高分子材料的优势范文

时间:2024-01-04 17:53:32

导语:如何才能写好一篇高分子材料的优势,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高分子材料的优势

篇1

[关键词]工程意识;高分子材料专业;综合实验

我国的高等工程教育培养造就了大批工程科技人才,有力地支撑了我国工业体系的形成与发展。但与其它工业发达国家相比,我国高等工程教育虽然规模位居世界第一,但总体质量并不高。突出的问题就是高等工程教育培养出的人才工程性缺失和实践能力薄弱。针对高等工程教育存在的的问题,2010年6月,中国工程院、教育部启动“卓越工程师教育培养计划”,旨在培养造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才,使我国培养的卓越工程师后备人才满足我国工业化和现代化建设的需求,使我国跻身工程教育强国之列。

一、目前高分子材料专业综合实验存在的问题

长期以来,我校高分子材料专业综合实验仅仅是停留在使学生巩固并加深对专业基本理论及概念的理解,对高分子材料性能检测,以及高分子材料成型加工设备的操作等层面。存在的最大问题就是实验内容陈旧、滞后,实验教学形式僵化。验证性的实验内容较多,与工程实际密切结合的实验内容太少。这种传统的高分子材料专业实验教学体系不利于学生工程观念的建立,不利于后续阶段的顶岗实习、毕业设计、及进入工作岗位后迅速完成从学生到合格的工程技术人员的转变。

二、加强高分子材料专业综合实验工程性的指导思想与原则

“卓越工程师教育培养计划”具有三个特点:一是企业深度参与培养过程,二是学校按通用标准和行业标准培养工程人才,三是强化培养学生的工程能力和创新能力。我们认为高分子材料专业综合实验应该是在专业实践层面上安排的,能够与生产实际紧密结合,能够体现工程与教学相互联系、相互促进关系的一门实验课。通过实验培养学生建立初步的工程能力。在这门实验课中要创造出一种让学生真正感受到工程实践的氛围,促使学生从知识积累向工程能力生成的转化。

三、高分子材料专业综合实验改革的具体实施

(一)调整高分子材料专业综合实验开设时间

我校高分子材料专业综合实验原开设时间放在第3学年的第6个学期。通过几轮教学发现,在学生专业学习还没完全到位的情况下,学生并不完全具备很好完成实验的能力,严重影响专业实践能力的取得。因而将设置时间调整到第4学年第7个学期,时间从3周延长到4周。从实践结果来看,这一调整是合理的。

(二)企业参与高分子材料专业综合实验教学计划的制定

以往的实验教学计划完全由任课教师自行制订,由于教师的工程能力不足等原因,制订的实验教学计划脱离生产实际,即所谓的“理论性、研究性过强”。在新的实验教学计划修订时,我们积极争取企业具有丰富实践经验的生产技术人员参与进来,共同制定人才的培养目标,培养方案,共同制定实验教学大纲、实验教学计划。

(三)高分子材料专业实验内容的确定

1.原有实验内容优化。全面更新实验内容。只保留小部分经典的实验内容,这些经典实验可以训练学生系统地掌握原料的准备、材料的合成、性能测定与表征方法等。增加具有工程背景的实验,选择贴近实际的社会需求,符合高分子材料的变化潮流,适应企业对人才需求的内容。

2.教师科研课题转化。将部分教师完成的或在研的科研项目中的部分内容拿到专业实验中来,分解为学生有能力可以完成的实验项目。

3.到有合作关系单位完成部分实验。生产单位可以为人才培养提供先进的工程实践条件。此种实验方式最显著的特点是实验方案的应用性和工程性。更能激发学生动手实验的兴趣,发挥了学生自主实验和学习的主观能动性。

(四)实验教学方式的改革

1.题目自选与指定结合。由过去的分配到人改变为由学生在给定题目中自行挑选感兴趣的题目,使实验教学从传统的“以教师为主”的模式转变为“学生为主体、教师为主导”的模式,充分发挥学生的积极性和创造性。

2.改变实验指导方法,强化学生自主实践能力的培养。强调实验指导教师的“导师”作用,使学生成为实验的主动参与者、探索者。鼓励学生独立思考,引导而不是替代学生解决实验过程中出现的问题。

3.实验以课题组形式进行。每三名同学组成一个课题组,并选举一名组长。每课题组配备一名指导教师或生产单位的技术人员,为课题组提供技术上的指导和方向上的把握。通过具体的研究课题,培养学生团结协作的精神。

4.计算机辅助教学。引入新的教学手段,即利用高分子材料与工程设备素材库,对实验中涉及到和未涉及的工艺进行计算机模拟仿真实验,扩大实验范围。

(五)专业综合实验的考评方式改革

实验模拟本科毕业论文方式进行。结合实验内容给学生下达任务书,学生做出开题报告、开题答辩,以论文的形式完成实验报告,最后采用类似毕业论文答辩的方式总结实验。在同等的实验时间、实验条件下,增加了实验信息量,增强了团队意识,强化了工程理念。

四、专业综合实验改革取得的成效

(一) 直接促进了毕业教学环节的顺利进行

专业综合实验过后,就是毕业环节的教学工作。专业综合实验的过程就是一个微缩的毕业论文过程。有了专业综合实验的基础,很多同学在短时间内就适应了毕业论文过程。毕业答辩也充分体现了这个环节所起的作用。

(二) 促进了教师队伍工程能力的提高

从事高等工程教育的教师多数是从学校直接到学校,他们没有企业工程实践的经历,因而在实践教学中缺少工程思维、工程方法和工程文化的传授。专业综合实验内容及教学方式的改革以及企业专家的参与,极大促进了实验指导教师工程能力的提升。

五、结语

通过新的高分子材料专业综合实验教学体系的构建,从根本上改变了实验教学内容陈旧、滞后与生产实际脱节严重的现状。新的实验教学体系不仅加深了学生对整个高分子材料体系的理解,更重要的是培养了学生在实验中以工程意识去发现问题、分析问题和解决问题的能力。

基金项目:黑龙江工程学院教改项目:基于“卓越工程师教育培养计划”专业综合实验教学改革与实践(项目编号: JG2012042)

参考文献:

[1]刘宇艳,刘宇婷,刘立洵等.高分子材料与工程专业系统化实验体系的建立.[J]实验技术与管理,2011(1):9-11 .

篇2

关键字:新型高分子材料;高分子材料应用;新型高分子材料的开发

引言:

高分子材料是指由相对分子质量较大的化合物分子构成的材料。按其来源,高分子材料可分为天然,合成,半合成材料,包括了塑料,合成纤维,合成橡胶,涂料,粘合剂和高分子基复合材料。从1907年高分子酚醛树脂的出现以来,高分子材料因其普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展。然而,现在大规模生产的还只是在寻常条件下能够使用的高分子物质,即通用高分子。它们存在着机械强度和刚性差、耐热性低等缺点,而现代工程技术的发展对高分子材料提出了更高的要求。于是新型高分子材料的开发与应用尤为重要。纳米、导电、生物医用、生物可降解、耐高温、高强度、高模量、高冲击性、耐极端条件等高性能的新型高分子材料的开发与应用不但能解决现阶段的高分子材料所面临的问题,而且也将积极地推动高分子材料向功能化、智能化、精细化方向的发展。与此同时,我国十二五计划也将高分子材料的开发研究纳入了其中,作为其重要研究方向之一的新型高分子材料的开发研究必将会极大地推动我国材料技术的发展。

一、简述高分子材料

1.高分子材料

高分子材料(macromolecular material),以高分子化合物为基础的材料。基本成分为聚合物,或以其含有的聚合物的性质为其主要性能特征的材料。高分子材料是由相对分子质量较高的化合物构成的材料,通常分子量大于10000,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合体。

2.国内外高分子材料开发现状

高分子材料与金属材料和无机非金属材料共同构成了应用性材料科学的最重要的三个领域。高分子材料凭借其独特的优势占领了巨大的市场。

世界高分子材料工业正在高速地发展着。世界合成树脂量从1950年的1.5M工增长到2005年的212M工,每年大概以5%的增长率在迅速地增长。现在塑料的产量早已超过了木材和水泥等结构材料的总产量。合成橡胶的产量也已超过了天然橡胶,而合成纤维的年产量在上个世纪80年代就已经达到了棉花、羊毛等天然和人造纤维的2倍。对于我国而言,目前我国是世界上最大的树脂进口国,每年进口的树脂数量大约是世界树脂总贸易的25%到30%。我国的树脂合成工业正高速地发展当中,树脂合成能力也在飞速地提高中。然而与西方发达国家仍然存在着差距。

3.开发新型高分子材料的重要意义和途径

自上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力集中到了高功能,高智能的高分子材料开发上。现代工业对于新型高分子材料的需求日益强烈。像纳米高分子材料,通常是将纳米微粒与聚合物基材进行复合,利用其特殊性质来开发新产品,这比研究全新的聚合物材料投资少,周期短,生产成本低。与普通改性材料不同,纳米粒子具有特殊的表面效应、体积效应、量子尺寸效应以及宏观量子隧道效应等,这些效应的综合作用导致了改性后的高分子材料具有特殊性能。比如,纳米粒子巨大的比表面积产生的表面效应,可使经纳米粒子改性后的高分子材料的机械性能、热传导性、触媒性质、破坏韧性等均与一般材料不同,有的材料还具有了新的阻燃性和阻隔性。

新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。就目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的工业化。在第二次世界大战中发展起来的高分子复合技术,以及出现于50年代的高分子合金化技术后。新的复合技术和合金化技术层出不穷。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更能够促进能源与资源的节约,减少环境的污染,提高生产能力,更能体现出现代科技的高速发展。

二、新型高分子材料的应用

现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料既可以用于结构材料,也可以用于功能材料。

现阶段新型高分子材料大致包括高分子分离膜,高分子磁性材料,光功能高分子材料,高分子复合材料这几大类:

第一,高分子分离膜是用高分子材料制成的具有选择透过的半透性薄膜。采用这样的薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,与以往传统的分离技术相比,更加的省能、高效和洁净等,被认为是支撑新技术革命的重大技术。

第二,高分子磁性材料是磁与高分子材料相结合的新的应用。早期磁性材料具有硬且脆,加工性差等缺点。将磁粉混炼于塑料或橡胶中制成的高分子磁性材料,这样制成的复合型高分子磁性材料,比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等。

第三,光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,应用也很广泛。

第四,高分子复合材料是指高分子材料和不同性质组成的物质复合粘结而成的多相材料。高分子复合材料最大优点具有各种材料的长处,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质。

这些新型的高分子材料在人类社会生活,工业生产,医药卫生和尖端技术等方方面面都有着广泛的应用。例如,在生物医用材料界上,研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)新型高分子材料是腹壁缺损修复的高效材料:在工业污水的处理上,在不添加任何药剂的情况下,利用新型高分子材料物理法除去油田中的污水:开发的聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂复合材料,这些材料比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料;同样,在药物传递系统中应用新型高分子材料,在药剂学中应用,在包转材料中的应用等等。新型高分子材料已经渗透于人类生活的各个方面。

三、综述

材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活。新型高分子材料的不断开发像纳米技术、荧光技术、导电技术、生物技术等的实施必将使得高分子材料在工业化的应用中不断进步。区别于我们已经开发研究成熟的一些传统材料,高分子材料的研究开发存在着无穷的潜力。正如一些科学家预言的那样,新型高分子材料的开发将有可能会带来现代材料界的一次重大革命。

参考文献:

[1]程晓敏,高分子材料导论[M],安徽大学出版社2006,

[2]于金海,应用新型可降解材料修复腹壁缺损的实验研究[J].中国知网论文总库2010

[3]赵利利,论新型高分子材料的开发与应用[J],科技致富向导,2011.(02).

