,以快速采取最及时的挽救措施,切不可推卸责任,浪费时间,耽误了最佳处理时机。

(2)充分利用记录工具。继电保护工作中常常会借助微机设备来帮助记录事故现象。

2.2 采取正确的检查方法

(1)逆序检查法。这是在事故发生时采取的一种倒序检查法,直到找到事故发生的根本原因。一般在误动出现时采用。

(2)顺序检查法。在发生继电保护故障时,可采取按部就班的方式,从设备开端直至运行结束,逐级检测,进而有针对性地调整。这也主要适用于拒动或逻辑问题中。

(3)整组试验法。是判断保护装置的运行程序状况的一种方法,能够在相对较短的时间内找到问题根源并再现出来。也可以有效整合其他方法一同检验。

3 提高继电保护工作的准确性、科学性与可靠性

首先,应当对从事继电保护的工作人员进行深入培训。身为工作人员首先应掌握基础理论及相关装置的运行操作顺序。遵循“两票”原则,严格按照操作及检测标准工作。在进行调度时也要必须征得同意。另外,为了保障投退的准确性,要将运行需要的设备详备的信息资料进行说明与标注,以减少工作人员查阅时耗费的时间,避免出现基础性差漏。而部分特殊情况,也可以通过对运行人员的专业培训来增强他们的业务能力,以便在发生继电保护异常时能够及时作出退出处理办法的决定,而退出的具体情况应满足如下情况才能执行。

(1)母差保护。它是保证电网安全稳定运行的重要系统设备,以其安全、灵敏、高效的特点,对保护电网的安全有着决定性的意义。因而在母差发生交流断线或者不平衡电流不饱和等情况时就要及时倒闸,不可延误。

(2)高频保护。它是用高频载波代替二次导线,传送线路两侧电信号的保护。直流电源消失时 ;设备参数不确定或者不科学时;故障信号发送出现异常时。

(3)距离保护。PT检测设备异常退出时;其他程序正常但助磁电流不稳定,或与实际需要不相符时;运行设备超负荷负时。

(4)微机保护。第一种,总告警灯亮,或者呼唤灯之一亮;第二种,两个CPU出现问题;第三种,电源指示灯不亮,电流消失;第四种,告警插件出现问题;第五种,在第一种的基础上,显示CPU×ERR信号,这也分两方面看待:若CPU没有故障,则是通信回路异常,应当退出CPU,对开关程序进行检验,而如果对开关检验后,信号仍然没有恢复,则证明CPU有致命性问题,需要及时退出,并断开整个程序。

(5)瓦斯保护。电力设备中需要变压器进行对电压与电流的控制,在其运行时添加油或者换硅胶时;散热器检修投放时;排风放气,对吸湿器进行清洁时;调压控油时。

(6)重合闸。各种故障原因下造成的跳闸次数超标时;短路、断路而使重合受阻时;出现电压或者二次电压问题时;断路器受各种因素影响而导致达不到合闸标准数值时。

4 提高继电保护的措施

继电保护工作是对整个电力系统的保护监测,因此,提高继电保护工作效果与水平自然要针对于其全部程序。从最开始的数值的正确计算、设备的选择与制造,到程序进行中的监控、维修保护,再到调试计算等都需要全方位的提升。继电保护装置的科学与精确性是其工作顺利进行的前提,是其可靠性的保障。因此,确保继电保护装置在运行前与运行时的可靠性、安全性是继电保护工作的重点。但由于任何事物都不是绝对的,尽管投入再多的时间与精力,装置设备在运行时还是会出现一定的问题,这就需要继电保护防患于未然,提前制定好足够充分全面的应急方案,及时采取措施,消除隐患,或者将损失降低到最小,将可靠性提高到最大的程度。具体措施有以下几方面。

(1)在继电保护工作确定并开始选购与制造装置时,一定要严格把控质量标准,选用一些有实践记录检测评价、寿命长、故障率低的器件设施,切不可滥竽充数,否则将造成不可估量的危害。

(2)装置设备中,晶体管的保护作用受其他因素影响较大,易受干扰。因此在选用与安装调试时一定要尤其注意,具体方法可以选择隔离变压器、将晶状体与其他电缆设备隔离,或者采用增加闭锁电路的设置并加强晶状体检测设施等方式。

