光纤通信的发展范文
时间:2024-01-04 17:48:15
导语:如何才能写好一篇光纤通信的发展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
一、概念
光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤通信是以光波为信息载体,通过光纤来传递的一种通信设施。因为它具有容量大,传输距离远,传输速度快,经济等特点,所以在当今被广泛应用。
二、光纤通信的特点
(1)光纤通信容量大;传输距离长;一根细细的光纤可以承载很多个光信息,而它的传输时以光速传播,并且损耗非常小。(2)由于光纤较细,质量轻,所以便于铺设和运输。(3)光纤通信具有抗电磁干扰能力,传输信息不易丢失和失真。(4)信号串扰小、保密性能好。(5)光纤通信用材少,而且不污染环境。(6)光缆适应性强,寿命比较长。
三、光纤通信的原理
所谓光纤通信,就是在发送端首先要把传送的信息(如话音) 变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率) 变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM- DD) [1] 。基本的光纤通信系统是由数据源、光发送端、光学信道和光接收机组成。数据是数字,声音,图像等各种信号的数字化。光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31 和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图像、数据等信息。
四、光纤通信系统的构成
光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM,即脉冲编码调制。
1、光发信机。光发信机是实现电/ 光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于PCM电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。2、光中继器。光中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。3、光收信机。光收信机是实现光/ 电转换的光端机。它由光检测器和光放大器组成。4、光纤连接器、耦合器等无源器件。由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。
五、光纤通信发展趋势及前景
(1)新一代光纤:随着社会发展的需要已经出现了两种不同的新型光纤,即非零色散光纤(G.655)和全波光纤。
(2)超高速系统:传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,而如今要满足社会发展需要,光纤通信应该按照光的时分复用方式进行。
(3)超大容量WDM系统:如果将多个发送波长适当错开的光源信号同时在一路光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。
(4)全光网络:WDM波分复用技术的实用化,提供了利用光纤带宽的有效途径,使大容量光纤传输技术取得了突破性进展。光纤通信的应用给人们带来了一场信息的革命。是整个社会进入了一个信息高速发展的时代。而光纤通信带给我们的不仅仅是高速,还有更为客观的前景,它将带给我们无尽的方便。电话网络系统,电视网络系统和计算机网络系统在不远的未来,即将由光纤通信的发展而更好的结合,那将是光纤通信给人们带来的第二次震撼。
篇2
光纤通信技术作为信息技术的重要支撑平台,具备体积小、容量大、抗电磁干扰、重量轻、传输频带宽、不易串音等优点,在各个领域得到了广泛的应用。科技的不断更新与进步,会促使光纤通信技术的发展越来越快。
一、光纤通信的优势
以光波作为信号载体,以光导纤维作为传输介质的通信方式即为光纤通信。光纤具有独特的优越性,拥有着巨大的传输带宽。目前在全球约有85%以上的信息包括语音、数据、图像都通过光纤传输。我国各通信运营商、各行业部门的专用网建设的光缆骨干网、城域网以及用户接入网总长度已达到680万公里以上。
纤通信的基本物质由光源、光纤和光检测器构成。在光纤通信系统中,光波频率的频率高,光纤的损耗低,故光纤通信的容量要非常大。光纤的芯很细,传输系统所占空间小,节省空间。光纤之间基本没有串绕现象,信息传输安全性保密性好;光纤是用玻璃材料构造的光导纤维,绝缘体性非常好,不会有接地回路的问题。
二、光纤通信未来的发展趋势
