光纤通讯的优点范文

时间:2024-01-05 17:43:53

导语:如何才能写好一篇光纤通讯的优点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

光纤通讯的优点

篇1

关键词:光纤网络 通讯技术 发展现状 趋势

引言

近年来,随着人们生活水平的提高,传统的通讯技术已不能满足人们日益增长的需求,人们对网速要求的提升带动了通讯传输方式的改变,光纤通讯技术自身所具备的优点决定了其在通讯工程中的主导地位。中国的光纤通讯技术也取得了长足的进步,凭借其自身优势已被广泛应用于许多领域[1]。光纤通讯技术给人们的生产生活带来了许多方便,对促进我国通信事业的发展具有重要意义。

一、光纤通讯技术概述

光纤网络通讯技术是把要传送的信息以电信号的形式调到光纤的激光束上发送出去,在接收端把电信号恢复成原来的信息。与其他通信技术相比,光纤通讯技术的优势非常突出:一是中继距离长,传输损耗低。中继距离增加就意味着中继站数量的减少,系统运行的稳定性得到提高;二是在传输过程中有着优秀的抗电磁干扰能力,信息能以高保真状态传递到接收方;三是保密性好。目前信息之间的竞争使得窃听技术不断发展,因此,我们要重视信息的保密性。光纤网络通讯技术的传输载体比较特殊,只有光纤包层和纤芯附近存在光波,同时用橡胶护套和金属材质防潮层保护光缆,加之光纤常埋于地下,这样就降低了光泄露的可能性。从而可以保护信息的安全性;四是纤维的物理和化学性能稳定,重量更轻,不易损坏,使用寿命长;四是纤维材料广泛,有利于环境保护[2]。

二、光纤网络通讯技术的优点

中继距离长,传输损耗低。光纤网络通讯的损耗是指电信号功率传输每单位长度衰减的程度,目前,利用光纤网络通讯的信息损耗值一般能控制在0.2分贝/km之内。当电信号的损耗值较低时,它传输的单位长度就相应地增长,也就是中继距离的增加。现在,中级距离已经超过了200km。中级距离增加就意味着中继站数量的减少,系统运行的稳定性提高。

光纤容易铺设。光纤的内芯极细,直径较小,可以减少传输系统的占用空间;光纤柔韧性较好,重量较轻,当在人造卫星、宇宙飞船或者飞机上应用时,能够有效减轻它们的重量,同时柔韧性好的特点能够使光纤大量缠绕成束,从而获得高密度、小直径的光缆,易于网络式地铺设。

保密性好。现在,信息之间的竞争使窃听技术不断发展,因此,我们对信息保密性的关注大为增加。光纤网络通讯技术的传输载体比较特殊,只有光纤包层和纤芯附近存在光波,同时用橡胶护套和金属材质防潮层保护光缆,就避免了光的泄露,加之光纤常埋于地下,更降低了光泄露的可能性。保护好光也就保护了信息的安全性。

三、光纤通讯技术发展的现状

(一)光纤接入技术

光纤接入技术是把信息传递到千家万户的关键技术。随着高清视频媒体的普及,数据传输速度明显加快,有效地促进了宽带技术的发展。网上k公、在线学习、游戏等逐渐成为人们日常生活的主体,传统的用户访问数据传输速度已经远远不能满足人们网络通信的需求。光纤接入网具有故障频率低、维护少、成本低等特点,可以有效地解决人们网络通信的需要[3]。光纤接入技术有效地解决了通信传输的瓶颈问题,满足了企业和居民用户对通信质量和信息安全技术的要求,极大方便了人们的日常生活,这是光纤通讯技术发展的重要成果。

(二)色散补偿技术

色散补偿技术是为了维护信息系统的稳定性,扩大中继距离。同时,兼顾到插入损耗合理的技术措施,使输出端的电信号能够保证跨距、速率、误码率等系统性能的实现。色散会因为脉冲的变化而产生误码,降低信息传递的准确性,缩短电信号的传输距离。对采用常规光纤的10Gbit/s系统来说, 色散限制仅仅为50km。因此,在我国采用此技术是非常现实并且有必要的[4]。

(三)波分复用技术

波分复用(WDM)技术的应用极大地提高了光纤的传输容量。WDM技术的光为载体,根据不同的波长和频率的信道的基础上,对许多独立的通信通道的光纤的低损耗窗口规划,不同波长的光载波信号通过波分复用器,并结合光通过光纤传输,然后通过复用接收机多光载体承载相分离,从而实现多路光信号的传输问题。可以看出,波分复用(WDM)技术可以有效地发挥单模光纤的低损耗区域的优点,并获得一个大的带宽资源[5]。

四、我国光纤通讯技术的发展趋势

(一)光孤子通信技术

通常情况下,信息受到远距离传输的保护,波形和速度会发生变化,从而影响通信质量,而光孤子通信技术可以改变这种情况。在这种技术中,孤子的抗干扰能力是非常强的,它可以抑制偏振模色散和平衡的色散的光纤非线性。光孤子传输技术是提高光学孤子色散特性的使用,波长和速度的变化来确保信息传输不会在长距离实现零误差、长距离传输,有效提高信息传输的质量。目前,这项技术在美国、日本等国家进行了广泛的研究,这是中国的光纤通讯技术的未来必须重点关注的领域。尽管光孤子技术还存在许多难以解决的问题,但其未来的发展空间广阔[6]。

(二)全光网络

在不久的将来,全光网络将成为光纤通讯技术的发展趋势。传统的光纤通讯技术虽然解决了节点的全像问题,但仍需要在节点传输技术中应用,使光纤通信传输容量受到影响。和所有的光网络通过代替原来的节点的光节点,对整个光通信线路的实现,从发送到接收的信息是光传播的形式,根据信息的波长路由选择。全光网络在带宽、容量、速度、可扩展性、兼容性等方面具有明显的优势,并且在不安装设备的情况下增加了新节点的成本。在全光网络的未来发展中,必须克服与互联网和移动通信网络的融合,更好地为人们服务。

五、结语

总之,光纤技术相对于宽带,有更大的容量、更快的传输速度以及更小的损耗,也不容易受到电磁干扰的影响,因此随着人们对通信质量要求的提升,作为通信领域关键技术的光纤通讯技术在应用需求的推动下将持续大步的向前发展,通过不断的技术创新,光纤通讯技术必然会在信息化时代的社会中发挥重要作用。

参考文献

[1]张晶.光纤通讯技术的构成和发展趋向分析[J]. 硅谷,2014,(15):12+3.

[2]程竹.光纤通讯技术的发展现状与趋势[J]. 才智,2015,(13):372.

[3]岳晓钟.阐述光纤通讯技术的应用现状及其发展趋势[J].中国新通信,2016,(17):3-4.

[4]陈学锋.光纤通讯技术的应用及发展趋势探讨[J].通讯世界,2016,(02):9-10.

篇2

伴随经济的发展地球村的建立,世界的范围越来越,人民之间的联系越来越密切,基于人民之间的联系通讯技术成为人民联系的主要介质,而光纤通讯技术成为信息传播的主要方式。

关键词:光纤通讯、信息技术

中图分类号:TN253 文献标识码:A 文章编号:

一、光纤通讯的发展历程:

现代光纤通信技术光导纤维通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆

从1966年形成光纤通讯的概念,到1977年第一个商用光纤通讯系统投人运营,科技界、企业界花费了n年的时间完成光纤通讯第一轮的科研与开发过程。第一代光纤通讯系统,采用的光纤是多模光纤,光源是发光二极管,光波长是0.85拌m,传输速率为34Mb/s,价格要比电缆传输系统昂贵。紧接着的十多年,光纤通讯取得了持续的发展和逐年进步。这些进步的趋势和内容可用图1来概括:(1)光纤由多模转为单模。50拜m芯径的多模光纤,允许成百上干个不同横模的信号传输,这些不同模式传输的速度不同,形成模式色散,从而限制了传输速率的提高。单模光纤芯径为几个微米,只允许最基本的一个模式传输,因此消除了模式色散,能传输更高速率的信号。(2)光源由发光二极管转为激光器。这两种光源相比,无(3)传输速率从低到高。从70年代几十兆比特到80年代中期几百兆比特,再到90年代几千兆比特。(4)使用光波长从0.85拌m转为1.3拜m,再转向1.5拜m。这三个波长也被称为第一、第二、第三代光纤通讯的特征.光纤通讯使用波长的这种移动,是为了更好地解决光纤损耗和光纤色散两个问题而必须采取的技术措施。(5)费用的不断降低。由于光纤系统从传输媒介到发送、接收端机均不能与旧有电话设备兼容,因此在光纤通讯初期,每一电话线路的造价要高于铜线,随着生产批量增加、制造技术的成熟、传输速率,即单根光纤传输话路的增加,光纤通讯的成本有了大幅度的减低。就全球范围讲,1994年,是光纤通讯与铜线电缆通讯价格趋于相同的一年。更重要的是,今后光纤通讯的成本将继续下降,而铜线电缆通讯的造价将继续上升。(6)实际应用逐年指数增长。据1994年1月不完全统计,全球敷设的光纤总长度已经达到550。万公里,其中北美2400万公里,欧洲1400万公里,亚太地区1500万公里.应用的形式也从开始单一的话路业务转向多媒体信息的传输,光纤数据网、光缆电视传输系统都是近年来非常活跃的商业应用。电信技术的发展史,实际上就是电信主干线通讯容量不断增长的历史。1842年莫尔斯电报到本世纪60年代的微波技术,人类电信发展遵循指数规律,大约每20年提高10倍。光纤通讯技术的出现,突破了这一规律,给电信主干线通讯容量带来了更高速的发展。光纤通讯子1980年至今的15年时间里,传输比特提高了400呗。光纤,最终要代替铜线成为通讯的主干传输介质,光纤通讯,最终成为信息时代的一项支撑技术,最根本的原因就在于它的超大传输容量。

二、光纤通讯中的应用技术:

1、光纤放大器在光纤通讯中的应用:

通讯技术的实质是克服时间和空间的障碍使人类能够相互交流信息。因此,光纤通讯技术所追求的重要指标之一是容量距离乘积,亦即传输速率与传输距离的乘积。

所谓标准的光通讯,是指对光像直接进行强度调制、接收端直接检测的光通讯系统。这种系统的无中继传输距离将主要由光纤的衰减所限制,传输速率则受到光纤色散特性、光饵性能、光源调制电路等因素制约.采用相干光通讯的方法,可以因系统检测灵敏度的提高将容童距离积略为提高。然而真正为光纤通讯开辟了新天地的是光纤放大器。

光纤放大器被人们所重视是因为它具备下列众多优点:(1)增加了谱线宽度(2)增加了增益高度(3)功率输出可高达上百毫安(4)噪声很低(5)增益波长与第三代光纤通讯波长相吻合(6)泵浦激励带与可靠地半导体激光器兼容等等

一个在增益谱线内的光信号,经过几十公里的光纤传输,衰弱了的信号经光纤放大器放大后得以继续在系统中传输。这就是光纤放大器的最基本的功能。除了这种在系统中作线路放大的用途外,光纤放大器还可用作系统发送端的功率放大和接收端的前置放大。

在以前的光通讯系统中‘标准’系统,衰减了的信号是通过电中继器将信号放大的。这种中继器将按收到的光的弱信号转换成电信号,再将这一弱电信号进行放大和处理,然后再用处理后的电信号调制一个新的光源,“接力”将光信号继续在系统中传送。必须强调指出,光纤放大器替代这种光一电一光转换的电中继器,不仅仅是提高了效率;更重要的是;光纤放大器提供了在宽达35nm的范围内对所有传输光波长的全透明放大、对任何传输速率的全透明放大和对传输码型的全透明放大。这些功能是电中继器不可能实现的。因此,光纤放大器被称为电信技术的一场革命。

2、光纤通讯技术在宽带中的应用:

1991年,英国莱恩克基金会在伦敦颁发光电子学奖,颁奖的是撒切尔夫人,获奖的一组是为特种光纤做出贡献的英国科学家,另一组是提出光孤子传输概念的美国科学家。会上展示了获奖人制作的光纤放大器样品。基金会的科学顾问们选择这两项研究颁发奖金并非巧合。光纤放大器与光孤子的结合,使光纤传输具备极大的容量.甚至如科学家们所说:无限带宽自光纤通讯问世以来两个最基本的问题就是损耗与色散。长波长方向即1.sl,rn移动、光纤放大器的涎生、光纤制作技术的进步使损耗问题得到了解决,色散,引起脉冲展宽;色散,与传输距离成正比;因此它限制着容量距离乘积。光孤子的概念就是超短脉冲在光纤中无色散传输;就是一个光脉冲信号,在长距离光纤中传输以后仍保持它原有的脉冲形状。光弧子和光纤放大器的结合已经使光纤通讯的容量距离集成成十倍、百倍的提高。

人类需要信息高速公路,需要一个全球联网的电信基础设施。这种基础设施的目的和功能是在任何地方、任何时候、任何人之间可以用任何方式的组合来相互交流话音、数据和图象信息。光纤通讯为建设这样一种电信基础设施提供了技术支撑。

人类今天或多或少陷人道路拥挤、车祸不断、污染严重的困境。交通给人类亮出红灯。然而,人类找到了新的答案:信息高速公路全线绿灯。

3、光纤通讯在电力系统的应用:

随着大电厂、大电网的形成和发展,超高压长距离输电线路的建成,生产调度、行政管理水平的提高,对电力系统自动化程度提出了更高的要求,即向着以计算机为核心的调度、管理综合自动化的方向发展,以及将来实现综合业务通信网(ISDN).从而对电力系统通讯提出了更高的要求。既要传输调度电话,又要传输远动、保护信号(PLC复用通道);既要传输模似信号,又要传输数据乃至图象信号。

总之,随着电力生产、管理的现代化,对通讯提出了大容量、长距离、高质量、高速率和能传输多种信息的要求。显然电力载波通讯是远远不能满足要求的,必须光纤通讯在电力来统的应用寻求一种新的,可解决上述矛盾的通讯方式。数字微波和光纤通讯都是优选对象,在80年代,当时光纤通讯还未达到较好的商用水平,电力系统就建成了以国家电力调度中心到各大区网调中心,到各省、自治区中调的,以数字微波为骨干的,边远省区、新疆和大型工地如碧口、二滩、天生桥、安康以卫星地球站为通讯联络的全国电力系统的自动直拨通讯调度网;但是,微波站遭受过电压的机率很高,主要来源有雷击微波站天线、雷击与微波站相连的架空配电线路及通讯线路等,多年来,全国有许多微波站都遭受过雷击的破坏,既损坏了通讯设备,又影响电网安全运行,为了防止雷击事故损坏通讯设备,电力通讯部门每年都要投入大量的人力、物力、财力和精力,采取诸如接地、均压、屏蔽、分流、保护等防护过电压的多种措施,要建立一个可靠的接地网,部颁规程规定,地网的工频接地电阻值小于5欧姆,即使如此,每到雷雨季节还要提心吊胆,光纤通讯完全能够克服这些缺点,因此,光纤通讯当是电力通讯的最佳选择;

4工业电视图像的传输

随着电力系统的发展和系统容量的增加,水、火电厂的规模越来越大,输电电压逐步提高,50oKv的变电站和输电线路越来越多。为了实现电力系统和变电站的自动化管理,除了掌握现有的远动、保护、自动和通讯信息外,为强化集中控制管理手段,尚需使调度人员能及时的直观的掌握一些关键环节的设备运行工作状态及操作后的反应。为此对遥视系统的需要是迫切的,尤其是在处理事故过程中它的作用就更大。光纤通讯由于有频带宽、衰耗小、不怕干扰等优点,为传送图象提供了良好的通道,在几一几十km之内清晰的传送图象已不成问题。传输图象可采用最简单的模拟光纤通讯系统,也可以用一套光纤系统,同时接几个摄象头。目前,电力系统新投运的工业电视系统,基本上都采用了光纤通讯技术。

光纤通讯由于有频带宽、衰耗小、不怕干扰等优点,为传送图象提供了良好的通道,在几一几十km之内清晰的传送图象已不成问题。传输图象可采用最简单的模拟光纤通讯系统,也可以用一套光纤系统,同时接几个摄象头。目前,电力系统新投运的工业电视系统,基本上都采用了光纤通讯技术。