(3)晶状体应与高压设备隔离,以免受强压或高电流下短路、断路或者切合闸影响。

(4)参与继电保护的工作者要不断提升自身专业能力,在不断的工作实践中总结经验教训,以避免故障的再次发生,更要以充足的信心、耐心与责任心面对继电保护工作,以增强发现问题与解决问题的综合能力。在进行调试工作时更要严肃认真,谨遵调试规程与标准。

(5)保护装置的维修与检测是保证其发挥正常功效、减少运行时的故障、增强可靠性的有效方法。因此,应当定期对装置进行检验,并做好预防。

(6)保护装置发生故障时如果能有选择性地选取其他方式来保证继电保护工作的正常进行,之后再进行故障维修,则是一种有效解决设置故障的方法。因此,应当全方位地考虑装置的合理性与备用装置,预防二次事故的发生,从而更高水平地提高其可靠性。很多实例已经证明,这种备用装置的安装很大程度上改善了供电系统设备故障引起的问题,保证了供电的稳定性与安全性。

篇5

【关键字】电力系统;继电保护;干扰;防范

在电力系统中,继电保护属于二次系统,占有非常重要的位置,能够保证电力系统的正常运行。近年来,随着我国微机继电保护装置的发展,电力系统开始广泛地使用大规模的集成电路,而传统的继电保护装置已经满足不了电力系统的发展。对此,电力企业必须加强电力系统继电保护的管理,在保护过程中必须要做到全面、系统以及准确,从而保证电力系统的安全运行。

一、电力系统继电保护的概述

(一)电力系统继电保护系统构成及作用。在电力系统中,如果其被保护的元件出现故障的话,继电保护装置就会迅速地、自动地切除电力系统中的故障元件,使电力系统中没有出现故障的部分能够迅速的恢复正常并进行运行,从而避免故障元件遭受连续损害,降低停电范围。随着集成电路的发展,继电保护装置已经慢慢处于主导地位,并向智能化方向发展。

(二)电力系统继电保护装置的要求。在电力系统中,继电保护装置必须符合选择性、速动性、可靠性以及灵敏性等要求,所谓可靠性主要是指在保护范围内,继电保护装置在正常运行的时候,该动作的时候就要进行可靠动作,不该动作的时候就应该进行不可靠动作。速动性主要是指继电保护装置能够及时将短路故障进行切除,从而减少电力系统的损坏程度,提高电力系统的稳定性,缩小故障的范围,促进电力系统继电保护装置的发展。

二、电力系统继电保护干扰的原因

(一)天气干扰。由于变电站所处的特殊环境,其地网的接地线一般属于高阻抗,如果其避雷器和接地部件受到雷击的话,所产生的电流就会比较高频,从而导致变电站中地网系统的暂态电位出现升高,造成电力系统继电保护装置的不当动作,影响回路的控制以及造成灵敏设备的损坏。

(二)高频干扰。在电力系统中隔离开关的操作速度过于缓慢的话,很容易导致操作中的两个触电出现电弧闪络现象。如果进行过电压操作,也很容易导致高频电流,高频电流经过母线的时候,在其周围就会产生较强的磁场和电场,对电力系统继电保护产生很大的干扰,一旦干扰水平大于装置中的允许水平,就会导致继电保护装置不能正常工作,使整个装置的出口逻辑和工作逻辑出现故障,并破坏系统的稳定性。

(三)在接地故障中引起的工频干扰。在变电站中,由于其电力系统中的变压器中性点进行直接接地,一旦发生接地故障的话,所产生电流就会通过变压器的中性点,流入地网中,经过架空地线重新回到接地故障地点。由于地网具有阻抗作用,流过故障电流时,其电网的电位就会超过大地电位,并在不同的地点出现电位差,从而使电缆层和屏蔽层出现工频电流,使被屏蔽的回路受到干扰,严重时还会烧坏电缆线的屏蔽层。

(四)辐射干扰。随着计算机网络以及通讯技术的快速发展,当前国内电力系统的周围一般会有移动通信等工具,使其周围会散发强大的磁场和辐射电场,制造假信号源,造成继电保护装置出现错误动作,对继电保护装置造成严重的影响。

(五)静电放电的干扰。在环境较为干燥的情况下,电力系统的操作人员与物体摩擦以后,很容易出现静电,一旦工作人员将静电带入到保护装置中去的话,很容易损坏保护装置,干扰电磁辐射,造成保护装置逻辑的混乱。