目前,光纤通信技术得到了迅猛发展,在数据传输能力方面得到了大幅提升,优势日益明显。光纤通信在所有信息传输领域例如:公共服务通信系统、多媒体领域、网络领域、商业、医疗等各领域都得到了广泛的应用,深刻地影响到了人们的生活。
21世纪是一个信息爆炸的时代,人们对信息的需求也越来越广泛。超高速度和超长距离传输以及超大容量的传输技术是实现人们迫切信息需求的基础。因此,研究光纤通信未来的发展趋势具有极为重要的现实意义。在未来,光纤通信技术将主要围绕提高传输容量与增大传输距离发展。
(一)全光网络技术的发展
全光网络技术在网络中传输和交换的过程中始终以光的形式存在,信号在进出网络时,采用光/电和电/光的变换。全光网络技术有效地提高了网络资源的利用率,这是因为在传输过程中没有电的处理,所以SDH、ATM、PDH等多种传输方式均可使用。全光网络的发展离不开因特网以及移动通信网等网络技术的相互融合,采用类似Internet的结构来设计光网络是必然的选择。
全光网络技术具有组网灵活、简单,而且具有误码率低、可扩展性等一系列的优势。全光网络技术在银行业得到广泛利用,具体体现在网上银行业务的广泛发展。通过网上银行,给个人和企业的经济交易带来了极大的便利,客户可以不受时间和空间的限制,不再需要到传统的银行柜台交易,利用电脑就可以完成转账、存款、理财等各种金融业务。光纤通信技术伴随着3D网络技术的成熟,还有待更进一步的发展。
(二)波分复用系统在光纤通信中的利用
波分复用系统技术是根据每一道光波的波长或频率不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波在发送端利用波分复用器将不同波长的信号光载波合并起来,送入一根光纤中进行传输。这种技术充分利用单模光纤低损耗区带来的巨大带宽资源,在接收端再由另一波分复用器,将这些不同波长承载不同信号的光载波分开,实现一根光纤中同时传输几个不同波长的光信号,从而在一根光纤中可以实现多路光信号的复用传输。
近年来波分复用系统发展迅猛,在商业中,1.6Tbit/s的 WDM系统已经得到了广泛应用,而且关于全光传输距离也在不断地扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,通过OTDM信号进行波分复用,这样就能够提高更大的传输容量。因此现在的超大容量WDM / OTDM通信系统基本上都采用RZ(归零编码信号)传输方式。 WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。WDM/OTDM系统可以降低光纤对于色散管理分布的要求,且对于光纤的一些特性适应能力强,例如非线性以及偏振模色散。而且归零(RZ)编码信号在超高速通信系统中占空间较小。WDM/OTDM系统是未来光纤通信系统的新的发展方向。
(三)光弧子通信技术的应用
光孤子通信技术能有效增大传输距离,它是一种特殊的ps数量级的超短光脉冲,利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。它还完全摆脱了光纤色散对传输速率和通信容量的限制,其传输容量比当今最好的通信系统还高。它是作为全光非线性通信方案是消除色散的最佳途径。其基本原理就是光纤折射率的非线性效应导致对光脉冲的压缩可以与群速色散引起的光脉冲展宽相平衡,在一定条件下,光孤子能够长距离不变形地在光纤中传输。
凭借长距离、高容量以及抗噪声能力强等优点受到了人们的重视,并不断的对其进行研究和开发。
总结
光纤通信技术渗入到了各个领域和行业,在全球得到了广泛的应用,已经深刻影响到了人们的生活。加大对光纤通信技术的革新和应用技术的研究,会让人们更加体验到科技带来的生活便利,也将改变很多领域的发展现状。
参考文献
[1]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004(2).
[2] V. L. Biryukov,V. I. Kalinichev,V. A. Kaloshin,E. A. Skorodumova. Investigation of the dispersion characteristics of strip lines in centimeter and millimeter wave bands[J] Journal of Communications Technology and Electronics,2009
[3]李超.浅谈光纤通信技术发展的现状与趋势[J].沿海企业与科技,2007(7).
[4]孙跃.无线传感器网络的应用[J].科技致富向导,2012年08期.