篇3

[摘要]微波通信是一种利用微波传输信息的一种通讯手段。本文就数字微波通讯的发展及其与光纤比较的优点作简要分析。

[关键词]数字微波通信微波光纤特点比较

数字微波通信则在微波传输中,采用了数字讯号处理技术,不仅具备了微波通讯建线快,投资小应用灵活的特点,还具有传输质量可靠,抗干扰能力强,传输线路长等多种优点。目前数字微波通讯已经成为我国国民经济建设中,重要通讯手段中发挥着巨大的作用。

一、我国数字微波通讯发展历史

我国数字微波通讯发展先后经历了模拟微波发展阶段、中小容量数字微波发阶段和大容量数字微波发展阶段。

上世纪80年代中后期,我国的数字微波发展受阻。主要原因是由于光纤通讯技术的兴起,数字微波的干线传输功能,已被光纤逐步取代。光纤通讯以其巨大的带宽超低损耗和较低成本而成为干线传输的主要手段,并对数字微波形成巨大冲击。自上世纪90年代以来,以大容量光纤传输,作为国家信息高速公路建设的主要传输手段,已经成为无法阻挡的历史潮流。在这种情况之下,数字微波何去何从,怎样发展是从事该领域研发和使用的单位及人员十分关心的问题。

二、微波与光纤相比主要优点

1.抵御自然灾害的能力强。如在1976年的唐山大地震,90年代的特大洪灾中,在其他通讯手段失效的情况下,微波保证了通讯和广播讯号的畅通。

2.受地理环境的限制小,应对突发事件的能力强。微波信号即可翻山又可跨海,与光缆相比,受地理条件的限制小,随着微波设备集成度提高,使用摄像微波传送一体机,和容易在突发事件现场实现信号的实时传输。

3.建设和维护成本相对较低。特别是在山区,人烟稀少的地区。铺设光缆非常困难,而且成本会很高。由于数字微波是采用无线电传输因此基本的设备架设简单,安装起来也相当简易快速。在网络规划上,较光纤和光缆之类的有线传输容易,并且能降低施工和维修上的成本。

4.运用灵活。如果有移动性的需要,较光纤无论军用或是商用数字微波通讯装备,架设起来都十分方便,且通讯效率也非常高,

目前数字微波发展主要用于光纤干线传输信号的互相备份和特殊不适合光纤地段和场合的应用,如:点对点SDH微波,PDH微波,主要作用是在光纤传输,遇到自然或者人为破坏时,紧急修复的备份。也用于农村,海岛等边远地区和专用通讯网。

高频段微波,可以用于城市内的短距离支线,如13,15.18,GHZ几个频段的点对点微波,通讯系统和移动通讯基站的连接。

由于微波频带宽广保密性高,且不易被窃听,所以军事价值相当高,一般军方所称为区域网络通讯系统,是以作战地区划分的,在作战地区内设置通讯中继站,彼此依靠微波相互连接形成网络。

在区域网络通信系统中,各级指挥单位,可靠着部队所在位置附近的中继站连接进入网络,指挥官可以透过区域网络直接传达密令。同时一般区域网络通常具有搜寻,使用者设定,转移,取消用户号码及网络其他功能。由于数字科技之运用,各种通讯皆可透过数字技术转成数字信号。因此,数字微波系统始终让军方爱不释手,未来军方还将朝向高频率高功率及高方向性的发展方向,向研发更新的数字微波系统。

三、数字微波通信关键技术

当今光纤通信和移动通信成为通信网的两大主流,有着巨大的产业和用户市场。在这种情况下,数字微波逐渐淡出原有的领域,这是技术的竞争,是不以人们意志为转移的。在这种情况下,数字微波要得到发展,必须摆正位置,当好光纤通信和移动通信的配角。数字微波如果突破一些关键技术,还会有很好的前景。

1.高频段传输技术。这里说的高频段,是指10GHz以上的频段,包括毫米波频段。根据电信主管部门的规划,3GHz以下频段要分配给移动和个人通信,而3—10GHz的频段也十分拥挤。因此,数字微波要及时调整发展方向,向高频段进军。

2.在现有频段上的兼容技术。由于10GHz以下的频段传播条件较好,器件比较成熟,主管部门也划分了某些频段给数字微波使用。因此,现有的频段也不要轻易放弃,但在技术上要较好解决兼容问题。如:扩频及跳频以及抗干扰技术等。

3.适用于各种用户的组网及接口技术。采用软件无线电技术,使数字微波通信系统成为一个较为通用的平台,能够根据用户的不同要求进行组网,兵完成各种借口功能。提高可靠性及降低成本的技术。如:全数字化处理、数字专用集成电路等。

四、数字微波技术的提高空间

随着微波通信技术的发展,高性能高速多状态调制解调技术、自适应交叉极化干扰抵消(XPIC)技术、前向纠错技术、专用大规模集成电路(ASIC)设计仿真技术都应用到SDH数字微波通信中,大大提高了微波通信的容量和可靠性。

SDH数字微波接力系统出现后,为了提高频谱效率出现了64QAM、128QAM、512QAM等高状态调制方式,频谱效率提高到1Obit/HZ。SDH系统采用了同步复用和灵活映射结构,可以从高阶支路直接分插低阶支路信号,避免了逐级分复接过程,使设备简化,而且SDH系统安排了大量的开销字节,使网络的操作、管理、维护的配置能力大大加强。

在数字微波系统中,多径衰落是微波信道中频谱失真的主要原因,因此需要各种各样的对抗多径衰落的措施,在数字微波系统中自适应均衡和空间分集接收成了不可缺少的设备。

1.调制器。数字调制过程的基本原理是把比特率为R(bits/s)的二进制数字序列变换为适当的中频或射频信号的处理过程,其中包括数字信号处理(如状码、信号编码和微波帧开销插入等),频谱成型,信号映射和调制过程。

2.中频放大器。它的作用就是将已调制的中频信号进行放大。

3.本地振荡器:本振产生适当的射频频段内的本地振荡信号,与已调制的中频信号进行混频产生出所要发射的微波信号,对于本振,除了要达到一定的功率电平,以满足必信混频器的需要,还要求频率稳定度高和相位噪声低。

4.功率放大器。它是用以将发射混频器输出的微弱信号电平(常为一dBm~一50dBm)放大到所需要的电平。常用的射频功率放大器为砷化稼FET器件,由于SDH系统一般采用高状态调制方式,对放大器的线性要求很高,故一般采用预失真来对放大器的残余非线性进行补偿。

5.自动发信功率控制(ATPC)。ATPC是微波接力系统中能得到许多好处的一个实用措施,与固定工作条件下相反,微波发射机工作时输出功率是可变的,最大值为Pmax,最小值或正常值为Pnom。在绝大多数时间内,发射机工作于Pnom,只有当远端接收机检测到不利衰落条件时,即接收信号电平低时才达到Pmax,它是利用反向通道业务信道来控制反馈环配置中的发射机。

五、发展方向

篇4

【关键词】光纤网络;技术内涵;应用优势;关键技术

1 引言

传统的通讯技术已经不能满足,人们对于通讯传输质量的需求。传统的通信技术被新型的技术取代这是一个必然的结果。光纤技术凭借自身的技术优势在整个通信领域中有着不可忽视的作用。是主要的通信技术方式,并且为高效的发挥通信的传输工作提供了重要的技术支持。

2 光纤网络技术

2.1 定义

光纤网络技术是指在光传播原理的基础上,对信息加以处理,将电信号转化成光纤激光并在光纤中进行传播,且在接收端通过还原设备再将激光信号处理成信息数据,以便用户更好地解读。

2.2 结构组成

光纤网络的结构组成包含许多利用光原理运行的设备,如光发信机、光接收机、光纤、无源器件、中继器等等。光发信和接收机是处理和转化光信号的设备,接收端设备还具备放大和检测光信号的作用,光纤就是传统的通信线缆,中继器是由再生电路以及光检测装置等构成,无源器件则是耦合器以及连接器。以上这些设备和部件构成光纤网络,与之相关的技术就是光纤网络技术。光纤网络技术是目前主流的通信技术手段。

3 光纤网络在通讯工程技术中应用的发展现状

我国光纤通信的发展经历了单模光纤、接入网光缆、室内光缆、通信光缆和塑料光缆五个阶段。很多供应商看到了快速发展的光纤通讯良好的发展前景,正在多项技术上如火如荼地开展研发工作,如多波长光网络、光网技术合作计划、波长捷变光传送和接入网、泛欧光子传送重叠网等项目。