篇3

[关键词]专业改革;高分子材料与工程;新常态;内涵凝练;特色发展

[中图分类号]G40[文献标识码]A[文章编号]10054634(2017)020061040

专业改革的大背景

目前,我国正处于经济社会发展的“新常态”时期。对“新常态”的内涵有不同的理解,但最重要的还是经济发展降速,从资源驱动、劳动力驱动发展向创新驱动发展,这就要实行经济结构调整和转型,鼓励创新创业,支持新兴战略性产业,发展高科技产业,支持绿色环保产业。因此要淘汰落后产能,向科技要增长[1,2]。这种“新常态”将要持续很长一段时间,大学对人才的培养模式与方法也要做相应调整。学校党委也提出了学校转型发展,要建设特色鲜明的高水平应用型大学,切实认识到转型发展的重要意义,把思想认识统一到转型发展这一重大战略部署上来,实现从以教学为主向教学科研并重、以本科教学为主向本科、研究生教育并重、从行业为主到行业与地方并重3个转型发展贡献力量,要紧紧抓住“提高科技创新能力”这一关键,通过推动综合改革,释放转型发展的活力;通过开放办学,调动一切可用资源;通过科教融合,充分发挥科研在人才培养中的作用,努力为转型发展开辟道路,努力提升学校的办学实力和核心竞争力[3,4]。为了适应我国的“新常态”,实现学校的转型发展要求,高分子专业就必须进行改革,探索人才培养的新模式,从而提高培养质量。

1北京石油化工学院高分子材料与工程专业现状北京石油化工学院是一所注重学生发展、以学生为中心的应用型大学,学校秉承“学以致用、宁静致远”的教育理念,本着公开、公正、公平的原则,管理日益精细化和人文化,为学生的发展提供了好的平台,培养具有高水平工程实践能力的人才。高分子材料与工程专业是本校最早建立的专业之一,自1978年我国恢复高考以来,高分子材料与工程专业陆续培养了2 000余名高分子材料与工程专业人才。

传统的高分子材料主要分为塑料、橡胶和纤维三大类,用量大、企业多、产能过剩,但附加值低、竞争激烈,较难凸显出高科技特点,在经济发展“新常态”时期,正在丧失优势地位,难以引起学生们的学习兴趣,造成学生学习积极性不高,就业率偏低。同时,学校为北京市属高校,高分子材料工程专业本科生主要为北京生源,其就业地主要为北京地区。北京市已经根据中央的要求和我国经济发展“新常态”的特点,制定了经济社会发展的新战略,既淘汰、转移传统产业,鼓励发展绿色环保的新兴产业[5],传统的高分子材料制备和加工已列为向外转移产业,如北京华盾雪花塑料集团公司主要从事塑料薄膜、管材、中空容器的生产,已启动向河北搬迁工程。类似这类的传统塑料、橡胶制品生产企业将陆续移出北京,造成高分子材料岗位人员需求大量减少。在高分子材料制备领域,更是受到大气污染治理的约束,难以发展,如燕山石化公司的产量和规模正在逐年减少。在可预见的将来,不排除移出北京的可能。因此,高分子材料与工程专业毕业生在北京的就业竞争日益激烈,学校在传统的高分子材料制备与加工领域不具有优势,必须另辟蹊径,寻找新的专业方向,开拓新的就业领域,从而提高就业率,因而,需要对专业进行改革。

2为学生搭建有特色的成长平台

学校及专业必须为学生搭建各类成长平台,让学生得到全面发展。根据学校的特点,主要为大学生搭建了以下成长和培养平台。

1) 工科专业的核心是培B学生的科技创新能力。高分子材料与工程专业是本校最早的专业之一,已有30多年的历史,是北京市“特色专业”和北京市“重点建设学科”,特别注重大学生科技创新能力的培养,在这方面,学校为学生搭建了国内先进、具有一定国际影响力的大学生科技创新平台――“特种弹性体复合材料北京市重点实验室”,拥有裂解色谱质谱联用仪、紫外加速老化仪、高级旋转流变仪、凝胶渗透色谱仪等3 000多万元的仪器设备,实验室对学生开放,学生可以从事“大学生科研创新项目”研究,为他们科技创新能力的培养打下了坚实基础。

2) 为学生搭建了科研训练平台――大学生研究训练计划(URT),要求高分子专业学生必须参加URT项目。URT项目来源于教师的科研项目,同时也鼓励学生根据自己的兴趣提出课题,经过论证后也可列入URT项目。URT项目以团队为主,确定项目负责人,制定任务分解,让团队内各成员发挥各自的特长,并鼓励跨专业组队,培养了学生的团队合作意识和人际交流能力等,对他们的成长是一个极大的锻炼。通过上述科技创新能力的培养,毕业生可从事科技创新创业工作,有些已成为科技公司的负责人,如广东聚赛龙公司的总经理郝源增先生,他还在在高分子材料专业设立了“聚赛龙奖学金”。

3) 搭建了“高分子材料多层次、模块化实验教学体系”,开设了一系列设计性、综合性、创新性实验,可根据学生兴趣和特点自由选择,充分调动学生的积极性。高分子专业实验多为单一的验证性实验,改革后开设了多个设计性实验,建立高分子材料与工程专业多层次、多模式创新实验教学体系,注重创新能力培养,突出工程实践特色,进行结构重组和整体优化,构建了高分子材料专业一体化、多层次、多模式创新实验教学体系。强化综合型和设计型实验,为学生综合运用所学知识和实验技术解决实际问题提供自由探索的空间,全面开放实验室,给学生提供更多的动手机会,促进学生知识、能力、素质协调发展;优化实验技术人员队伍,提高实验人员素质和水平。

在创新型实验教学体系中,设计性实验是重中之重。设计性实验的主要目的是让学生通过查阅文献设计方案,解决相对于自己的知识水平仍属于“新”的问题,这些问题有些属于学科的前沿问题,有些是工业生产、科学研究中的某些关键问题,可以称之为“二次创新”,形成“新材料制备表征应用”3个阶段,以“立题调研设计实验结果分析与讨论撰写研究论文”为主线进行教学,大大提高学生的科技创新能力。

4) 建立了一套产学研合作教学体系,搭建了工程实践能力培养平台,培养学生的工程实践创新能力。学校与中国石化、燕山石化合作建立了国家级大学生实践教学基地,与北京雪花华盾塑料公司建立了北京市级大学生实践教学基地,与北京碧水源公司、中科纳通公司、炭世纪公司、科化微电子公司、华德密封公司、华融塑胶公司等建立了校企合作产学研基地,为大学生的实践教育提供了平台,学生可以根据自己的兴趣和就业意愿,选择这些企业实习和实践,大大提高了学生的实践活动兴趣和就业能力。

5) 搭建了大学生学科竞赛体系,培养学生的创新产业意识和能力。如依据全国高分子材料创新产业大赛的宗旨和规则,创办了本校高分子材料创新创业竞赛,学生们有好的成果、好的设计均可以参赛,优胜者选拔参加全国高分子材料大学生创新创业大赛,大大开拓了学生的视野,提高了学生们的综合能力。

3学生综合能力培养的做法

作为一个应用型本科院校,本专业特别注重学生如下能力的培养:(1)创新意识和创新能力;(2)工程实践能力;(3)适应社会发展能力和自我提高能力。为了达到上述能力的培养,实施了以下措施。

1) 不断修订完善高分子材料专业的培养方案,结合时展,凝练专业建设内涵,适应经济社会发展要求。如近期修订了“高分子材料与工程专业培养方案(2013版)”,通过与企业等用人单位研讨,提出了高分子材料专业新内涵的建O与探索,即专业向“功能高分子材料”内涵发展,使之更适应目前我国经济结构调整、创新驱动的“新常态”。传统高分子材料主要有塑料、橡胶和纤维,这些材料产量大、技术成熟,市场也已饱和。功能高分子材料是新材料的重要内容,是国家鼓励发展的七大新兴战略性产业之一。功能高分子材料种类也很多,学校结合北京市和全国情况,进一步凝练,提出把形状记忆高分子材料、生物医用高分子材料、3D打印高分子材料、太阳能电池用高分子材料和电子信息用高分子复合材料作为本专业的重点内容。

如形状记忆高分子材料,具有形状记忆功能的材料,不管它如何变形,都可以在一定条件下恢复它原来的形状,可以应用在自修复涂层(如汽车涂层,如有划痕,可以拿吹风机加热一下既可以修复)、自修复材料(如风电叶片出现裂纹,也可以这样修复)、医用骨固定夹板和绷带(代替石膏,不仅轻,而且方便装卸)等。再如,3D打印成型(也称快速增材制造)发展很快,国家工信部刚刚制定了3D打印产业发展纲要,要在“十三五”期间大力发展。其中,很重要的一类为激光快速光固化成型体系,它使用的材料大部分为可光固化树脂,这也是学校的专业内容之一。