篇3
【关键词】光纤通信;光信息传播;通信设备
一、光纤通信的应用背景
20世纪90年代以来,我国光纤应用飞速发展,在有线电视网络、能源探测等方面都大量被用到,随着有线电视网络普及率的提升,光纤的优点使其逐渐取代电信号传播。尤其是光纤在广播电视网络中的应用,呈现出剧增的趋势。光纤通信技术有以下两种:光纤接入技术,波分复用技术。光纤接入技术即光纤到路边或用户的宽带网络接入技术,光纤通信极大的满足了家庭和企业的信息通信的要求,所以它成为了电信通信技术的重要替代,尤其光纤到户(FTTH)可以使用户不受限制的进行信息接受与反馈。我国与2003年开始FTTH的推广,到2014年已经在全国30多个城市建立了FTTH网络,遍布家庭、网吧、企业等需求地,发展成果极为显著。波分复用技术是将不同波长的信号整合在一根光纤中进行传输,到达后再区分为不同波长的信号,最终传输完毕。这一技术大大提升了光纤通信的信息传输量,受到了相关领域的广泛关注。
二、光纤通信技术原理
光纤通信利用了光的全反射原理,即当光注入角度满足一定条件时,光可以进行全反射,从而到达远距离传输。在传输过程中,首先利用电信号对光波进行调制,使其成为带有信息的已调光波,然后将已调光波发送到光纤线路中进行传输,光收信机最终将光信号转化为电信号并进行接收。在传输过程中,中继器可以补偿光纤信号的衰减和对失真波形进行正形,无源器件(包括耦合器、光纤连接器等)完成以上各部分的连接。在传输过程中,在技术功能上,分为信号发射、信号合波、信号传输和放大、信号分离、信号接收五个结构。
三、光纤通信的特点
由于光纤通信是以光为载体,用光导纤维进行信息传输,玻璃材料的特性导致其具有以下优良特性:它的频带极宽,通信容量极大,是微波通信的几十倍,满足了用户需求也降低了运输空间,解决了管道拥挤的问题;石英这一介质的损耗低,中继距离长,大大减少了中继站的数量,从而减小了系统复杂性和运输成本,且信息不易失真;由于其材料为绝缘的石英,所以其抗电磁干扰能力强,且不易被腐蚀,也不受自然界的一些电力和太阳黑子活动干扰,而且还能与电力导体进行复合,并运用于军事领域;在传输过程中,光信号只能在纤维中传输,微弱的泄露信号也被外表吸收,所以它无串音干扰,保密性极好;光纤通信的材料使用玻璃为载体,节省了很多的稀有金属材料。它同样具有一些缺点:由于其材料特性,光纤的弯曲半径不能过小;光纤的操作技术、分离、耦合较为麻烦。但它的这些特点同样随着技术发展将一步步得到改进。
四、光纤通信的发展趋势
在光纤通信技术发展上,超高速传输是其主要研究方向,速度越高,信息传输的成本降越低。未来,信息量将越来越大,大数据的发展也需要光纤通信的高速传输进行大力发展。另一方面,高性能光纤也将得到大力发展。在未来发展中,光纤产品需要满足IP业务的长距离甚至超长距离的信息传输,所以高性能光纤的开发是光纤发展的刚性需求。由于光线通信的优良特性,其逐渐取代了传统的电力通信,已经在有线电视、电力通信网络、电信干线传输等方面占据了极大的份额。从20世纪60年代开始,高锟博士的论文已经预见了光纤将取代传统电通信,到如今,光纤已有了极大进展。在21世纪中光纤将如何发展成为了备受关注的话题。光纤通信与移动设备的式结合具有巨大前景,移动设备通信已融入到每一位居民生活中。光纤通信利用其优点渗透进入其中,市场巨大,且具有理论技术支持,和客户需求;另外,光网络与毫米波如果结合成功,也是革命性的进步;再有,制造高精度的光纤陀螺也具有巨大市场,除了未来航空系统,导弹系统,部分汽车也有陀螺;光纤传感器也在一些技术精度要求较高的领域有潜在需求。21世纪以来,我国光纤通信发展迅猛,但自主知识产权的占比仍然极小,大多产品技术含量低,不具备较强的竞争力。但我国仍是光纤运用方面的世界第二大国,因此我们的自主知识产权也将越来越受到重视,知识作为第一生产力将越来越雄厚。另外,光纤通信的其他功能随着其他领域的进步与发展也将一步步被挖掘,随着更多的需求,光纤通信会展现其更多的技术功能。
五、结语
光纤通信以其优良的特性,已逐渐取代传统电信号通信,未来将渗透到生活、军事、航天等领域的方方面面,我国已在世界前列,但仍然需要加强技术研究。
参考文献
[1]吕璠.光纤通信的发展趋势及应用[J].科技信息,2009,23:431-432.