4 光纤网络技术的长处

4.1 较强的抗干扰能力,稳定性俱佳

由于电磁场等多种因素的存在,传统的通讯传输中经常受到各种各样的干扰,影响通信信号的质量,因此通讯传输中不得不经常采用一些抗干扰技术等针对性措施,这不但影响传输质量,一定程度上还增加了传输成本。而光纤是一种基于光信号的传播技术,与电磁场等没有直接的相关性,因此不受电磁场变化的影响,从而极大地优化了通信的传输质量,并保证了信号传输极强的稳定效果。

4.2 传输距离长,信号损耗低

传输过程中电信号的衰减是通信技术中存在的一个突出问题,信号的衰减程度会根据传输距离的增加而增加,距离越长衰减越严重,无线电信号和有线电信号都存在这样的问题,因此会影响通信传播的实时性。要想减轻电信号的衰减必须依靠庞大的中继站的建设来加强信号,这很大程度上增加了通信传播的成本。

4.3 容易铺设且安全性高

光纤通信要比传统的通信工程容易铺设的多,首先上条提到的中继站的减少就降低了铺设难度,再加上光纤是一种轻质量的复合型材料,质量轻且柔韧性较好,对铺设环境的要求就降低了,无论是山川还是海洋都可以铺设。另外其他种类的通信技术信息容易出现安全问题,易被泄露利用,但是光纤不会产生这种问题,它具有自身的特殊性,光波在光纤中进行传递,有多层材料的保护,能够很好避免光的泄露,即使不慎光泄露也仅仅会出现中断信号的情况,而不会将信息泄露出去,因此光纤通信有极优的保密效果和安全性。

5 重点技术介绍

5.1 网络基站

在整个光纤通信工程中,基站是必不可少的基础和关键部分。基站由通信基站和解码基站组成,起到的是网络节点的重要作用。通信系统中布满许许多多的终端和节点,由于通信网络覆盖范围的迅速扩大,其终端数量也在疯长,光纤网络也要顺应这种趋势。而基站将多个客户端信息汇聚,完成交互传递,这使光纤网络优势得以发挥。利用编码和加密的功能将信息向外发射,使信息被充分共享。

5.2 通信中的复用技术

光纤网络的应用不单单是处理光信号,对资源也要进行统一的调度和分配,才能使有限的资源满足海量的通信需求。此时复用技术是最关键的手段,即在同一条光纤的使用上进行控制,利用有限的光纤资源传输无限量的信息。也就是复用技术通过多信道系统的增加与传输介质的容量调整等,达到光纤宽带的最大化利用。

5.3 色散处理技术

通常来说在光信号传输时几乎不会损失什么能量,但

也不是绝对不发生的,实际测试得出的结论,传输数百公里后光信号就会出现一定的衰减,并出现信息失真或乱码的现象。因此在光纤网络应用中要将光信号进行强化,此时就用到了色散补偿技术,它能够扩大中继站的距离,增加系统信号的抗干扰能力。此种技术能够最大化地降低信号损耗,保证输出端信号在跨度和速率方面满足需求。

6 光纤网络在通讯工程技术中应用的前景展望

6.1 光纤入户

光纤入户的宽带极大,改善从互联网主干网到用户桌面的“最后一公里”的不足。在未来随着各类技术的更新,光纤入户的投入会越来越小。现阶段,我国的光纤入户已经覆盖了平原地区,相信在不久后,山村地区也将实现全部光纤入户。

6.2 全光网络大力发展

全光网络以光节点代替电节点,节点之间实现全光化,也就是说信息的传递与交换能够一直保持光速。虽然现阶段全光网络在我国还不够完全成熟,但是它具有不可忽视的发展潜力,它具有开发、兼容、透明、可靠等优点,且带宽、容量和处理速度都能达到很大,出现误码的现象也极少见,并且没有太复杂的网络结构,可以以多种形式灵活组网,也能随时增加新节点。

7 结语

光纤网络是近几年发展起来的创新型的通信方式,将光纤的原理和思路引入到通信领域中可以最大化地减少构架网络的成本和维护投入。日益更新的光纤技术使得网络构建的大范围化得以实现,传统通讯网络与技术消退、光纤网络全面掌控世界的趋势将必然到来并逐步实现。

参考文献:

[1]陈丹.通讯工程技术中的光纤网络应用[J].硅谷,2014(20).

篇5

【关键字】 光纤 通讯方式 信息容量

一、光纤通讯现状

1、光纤通讯简介。光纤通信(Fiber-optic communication),也作光纤通讯。光纤通信是以光作为信息载体,以光纤作为传输媒介的通信方式,首先将电信号转换成光信号,再透过光纤将光信号进行传递,属于有线通信的一种。光经过调变后便能携带资讯。自1980年代起,光纤通讯系统对于电信工业产生了革命性 ,同时也在数位时代里扮演非常重要的角色。光纤通信传输容量大,保密性好等优点。光纤通信现在已经成为当今最主要的有线通信方式。

2、光纤接入技术。随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。这些业务不仅要有宽带的主干传输网络,用户接入部分更是关键,而传统的接入方式已经满足不了需求,因此只有带宽能力强的光纤接入才能将瓶颈打开,核心网和城域网的容量潜力才能真正发挥出来。

作为光纤接入中极有优势的PON技术早就出现了,它可以和多种技术相结合,比如ATM、SDH和以太网等,分别产生APON,GPON和EPON。由于ATM技术受到IP技术的挑战等问题,APON发展基本上停滞不前,甚至走下坡路,但有报道指出由于ATM交换在美国广泛应用,APON将用于实现FTTH方案;GPON对电路交换性的业务支持最有优势,又可以充分利用现有的SDH,但是技术比较复杂,成本偏高;相比之下,EPON 继承了以太网的优势,成本相对较低,但对TDM类业务的支持难度相对较大。

二、光纤通讯技术发展趋势分析

1、传输距离及速度的提升。超高速系统的发展。从过去20多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%:因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。目前商用系统已45Mbps增加到10Gbps,其速率在20年时间里增加了2000倍,比同期微电子技术的集成度增加速度还快得多。超大容量WDM系统的演进。采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。实现光联网。上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础。

2、光弧子通讯。光孤子通信介绍光孤子技术的出现,对于现代通信的发展起到了里程碑的作用。尤其在现代通信技术向大容量传输和延长中继距离方向发展时,光孤子传输不变形的特点决定了它在通信领域里应用的前景。从光孤子传输理论分析,光孤子是理想的光脉冲,因为它很窄,其脉冲宽度在皮秒级。这样,就可使邻近光脉冲间隔很小而不至于发生脉冲重叠,产生干扰。利用光孤子进行通信,其传输容量极大,可以说是几乎没有限制。传输速率将可能高达每秒兆比特。近年来,光孤子通信取得了突破性进展。光纤放大器的应用对孤子放大和传输非常有利,它使孤子通信的梦想推进到实际开发阶段。

3、网络全光化。全光式光孤子通信,是新一代超长距离、超高码速的光纤通信系统,更被公认为是光纤通信中最有发展前途、最具开拓性的前沿课题。光孤子通信和线性光纤通信比较有一系列显著的优点:首先传输容量比最好的线性通信系统大1个~2个数量级;其次可以进行全光中继。正因为光孤子通信技术的这些优点和潜在发展前景引起业界的广泛关注。经过不懈的努力已为实现超高速、超长距离无中继光孤子通信系统奠定了理论基础。在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000公里以上;在高性能EDFA方面是获得低噪声高输出EDFA。

三、结束语

光纤通信技术是信息科技发展的产物之一,与信息科技的发展是相辅相成的。目前光纤通信技术在我国的应用已经十分普及,技术发展趋势也十分明确,未来将会继续在社会和经济活动中发挥重要作用。