三、电力系统继电保护的防范措施

(一)制定完善的规章制度制度。为了促进电力系统继电保护装置能够正常的运行,必须要构建一个完善的规章制度,在制定的时候一定要结合继电保护装置的特性。通过微机管理对继电保护装置的运行、事故、校验等方面档案实施跟踪检查、严格按照奖惩制度实行以及进行严格地考核,从而提高继电保护装置的工作效率,适时地开展一些奖惩活动,增强工作人员的责任心和荣誉感。

(二)对继电保护装置的工作人员进行协调。实行继电保护的时候,一定要让运行操作人员、继保人员以及调度人员都参加到这项工作中来,三者在思想和步调上必须保持一致,提高三方工作人员的保护意识、合作意识以及创新意识,明确自己的责任和位置,做好其本分工作,达到预期目标。

(三)完善直流控制回路,降低设备的干扰。如果遇到直流控制回路中的电感线圈被突然切断而造成干扰的这种状况,可以在原来的装置上再安装续流回路,从而促使电感线圈在被切断时能够快速释放电磁场并加速其衰减,但要注意的是在电感线圈周围要连接相关数据的回路或者电阻串二极管,这样可以在其运行的时候不管是否有电流通过,都会使电路线圈能够很好地释放出电流,避免出现干扰现象。

根据地网的不同以及电位的升高所引起的干扰现象,可以采用密集网络,并在地中安装接地棒,对地网的结构进行改进,利用可靠的设备进行接地,降低其接地阻抗,从而减少对继电保护装置的干扰。

(四)检测二次设备。随着计算机的发展,我国的微机自动装置技术也在不断地发展,为检测二次设备提供了一个良好的条件,针对继电保护装置的特点,加载微机中在线的检测程序,做好设备和部件的安装。可以从设备管理工作着手,比如在进行设备验收工作时,要结合在线监测诊断设备的状态;另外加强检测技术的方法的投入,采用多元化的方法对二次设备进行检测。

(五)实现继电保护的智能化。目前我国的继电保护装置只能将其在安装处的电气量反应出来,其作用也只限于故障元件的切除,主要是因为数据通信手段不够科学合理。我国的继电保护大都采用的是人工智能化技术,例如进化规划、遗传算法、模糊逻辑以及神经网络等技术方法,并且这些技术都得到了广泛地应用。对此,在实施继电保护的时候,一定要结合计算机网络技术,有效运用网络技术,实现继电保护的智能化。

(六)做好低压配电线路的保护工作。目前在我国,不管是城市的配网线路,还是农村的配网线路,大都以10千伏的电压等级为主要内容,由于其10千伏的配电线路在结构特点上一致性表现比较差,不能很好地进行配电线路的保护工作。对此,在进行低压配电线路的时候,要结合配电网的实际情况和经验,严格按照要求来实施,采用合理的计算方法,使其满足要求。

篇6

关键词:接地装置 腐蚀 防护 阴极保护法

1 接地装置腐蚀后的危害

接地技术已有二百多年的历史,它最早是18世纪富兰克林为避雷针防雷而提出来的。目前,接地已成为保障电力系统,电子设备和建筑设施等安全可靠运行和人身安全的重要技术措施之一。在雷电防护措施中,接地更是相当重要的一环,接闪器,引下线,避雷器只有通过良好的接地装置才能将强大的雷电流迅速泄放入地,在防静电、抑制雷电电磁脉冲干扰方面,也必须进行良好的接地处理。

在我国现阶段,用于接地的材质还主要为碳钢材料。接地装置埋设在地下,既看不见又无监视装置,当接地装置投入运行后,腐蚀问题就会暴露出来。发生腐蚀后,接地碳钢材料变脆、起层、松散甚至断裂,接地体截面减小,表层的腐蚀产物造成接地性能不良,雷电冲击电流流经地网时,可能因电动力作用使地网或引下线断裂;腐蚀之后接地电阻明显增大,雷电流经引下线由接地装置入地时,入地点的地电位,跨步电压都会显著增大,危及人身安全;由于防雷的接地装置大多与设备、电源接地共用,接地装置上过大的压降,以过电压的形式侵入电源系统,对设备造成反击,引起事故。

2 接地装置的电化学腐蚀机理

土壤由含有多种无机物和有机物的土粒、水、空气所组成的不均匀多相体系。在土粒间存在大量细微孔隙,孔隙中充满空气和水,盐类溶解在水中成为电解质。埋在土壤中的接地体,其表面的不同部位因接触介质的理化性质不同(如温度、盐浓度、氧浓度、水含量等)而形成了不同的电极电位。接地金属构件上不同部位的电位差是引起接地装置腐蚀的根本原因。它通过土壤介质构成回路,形成腐蚀电池。电位较负的部位成为阳极,进行金属溶解反应,放出电子;电位较正的部位成为阴极区,进行阴极反应。