篇4
[关键词]光纤通信;发展现状;发展趋势
中图分类号:TN929.11 文献标识码:A 文章编号:1009-914X(2015)26-0291-01
1 光纤通信的概念
光纤通信是利用光作为信息载体、以光纤作为传输媒介的通信方式。从原理上看,光纤通信的基本物质由光源、光纤和光检测器构成。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤是用玻璃材料构造的光导纤维,绝缘体性非常好,不会有接地回路的问题;光纤之间基本没有串绕现象,信息传输安全性保密性好;光纤的芯很细,传输系统所占空间小,节省空间。在光纤通信系统中,光波频率的频率高,光纤的损耗低,故光纤通信的容量要非常大。
2 我国光纤通信技术的发展现状
2.1波分复用技术。波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
2.2光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。
3 光纤通信的应用
3.1广播电视网中的应用。近年来,随着光纤通信技术越来越成熟,应用的范围也越来越广。在广播电视领域,光纤作为广播电视信号传输的载体,以光纤网络为基础的网络建设的格局已经形成。光纤传输系统具有传输频带宽,容量大,损耗低,串扰小,抗干扰能力强等特点,传输过程中不会有中继引起的噪声,而影响信号质量,更不会因为接收时信号延时较大,而轻易受干扰。光纤传输系统具有这么多优势,已经成为城市最可靠的数字电视和数据传输的链路,也是实现直播或两地传送最经常的电视传送方式。
3.2电力通信网中的应用。随着光纤在通信网络中的广泛应用,我国很多地区的电力专用通信网也基本完成了从主干线到接入网向光纤过渡的过程。目前,电力系统光纤通信网已经成为我国规模较大、发展较为完善的专用通信网,其数据、语音、宽带等电信业务及电力生产专业业务都由光纤通信承载。可以说,光纤通信保障着电力系统安全稳定运行,电力系统生产生活己离不开光纤通信网。现在,由于电力特殊光缆制造及工程设计技术已经成熟,特别是OPGW和ADSS技术已经开始大规模的应用在国内电力特殊光缆通信中,特别是在大的输电工程长距离主干OPGW光缆线路中应用的作用更明显。
3.3电信干线传输网中的应用。随着我国光通信产业发展,各大专业通信网急速扩展,对信号传输提出了更高的要求。光纤通信因其自身优势而能够满足各种复杂的通信业务要求,而成为首选通信方式。目前,我国己建成以北京为中心向四面八方面各个方向辐射的长途干线光纤网,全国“八纵八横”光纤通信网已建成。“八横八纵”是1988年在原邮电部的主导下开始的建设的大容量光纤通信干线传输网工程项目,这个传输网覆盖全国省会以上城市,有22条光缆干线,总长达33000公里。随着我国通信事业的迅速发展,以光纤通信为基础的传输网络还会建设的更多。
4 光纤通信技术的发展趋势
4.1 逐渐向更加高速,更加大容量发展
在光纤通信的发展中,人们一直希望向高速和大容量的方向发展,对于以前传统的电信发展来说,主要存在的问题就是网络无法真正意义的满足人们的需求。过去光纤通信主要是通过电的时分复用来进行传输的,并且传输的速度可以提升到4倍,一旦速度提升的话那么成本也会产生相应的下降,由此可见,光纤通信系统需要增加相应的传输速度,对于高速的光纤系统来说,增加一定的传输量,可以为以后多媒体的产生创造有利的条件。我们通过调查得知,在全世界范围内,光纤通信设备安装的终端高达4000以上,甚至达到6000,光纤通信设备在一些发达国家已经得到了广泛的使用,虽然我国也在开始逐渐实行,但是从目前我国的情况来看,已经铺设过的光缆肯定是无法满足现在的光纤通信设备的条件的,所以在正式使用光纤通信设备之前,需要进行一系列的测试,确定测试合格以后才可以使用光纤通信设备。
4.2 光孤子通信