2) 实施教育部“卓越工程师计划”,与现代化的行业、先进企业建立合作关系,使之成为学校的实习实践基地。建立先进的产学研教育体系,聘请大量的校外教师讲学,使学生了解专业前沿和社会需求,从而有利于他们的就业。本专业是全国首批教育部“卓越工程师计划”试点专业,该计划的目的是培养具有高的工程实践能力的人才,从而推动我国产业界创新能力的提升。本专业的主要的培养手段就是增加企业阶段学习经历,提前让学生熟悉、掌握企业的运行机制和环境,近几年,陆续与北京市等地的现代化企业建立了产学研教育体系,如燕山石化公司、华盾雪花公司、北京碧水源公司、北京炭世纪公司、北京中科纳通公司、北京东方雨虹公司、广东榕泰公司等。其中,燕山石化、碧水源、东方雨虹和广东榕泰均是上市公司,具有现代化的企业管理制度,非常适合本校学生,因此与他们建立关系,不仅使学生掌握了产业先进的知识和技术,也有利于就业。

3) 开展国际工程专业认证,按照国际标准培养人才,从而使学生具有国际视野,也有利于他们的出国留学。

4) 开展高分子材料创新创业竞赛,选拔优秀的学生和项目参加全国大学生创新创业大赛,强化他们的创新创业意识,有利于他们毕业后进行创业。如2013年高分子专业高Z11班周颖等5名学生组成了“绿色风采队”,参加了由中国化工联合会、中国化工教育协会、青岛橡胶谷等主办的“首届全国高分子材料创新创业大赛”,参赛的项目是“高性能环保型大规模集成电路封装材料”,该项目在全国100多所院校近200个项目中脱颖而出,赢得专家的好评,获得大赛二等奖,并获得创业基金1万元。

5) 实行全程学业导师制,自新生进校开始就配备学业导师直到毕业,全程指导,使学生更好地成长。逐步完善学业导师考核机制,调动教师的积极性,指导学生学习、生活、科研、就业等。

4结束语

通过上述改革,学校高分子材料与工程专业学生有如下特点:(1)拓宽了高分子材料专业就业渠道,提高了就业率,除了在传统的石化企业、塑料橡胶纤维制品制造企业就业外,还可以在高科技高技术领域就业,如航空航天企业、医药及医疗制品企业、汽车企业、家电企业、手机企业、新能源企业等,每年的就业率均在95%以上;(2)通过加强工程实践能力的培养,本专业毕业生的工程实践能力大大提升,创新创业能力显著提高,得到了用人单位的肯定;(3)扩展了学生的国际化视野,提高了考研率和出国深造率。

参考文献

[1] 黄群慧.“新常态”工业化后期与工业增长新动力[J].中国工业经济,2014(10):519.

篇4

关键词:高分子材料 生物质 加工改性

一、生物质高分子材料PHA的概述

近年来,我国对生物可降解高分子材料进行了深入地研究和开发,尤其是聚羟基脂肪酸酯PHA颇受关注。聚羟基脂肪酸酯是细菌胞内合成的一种高分子化合物,在营养不平衡的环境下,细菌把多余的物质转换为探源和能源的储备物,同时将水溶性小分子转换为水不溶性的大分子PHA。PHA因具有某些合成塑料如聚丙烯、聚乙烯的物化特性,又具有独特的生物可降解行、光学活性、生物兼容性、气体相隔性以及压电性等被认为是可替代传统的由石油合成的、不可降解的塑料,PHA被称为新型的生物可降解塑料。

PHA结构多样,且因其自身结构变化拥有较多的新材料性能,所以应用前途比较广泛。在食品包装材料、卫生材料、纸涂层材料、光学材料、电子工程材料以及一些一次性用品,如高档包装材料、新型医学材料骨钉、骨板等方面广泛应用。

PHA由具有光学活性的R构型降级脂肪酸单体组成,是一种线性可降解聚酯,其单体组成对自身的物理性质起决定性作用,常见的PHA材料主要有以下几种:聚β-羟基丁酸酯(PHB)、聚-3-羟基丁酸-3-羟基戊酸之(PHBV)、聚-3-羟基丁酸-3-羟基己酸酯(PHBHHX)、聚-3-羟基丁酸-4-羟基丁酸酯(P3/4HB)等。

二、聚合物的加工改性

经过高分子材料科学成熟的发展,通过共混、共聚和表面改性等手段对高分子材料进行化学改性或物理改性以此达到提高聚合物某些性能引起了人们广泛的重视。将不同的聚合物混合,或者将种类相同但相对分子质量不同的聚合物进行混合,或者把聚合物和其他物料相互混合形成新的共混聚合物,通过以上的手段都可以实现聚合物的共混改性,聚合物共混改性后不单单是改变了聚合物的性能,更是开发了新型聚合物材料的崭新功能,因此,聚合物的共混改性已经发展为当今世界高分子材料工程科学中最为活跃的领域之一。PHB作为PHA中最具代表性的生物塑料,在生活的各个领域都有着广泛的应用前景,下面以PHB为例,探究一下生物质材料的加工改性。

三、PHB的加工改性研究

1.制备聚合物

1.1制备单端枪击聚羟基丁酸酯(PHB-OH)

用甲醇打断大的PHB分子链,对PHB片段封端,从而可以制的只有一端含羟基的PHB片段(PHB-OH)。制备方法如下:氯仿作为溶剂,硫酸作为催化剂,将15gPHB溶于150ml的氯仿中,75°C回流30min后,取2.5nl浓硫酸溶于50ml甲醇中,冰浴冷却之后逐滴地滴加到上述的回流流体中,根据自己需要可以控制回流时间,至设定时间后冷却至室温,然后大量蒸馏水洗涤、分液、静置分层后弃去水层,有机层洗涤两次后,用无水硫酸镁干燥过夜,过滤,滤液使用无水甲醇沉淀,减压过滤,将产物放在40°C的真空烘箱里面干燥48小时以上,即成。

1.2制备不饱和端基低聚物

取1.5g干燥的PHB-OH放在事先干燥好的四口瓶中,加入50ml除水的二氯甲烷和0.2ml的三乙胺,30°C油浴中磁子搅拌,完全溶解后,低价溶有0.3ml的丙烯酰氯的二氯甲烷30ml,继续反应3小时,过滤沉淀,滤液使用适量饱和的碳酸氢钠洗涤两次,使用蒸馏水洗涤三次,然后用无水硫酸镁干燥过夜,过滤之后的滤液使用甲醇沉淀,减压过滤,最后产物常温真空干燥,即成。

2.运用傅里叶变换红外光谱仪对聚合物材料进行定性表征

对于已经提纯过的待测样品,将其配置成10mg/ml的氯仿溶液,然后滴3滴在KBr镜片上面,在红外灯的照射下干燥形成薄膜。之后用Nicolet IR200幸好傅里叶变化红外光谱仪对其进行32次的扫描,(该仪器分辨力为1cm-1)。观察得到的红外图谱,可以确定待测物中的基因。

3.材料热学性能测试

聚合材料的热学性能测试,取少量样品,通过热失重分析仪或者示差扫描量热仪对样品温度曲线进行分析。

4.材料的力学性能测试

取少量待测样品,将其裁剪成哑铃型样条,使用CMT4000型号微机控制电子万能试验机,移动千分尺,岑亮样条的宽度、厚度、起始标距,待位移回零之后,在室温下仪5mm/min进行拉伸,用计算机记录材料的应力-应变曲线,通过实验,得到材料弹性模量、拉伸强度以及断裂伸长率等参数。

5. PHB物理改性研究

使用增塑剂DOS,形成PHB/DOS共混体系。经实验验证,共混体系随着增塑剂DOS的含量增加,材料的拉伸强度和杨氏模量降低,断裂的伸长率不明显,当共混体系中DOS含量达到35%时,共混体系的机械性最好,但对于共混体系来说,DOS的增塑效果并不明显,因此,DOS常作为辅助增塑剂。

使用乙酰柠檬酸三丁酯(ATBC)增塑PHB体系,和DOS对比,ATBC增塑效果较明显,因为ATBC自身的机型和分子量相对比较小,能很好的茶道PHB的链段之间,增加PHB链间的距离,减小高分子链间产生的相对滑移摩擦力,从而达到较好的增速效果。

四、结语

PHB作为生物质高分子材料PHA的一类,有其显著的缺点,PHB比较脆,但通过对PHB的加工改性,可以弥补其缺点,更好地发挥它的优势。本文通过制备共混材料、测试其热学性和力学性,选取增塑剂材料来改善PHB的热学性能,以及使用物理方法加工改性材料,上述一系列的加工改性方法表明了,我们可以通过物理的、化学的加工改性方法提高PHA类材料的综合性能,赋予PHA材料新的使用性能,使其拥有更美好的发展前景。

参考文献

篇5

关键词:微波技术;高分子材料;加工

一、引言

人们的日常生活中常使用微波炉,这种电器设备具有较快的热效率,能够快速加热食物,并且不会流失营养成分。而这种电器正是运用了微波技术,除了在食品领域,该项技术还在其他领域中有着广泛的应用,并取得了理想的效果。以高分子材料加工中对微波技术的应用威力,相较于传统加工技术,微波加热的速率更快,并且基于脉冲技术的支持,能够实现对温度的有效控制。其次,微波加热不会存在热滞后反应,材料能够直接吸收微波,不会通过容器传导而导致能量流失;此外,微波加热的热梯度非常小,具有较强的穿透能力,加热的均匀度也相对理想。对于高分子材料而言,通过微波技术的应用,可以使其性能得到改善,达到理想状态。

二、基本原理与影响因素

就本质而言,微波加热的特点就在于介电位移或材料内部不同电荷的极化以及这种极化不具备迅速跟上交变电场的能力。在高频条件下,与电场相比,极化具有滞后性,并且其阐述的电流与电场同相位的分量存在差别,如此一来就会使材料内部功率散耗。

对于电场强度固定的电磁场而言,材料吸收的微博能与电磁辐射的频率,材料的介电损耗与电场强度之间的关系可以通过下式来表示:

其中P代表单位体积材料吸收的微波功率,K为一常数,f为频率,E为电场强度,[ε']表示介电常数,[tanδ]表示电损耗角正切。

根据(1)式,可以发现在电场强度或材料介电性质发生变化的情况下,材料吸收的微波也随之得到改变,然而大部分高分子材料具有非常小的介电损耗因数,一般情况下微波材料能够透过材料而不产生耗散。

如果加热速率受反应热的影响不予考虑,那么可以用下式来表示加热速率与材料吸收微波能量的关系:

其中[dTdt]表示加热速率,[ρ]表示材料密度,[CV]表示材料的定容比热。

从中不难发现,高分子材料的介电行为在很大程度上决定了加热速率。需要注意的是,[ε'']与温度有着密切联系,因此材料介电行为的函数与温度有关。

三、微波设备

在高分子材料加工中,微波的应用效率以及材料性能在很大程度上取决于微波设备。

现阶段,在实验中有着广泛应用的微波设备主要为商品化的多模式微波炉。这种设备属于多波设备,因此其温度控制难度较大,无法获取需要的加热曲线,在这种设备的应用下,产品性能的均匀性要求往往无法得到满足。其次,微波行波加热器则是基于矩形波导或圆波导产生行波,在设备中微波能会被物料吸收,进而实现加热。对于具有较大介电损耗因数的单位长度材料而言,这种设备具有较强的适用性,而其他材料并不适合这一设备。从上述两种设备的缺陷描述不难发现,微波设备的研究与开发势在必行。

在设备开发的过程中,微波发生器设计具有重要意义,这是提高微博能利用率的有效途径。美国研究人员针对一种间歇加工聚合物材料的单模可调谐振腔进行了开发,这种设备材料主要有金属铜或铝的圆波导,两端采用的金属短路相同,具体如下图所示。

根据上述高分子材料加工中应用的微波设备,不难发现谐振腔具有更强的适用性,该设备能够将微波能耦合进材料,并且现阶段在厚件复合材料的加工中也取得了成功。

自单模可调谐振腔诞生之后,又有更加先进的微波加工系统涌现出来,也就是计算机辅助微波加工系统与计算机控制脉冲微波加工系统。其中计算机控制脉冲微波加工系统可以基于功率输出开关的脉冲,在选定值范围内控制样品温度,与此同时,在反应过程中,该设备还可以对介电损耗因数变化进行检测。

四、研究进展及问题

总而言之,相较于传统加热,微波辐射的特点与优势非常突出,对于高分子材料加工领域的发展而言有着十分重要的影响与作用。再加上近年来相关研究人员围绕微波加工材料性能展开深入研究,并构建起聚合物结构与微波吸收特性的关系,显然在理论层面上为微波技术在高分子材料加工领域中的进一步运用提供了强有力的支持。当然不可否认的是,在聚合物材料加工中,微波技术的应用依然面临着一些困难与阻碍,例如目前相关人员并没有全面了解微波加热的影响因素。很多研究人员开始围绕分子结构与微波加工系统展开设计,希望通过此推动微波技术的应用与发展。在基础理论知识不断增长的背景下,相信在未来加工设计中,微波技术的经济效益将会得到全面提升,为工业的发展提供强有力的支持。此外,加工安全性、设备问题以及加工规模等也是微波技术在应用实践中需要考虑的问题。作为研究人员,必须围绕这些因素予以综合考虑,并采取相应的改进方法,促使高分子材料加工领域中微波技术的价值与作用得到充分发挥。

参考文献:

[1]何德林,王锡臣.微波技术在聚合反应中的应用研究进展[J].高分子材料科学与工程,2001,17(1):20-25.

[2]张忠海,李建波,袁伟忠等.微波技术在生物可降解聚合物合成中的研究进展[J].高分子通报,2010,(6):47-52.

篇6

【关键词】高分子材料与工程 选修课 探究式教学

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2012)09-0019-02

有调查分析显示,我国高分子材料与工程专业发展迅速,就业率高,且80%的就业学生都会从事本专业的工作。为了满足社会对高分子材料人才的需求,高分子材料与工程专业的教师们一直在探索着教学改革的模式,期望为企业和科研机构输送知识与能力并重的人才。

一 高分子教学改革的现状

1.实践教学改革多于理论课教学改革

大多数教师把改革的着眼点放在了实验和实习这两个领域,因为实验和实习确实是学生能力最易于显化的载体。在实验和实习时,学生大多置身于真实的或者是仿真的操作情境中,其综合实践能力可以得到迅速的发展。但高校连年扩招导致的学生数目激增却使实验和实习在培养学生能力方面的优势渐弱,资源不足几乎成为所有工科院校实践教学的一大困境。

2.必修课教学改革多于选修课教学改革

理论课教学改革中必修课占举足轻重的地位,对高分子化学、高分子物理、高分子材料成型与加工等专业必修课的教学改革成为了改革的重心,而对专业选修课的教学改革则寥寥无几。事实上,专业必修课的知识大多经过了多年教学实践的洗礼,已形成了较为系统的结构,知识内容本身又精深甚至有些晦涩,因此,从教学方法方面对其进行改革已经没有多大的空间,而且难度较大。

3.教学方法改革方式单一且不成体系

在现有的对高分子材料与工程专业的教学方法的改革中,绝大多数都围绕多媒体教学展开。很多教师认为,在课堂上使用了课件授课就是多媒体教学,运用了多媒体教学就是改革了教学方法。事实上,这是多数教师的一个思维误区。多媒体教学包括很多方面,课件授课绝不是多媒体教学的代言,多媒体教学也只是一种教学方式,严格来说还算不得教学方法。有些老师提出在高分子的课堂上使用启发式、讨论式、研讨式等教学方法,这属于对教学方法的改革,但遗憾的是,多数教师只是阐明了这些教学方法在培养学生能力方面的优势,而缺乏对这些教学方法的实施模式的具体描述,因此很难生成具备实际操作性的推广价值。

二 什么是探究式教学

“探究式教学”的内涵源于“科学探究”,简单来说,它是“科学探究”应用于教学所形成的一种教学方法。

从世界理科课程的发展历史来看,科学探究的思想从提出到现在已有100多年的历史。很多人都对“科学探究”的含义进行过解释,例如,有人认为科学探究是指人们通过一定的过程和方法对客观事物和现象进行探究、质疑和研究。也有人认为科学探究就是指对自然、社会、思维等客观规律的研究讨论、追根究底、多方寻求答案、解决疑问。在众多的解释中,比较具有代表性的当属《美国国家科学教育标准》中对“科学探究”的表述:“科学探究指的是科学家用以研究自然界并基于此种研究获得的证据提出种种解释的多种不同途径。科学探究也指的是学生用以获取知识、领悟科学的思想观念、领悟科学家们研究自然界所用的方法而进行的各种活动。”

由此而衍生出的“探究式教学”的含义也有很多,其中以刘知新教授所诠释的含义最为全面,他认为,“作为学习方式的科学探究活动和过程称为探究性学习;符合学生进行探究性学习所需要的基本特征和要素,并对学生进行探究性学习具有明显支持和促进作用的教学活动和过程称为探究式教学。”

三 在高分子选修课中实施探究式教学的优势

1.培养目标对选修课的要求相对较低

高分子专业的必修课是专业的基础,无论学生毕业之后是直接走进企业还是继续深造,专业必修课的知识都是学生赖以生存的保证。因此,一般来说培养目标在专业必修课上对学生的要求较高,要求学生具备的专业知识精深、系统。在这样的要求下,受知识特点和课时分配的影响,专业必修课中并不适合实施探究式教学。而选修课在这方面则相对具有优势,由于选修课开设的目的是为了开拓学生视野,满足学生的学习兴趣,因此,培养目标在选修课上对学生的要求相对较低。这就可以为探究式教学的实施制造相对充足的时间和空间,不仅可以达到拓展学生专业知识面的目的,而且同时可以培养学生的综合素质和能力。

2.选修课需要的资源相对较少

单从培养学生综合能力的适用性来看,实践类课程中更适合实施探究式教学。但实践类课程往往需要大量的教学资源作支撑,高校连年扩招所造成的学生数目激增使高分子实践教学资源相对短缺,从而导致实践类课程在培养学生能力方面越来越体现不出优势。而高分子选修课所需要的教学资源则相对较少,虽说知识内容联系生产生活实际,但在选修课的要求范围内所设计的探究题目和采用的探究方法仍多局限于理论设计层面,不需要频繁借助大量的实验仪器和实验药品。

3.选修课的内容多与生产、生活联系密切

高分子专业的选修课是必修课的有效补充,开设的目的是为了使学生了解高分子的理论知识在实际生产、生活中的具体应用。如高分子专业中开设的、表面活性剂、塑料制品与模具设计等选修课,其内容都与实际生产、生活有着密切的联系。这样的课程内容可以以学生已有的生活经验或认知冲突为出发点来设计探究题目,不仅探究空间较大,而且能激发学生的探究兴趣,非常适合探究式教学的实施。

四 高分子教学中如何实施探究式教学

探究式教学是培养学生综合能力和素质的最佳教学方法,在其他教育阶段其实施流程已相对成熟,但在高校教学中应用得还比较少。在具体操作中,教师要将探究式教学的基本要素与高分子教学的特点相结合,构建出适用于高分子学科的探究教学模式。

1.提出问题

问题是科学探究活动的起点,运用多种方式创设恰当的问题情境,引导学生提出具有探究价值的问题是保证科学探究活动顺利完成的前提。因此,“提出问题”在探究式教学中具有十分重要的意义。这一步骤在探究式教学实施的初始阶段要由教师来完成,教师要将所要学习的高分子选修课的知识转化成问题布置给学生,问题要从学生的已有经验出发,要具备探索性、诱发性和可操作性等特点。当学生对探究式教学的本质和流程较为熟悉之后,这一步则由教师引导学生自己来完成。“提出问题”这一步无论对教师还是对学生来说都是一个挑战,它需要问题的设计者具有优秀的甄选问题的能力。

2.制订计划

制订计划要求探究者从操作的角度将猜想与假设具体化、程序化,为科学探究的具体实施做出规划。为保证科学探究活动能够顺利而有效地进行,在活动开展之前,教师必须引导学生对收集资料的途径、验证猜想与假设的方法、探究活动的时间和地点、小组内的具体分工及实验条件的控制等主要因素进行较为详细的规划。这一过程可以培养学生有计划、有目的、有条理地分析问题和解决问题的能力。

3.收集资料

收集资料在科学探究活动中占有十分重要的地位,它是得出探究问题结论的最主要依据。在具体活动时学生们要根据所制订的计划通过各种途径如查阅文献、调查访问、实验探究等方式来收集资料,收集资料时一定要认真细致,而且要有甄选性。在这一过程中可能会在原问题的基础上衍生出新的问题,这时要根据实际情况及时调整活动计划,使其更好地为解决探究问题服务。

4.分析处理资料,得出结论

科学探究活动中,在学生们收集了大量的资料之后,教师要引导学生对所收集的资料进行加工整理,去粗留精。结合已有的科学知识,并运用比较与分类、归纳与概括等科学逻辑方法对其进行进一步的分析与论证,最终得出符合证据的解释与结论。