参 考 文 献

[1] 穆道生主编.现代光纤通信系统.北京:科学出版社,2005.9

篇6

通信工程是电子工程中的一个重要分支,它是一门专业性很强的学科。其实,通信技术中的电报早在19世纪中期就被发明了,它是通讯技术中最早的信息传输技术,也给有线传输通讯技术的发展奠定了一定的基础,它把信息通过专用的交换线路以电信号的方式发送出去,在传输过程中是以信号用编码的形式来传递。在那个发展时期,电报就成为了最为重要的信息传递方式。而后,随着科技的不断进步,通信技术得到了不断进步和提高,有线传输通讯技术和无限传输通信技术也开始得到应用并日益成熟。其中,有线传输技术是利用传输介质来进行信息传输,其不同传输介质的技术形式也各具优势,基本具有传输速率快、信号稳定、安全性高、抗干扰能力强等优点,尤其是光纤传输技术具有很强的技术优势,在很多通讯业务中都被广泛应用;而无线传输技术则是利用电磁波进行信息传输,其基本优点包括传输距离远,安装方便、节约成本等。但是,无线传输技术容易受到来自外界因素的干扰,造成传输信号受到严重影响,直接影响着信息传输的速率和质量。而且无线传输技术受到干扰后还会产生噪音,这更会给人们生活带来严重的影响。可见,有线传输技术比无线传输技术的实用性更强,并且数据传输的安全性还高,大力发展有限传输通讯技术具有重要意义。

2有线传输技术的主要传输方式

2.1同轴电缆传输方式

同轴电缆方式是非常普通的有线传输通讯技术,它是利用网状铜包裹铜线的方式来构建传输通道,其基本包括铜线、绝缘塑料层、网状铜层(或者其他网状导体)、外皮层等部分。根据使用用途一般分为两种:第一种,机电同轴电缆。它的用途一般被用来进行数字传输;第二种,宽带同轴电缆。它的用途一般用于电视信号传输。根据使用直径一般又可被分为粗同轴电缆和细同轴电缆。由于其传输形式结构相对复杂,但是却具有其他传输形式不具备的技术优势,目前已经被通讯工程行业广泛应用,并取得了很好的应用效果。但是,同轴电缆的缺点也很明显,这种电缆最怕弯曲,当电缆弯曲后,信号传输就会折返,从而极大的降低其传输效率,其接收端的信号也会变得非常微弱。可是,尽管它这一缺点较大,但由于这种传输形式具有信号稳定、敢看绕能力强,传输速度快等优势,它还是被广泛应用到电视信号传输和监控信号传输业务中。并且由于同轴电缆传输信号却受距离影响很大,有效距离仅仅有200米,一旦超过这个范围,其信号质量会随着距离的增加而变差,因此,该技术在应用中还需要考虑距离因素,或者采用其他手段来改进,否则在实际应用中很受阻碍。

2.2光纤传输方式

光纤是一种非常高效、实用的有线传输通讯方式,它是以光和信号为载体,进行信息传输的技术,它比双绞线的容量大,并且传输质量也高,所以应用很广泛。随着科技的不断发展,光纤传输技术已经成熟,成为了目前最为实用的有线传输技术,由于它具有传输速率快,传输距离长,传输质量高等技术优势,它一经投入市场,就得到了客户的广泛认可和肯定,特别是对于宽带业务来说,已经完全取代了以前的传输技术,从而实现了宽带业务服务质量上的提高。光纤在没有断点的情况下,它的传输距离可以达到几百里,这是其他有线传输技术难以实现的,并且它在实际传输中,信息的安全性高,本身又不带电,可以在化工厂扥特殊领域应用,解决了很多以前传统有线传输技术难以解决的问题。可以说,这种材质基本不受外界因素的影响,任何条件都难以对光纤传输造成严重影响,所以,该传输技术应用领域很广泛,其业务范围也正在不断的扩大。但是需要值得注意的是,光纤材料的质地较脆,在实际使用很容易损坏,因此,光纤安装工作要求工作人员一定要认真仔细,不断提高自身的技术水平,这样才能有利于后期进行光纤维护。

2.3双绞线传输方式

双绞线是通信工程早期的有线传输技术,它是一种非常常见的传统传输形式。双绞线是由两条相互绝缘的导体编织在一起,其工作中两条导线的电波相互抵消,一般被应用于传递电视信号业务。该种传输技术被分为两类:(1)屏蔽双绞线;(2)非屏蔽双绞线。这两种传输方式常被应用于复杂的通讯工程中,由于双绞线传输的两种传播介质相互绝缘且相互交合,各自又都具有较强的抗干扰能力,在传输信号中可以抵消更强的辅助电波,所以,双绞线传输的抗干扰能力更强,这进一步保障了数据的安全性和信号的稳定性,具有其他传输技术不具备的能力,其实际的应用价值很大。但是,双绞线传输也有一定的缺点,其中非屏蔽式双绞线尽管成本较低,安装操作简单,但是却容易被窃听;而屏蔽式双绞线抗干扰能力很强,但是安装相对复杂,成本较高,还需要接地,这给实际应用带来了难度。

2.4架空明线传输方式

架空明线传输技术是最为普遍的有线传输方式,它是利用电线杆来搭建电路线路,从而形成信息传输通道,这种有线传输方式应用时间最早,基本被应用到电话、传真、电报等通讯工程中,其尽管安装成本较低,维修方便,但是这种传统的传输技术受传输距离和传输速度的影响,已经逐渐被其他传输方式所取代。可是对于一些相对偏僻的地区,受当地的地质情况影响,还只能采用该技术进行信息数据传输,因此,尽管架空明线传输效果不好,但是还占据着一部分业务区域。

3有线传输通信技术网络化改进的策略

有线传输通信技术是通信技术中的重要部分,加快有线传输通信技术创新和提高,对通信工程行业发展来说意义重大,本文认为改进有线传输通信网络化发展要做好以下方面内容。

3.1改进传输材料和方法

上文中介绍了不同传输材料的不同优势和缺点,因此,为了改变这些材料的传输弊端,就要改进传输材料和方法。例如:双绞线传输形式尽管材料成本低,布线简单,但是在实际应用中信号却受传输距离影响,难以适用于信号区域较大的工程布线。但是,利用交换机设备进行中途转接,就可以完全解决这一问题;又如:光纤传输技术尽管已经非常成熟,但是当出现断电问题时,往往利用增加信号功率的手段来传输信息,可是却达不到应有的效果。而圣地亚哥的国外学者却解决了这一问题,他可以实现在不使用信号中继器的情况下,让光纤信号传输达到12000KM,这真是光纤技术改造后的重大突破。并且这种技术还减少了电子再生器的应用,不仅大大的节约了材料成本,还让电子信号更强。还有,同轴电缆技术体积过大,占用空间较大,而通过制定布局方案,对线路进行合理设计后却可以很好的解决这一问题,并且还增加了信号的传输质量。

篇7

关键词 计算机通信网;通信技术;光纤通信

一、通信网概念

通信网是将地理位置不同的用户终端设备通过交换、传输设备连接起来,以达到可以通信和信息交换的一种系统形式;通信和通信网的概念有区别,通信最基本的形式只是点与点之间的对接建立通信系统,而只有将众多的通信传输系统通过交换设备的中间介质,组合成拓扑结构才能把它称作通信。换而言之,必须要产生交换系统这个中间介质,把不同区域的任意终端客户相互连接,这才能组成有效的通信网。通信网的基本组成就是由三个部分,一是用户终端设备;二是交换设备;三是传输设备,三者缺一不可。

二、网络通信的主要内容

1.网络通信形式

网络通信的形式目前有三种,一是单工通信,数据只能单向传输,有固定的发送者和接受者,如:遥控器;二是半双工通信,数据可双向交替传输,但不能同时作用,如:对讲机;三是全双工通信,数据可同时双向传输,双向作用;如移动电话等。

2.网络通信内容

(1)数据通信。数据通信的主要功能是借助可靠手段来实现传输信号;数据通信的发展,不仅使得包括人民生活质量得到提升,也使得全球技术综合体有了进一步的飞跃,最直接的体现就是航空技术、自动化技术、以及资源探测开发、遥感技术、甚至是军事技术方面;其数据通信是软硬件的结合,包含内容有信号传输、传输媒体、信号编码、接口、数据链路控制以及复用等项目。 (2)网络连接。网络连接是指将各种通信设备技术,通过某种方式和连接介质联系在一起的结构体系;这个体系相互关联、相互组成、相互影响,具有协调统一性和分类多功能性;连接介质通常是电缆、双绞线、光纤、微波、载波或通信卫星。连接介质在功能上要具有独立的特点,能够保证网络连接的可靠性;目前连接介质的发展相当受局限,也许在不久的将来,我们会找到更好的连接介质。