阳极FeFe2++2e

阴极 2H++2eH2 (强酸性土壤中)

O2+2H2O+4e4OH- (中性或碱性土壤中)

铁离子进一步与OH¯结合生成Fe(OH)2

在阳极区有氧气存在时,还将进行反应:

4Fe(OH)2+O2+2H2O4Fe(OH)3

Fe(OH)3不稳定,它将转变为更为稳定的产物:

Fe(OH)3FeOOH+H2O

Fe(OH)3Fe2O33H2OFe2O3+3H2O

在含有硫酸盐还原细菌的土壤中,阴极过程还包括硫酸根的还原:

SO4²-+6H20+8eH2S+10OH-

当土壤中存在HCO3-、CO3²-、S²- 阴离子时,与阳极附近金属离子反应生成不溶性腐蚀产物,如FeCO3、FeS等。

因此,普通碳钢接地装置在土壤中的腐蚀产物主要为铁的氧化物、氢氧化物及铁离子与土壤中阴离子作用生成的不溶性物质。

3 腐蚀的防护

常用防腐方法包含以下几种:

(1) 合理设计。在接地装置设计中,应该测量土壤对铜、钢和渡锌钢的腐蚀速度, 并按预期的接地体使用年限,考虑一定的富裕量按腐蚀要求应选择的导体材料。然后与按热、动稳定要求所选择的导体截面积相比较,取大值作为设计。布置地网时,尽量避免将电极电位差较大的金属导体相连接或靠近,减小腐蚀速度。

(2)采用铜及其它耐腐蚀的有色金属做接地材料。但是铜价格昂贵,刚性不够,施工困难,并与地网连接或相邻的设备外壳构架基础、电缆皮、水油气管道等之间形成原电池,加速腐蚀。

(3)用覆盖层保护。覆盖层的作用在于使导体与外界隔离开来,以阻碍金属表面的微电池作用。覆盖层可以分为两类:一是金属覆盖层,用耐腐蚀性强的金属或合金将容易腐蚀的金属表面完全覆盖起来,如铜包钢材料、镀锌钢等。二是非金属覆盖层,其主要作用是将导体与电解质溶液隔离开来,用油漆,沥青和塑料等。这种方法主要用于接地引下线的防腐。

(4)牺牲阳极的阴极保护法。阴极保护法是电化学保护法的一种, 电化学保护法还包括阳极保护法。 阴极保护法主要有两种,一种是消耗阳极法,即牺牲阳极以保护阴极,也称为无源法;另一种是馈电法或称有源法。

图1是无源法的原理图。将一个比被保护物有更大负电性的辅助电极(镁)埋在土壤中,并与铜锌导体连接,就会产生所需电流。这样辅助电极被腐蚀,保护了锌和铜。

图2是有源法原理图。将电源负极接在被保护的锌和铜导体上,正极接在一辅助电极上(可用钢或石墨做成),这样电流从正极流向铜锌导体,辅助电极被腐蚀。

4 牺牲阳极的阴极保护法在接地装置防腐蚀中的应用

牺牲阳极的阴极保护法在海洋石油钻井平台、油气管线的腐蚀防护中广泛应用,实践证明它能有效地防止金属腐蚀,它具有保护效果好、保护周期长、施工方便等突出优点。接地体的腐蚀是由于钢材本身的电化学不均匀性和外界环境的不均匀性,在其表面形成了腐蚀原电池。因此,可以采用改变金属的表面电极电位而改变金属的腐蚀状况。牺牲阳极的阴极保护法靠电位较负的金属(例如锌和镁合金)的溶解提供保护电流,使被保护金属表面阴极极化,防止表面发生腐蚀。

目前用于牺牲阳极保护的阳极材料主要有锌、铝、镁以及以它们为基体的合金。由于锌合金阳极只适用于土壤电阻率低于15~20Ω・m的地区,铝合金阳极性能又不够稳定,在地下钢质物体的防腐保护方面大多用镁合金阳极。

当已知接地网的防蚀表面积S(m2),根据下式计算得防蚀电流:

I=S・δ(mA)δ=5~50(mA/m2)

按下式计算所需的牺牲阳极发生的电流I

I=(Ea-E0)/(ρ1/s+R)