5.表达与交流

在得出初步结论后教师要组织学生进行小组讨论。各小组要将自己的研究结果以适当的方式展示出来,在教师的引导下通过小组讨论得出最终的共识性结论。同时对个别问题,并对整个探究过程进行反思与评价。其实,表达与交流不只发生在探究活动结束之后,在探究活动的过程中,学生之间也需要进行必要的讨论与交流,因为科学探究活动往往建立在合作的基础上。通过表达与交流,学生们可以多角度地理解所探究的问题,获知自身的差距与不足,在交流的过程中并有可能产生新的想法,引发更深入的探究。在这一过程中,学生的语言表达能力、合作精神以及尊重他人的品质都可以得到有效的培养。

在整个探究活动进行的过程中高分子教师要给予学生及时必要的指导,但参与要适时适度。此外,教师还要注意以下几点:(1)尽可能让所有的学生都参与到探究活动中,并争取人尽其才;(2)探究式教学要循序渐进,问题的设置要根据学生的实际能力水平由易到难;(3)探究式教学要与其他教学方式相结合,并不是所有的知识都适合转化为探究式问题。

参考文献

[1]余炜炜.也谈科学探究[J].实验教学与仪器,2003(3):40~42

[2]陈信余.科学探究[J].物理教学探讨,2005(6):21~22

[3]〔美〕国家研究理事会.国家科学教育标准(戢守志等译)[M].北京:中国科学技术文献出版社,1999:30

篇7

[关键词] 任务驱动教学法;双语课;教学方法

[中图分类号] G642.4 [文献标识码] A [文章编号] 1005-4634(2014)01-0078-04

0 引言

2001年教育部印发了《关于加强高等学校本科教学工作,提高教学质量的若干意见》,鼓励高校“积极推动使用英语等外语进行教学”[1],我国高等学校各专业纷纷开设了双语课程。经过10余年的努力与发展,我国高校双语课的开课数量与教学质量均有大幅度提高。据武汉大学的数据调查显示,截至2009年,被调查的135所高校中已有132所开设了双语教学课,开课率高达97.8% [2]。虽然各级教育机构对双语教学的重视程度和投入力度不断加大,但是受到教师、教材以及学生水平等众多因素的限制,我国高校双语课的教学效果仍然有待提高。尤其是对于师资水平、学生水平有限的地方性高校,“双语教学”更是成为本科教学中的“鸡肋”――食之无味,弃之可惜。虽然目前学术界将制约我国双语教学水平的主要原因归咎于“师资、教材和学生”[3],但不可否认的是,正确合理的教学理论指导和教学方法的缺失也是双语教学水平提高受限的重要因素[3]。

“任务驱动法”是一种建立在建构主义学习理论基础上的教学方法,起源于20世纪80年代中期,最早应用于外语类课程的教学实践中并取得良好的效果[4,5],在计算机、信息类教学中也有广泛应用[6,7]。任务驱动教学过程中,教师根据教学大纲中的内容要求及培养目的设计相关任务,使学生在真实情境的驱使下,通过探究完成任务或解决问题的过程,学习和掌握教学要求的内容,并培养学生提出问题、分析问题、解决问题的综合能力。此方法将以往以教师传授知识、学生被动接受为主的传统教学理念,转变为以解决问题、完成任务为主的多维、互动式的教学理念,使学生处于积极的学习状态之中,每一位学生根据自己对当前问题的理解,运用共有的知识和自己特有的经验提出方案、解决问题[8]。2010年,胡静等[9]通过普通双语教学法和任务驱动教学法在“健康评估”双语课中的教学实践,对比了两届学生在同一阶段的考评结果以及学生对课程的认可度,结果显示采用任务驱动教学法的教学效果和学生对课程的认可度明显优于传统双语教学法。

本文结合高分子材料与工程专业双语课“高分子材料科学技术概论”(Introduction to Polymer Science and Technology )的教学实践,对“任务驱动教学法”在本课程教学实践中的应用进行了探讨和解析。教学过程中根据专业特点及课程教学大纲的要求,以增长专业知识、培养学习兴趣、提高科技英语阅读写作水平为目标,对驱动任务的制定和分析、驱动任务的分解完成以及实施过程中存在的问题进行了探讨,为“任务驱动教学法”在双语教学实践中的进一步拓展提供了依据。

1 驱动任务的制定

我国双语课程开设的主要出发点是旨在通过双语教学培养学生国际化的职业能力和科研能力,以适应时展和需要。具体而言,一是从职业能力方面,改变学生“哑巴英语”、“聋子英语”的状态,使其在大学英语的基础上,掌握一定的专业术语,能够参与到国际化的工作交流中,如英文工作环境以及国际会议等;二是从国际化的科研能力来说,改变过去大学生对国外文献资料零接触的状态,使其初步具备搜集阅读和理解运用国外相关文献的能力,为学术研究开拓宽广的视野,打开获得外部信息观念的通道,从而把握本专业国际学术前沿的发展动态,向世界先进学术研究水准看齐[10]。“高分子材料科学技术概论”是高分子材料科学与工程专业任选课程之一,主要介绍高分子材料方面的基本概念、发展历史,聚合物的合成、加工以及结构与性能,目的是使学生在学习专业课之前对日常生活中接触到的聚合物材料有一个基本的认识和了解,激发其学习兴趣。另外,在介绍专业知识的基础上,加强学生对学术期刊论文、专利等科技论文格式的认识,使其初步具备专业科技论文的检索、阅读、分析和总结能力。传统的双语课教学主要采用英文课件,通过教师双语授课、学生被动接受的方式进行。然而,由于专业英语与大学英语的区别,加之专业基础知识的缺乏,使部分同学对课件内容及老师的英文讲述难以理解,从而影响了其对课程内容的接受水平。“任务驱动教学法”以“驱动任务”作为学生学习探索的推动力,使学生由被动接受转变为主动学习,有助于提高学习效果。

任务驱动教学方法的实施过程通常包括:设计任务、提出任务、分析任务、自主协作完成任务、交流评价5个环节。其中,设计合理有效的“驱动任务”是整个教学过程的关键,任务的完整性、难易程度及是否典型、能否引起学生兴趣等都将直接影响到学生课堂上探究式学习的效果。根据课程教学大纲及教学目的的要求,本课程的驱动任务设计过程中主要考虑在以下方面对学生进行训练:(1)专业知识的学习和掌握,如聚合物的合成反应及其实施方法、聚合物的结构与性能等;(2)专业类科技英语的学习和掌握,如组织学生通过英文课本、期刊、网站了解专业知识及行业发展前沿;(3)文献检索平台的使用,如学校图书馆、电子数据库的使用等;(4)科技论文的分类及格式要求,如区分研究型论文与综述性论文在写作方法及格式的异同,掌握专利文献的结构组成等;(5)多媒体课件的制作,如多媒体课件的设计、动画等;(6)中英文口头表述及交流互动,如“会议模式”的口头汇报及回答问题等;(7)任务分解及分工合作,即组内同学根据老师布置的任务对其进行分解后,大家分工合作,共同完成任务;(8)相互学习交流,由于不同学生的具体任务不同,大家在任务完成后可以相互学习交流,达到共同提高的目的。

“高分子科学技术概论”为概论型课程,主要涉及的专业内容包括高分子化学(介绍高分子的合成与制备反应)、高分子物理(介绍高聚物的结构与性能)、高分子材料成型工艺学(介绍常用高分子的成型方法及工艺条件)、高分子材料(介绍常用高分子的性能及应用)等。因此,驱动任务的设计在综合考虑其他能力锻炼的同时,要紧紧围绕相关的教学内容,难易适中,注重兴趣的培养。如针对高分子材料部分的内容,传统的教学方式只是枯燥的讲解何种材料具有何种性能,学生缺乏感性认识,学习兴趣不佳。在任务驱动教学法中,设定的驱动任务是以生活中常见的高分子材料制品为例,比如安排学生找出塑料盆是什么高分子材料组成的,该材料的制备方法、性能以及应用范围,制品配方设计包括哪些成分以及配方设计中应考虑的因素,产品的成型方法、成型条件等等。本方法充分调动了学生的好奇心,并以此为动力完成后续学习任务。另外,作为双语课程,更好的利用英语这一媒介采集和输出信息也是本课程重要的学习目的之一。因此,驱动任务也应该注意鼓励学生利用英文教材、网络等途径进行专业英语方面的了解和学习。

2 驱动任务的分析与分解

由于专业知识的限制,学生对任务的分析可能不够全面,教师在此过程中需要进行指导。“驱动任务”的设定通常以教学大纲为依据,因此教师在给出驱动任务后,应该根据教学大纲的内容及要求,对驱动任务进行充分的分析,使学生知道此任务设定的目的,明白完成此任务需要了解和掌握哪方面的知识,从而提高学习的针对性和任务完成的效率。例如对于上述任务,其设计目标是使学生对聚合物合成、结构与性能、塑料配方设计、高分子材料成型方法等多方面内容有一个基本的了解和掌握。教师在任务分析过程中除了提示学生充分考虑本任务涉及的知识外,也应该注意对相关知识的拓展及思考。例如,塑料盆的成型加工是采用何种方法,除此之外高分子材料还有哪些常用的成型方法;每种成型方法的特点及适用的高聚物类型以及产品类型、各成型加工条件的确定方法以及应注意的问题等,而所有这些问题的根源则是高分子材料的结构与性能的关系。学生对这些问题的思考与学习,对于其在以后的工作过程中将所学的理论知识学以致用、解决实际工程技术问题具有非常重要的意义。

3 驱动任务的完成

教师根据课程内容设定驱动任务后,需要对学生进行分组,要求每一组的同学相互协作,共同完成资料搜集、整理、幻灯片制作等工作。每一个驱动任务都可以分解为多个子任务,因此需要多名同学共同努力完成。一般每组学生4~6人,选取组中“中坚力量”为小组长,负责组织协调本组的学习活动,并详细记录问题探究的进展,每次课后要向教师汇报学习的情况。驱动任务主要靠学生在课下通过图书馆、互联网等多种途径搜集资料来完成。根据授课计划以及各组任务的难易程度,各小组的具体任务及完成时限要求将有所不同。因此,要求小组长切实做好任务分配及协调工作,保证大家进度一致,并在汇报前将工作做完。最后,小组任务的完成情况采用“学术会议”的组织模式,由小组代表采用多媒体课件进行汇报,汇报语言要求50%以上用英语。