(3)协议。这里所说的协议并非我们日常生活中所说的文字合同;它是在通信过程中,对不同体系总体结构以及各不同层次分体结构的一种具体分析和解析,通过解析的“密码”来实现结构的开放性和融合性;计算机网络通常就是按照网络协议,将不同个体、不同位置的计算机相互连接起来的一个分散集合体。 三、光纤通信技术

1.光纤通信技术介绍

科学发展使人们对光纤技术有了进一步认识,基于通信领域,光纤本身具有比一般金属或其他电缆较强的传输性能,进而能产生数据较大的传输宽带,如散波长窗口,单模光纤具有几十GHz km的宽带;光纤通信系统利用的是光源的调制特性、调制方式和光纤的色散特性。这里存在一些问题,在单波长光纤通信系统中,由于终端设备不能发挥光纤带宽大的优势,借助其他技术扩大传输容量;据现代科学证实,密集波分复用技术是目前最实用的技术之一,从效果和数据来看,传输容量可达单波长光纤通信的数十倍,可将单波长光纤通信的2.5Gbps到10Gbps的数据最高增加至100Gbps。

2.光纤通讯的优点

(1)抗磁干扰性强。光纤通信主要应用的材料是石英,它最重要的特点就是具有超强的抗电磁干扰性能,对于外界的电磁干扰有着更有效的抗性,可以让信息在经过通信传输时有着更稳定的数据流,光纤通信不会受到外部环境影响,更不会受人为架起电缆等外界的干扰。(2)通信容量大。光纤的通信容量可以达到微波通信容量的几十倍甚至更高,而且光纤的带宽却要比电缆或者铜线大很多。因此,光纤通信技术具有通信传输距离远、容量大、速度快等特点,是其他的通信传输媒介无法比拟的。(3)良好的保密性。电磁波传播很容易被泄露,而光纤传输过程中绝对不会出现串扰情况,也不会因为光信号的泄露而丢失或者被盗信息,更不会被人窃听,这方面可以保证用户信息的安全性和保密性,这也为个人或者国家的机密信息提供了保障。

四、通信信号的衰弱和再生

1.通讯信号的衰弱

通讯信号在“长途跋涉”的路途上,不免产生光波能耗的损失,因此信号放大器成为组成光纤系统的必要组成元件。光波能耗损失的主要原因在于物质吸收、瑞立散射、米氏散射以及连接器造成的损失等。即便是石英的性能的优越,也不免内在杂质会让吸收的可比系数加大。光纤变形、光纤密度不均衡,接合技术也是通讯信号衰退的其他原因。

2.通讯信号的再生

通讯信号的衰退使得通讯传输受到阻滞,可能会造成恶劣的后果;为了避免此矛盾的产生和发展,现代光纤技术采用众多技术来弥补通讯信号的衰退,由此产生了通讯信号的再生技术,再生技术的发展,使得光纤通讯系统成本大幅降低;体现出最优越的就是海底光纤,老式海底光纤传输借助中继器,而中继器维护成本高,再生技术的发展从根本上解决这个矛盾。

计算机通信网及光纤通信的发展依附于高科技,随着科技不断发展,计算机通信网及光纤通信将会更紧密融合在一起;推动通信事业不断发展,给人类文明谱写更美丽的篇章。

参考文献:

[1]段爱军.浅析光纤通信技术的发展趋势[J].甘肃科技,2011(07).

篇8

关键词:数据采集 电磁干扰 低功耗 高压串补

中图分类号:TM55 文献标识码:A 文章编号:1007-9416(2016)12-0173-02

1 引言[1][2][3]

所谓串补,即交流输电系统串联电容补偿。就是将电力电容器串联于交流输电路线中,通过阻抗补偿减少功率输送引起的电压降和功角差,从而提高电力系统稳定性,扩大线路输送容量。

其中,由于串补平台的对地电压为线路的相电压,其电磁环境较为恶劣,受到影响因素较多。而安装在平台上的一次、二次设备,测量装置等受到的干扰较大。同时,高压串补平台因受限于绝缘,平台上设备需要通过激光方式供能,能耗受限。因此,能够稳定可靠的工作于500kV平台上的低功耗远端数据采集系统被认为是高压串补装置的关键技术之一。

本文针对抵御外部复杂环境电磁干扰和降低系统功耗两个主要目标,同时兼顾数据采集系统的模拟量采集精度以及光纤通讯可靠性两个重要指标,设计了一款可以用于电力系统高压线路串连电容器补偿装置高压平台的数据采集系统。

通过合理选择处理器、采样电路、时钟频率、供电方式以及优化软件设计,在保证数据采集系统(10通道AI/8通道DI/8通道DO/光纤通讯)能够可靠工作的条件下,将能耗控制在了300mW以内。使用该采集系统的串补装置控制保护系统已经在云南500kV砚山串补站投运,并通过了线路短路等各类试验的验证,保护效果正常。

2 硬件设计

2.1 数据采集部分

考虑到平台上面复杂的电磁环境以及故障时CT回路可能出现的大电流尖峰和大量干扰,当某个采样通道出现突发大电流情况下,很可能会干扰到其它采样通道,造成实际运行中串补误动、退出等严重现象,影响串补稳定运行[2]。因此,完整的采样链路必须对一次互感器传递过来的信号进行预处理,同时各采样通道在前级的信号调理环节需要做过压保护和互相隔离,并应有针对性的加装低通滤波器,如图1。

进入采样系统的信号各个通道独立,并需采用如图2所示的差分方式接入系统板卡,以实现对外部共模干扰的有效抑制,并对部分极高频干扰进行过滤。根据相关规范[4][5],串补系统采样精度需要满足5‰以上,在满足保护响应时间以及数据消抖等条件下,各个通道的采样率不宜低于5k Hz。因此,在综合评估采样精度、采样速率、能耗等要素后,选择了极低功耗的高精度采样芯片AD79xx负责模拟量采样。

文献[2]指出,以往的大量串补现场在实际运行中,均不同程度的出现过由于设备或保护动作导致电磁干扰继而引发串补保护装置通讯中断、保护误动甚或设备退出等严重现象。新设计的系统对此问题进行了针对性的专门设计,而之后的各类验证试验,表明采用的抑制措施效果明显。图3为串补设备进行短路试验时,控保装置上的波形记录。由曲线可以看出,当短路故障发生时,间隙火花电流会突发达到上万安培,必然对平台上设备产生空间电磁干扰,但受到干扰的平台故障电流(经变比换算后)受干扰峰值约为一百安培,从峰值和持续时间上都远远低于保护定值。同时从录波曲线的连续性上可以看出,通讯丢包现象基本不存在,说明即使外部电磁干扰严重的情况下,数据采集系统与地面设备间的光纤通讯仍保持畅通。

2.2 控制部分

为了能够方便的实现AD采样控制以及通讯光模块驱动,同时保证平台数据采集系统运行的可靠性,在处理器部分选择了可编程逻辑器件(CPLD)。可编程逻辑器件(CPLD)具有容易使用、时序可预测和速度高等优点,同时由于过去受CPLD密度限制而无法在大型设计应用中使用的问题近年来随着高密度可编程逻辑器件的大量问世而被解决,使得我们可以放心的抛弃供电复杂且不容易使用的单片机/CPU方案。

通过权衡性能、控制程序复杂度、能耗等因素后,选择了MAXV系列CPLD芯片作为数据采集系统的控制核心,并按照图4的结构来保障多通道采样的并行控制以及高速光纤通讯的稳定。这样,可以充分利用CPLD的IO灵活配置以及速度快等优点,同时由于选择的芯片供电系统简单,可以简化电源分级和减少电路复杂度,进而降低系统的能量损耗。

2.3 光纤通讯部分

为了简化高压串补平台对地的绝缘配置,平台上设备到地面没有任何电气连接,所以采样系统选择以光纤通讯的形式向地面设备传送采集到的各类数据。

而这个光纤通讯环节,也是采样系统中能耗较高的部分之一。为了尽可能的降低能量消耗,选择使用玻璃光纤,并根据光纤的实际光衰和老化特性,适当降低发射光模块的驱动电流。而合理的选择通讯速率,尽可能减少光模块的发光时间,也是实现降低系统能耗的重要手段。