R=(ρ1/s)・(Ea-Ep)/(Ep-E0)

式中:Ea保护阳极的开路电位 V

Ep设计保护电位 V

E0 被保护物的自然电位 V

S 被保护物的表面积 m2

ρ1 被保护物体L间距内的外敷绝缘层的电阻率Ω・m2

R阳极组的接地电阻 Ω

I―阳极输出电流,A

对于镁合金阳极,A=2205A・h/kg,η=60%,K4=0.8,则上式可简化为

T=121G/I

按以上计算公式分析,设计牺牲阳极法阴极保护时,应考虑以下几点:

(a)牺牲阳极应设在土壤潮湿,地势低洼,且透气性差的地区,土壤电阻率以50~60Ω・m为宜,不超过80Ω・m。

(b)为了减少屏蔽作用,阳极间距离以3m为宜,阳极与被保护地网的间距也以3m为宜。阳极组适于小集中、大分散布置。每组根数以6根为宜,可水平或垂直敷设.阳极组的间距一般为1~2m。

5 结语

接地装置腐蚀的本质是电化学腐蚀,采用保护层、加入缓蚀剂都不能做到长期保护,采用铜合金又因资源缺乏成本过高难以推广。利用镁合金采取牺牲阳极的阴极保护法不仅适合新建接地装置的防护,而且技术经济性好,可望实现接地装置长久有效的目标。

参考文献

[1] 陈先禄.接地.重庆:重庆大学出版社.2001.8.

[2] 陈匡民.过程装备腐蚀与防护.北京:化学工业出版社,2001.5

[3] 李景禄.《实用电力接地技术》. 北京:中国电力出版社出版, 2002 年

[4] 胡学文,许崇武.接地网腐蚀与防护的研究.武汉:武汉大学,2002.2.

篇7

关键词:SAPF;IGBT;过电压;寄生电感

中图分类号:TN713 文献标识码:A 文章编号:2095-1302(2012)09-0055-03

Research on key technologies of protection system for shunt active power filter

CHEN Yu, CHENG Han-xiang, WANG Bing, ZHOU Shu-min

(School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

Abstract: During the operation of shunt active power filter, the explosion of IGBT occurs several times. Through experiments the generation of IGBT over-voltage is analyzed. Because the shutdown time of IGBT is very short, the tiny stray inductance on the connecting wire produces a spike over-voltage under the effect of high frequency. The spike over-voltage affects the security of IGBT when it is superimposed on the original voltage. In this paper, the buffer circuit for an appropriate IGBT module used in the 100kVA shunt active power filter is designed, which solves the explosion problems and protects the safe operation of shunt active power filter.

Keywords: SAPF; IGBT; over-voltage; parasitic inductance

0 引 言

由于IGBT功率模块具有开关频率高、可靠性高等优点,因而成为SAPF主电路PWM变流器结构的主选。但是,鉴于其固有的过载能力较差,当出现过流、过压故障,特别是短路故障时,如果保护不及时,往往会造成其永久性损坏。为此,本文分析了导致IGBT损坏的常见诱因——过电压的形成过程,然后提出了主电路结构优化和缓冲电路的设计方案,并通过实际装置的运行,验证了这些方案的有效性。

1 IGBT过电压的形成过程

在并联有源电力滤波器运行时,IGBT模块无论是在产生补偿电流时,还是在电网向直流侧电容充电时,都起着相当重要的作用,但是,由于其自身固有特性,在关断瞬间或是续流二极管恢复反向阻断能力时都会产生过电压,从而对IGBT的安全运行构成威胁[2,3]。为此,本文按照搭建的100 kV·A样机容量的要求,选用日本富士电机生产的R系列IGBT-IPM模块7MBP150RA120作为变流器构成主电路,并为其设计了吸收缓冲电路。

图1所示是单个IGBT及电路图,其中Ls1和Ls2为连接IGBT模块导线的寄生电感。从模块手册可知,IGBT从导通到关断,其电流从90%下降到10%所需要的时间tf=0.18~0.3 ms。若tf取0.2 ms,并取100 kV·A容量的APF电流为150 A计算,其电流变化di=150 A,则:

(1)

这样,在没有吸收缓冲电路的情况下, 1 μH的电感所产生的电压为:

(2)