下面以驱动任务“列出常用塑料的回收标志并找出对应的聚合物在生活用品中的应用及其基本物理化学性能和使用过程中应注意的问题”为例介绍任务的分解及完成要求。本任务主要可以分解为以下几个子任务:(1)塑料的回收标志及其对应的聚合物;(2)回收标志中的英文缩写对应的中英文全称;(3)回收标志中各种材料的化学组成及机械、物理性能;(4)针对回收标志1~7分别找出生活中5个实例并根据实际用途区别其性能差异。最后要求小组内成员将各自负责的内容整理汇总,并做好幻灯片以便课上汇报交流。由此可见,驱动任务的完成过程需要小组全体成员在教师的指导下共同合作完成,任务完成质量取决于各子任务的完成情况以及成员的团结合作,是集体智慧的结晶。任务的完成过程除了需要学生借助互联网、书籍等渠道查阅大量文献资料之外,还要求学生对生活中的塑料制品进行观察思考,有助于提高其学习兴趣。

4 交流评价

交流评价与归纳是总结、反思与巩固的阶段,这一过程应在每一组汇报以后进行。小组汇报结束后,作为观众的同学可以针对其讲述内容提出问题,并由汇报小组成员回答。学生通过问答或者讨论的形式获得知识,并实现信息的传播。交流的目的:(1)通过相互评价,加深学生对该任务的认识,将小组的研究结果汇报给其他同学,使“学”者的身份转换为“师”者,通过汇报内容传达教学大纲的要求;(2)总结完成任务的过程方法,发现和解决倾向性问题,促使学生进行反思,把所学会的知识内化;(3)锻炼学生在多媒体制作、口头表达自己思想、辩论自己观点等方面的能力。评价可以采用个人自评、组内互评、组间互评、教师点评等多种评价相结合的方法,使评价做到公平、公正。教师在整个过程中起指导、组织和补充的作用,使学生真正成为学习的主体。在这一模式下,学生可以通过计算机互联网随时获取帮助,并随时成为“教师”。这一方法完全改变了传统的教学方式,使因材施教真正落到实处,让每个学习者都能将学习当作一种享受。

5 运用中存在的问题

通过合理有效的驱动任务,大大调动了学生的学习动力,使兴趣成为其学习的内动力,效果是不言而喻的。但是,在此教学方法的应用过程中仍然存在着一些问题和需要注意的地方。具体来说主要有以下几个方面。

1)教学进度不易把握。驱动任务的完成过程需要耗费大量的课余时间,而原来的课堂授课时间很大一部分被交流和评价所占据。根据教学内容安排,如果汇报小组的准备不够充分,就会影响到教学进度。这就需要教师严格要求并在课下投入大量的精力对任务的完成情况进行督促和指导。另外,教师需要准备备用材料,以防止有的小组任务完成得不够全面。

2)课堂管理亟待改进。课堂的交流与评价时间应该防止部分学生“开小差”,游离于课堂讨论之外。针对这一问题,教师要认真观察,必要时采取提问的方式促使学生投入到课堂讨论中。

3)评价上有困难。由于任务的完成工作多在课下进行,在小组内可能会出现部分同学“偷懒”、不积极参与的情况。这要求教师和小组长做好协调和督促工作,针对每一位同学的具体任务,教师做到心中有数,并及时与小组长沟通任务进展情况。

4)如何达到“双语”这一目的。完成驱动任务往往需要查阅大量的文献和资料,能采用英文这一工具除了要求学生具有较高的英文水平之外,对学生专业基础知识和专业英语的掌握也是一个不小的挑战。否则,学生面对满眼不认识的单词往往不知所措,无法利用英文完成相应的任务。因此,如何增强学生面对大篇幅英文资料的信心,使课程真正达到“双语”课程设置的目的也有待后期的研究和实践。

6 结束语

本文结合“高分子材料科学技术概论”双语课程的实践教学,对“任务驱动教学法”在双语课教学中的应用进行了探讨。通过对学生的问卷调查显示本方法可以有效地调动学生的学习积极性并使兴趣成为其积极探索的内在动力,同时提高了其专业知识掌握、资料检索、多媒体课件制作、口头表述等综合素质,教学效果有效提高,也受到学生的广泛好评。针对实施过程中仍然存在的一些问题,在以后的教学过程中应该采取相应措施加以改善。

参考文献

[1]教育部.关于加强高等学校本科教学工作提高教学质量的若干意见[EB/OL].(2001-08-28)[2013-03-04]..

篇8

东部沿海地区:高端集聚

东部沿海地区,包括环渤海、长三角和珠三角地区。其中,环渤海地区拥有多家大型企业总部和重点科研院校,是国内科技创新资源最为集中的地区;长三角和珠三角地区制造业发达,是新材料产业的重要研发生产基地,也是新材料产品的重要消费市场。

北京——门类齐全的创新中心

北京新材料产业是中国新材料产业的创新中心,拥有清华大学、北京大学、中国科学院等60多家新材料研发科研机构,承担了中国近半的新材料基础研究和科研开发工作,已发展成为全国新材料产业的人才集聚地和科技研发中心。北京形成了南部以北京石化新材料科技产业基地为核心,北部以中关村永丰高新技术产业基地为核心的新材料产业集群。“十二五”期间,北京将重点发展特种金属功能材料、高端金属结构材料、先进高分子材料、新型无机非金属材料、高性能复合材料及前沿新材料等领域。

相关企业:燕山石化、安泰科技、北新建材、蓝星东丽、中科纳新、有研硅股、当升科技、江河幕墙等。

上海——外资活跃的产研基地

上海是中国基础原材料工业基地和新材料研发制造基地,初步建成了宝山精品钢材、金山石油化工及精细化工两个基地,以及青浦、嘉定、奉贤等产业延伸扩展区。上海国际化程度高,是吸引新材料外资研发中心最多的城市之一。“十二五”期间,上海将重点发展特种钢、碳纤维、芳砜纶、特种功能性膜等领域。

相关企业:宝钢、上海石化、高桥石化、华谊、陶氏化学、巴斯夫、亨斯迈、拜耳等。

深圳——电子能源的配套先锋

深圳的新材料产业以支撑配套下游的电子信息产业和新能源产业为主,形成了光明电子信息材料聚集区和坪山动力电池材料聚集区。“十二五”期间,深圳将重点发展电子信息材料、新能源材料、生物材料、无机非金属材料、有色金属材料、改性高分子材料等领域。

相关企业:世纪晶源、比亚迪、光启、长园新材、华瀚管道、南玻、通产丽星、深圳惠程、贝特瑞、中金岭南等。

中西部地区:特色发展

中西部地区资源丰富,传统材料众多,新材料产业的发展将以传统材料的改进升级为主,进行特色发展。

江西省在有色金属材料、新能源材料、稀土材料等领域发展较快,主要分布在新余、赣州、鹰潭、九江、大余等市。赣州的中重稀土、新材料发展迅猛;新余的镍、锂材料、太阳能级硅材料等方面的研发生产在全国乃至全球形成了比较优势;鹰潭铜产业向精深加工发展,形成了从铜拆解回收、冶炼、加工到铜终端产品加工的完整产业链;九江的有机硅单体产能为亚洲最大。 “十二五”期间,江西将重点发展稀土发光材料、电子陶瓷材料、高分子复合材料、铜精深加工材料、多晶硅光伏材料等领域。

相关企业:江铜集团、萍钢、赛维LDK、宏磊铜业、三花集团、星火有机硅等。

河南省的新材料产业主要布局在河南超硬材料产业化基地,和洛阳国家硅材料及光伏高新技术产业化基地。郑州在超硬材料、新型铝镁合金材料、新型耐火和功能材料等领域优势突出;洛阳在多晶硅、钛合金、镁合金以及高分子材料等领域发展较快。“十二五”期间,河南省将重点发展超硬材料、钛合金、镁合金及先进高分子材料等领域。

相关企业:黄河、中南、华晶、富耐克公司、中南杰特公司、远发金刚石公司、卡斯通公司、中硅高科、洛阳单晶硅、扬硅业、洛阳尚德、阿特斯等。

重庆在以铝、镁合金为代表的新型轻合金材料领域基础雄厚,形成了重庆西彭铝产业新型工业化示范基地、重庆国家科技攻关镁合金应用及产业化基地、重庆国家化工新材料高新技术产业化基地和重庆国家功能材料高新技术产业化基地。“十二五”期间,重庆将重点发展高性能铝合金、高性能镁合金、天然气化工新材料、石油化工新材料、精细化学品等领域。

相关企业:重庆镁业、西南铝业、天泰铝业等。

陕西省在钛、钼、铅锌、钒等领域的研发和生产,处于国内领先地位,初步形成以宝鸡高新区、咸阳泾渭新区、西安经开区、西安阎良航空材料产业基地、安康新材料基地、商洛现代材料产业基地、西咸渭商榆光伏产业聚集区为核心的新材料产业聚集带。“十二五”期间,陕西省将重点发展新型金属材料、航空航天材料、电子信息材料、新能源材料、化工新材料、特种复合纤维材料、陶瓷材料、光电新材料等领域。

相关企业:宝钛集团、西北有色金属研究院、航天四院43所、西安航空制动公司等。

Tips:进外企参考

新材料产业在全球的分布较不均衡,美国、日本、俄罗斯等发达国家在新材料产业上处于领先地位,韩国、新加坡等国紧跟其后,除中国、印度、巴西等少数国家之外,大多数发展中国家的新材料产业较为落后。根据各个国家在新材料产业上的发展特点,除了在留学时可以借鉴专业方向外,希望进入外企的大学生可以留意以下外国企业。

美国依靠强大的科技实力,在新材料领域处于世界领先地位,主攻生物医用、信息材料、纳米材料、极端环境材料等。

相关企业:陶氏化学(化工新材料);康宁公司(特殊玻璃和陶瓷材料);道-康宁(有机硅新材料);萨比克创新塑料公司(高分子材料);美国铝业公司(金属铝材料);迈图高新材料集团(有机硅材料);MEMC公司(半导体新材料);美国亚什兰集团(复合材料);美国钢铁公司(金属铁材料);杜邦公司(化工新材料)等。

欧洲在复合材料、化工材料领域优势突出,主要分布在德国、英国和法国等国家。

相关企业:奥斯龙集团(高性能纤维材料);德国默克集团(液晶材料);赢创德固赛(化工材料);拜耳材料科技(高分子材料);摩根坩埚集团(陶瓷材料、碳材料)、英国GKN宇航公司(复合材料)、圣戈班集团(陶瓷、玻璃材料)、空客集团(复合材料)、巴斯夫集团(化工材料)等。