2.4 电源部分

任何系统的稳定运行,都首先依赖于一个稳定可靠的电源。这就需要在电源系统的设计中,对电源工作稳定性、电源电压范围、运行温度范围等因素进行综合考量,同时按照尽量简化的原则对整个系统进行电源分级。

参考文献[6]指出,集成电路的功耗p可按照下式进行估算:

式中,是集成电路节点电容,Vdd是工作电压,为节点信号摆幅,是时钟频率。从上式可以清晰的看到,电源电压与功耗成平方关系。所以,降低器件工作电压就可以直接达到降低功耗的目的。但是,器件的工作电压并不是越低越好,为了保证一定的抗干扰能力以及电源电压小幅波动情况下的工作稳定性,加之考虑到供电系统实现的简单化,对采样系统各个部分分类归集为5V、2.5V、1.8V三级用电。并通过尽量减少5V电源使用,大量选用2.5V器件与电路,关键部位选择小电流差分信号等手段,在降低能耗和系统工作稳定性之间取得一个平衡。(如图5)

由外部向系统直接提供的5V电源,只要经过保护性稳压环节即可引入系统中使用,同时选择高效率稳压器LTC36xx来设计实现5V/2.5V,5V/1.8V两级电源系统,使整个电源系统的能量损耗低于10%。

3 软件设计

多通道模拟量的高速采集是所设计系统的核心功能之一,利用CPLD芯片来设计实现AD芯片的SPI驱动程序,在得到采样数据的同时还可凭借对AD进行引脚状态监视来判断AD芯片工作是否正常。同r,由于采样频率足够快,在CPLD内部还可增加滤波环节,以避免极高频干扰信号对系统的影响。(如图6)

借助于CPLD程序能够并行执行的优点,使多个模拟量通道能够同时进行高速采样工作,而又不会影响光纤通讯等其它对时间响应要求高的功能的实现。系统中,CPLD除将采集的平台数据滤波、打包后与地面设备进行光纤通讯交互外,还可以通过对电源芯片监视、环境温度采集等子系统完成数据采集系统自身的完整性自检以及平台其它信息的收集。

同样的,程序设计中需要遵循低功耗原则,尽可能使各环节电路在大部分工作时间里处于非耗电或低功耗状态。例如,通过程序设计使通讯光模块在通讯间隔期处于不发光状态,使用的门电路等处于关断状态,关闭不使用的采样通道工作等手段,尽可能降低常态下的系统功耗,减轻电源系统负荷。

4 结语

专门针对于电力系统高压串补平台应用而设计的数据采集系统,最大可满足10通道模拟量同时高速采样、8通道开关量输入、8通道开关量输出、兼具环境温度测量等功能,同时实测正常工作能耗低于300mW。针对各类干扰而对采样信号调理环节等进行的特殊设计,使之非常适合在高压串补平台的复杂电磁环境中使用。目前,该系统已经在南方电网云南砚山500kV串补站控保系统中投入运行,并在各类测试以及实际运行中均表现良好。

参考文献

[1]刁彦平.浅谈超高压输电线路串补装置的原理及应用[J].中国电子商务,2012,(9):90-90.

[2]温才权.串补平台干扰分析及改进建议[J].电气技术,2016,(2):95-99.

[3]果家礼.500kV固定串补装置控制及保护系统技术[J].云南电力技术,2009,37(3):31-32.

[4]GB/T 50063-2008电力装置的电测量仪表装置设计规范[S].北京:中国计划出版社,2008.

篇9

关键词:MB+网 工业以太网 1.现状分析

新钢公司为适应全局的发展,在烧结厂现有115m2烧结机的生产场地上合理布局,再造了一台180m2的烧结机,两台烧结机由于工艺布局上的原因共用了一条上料系统,即115m2烧结机的配料系统。新建的180m2烧结机通讯网络上采用的是基于TCP/IP的工业以太网,其传输介质是光纤,数据传输速率高,而于始建于2000年的115m2烧结机及其配料系统在通讯网络上采用的是MODIBUS PLUS(简称MB+)网,其传输介质为两芯屏蔽双绞线,数据传输速率相对较低,而现在工艺布局上要求两台烧结机必须共用一个上料系统,它们之间必然在存在通讯上的连接。115m2烧结机的通讯网络采用的是单网架构,其通讯的稳定性和安全性紧密依赖于单条通讯电缆,在通讯安全上存在不足。当然两台烧结机在以下方面存在共性,115m2烧结机采用的PLC控制模块是MODICON公司的,180m2烧结机也是;两台烧结机的上位编程软件和监控软件均为CONCEPT和IFIX,只是版本不同。基于上述情况,我们考虑将115m2烧结机的单网架构的MB+网改造成双网架构的以太网,从180m2烧结机主控室到配料系统主控室,配料系统主控室到115m2烧结机主控室均运用双光缆进行通讯。

2.改造思路

通过上述分析,我们对整个改造工程有了一个比较清晰的思路。实现通讯的关键在于通讯模块的选用,我们通过对施耐德电气提供的TCP/IP网络设备进行了分析比较,最终决定选用其型号为140 NOE 711 X0(100 Base Tx/Fx)的以太网通讯模块用来作通讯连接。NOE 771 X0模块具有以下优点,它提供RJ-45双绞线接口及MT-RJ光纤接口各一个,使用以太网的通讯方式,支持Peer Cop 定义 I/O 数据表,支持JAVA及嵌入式WEB服务用来管理PLC硬件。它的连接方式也非常简单,只需在现有PLC机柜底板空闲槽位上插入NOE模块即可,且支持热拔插。在确定了通讯模块的选型后,我们的思路有以下几条。

1、首先铺设光缆,从115m2烧结机主控室到配料主控室,再从配料主控室到180m2烧结机主控室铺设双光缆。

2、请专业人员对光缆头与光收发器进行融接。用双绞线将光收发器与交换机相连,再用双绞线从交换机转接到NOE模块。

3、安装NOE模块和工控机上以太网卡,对各NOE模块和各相应工控机以太网卡的IP进行配置,接通其间的通讯。

4、对各工控机中上位机编程软件和监控软件配置进行更改,使其由MB+连接方式转变为TCP/IP的连接方式。

5、对整个通讯网络进行测试验证,更改其中的错误,完善其中的功能。

完成改造后其网络结构示意图如下:

3.具体实施

首先我们对以下设备的选型作了明确,通讯模块我们选用了施耐德的NOE 77100,交换机我们选用了MOXA工业交换机。光缆我们选用了多模铠装光缆,光收发器为,网卡为D_LINK的,双绞线为AMP的超五类屏蔽线。

硬件的安装方面我们要注意光缆铺设时其变转角不得超过90。;融接光纤时要细心谨慎,光纤盒最好用卡带进行固定;在压制双绞线的水晶头时,要注意八根线的线序,压制完后,要测试其连通性;安装网卡时,注意网卡与计算机插槽的接触完好,由于我们要在每台计算机上安装双网卡,所以还要注意网卡中断资源的分配。

软件的配置方面重点在于IP地址的分配以及上位机编程和监控软件的配置。

我们先说一下IP地址的分配:比如我厂115m2烧结机主控室IP分配可以如下设置:

NOE1地址: 84.19.4.1,NOE2地址: 84.19.4.2

ZCFOS1操作站IP1地址:84.19.4.101,IP2地址:84.19.4.102

ZCFOS2操作站IP1地址:84.19.4.103,IP2地址:84.19.4.104

ZCFOS3操作站IP1地址:84.19.4.105,IP2地址:84.19.4.106

篇10

关键词:光纤通信;电力系统;电力通讯网;应用

中图分类号:TN929.11 文献标识码:A 文章编号:1674-7712 (2014) 04-0000-02

从通讯网络的角度来说,电力系统的通讯网络是目前国内大型的专用网络之一。它承担着电力系统所有的语音、数据、视频和宽带业务,其中也包含常规电信业务、内部呼叫和自动化办公业务等。从整体上说,电力系统的通信网络与电力输送网络一样,都是不可或缺且十分重要的,它的整体性和稳定性将直接影响到供电系统的安全。