7MBP150RA120模块的耐压等级为1 200 V,750 V的过电压叠加在原有电压基础上,足以使模块瞬间烧毁,且寄生电感一般不止1 μH,普通电阻的寄生电感可能在10 μH以上,定制的无感电阻的寄生电感也有2~3 μH。因此,微小的电感就可以产生巨大的过电压,致使IGBT模块被击穿损坏。

为了更直观地观察寄生电感产生的感应电压,笔者将系统线电压调至100 V,直流侧电容电压控制在180 V,通过试验运行,所获得的直流母线电压波形和IGBT关断时发射极与集电极间电压波动波形如图2所示。

图2中,每格电压为50 V,由图可见,尖峰电压最大幅值可达100 V;在IGBT关断瞬间,UCE的幅值接近90 V,这都对IGBT的安全运行构成威胁。解决模块过电压的关键方法是设法减小模块电路直流侧的寄生电感,优化主电路结构,设计合理的吸收缓冲电路。

2 有源电力滤波器主电路结构的优化设计

篇8

1 故障现象

2008年3月26日,该发电机做短路试验时(发电机并网开关下口三相短路),励磁电压升至20V左右报转子一点接地。当励磁电压升至30V时,转子两点接地跳闸了。首先我们检查定值单,转子接地电阻定值20kΩ(南瑞说明书推荐整定20kΩ),转子一点接地跳闸延时2.5s,定值没问题。其次拉开灭磁开关,用500MΩ表,动态测量转子绝缘30MΩ,转子绝缘也没问题。断开LFP-982A装置的转子电压线,单独测量励磁装置绝缘5MΩ。用500V兆欧表轻轻测量LFP-982A装置RE板发现负接地。

2 故障检查及处理

(1) 联系南瑞厂家来处理LFP-982A的RE板,厂家人员检查后,说RE板是好的没有问题(RE板负接地是S1或S2开关闭合造成的,R1和R3阻值很小所以用500V兆欧表测量显示负接地,另外建议该板子不能用500V兆欧表测量,用万用表测量)。按照南瑞厂家人员要求:用系统直流控制电源(-220V)给LFP-982A上电,保护正常,不报转子一点接地信号,装置显示对地电阻无穷大,证明RE板的确是好的。

(2) 励磁厂家用带来的示波器检查励磁装置的交流输入电源,波形也很正常,检查励磁装置的输出波形,也是没问题,证明励磁装置是好的。

(3) 我们拆掉发电机转子电缆,在灭磁开关下口接电炉子作假负载,通过励磁装置输出电压给LFP-982A装置提供正、负电源,(测量灭磁开关下口直流电压75V,交流电压80V),LFP-982A装置又报转子一点接地了,证明发电机转子确实没问题。

(4) 现在南瑞保护是好的,励磁是好的,发电机转子也是好的,保护也确实是采到电流动作的,这个电流从哪来的呢?唯一疑点是励磁装置的交流电源原设计是来自励磁变,因为发电机做短路试验,发电机出口三相母线已短路,发电机机端升不起压,用高压电缆取临时电源太麻烦,还需要两头做电缆头,所以我们取厂用电低压交流380V电源,作为励磁装置交流电源了。励磁变是Y/11接线,而厂用电是D/yn11接线,是不是电源取错了。于是我们用高压电缆在6kV备用开关柜上取电源给励磁变压器供电。发电机冲转后,励磁装置给发电机转子供电正常,没有报转子接地。我们继续做其他的实验一切正常,目前发电机运行正常。

3 原因分析

厂用电低压380V是中性点直接接地系统,发电机的大轴也是接地的,造成发电机励磁系统出现两点接地。励磁装置整出的直流不是纯直流,含有一定的交流分量,该交流分量通过整流装置由1点进入微机保护装置,经R3、2点、S2、3点,通过发电机大轴接地,回到厂用电低压380V系统的中性点,如图1所示(电流经过R1,S1同理。S1、S2象乒乓一样来回开关,两个是一个开一个关,不会同时开或关)。因为有电流通过保护装置,保护装置判断为转子的接地电阻变小,所以保护装置就报转子接地。

发电机正常运行时,采用励磁变压器供电。励磁变压器采用Y/11接线,变压器是中性点不接地的。整个发电机励磁系统只有发电机大轴是接地的,整改励磁系统是只有一点接地,构不成回路,没有电流通过,保护装置如图2所示。