在发展新材料产业方面,俄罗斯的战略是一方面力求继续保持某些材料领域在世界上的领先地位,如航空航天材料、能源材料、化工材料、金属材料、超导材料、聚合材料等;另一方面大力发展对促进国民经济发展和提高国防实力有重要影响的材料领域,如电子信息工业、通讯设施、计算机产业等所用的关键新材料。

相关企业:俄罗斯铝业联合公司(金属铝材料)、谢韦尔钢铁集团(金属铁)、诺里斯克镍业公司(金属镍)、俄罗斯铜业公司(金属铜材料)、俄罗斯纳米技术集团(纳米材料)、VSMPO-AVISMA集团(金属钛)等。

日本的电子信息材料全球领先,重点开发纳米玻璃、纳米金属、纳米涂层和纳米数据库等。

相关企业:TDK公司、住友金属、信越化学、东丽、三井化学和新日本制铁公司等。

篇9

关键词:化学腐蚀 树脂基 复合材料 机理 概述

一、 耐腐蚀树脂基复合材料的优缺点

1、 树脂基材料的品种种类繁多。随着石油化工的发展,新的材料不断地出现因而只要选择恰当,在绝大多数腐蚀环境中,都可以找到比较满意的防腐蚀材料。

2、 树脂基复合材料所制备设备和管道抗污染性能好,不易结垢和被污染和被腐蚀。因此,有利于应用场合下化工产品色泽和质量的改善。

3、 树脂基复合材料具有良好的加工性能,即可与金属和木材一样进行机械加工,也可以通过热成型或焊接进行二次加工,可方便地制造各种防腐设备。

4、 树脂基复合材料通常是绝缘材料,不像金属那样会由于电化学作用而导致材料破坏。

5、 树脂基复合材料质量轻,因而在军工领域和航天航空领域里的应用具有特殊的价值。

6、 从经济性来看,树脂基复合材料用来防腐蚀费用较低,由于填料或其他增强材料的加入是材料的成本更低。

但是树脂基复合材料也有其不足之处,如耐氧化性、抗渗透性不如金属;使用温度收到限制,比金属力学强度低;线膨胀系数大等。因而,只有更深入研究树脂基复合材料的腐蚀机理,根本上寻找解决上述问题的途径才能更好地发挥这一材料的优点。

二、 树脂基复合材料的腐蚀主要形式

化学裂解 在活性戒指作用下,渗入高分子复合材料内部的介质分子可能与大分子发生化学反应,是大分子共价键发生破坏裂解。

溶解和溶胀 溶剂分子渗入材料内部破坏大分子间的次价键,与大分子发生溶剂化作用。体型高聚物会溶胀软化,线性高聚物可由溶胀二进一步溶解。

渗透破坏 介质向高分子材料内部渗透扩散引起复合材料基体和界面的脱粘。此外,高分子材料内部的某些低分子,也会从材料内部向外扩散、迁移,融入介质环境而引起腐蚀。

应力开裂 在应力与某些介质的共同作用下,树脂基复合材料会出现银纹,并进一步生长裂缝,直至发生脆性断裂。

湿热老化 复合材料经受湿度、温度和应力联合作用而产生性能退化。在吸湿过程中,结构内部会产生溶胀应力,这种应力的反复作用并达到某一量级时会引起应力开裂,以致形成龟裂纹。

三、材料腐蚀原理

材料的腐蚀主要有一下五个方面的原因;介质的渗透与扩散作用、溶胀与溶解作用、介质与大分子进行化学反应引起的腐蚀、环境应力开裂作用、气候老化作用。

1、 介质的渗透于扩散作用 树脂基复合材料在浸渍于介质或暴露在大气中,质量会发生改变。介质通过材料表面进入材料内部就是质量增加;材料中的可溶成分及腐蚀产物逆向扩散进入介质中就使质量减少,由于在防腐领域里使用的树脂基复合材料的耐腐蚀性能较好,大多数情况下向介质溶出的物质很少,可以忽略。无论溶出或溶入均与材料的渗透扩散性能有关,只是溶出是在腐蚀介质渗入材料内部并与其发生腐蚀作用后造成的。

影响渗透性能的因素有一下三点;高聚物聚集态结构的影响-介质分子向新的平衡位置迁移,只有当其周围存在空位时才有可能。添加剂的影响-少量的添加剂或增强材料能提高复合材料的抗渗能力。材料表面极性状态的影响-用于腐蚀介质极性不同的树脂处理材料表面,通常会增大材料表面的疏液性,使渗透率减小,因为介质分子首先被表面吸附,产生亲和作用,才会向内部扩散;若材料表面极性与介质极性不同,就不会被吸附和产生亲和作用。

2、溶胀与溶解作用

高聚物材料的溶解现象比较复杂,无论是晶态还是非晶态的高聚物,其溶解过程都是要经历溶胀和溶解两个阶段。 凡使大分子热运动能力和向溶剂中扩散的能力强化的因素,均能使复合材料的耐溶剂性下降。溶剂化程度高,溶质与溶剂间形成次价键时放出的能量多,材料耐溶剂性的能力就比较差。高聚物与溶剂体系的化学结构决定了其极性的大小,以及电负性和相互间溶剂化能力,所以是影响材料耐溶剂性能的最根本的内因。

3、介质与大分子进行化学反应引起的腐蚀

高聚物的化学反应能力主要取决于大分子性基团的活性及其相互作用。键能的大小对材料的耐氧化性能有很大影响。键能越大,材料的耐氧化性能越强。杂链大分子比碳链难以氧化;由于卤代酸形成的聚酯树脂有着优越的耐氧化能力。链的极性极大,将易受水等极性介质的进攻并发生水解反应。这种反应在酸碱的催化下更易进行。

4、环境应力开裂作用

树脂的性质是影响环境应力开裂的主要影响因素。不同的树脂具有不同的耐环境应力开裂的能力,同种树脂因分子量、结晶度、内应力的不同而有很大差别。树脂的结晶度高,易产生应力集中,而且晶区与非晶区的交界也易受到介质的作用,所以具有更快出现裂缝的倾向。材料中杂志、缺陷、黏结不良的界面、表面刻痕,以及微裂纹疯应力集中等也会促进环境应力开裂。加工不良引起的内应力或材料热处理条件不同而产生的内应力,均对环境应力开裂有很大影响。树脂分子量的影响更大,分子量小而分子量分布窄,发生应力开裂所需时间较短。因为分子量越大,在介质作用下的解缠就越困难,因而就越不易发生环境应力开裂。

5、气候老化作用

很多耐腐蚀材料的设备如储罐、管道等均子露天使用和放置,气候条件及其变化对高分子材料的使用寿命必有影响。耐候性就是高分子材料对室外天气条件的抵抗能力。引起材料气候老化的主要因素主要有紫外线、温度、湿气活性气体或其他化学物质。其中,紫外线对高分子材料的主要作用是使大分子中的化学键激发,当有氧或水存在时,处于激发态的化学键将会进一步发生化学裂解;而在阳光照射下,高分子材料尤其是深色或无光泽的材料将吸收红外光而使温度迅速升高,温度能引起热老化,也能促进其他化学变化;再者,大气中的湿气与雨水等均会使耐水性差的高聚物产生溶胀、变形、水解等,而且气温低时,水汽在高分子材料的表面或微隙中还会凝结成水,一旦气温上升,又气化而蒸发,如此反复作用,也会加剧材料龟裂;活性气体或其他化学物质,如在光热作用下很多气体如硫化氢、二氧化碳等能与高分子材料发生化学反应,是材料破坏。

同时,添加剂也会产生影响。添加紫外线吸收剂或抗氧化剂聚能提高材料的耐候性能。加入能优先吸收紫外线的化合物,然后将能量转化成非破坏性波长后再发射出来,可以提高高聚物的抗老化性能。此外,耐腐蚀材料的性能还受很多其他因素的影响,如制备工艺和增强体的影响等等。随着研究的不断深入,耐腐蚀材料的性价比和应用领域也在不断的提高和拓宽,如在环境保护领域的应用近些年就在不断的尝试过程中。但高聚物材料本身的缺点也极大的限制了其发展,如何充分利用其优势,弥补其缺点才是发展的关键。(作者单位:郑州大学材料科学与工程学院)

参考文献:

[1] 柏晓光等 玻璃纤维成分对复合材料耐腐蚀性能的影[J] 纤维复合材料,1998,(3);21

[2] 陆关兴等 耐腐蚀玻璃钢渗漏机理探讨 [J]复合材料学报 1995,(1);72

[3] 程树军等 耐蚀玻璃钢常用树脂的结构性能及机理 [J]化学腐蚀与防护1995.(3);22

[4] 郭松涛 耐腐蚀材料在氯碱化工中的应用 [J]化工技术2011,7;33

[5] 杜葆光等 不锈钢酸洗工程用耐腐蚀树脂 [J]山海涂料2004,5;

[6] 高扬等 美国正在研究中的未来工业耐腐材料 [C]2005

篇10

摘要:由于滑石粉与高分子材料的性质存在较大差异,缺少亲和性,使其在高分子材料领域的应用受到限制。为进一步改善其性能并拓宽其应用领域,必须对其粉体表面进行改性处理。本文综述了采用不同种类改性剂对滑石粉进行表面改性的方法和改性滑石粉的应用性能,对促进滑石粉深加工开发具有指导意义。