事实上,光纤通信技术已经超越了本身业务,成为近几十年来最前沿的综合性技术。结合电力系统自身的需要,它可以为电网系统提供快速监测、故障定位、远程监控等功能,成为我国电网系统应用层的主力辅助部分。从以上功能不难判断出,光纤通信在作用范围上主要击中在电网自动化控制方面和通信平台,作用的对象主要包括主站系统,子站系统以及馈线端。

一、在电力系统自动化中的应用

电力系统是我国经济发展和社会进步的重要组成部分,由于我国的国土面积广大,东西部能源和技术分配不均匀,因此需要架设大量长距离电力传输线路,进而形成了态势复杂的电网系统。根据现实情况分析,电力在运输过程中不仅要确保高效、经济,同时要尽量减少线路损耗的情况;从网络线路的运营角度来说,大量继电器信号传输接受和反应设备,成为最重要的解决途径。

在这个基础上形成的电力通信网络主要包括三个方面,分别是通信站、中转站和调度部门。这些部门之间采取专用的光纤局域网(电力专业网的一部分)进行互联。要实现互联的稳定性和安全性,就必须考虑到通信网络受到电力磁场的干扰问题,在以往的情况中这种现象很普遍,维修成本居高不下;而光纤通信技术可以很好的解决这一问题。

普通光纤的直径在三毫米到九毫米之间,属于单模光纤,多模光纤的最大直径也在五十毫米单位以下;光纤通信技术的良好延展性和融合性,使它在短时间内就成为了重要的现代化通信手段之一,并且在电力系统的应用方面发挥着重要作用。从光学通信的技术上讲,光纤通信技术之所以收到青睐,主要是因为自身的优势决定的,其中包括:良好的抗干扰性、大容量长距离传输、体积小质量轻、使用寿命长和环保低消耗等等。

在电力系统中,可以通过上下级来划分,用于体现出不同的控制权限。一般来说,电网规模的大小决定了其在电网系统中的地位,特别大的主站层可以划分为中心主站和区域站两层,主站层和子站层之间的通信要求可靠性和安全性,所以一般都会采用光纤通信技术。

(一)电力系统自动化通信的特点分析。

电网系统自动化是近年来我国重点实施的项目,光纤通信之所以能够成为电网通信的基础性设施之一,主要是符合在监控、检测、隔离等方面的特点。在进行通信设施建设的同时,首先要考虑的是电网建设所面临的现状。国家电网覆盖了我国大部分人口聚居地,电站呈点状分布,所面临的自然环境和地理环境多种多样。

我国电网的特点是采集点多,但是规模较小,可产生的有效数据也很少,所以不可能架设专门的设备建立起通讯机房,同时要耗费人力物力进行职守;在这种情况下,电力系统自动化的建设就显得尤为重要,而电力系统自动化的实现,对通信模块的要求有十分迫切。

环境的复杂性意味着通信模块必须承受恶劣的天气条件和自然条件,并要配合电力系统自动化功能的实现,这就对其在功能和组成上提出了更高的要求,如:防雷击、防腐蚀等。以往的通信模块中所普遍采用的双绞线、电力载波等通信模块非常容易收到破坏和干扰,而且在地理的故障解决方面缺乏有效解决方案。

(二)电力系统通信网络的设计

电力系统自动化实施的基础是快速可靠的通信网络,这已经是不争的事实。光纤通信技术结合快速以太网的拓扑模式,利用先进的虚拟总线控制技术,可以实现庞大的电网系统终端信息收集,同时进行快速遍历和检测。

从结构上来说,虚拟总线的控制平台主要是通过对直接下一层节点指令,为了尽量减少时间延迟,配合光纤通信网络和智能技术,在较高权限的设定下,可以直接进行控制。但在实际操作中并不提倡这样做,原因是越级管理可能造成系统指令的重复发送,不利已外部通讯设备的维护。可以建立起有效的预警机制,如报警装置,强制提醒装置等等。在组网的过程当中,要充分考虑到自动化设计的节点较多这一问题,对于同一级别的采取指令分级分批发送,通过建立数据模型在短时间内筛选出特许机制,以应对多变的外部电力环境。

此外,值得一提的是防雷击保护措施。伴随着电力自动化系统工作的通信模块位于户外,虽然光纤通信线路具有很好的保护层,但受到较大外力强压的时候依然存在断网风险。

二、配电网通信平台上的应用

“十二五”期间,我国提出了“智能电网”的建设规划,国家电网公司表示将全面加强对“智能电网”的建设和推进工作,以实现配电网自动化的目的。利用计算机技术、网络技术、电气自动化技术等可以构建完整的电力自动化系统,而在整个配电网中,通信平台是至关重要的。

但是,配电网的通讯方式与变电站的通讯方式截然不同的两种情况。就结构来说,要根据实际的工作环境进行划分,导致拓扑结构复杂,组点分散,通信点多等特征。在以往的工作中,配电网的通讯设施大多采用电缆施工,但效果并不理想。至今为止,电缆传输信号差的缺陷仍然无法解决;在无线通信技术方面,虽然可以解决地理环境的限制问题,但是依然收到信号差的问题,同时无线通讯的费用要高出很多。

结合两种情况,光纤通信技术可以完美的解决二者的缺陷,因此是配电网通信平台的不二选择。

(一)配电网中光纤通信网络架构分析

光缆的铺设与配电网中电力电缆的铺设实现一致。一方面,可以减少重复施工带来的额外支出,另一方面,可以确保两者之间配合的紧密性,也便于后期的维护与管理。但是,光纤的局部构建与通信拓扑有关,并非是单纯的地理关系。

目前来看,常用的通信架构主要有两种。

第一,采用P2P(点对点)的网络架构。两个同等功率的变电站对一片区域实行电力输送,并形环状结构,性能比较稳定。这种结构最大的优点是,同时实现了电力和网络部分的保护,除非环状结构内两个电站全部失去功能,才会导致中间环节的节点失去通信功能。但是这种情况发生的概率较小。

第二,采取单电源树形架构。对于用电规模较小的区域,可以采用这种方式,也可以更好的发挥光纤通信长距离的优势,在配电网自动化实现的过程中,网络通信部分使用的较为频繁。

(二)配电网中光纤通讯的优势

配电网的服务对象很多,除了优质用电区的城市、工业区之外,还有包含广大的农村地区,涉及到高中低三个配电级别,任务非常繁重。除了要做到安全、稳定之外,更重要的是实现实施监控和对故障的判断功能。

光纤产品的种类很多,性能各不相同,在实际的电力系统中所使用的光纤主要有两种:(1)架空地线光纤。这种光纤产品在设计上增加了隔热层,材料是热塑胶,可以发挥最大的保护作用,所采用的激光焊接技术延长不锈钢管道实现延伸,距离超过一万米,而且可以有效的防止雷击破坏;(2)全介质自承式光缆。这种光缆的质量很轻,不仅具备很好的防雷击性,而且具有很好的抗电磁干扰性。

从长远发展角度出发,配电网的通讯模块必须满足故障率低于电力系统的需求,否则视为本末倒置,会额外加重电力系统的负担。鉴于电力电缆的铺设与通信线缆的铺设在施工方面的平等性,选取优质高效的通讯材料和技术也就成了关键。光纤通信的基本物质是光纤、光源和光检测器,无论是从光缆的结构还是特性上来说,都具有极高的稳定性,外界潮湿、腐蚀、雷击等行为对其影响很小,因此具有很强的优势。

三、结束语

目前我国正处于“十二五”发展的攻坚阶段,电力系统的完善和进步,将进一步推动我国经济和社会现代化建设。工信部所的数据显示,“十二五”期间我国光纤基础设施投资规模将达到5000亿元。光纤材料技术和光纤通信技术的应用范围将随着时间发展越发拓宽,作为电力系统中重要的一部分,光纤通讯设备及技术运用仍然在不断的发展,相信随着科技的进步和新材料的研究,光纤产品会逐渐呈现出多元化的特征,在电力系统中也会发挥更重要的作用。

参考文献:

[1]郑佩璋.浅谈电力通信技术在电力系统中的应用[J].中国新技术新产品,2013(05).

[2]沈重.浅谈电力电子技术在电力系统中的应用[J].科技致富向导,2013(12).

[3]郑汝波.光纤通信技术在电力系统中的应用[J].科技创新与应用,2013(01).

[4]聂正璞,万莹.信息通信融合在电力系统中的应用[J].中国新通信,2013(02).