当发电机转子有接地时,整个发电机励磁系统才变成两点接地系统构成回路,这时保护装置会有电流通过,所以保护装置报转子接地,如图3所示。

4 结束语

(1) 发电机励磁装置电源要选用中性点不接地电源,如果选用中性点接地电源,即使转子绝缘良好也报转子接地。

篇9

关键词 自适应继电保护;原理;特点;应用

中图分类号:TM77 文献标识码:A 文章编号:1671-7597(2013)20-0131-01

目前,我国的计算机技术迅猛发展,它不仅能够满足人们获取知识和娱乐的需要,更重要的一点在于它能够把国家的现代化建设与技术新措施进行有机的结合,自适应继电保护系统就是如此。与电力系统的常规控制相同,自适应继电保护也是在模型基础上的控制,只不过其所要依据的数学模型比较少,它更加注重数据的取得。现如今,由于自适应控制理论与继电保护的结合,就使得这种新技术得到了更进一步的发展,它能够有效的解决电力系统运行中的故障,并给予自动化的控制,从而减少故障发生的可能性,完善控制措施,提高电力系统运行的可靠性和安全性。

1 自适应继电保护的含义

想要加强自适应继电保护系统在电网运行中的应用,并弄清其真正的原理特点,首先要清楚明确什么是自适应继电保护。顾名思义,自适应继电保护与传统的继电保护的不同之处就在于其自动调节性,它是指保护系统能够根据电网的运行状况进行适当的调节,从而保证运行参数的准确性和电网工作的最优功效。它能够通过信号的输入对电网的整定数值、动作特点以及逻辑过程给予控制,一旦电网出现故障问题,就会及时的加以保护,减少经济损失,保证人员安全。

2 自适应继电保护的原理

2.1 自适应电流速断保护

众所周知,电力系统继电保护装置要求具有良好的选择性和快速性,一旦发生故障,能够以尽可能快的切除故障元件和设备,减少设备损伤,减小故障影响时间,提高电力系统运行的稳定性。传统的继电保护速断装置的速度不够迅速,技术水平也不高,无法适应不断变化的电力系统故障,虽然其整定值相对合理,但是却无法与实际相连,在系统运行方式最小时,还会造成保护的失效。而自适应继电保护电流速断则可以根据电力系统的运行方式和状态进行实时的改变,保证最优控制。

传统的电流速断保护原理可以表示为Ld=E/Zs+Zd’,其中E表示系统等效电源的电势,Zs是保护安装处到系统等效电源的阻抗,Zd’是被保护线路的阻抗。而新型的自适应电流保护最重要的特点是能够利用微型机的计算和记忆功能,对电流速断保护的数值进行实时的在线计算,也就是说能够让整定值随电网的故障种类和运行情况进行改变,其原理公式如下,I’D=KKKdE/Zs+Zd’。其中E仍然代表系统等效电源的电势,Zd’是短路点到保护安装处的阻抗,KK的数值在1.2到1.3之间,Zs是保护安装处与系统等效电源的阻抗,Kd表示故障类型的数据。综上所述,一定要及时准确地测量出Kd与Zs的数据,只有保证测出整定值的正确性,才能判定出故障的主要类型,从而根据不同的故障确定合理的对策。此外,为了进一步分析传统的电流速断保护与自适应电流保护之间的差异,还可以制定出相应的图表进行判断,这样就可以直观准确的看出两者之间的差异,并分析特点优势所在。表格如下。

2.2 自适应过电流保护

过电流保护是指在启动电网的时候,尽量避开最大的负荷电流,进而实现整定的一种保护对策。在电网正常运行的时候,不应该对其进行启动,只有当其出现故障的时候,才能采取相应的措施,从而起到保护的功效。

传统的过电流保护是依照电网发生的故障而实施的原理作业,其原理公式如下,IDZ=KKKkg/KhIHmax’,其中IDZ是电流元件的启动电流,KK选取1.15到1.35之间的可靠数据,Kkg要大于1,Kh则要大于0.85,代表的是电流组件的返回系数。自适应继电保护电流保护原理则是按照当时的负荷电量来进行的电流定值,其数据更加准确完整。假定当时的负荷电流为IH,那么其动作电流整定值就为IIDz=KkKzqIH/Khp,此时的动作时限设定则以离线方式整定,t=Tp/[(I’d/Ip)n-1],公式中的t代表动作时间,Tp是时间常数,I’d则是流入保护安装内部的电流继电器数值,n在一般反时限的时候取0.02,非常反时限时则取1。