关键词:滑石粉;改性剂;改性方法;应用特性

[作者简介]黄丽婕,女,化工学院硕士研究生;李艺,男,教授,研究方向:矿物材料开发[基金项目]广西师范大学基金资助项目1前言滑石是一种含水的层状硅酸盐矿物,其化学式为3MgO·4SiO2·H2O。滑石的化学稳定性十分良好,耐强酸及强碱,同时还具有良好的电绝缘性能和耐热性。滑石作为一种优良的功能原料和填料,在陶瓷、涂料、造纸、纺织、橡胶和塑料等行业得到广泛的应用。滑石粉作为填料填充有机高分子材料,可改善制品的刚性、尺寸稳定性、性,可防止高温蠕变,减少对成型机械的磨损,可使聚合物在通过填充提高硬度与抗蠕变性的同时,还可使聚合物的耐热冲击强度提高,可改善塑料的成型收缩率、制品的弯曲弹性模量及拉伸屈服强度。随着现代工业的发展,对滑石粉的纯度、白度和细度提出了越来越高的要求,特别是超细滑石粉,在国内外市场上需求量很大。但是,滑石粉作为无机填料与有机高聚物分子材料之间在化学结构和物理形态上有着很大的差异,缺少亲和性,使之滑石粉与聚合物之间混合不均匀、粘合力弱,导致制品的力学性能降低。为此,必须对滑石粉进行表面改性处理[1],提高滑石粉与聚合物的界面亲和性,改善滑石粉填料在高聚物基料中的分散状态,这样滑石填料在复合材料中就不仅具有增量作用,还能起到增强改性的效果,从而提高复合材料的物理力学性能,使滑石得到更好的应用和扩大其应用领域。2改性方法概述2.1改性的机理改性的机理是利用某些带有两性基团(亲油及亲水基团)的小分子或高分子化合物对进行复合的两种物质中的一种或两种进行表面改性,使其表面性质由憎水变为亲水或由亲水变为疏水,目的是使两种物质更好地结合。表面改性剂的种类很多,不同种类的改性剂具有不同的化学性质,而粉体的表面改性一般都有其特定的应用领域,其改性粉体作填料所适合的高分子材料及其性能也有所差异,并且,为提高改性效果和降低改性剂成本,也往往以多种改性剂配合互补进行改性。因此,选用表面改性剂必须考虑被处理物料的应用对象。对滑石粉而言,为了让滑石粉更好地与高分子聚合物结合,目前改性用的改性剂主要有两大类:a.偶联剂类:主要是钛铝酸脂类、铝酸脂类、硅烷类及硬脂酸类,应用较多的是钛酸脂类;b.表面活性剂类:主要是十二烷基苯磺酸钠、十二烷基磺酸钠、十二烷基三甲基溴化铵、十二烷基三甲基氯化按、烯基磺酸钠等。2.2改性方法目前,在超细粉体表面改性中主要有以下几种方法[2,3]:(1)表面覆盖改性方法:将表面活性剂覆盖于粒子表面,赋予粒子表面新的性质。这种方法是将表面活性剂或偶联剂以吸附或化学键的方式与粒子表面结合,使粒子表面由亲水变为疏水,使粒子与聚合物的相容性得以改善。该方法是目前最普遍采用的方法。(2)机械化学方法:这种方法是将比较大的粒子通过粉碎、摩擦等方法使其变得较小,在这个过程中粒子的表面活性变大,亦即表面吸附能力增强,易于吸附其它的物质,使工艺简化,成本降低,同时可使产品的质量易于控制。(3)外膜层改性方法:在粒子表面均匀地包覆一层聚合物,从而使粒子表面性质发生变化的方法。(4)局部活性改性:利用化学反应在粒子表面接枝上一些可与聚合物相容的基团或官能团,使无机粒子与聚合物有更好的相容性,从而达到无机粒子与聚合物复合的目的。(5)高能量表面改性:利用高能放电、紫外线、等离子射线等所产生的巨大能量对粒子表面改性,使其表面具有活性,提高粒子与聚合物的相容性。(6)沉淀反应改性:这种方法就是利用沉淀反应对粒子表面进行包覆,从而达到改性的效果。3不同改性剂改性及其应用效果3.1钛酸酯偶联剂改性钛酸酯偶联剂目前已成为复合材料不可缺少的改性剂之一。钛酸酯偶联剂的作用是在填料表面形成一层单分子覆盖膜,改变其原有的亲水性质,使填料表面性质发生根本性变化。由于钛酸酯偶联剂具有独特的结构,对聚合物与填充剂有良好的偶联效能,因而可提高填料的分散性、流动性,改善复合材料的断裂伸长率、冲击性和阻燃性能等。3.1.1改性方法(1)干法改性:滑石粉在预热至100℃~110℃的高速混合机中搅拌烘干,然后均匀加入计量的钛酸酯偶联剂(用适量的15#白油稀释),搅拌数min即可获得改性滑石粉填料。(2)湿法改性:计量的钛酸酯偶联剂用一定量溶剂稀释后,加入一定量滑石粉[4],于95℃下搅拌30min,过滤烘干得改性滑石粉产品。3.1.2钛酸酯偶联剂改性滑石粉填料的应用特性经钛酸酯偶联剂改性的滑石粉填料可提高与聚丙烯(PP)的相容性[5],降低体系粘度,增加体系流动性,改善体系加工性能,减少变形,提高尺寸稳定性,扩大PP的应用范围。3.2铝酸酯偶联剂改性3.2.1改性方法将适量的铝酸酯(如L2型)溶于溶剂(如液体石蜡)中,加入烘干的1250目的微细滑石粉进行研磨30min改性,并在100℃下恒温一段时间[6],冷却后即得改性产品。3.2.2改性滑石粉的特性用铝酸酯改性后的滑石粉与普通滑石粉相比,在液体石蜡中的粘度显著减小,水渗透时间增大,有机憎水改性效果明显。由铝酸酯改性的滑石粉代替半补强碳黑填充橡胶,其拉伸强度、伸长率等力学性能有所提高,同时,替代量很大,可达到降低成本,减少环境污染的效果。3.3有机高分子改性采用甲苯二异氰酸酯(TDI)和丙烯酸羟丙酯(HPA)对滑石粉体进行表面改性,分别接枝包覆聚甲基丙烯酸甲酯(PMMA)层和甲基丙烯酸甲酯-丙烯酸丁酯共聚物(PMMA-Co-PBA)层,构成复合粒子。3.3.1复合滑石粉粒子制备方法取经TDI、HPA表面处理并进一步纯化处理的有机化滑石粉粒子、甲苯、引发剂及丙烯酸丁酯(BA)和二乙烯苯(DVB)各适量置于反应釜中,搅拌均匀,在维持温度为75±5℃的情况下,连续滴加下列按适当比例混合的溶液:甲基丙烯酸甲酯(MMA)、BA、DVB、甲苯、偶氮二异丁腈。滴加完毕后在80±5℃下维持反应2.5h。然后在减压下蒸出溶剂及未反应物(绝对压力约8kPa,温度不小于85℃),然后经索氏萃取器用异丙醇抽提24h,再经洗涤烘干过筛制得表面有机高分子复合滑石粉粒子。3.3.2改性滑石粉复合粒子的的应用特性包覆高分子后的滑石粉复合粒子混配的材料,其拉伸、冲击强度均较滑石粉直接填充者有明显的提高,包覆粒子的冲击、拉伸强度大致提高(119±4),而经无规共聚柔性高分子包覆的拉伸强度提高136,冲击强度提高162。柔性高分子包覆的滑石粉复合粒子混配材料,其增强增韧效果十分明显[7],而且可在大范围填充下(粒子填充质量分数5~35)强韧性增长持续有效(拉伸强度提高1/3,冲击强度提高近2/3)。这种复合粒子是一种行之有效的提高制品综合性能、降低材料成本的新型填充材料,用于电缆料时综合性能良好。3.4硅烷偶联剂改性滑石粉属于极性的水不溶 物质,当它们分散于极性极小的有机高分子树脂中,因极性的差别,造成二者相容性不好,直接或过多地填充往往容易导致材料的某些力学性能下降以及易脆化等缺点,从而对制品的加工性能和使用性能带来负面影响。可采用硅烷偶联剂对滑石粉填料的表面进行改性处理。3.4.1改性方法将硅烷偶联剂(如KH–570)配成溶液,搅拌均匀。将溶液滴入烘干后的滑石粉中,搅拌40~60min,使处理剂充分包覆填料[8],再经加热烘干即制得改性滑石粉。3.4.2复合材料的应用性能由硅烷偶联剂进行表面改性的滑石粉作为高分子材料的填料,可使填充体系的强度、模量均有明显的提高,改性效果良好,具有较好的实际应用价值。3.5磷酸酯改性3.5.1改性方法主要包覆处理过程[9]为:先将滑石粉于80℃搅拌下在磷酸酯的水溶液中预包覆1h,接着于95℃左右干燥;最后再升高温度至125℃,热处理lh。磷酸酯的用量为滑石粉的0.5至8质量百分数。3.5.2磷酸酯包覆滑石粉的性能磷酸酯可与滑石粉表面发生化学吸附和物理吸附反应形成表面包覆,增加表面包覆量可改善滑石粉的分散状态,可显著改变填充体系的形态和机械性能。4展望滑石因其独特的物理化学性质,被广泛用于造纸、化妆品、日用化工、陶瓷、塑料、建筑材料、橡胶及医药等行业。PP塑料的改性滑石粉将是滑石在塑料工业中的重要应用领域,需针对不同塑料产品的需要来设计滑石产品。对滑石粉的改性还必须考虑到生产成本以及使用工艺中的问题,还必须努力使滑石生产加工面向能充分体现滑石的特性及优势的高附加值行业。可以看见现阶段对滑石的改性使用的改性剂研究多为偶联剂。有人采用天然或合成胶乳处理滑石粉填料也能显著改进填充材料的综合性能。采用其他的表面改性剂进行研究仍有很大的前景。滑石的各性能都已被人们所了解和掌握,只有不断地努力探索并运用现代高科技手段检测其各项性能,才能不断挖掘滑石的应用潜力,这对我国作为滑石生产大国进一步开展滑石的深加工高附加值产品开发具有重大的经济意义。参考文献[1]李艺.广西滑石的深加工开发现状及其发展方向探讨.广西轻工业,20__(5):1-2.[2]郑水林.粉体表面改性(第二版).北京:中国建材工业出版社,20__,21-34.[3]谢海安.滑石的改性及应用.化工时刊,20__,22(2):31-33.[4]罗士平,周国平.钛酸酯偶联剂对无机填料表面改性的研究.合成材料老化与应用,20__(1):9-14.[5]杨华明.活性滑石粉制备及其在PP塑料中的应用.非金属矿,20__,24(2):24.[6]刘婷婷,张培萍,吴永功.铝酸酯改性滑石粉的反应机理及其在橡胶中的应用.硅酸盐学报,20__,30(5):608-610.[7]左建华.滑石粉有机高分子化改性及在PVC中应用.现代塑料加工应用,20__,17(1):8-11.[8]张东兴,黄龙男,王荣国,王洋.硅烷偶联剂对滑石粉、空心玻璃微珠表面改性的研究.纤维复合材料,20__(2):10-12.[9]刘最芳.磷酸酯包覆滑石粉填充聚丙烯的结构和性能.塑料工业,1995(8):18-22.