2.3 自适应电压速断保护

由于传统的电压速断运动不带时限,无法从保证选择性上进行出发,其保护处的最低电Ummin整定数值应表示为,U为电压速断的整定数据,E为系统等效电源的数值,Zmmin则为最小运作状态下的系统阻抗。而自适应电压速断保护措施则可以在发生故障的时候运行系统电源侧的综合阻抗,其主要过程如下:1)输入被保护线路参数ZL和KL数值;2)在线实时计算电势E的准确数值;3)发生故障的时候计算系统综合阻抗Zm。

3 自适应继电保护的特点

其实,自适应继电保护并不是一个全新的概念,它发源于20世纪末,简单概括自适应继电保护的特点主要有:1)计算机的发展应用是自适应继电保护手段进行完善和普及的前提;2)自适应继电保护要依赖调度和电厂的自动化;3)自适应继电保护无论如何发展,其关键的安全环节不能遗弃。除此之外,自动重合闸也是实现其进一步发展的基础,在其应用过程中一定要适应实际的发展变化,在保证选择性的前提下,获得最高的灵敏度。

4 结束语

总而言之,自适应继电保护技术在电网中的应用是社会发展和技术进步的必然举措,通过进一步完善其措施技术,加强传统继电保护方式的创新,能够在很大程度上提高电网的运行安全,并保证电力的供应。虽然,目前自适应继电保护技术仅仅应用于几个部分,但是,相信在不久的将来,它一定可以成为新一代继电保护的领军者。

参考文献

[1]张洪英.自适应继电保护的探讨[A].电厂管理与电气技术经验交流文集[C].2003:251-48.

[2]蒋涛.电力系统中自适应继电保护的应用分析[J].科技致富向导,2011(22):72-39.

[3]刘国富.浅析自适应继电保护原理及其优越性[J].广东科技,2009(18):171-25.

[4]蒋伟绩.自适应继电保护的原理及其应用[J].中国高新技术企业,2007(2):97-34.

篇10

【关键词】 仿真;EMTP;MATLAB;教学研究

【中图分类号】G642.45 【文献标识码】A 【文章编号】2095-3089(2013)25-000-01

微机保护是电力系统继电保护的发展方向,是电力系统综合自动化的核心内容之一,它充分体现了高新技术在电力系统中的应用。微机保护原理课程是电气工程及其自动化专业的专业课之一,其内容涉及到计算机技术、通讯技术以及电力系统继电保护技术等多方面,具有很强的综合性。

配电网单相接地保护的基本思想是:当配电网发生故障后,计算提取配电网中所有线路的故障特征量(电压、电流、阻抗、距离等),将其与预先人工设定的整定值进行比较,若其中某条线路的故障特征量超越整定值的范围,则判定该线路发生故障;之后跳闸隔离故障点、切除发生故障的线路,一方面使故障元件免于继续遭到损坏,另一方面保证其他无故障部分迅速恢复正常运行。随着智能电网的迅猛发展,微机保护成为继电保护的主流方向,电磁暂态仿真软件EMTP可对电网的各种故障和继电保护装置的保护逻辑进行模拟仿真测试,弥补电气工程类本科生不能到现场进行实际操作的缺陷,促进学生对电力系统继电保护的整体认识,以及掌握微机继电保护的各个实现环节。

一、EMTP仿真软件搭建配电网模型

配电网接地保护是我国在建、改建的配电系统亟待解决的难题,也是继电保护的重点及难点问题。首先在EMTP仿真软件的ATPDraw中搭建仿真模型,采用图1所示的典型35kV配电网系统,带有三条馈线。在ATPDraw界面中点击鼠标右键选择电气元件,元件库中包含电阻、电感、电容、各种类型的开关、变压器、电源等原件。双击元件可进行元件参数设置。模型搭建好后,在工具栏的ATP中点击“RunATP”完成运行操作,即可得到仿真结果,如图2、图3所示。

二、MATLAB软件编写配电网保护程序

在配电网接地保护设计过程中,保护方法利用电流互感器上测量到的电流数据和电压互感器上测量到的电压数据进行保护方案设计。MATLAB软件可对配电网保护程序进行编写。

首先提取EMTP所获得的数据,保存为.dat文件,采用下述语句调用数据“fp=fopen('路径\文件名.dat','r');”之后按照顺序定义各电气量名称;然后按照保护判据提取基波、谐波、暂态、稳态等信号;最后得出保护结果。

由于学生可以形象地看到仿真过程中继电保护每一实现环节对继电保护系统性能的影响,因此该仿真系统对促进学生理解微机继电保护的工作原理具有积极的作用。