所谓光弧子,是一种特殊形式的超短脉冲,或者说是一种在传播过程中形状、幅度和速度都维持不变的脉冲状行波,光孤子与其他同类孤立波相遇后,能维持其幅度、形状和速度不变。光弧子通信在传输的过程中主要是利用光弧子来起相应的作用,以此来使通信无畸变、零误码和能够保持长距离的传输,由此,我们可以看到光弧子技术的发展前景是很可观的,光弧子通信在传输上面主要是实现高速和长距离的通信传播,并且它所具备的控制技术可以使他的速率达到100Gbit/s以上。光孤子通信是一种全光非线性通信方案,其基本原理是光纤折射率的非线性效应导致对光脉冲的压缩可以与群速色散引起的光脉冲展宽相平衡,在一定条件下,光孤子能够长距离不变形地在光纤中传输。它完全摆脱了光纤色散对传输速率和通信容量的限制,它被认为是下一代最有发展前途的传输方式之一。
4.3 向超高速系统的发展
对于以前传统的光纤来说,它只是按照电的时分复用方式来进行的,只要当传输的速率提高大于4倍,传输的每比特成本机会平均下降30%~40%,由此可见,高比特系统的经济效益一般情况下都是按照指数的规律来增长的,这也就是为什么光纤通信系统的传输速率会在这么多年来都一直是出于增加的状态。我们可以看出高速系统的出现不但可以在一定程度上增加业务的整体传输容量,还可以为将来各种各样的新业务提供更多实现的可能,特别是宽带业务和多媒体的业务。
4.4 全光网络
篇5
【关键词】光纤通信 发展趋势 应用
光纤即为光导纤维,而以光波为通信载体,以光纤为运输媒介的通信的方式便是光纤通讯。现代社会,光纤通讯技已经成为通信的支柱之一,其作为一个新产生的技术手段,能够实现高速发展和大面积的覆盖,可以说是通信史上的奇迹。光纤通讯标志着新技术革命的到来,被广泛认为是未来社会中信息传送的主要工具。在当代社会,中国经济发展水平不断提高,随之而来的人民生活水平也不断得到改善,随着物质生活的丰富,人们越来越注重生活的便利性和快捷性,从而可以更好的享受现代生活,非常符合“科技都是懒人带动出来的”,这句话。于是在这种背景下,光纤通信就伴随着网络时代来到了人们的生活当中,作为其传输媒介的光纤拥有容量大,覆盖范围广,能耗小的特点,非常符合人们对于现代通信的要求,从而得到快速普及,也就在实际上对通信领域的向前发展产生了极大的推进作用。
1 光纤通讯的发展趋势
1.1 光缆和光纤的发展
现代我们使用的光纤相比于以前有了很大进步。光纤虽然具备容量大,传播的速度极快的特点,得到了极大的欢迎,但是由于波段较短,所以出现了色散,衰减的现象,使人们在通讯上的视觉享受大大减分。因此光纤改进者针对这一问题通过各种技术手段将光纤原来的850mm的波长改进到了到了1310―550mm的波长,非常成功的解决了色散和衰减问题,在今天更是出现了“常规单模光纤”这一种光纤形式,使光纤的波长处于1310mm的状态下实现色散为零的奇迹,避免了色散可能导致的质量问题,对此我们应该向那些为了光纤进步而付出辛勤劳动和伟大智慧的光纤工作者。
1.2 高速发展的光纤通讯
随着信息化时代的到来,世界的距离被“缩小”,全球实现了信息化发展,从而孕育而生了一系列信息时代的全球通信方式,如有线电视,电视会议等,受到了各国高端阶层的喜爱和推崇。而这一信息时代的到来也客观上对光纤通信提出了更高的要求。现在,世界上光纤通讯系统的检测方式多为强度调制直接检测,而相干光纤通讯系统则大部分采取了相干检测这一检测形式,这一检测方式的最大的优点为能够大大提高光接收机检测的敏感系数,从而进一步提高光纤通信系统的使用效率,很大程度上提高了光纤通信系统的无断式传播的距离。
2 光纤通信的应用
2.1 光纤通信技术
2.1.1 光弧子通信
在光纤通信中,“损耗”和“色散”这两个原因是限制传输距离以及容量的主要阻碍。“损耗”会使光的信号在传输能量时不断减弱,而“色散”会使光脉冲在传输的过程中逐渐变宽(光脉冲的实质是各种频率的光波不断振动组成的电磁波的一个总和)。如今,由于光线制造技术得到了大力发展,从而导致光纤的损耗已经接近极限小的程度,于是色散问题就随之成为了阻碍超长距离和超大容量实现的最大障碍。而光弧子通信就是一种全光的非线性通信手段,它能够摆脱色散对传输的速度和容量的局限,能够很好的解决光纤通信中的色散问题,因而被称为下一代最有前景的运输方式之一。
2.1.2 全光通信
全光通信指的是在用户和用户之间全部采用光波手段来实现信号的传播与交换。全部采用光波技术即为从起始点到目的点的运输的全过程全部都在光域中实现,并且其在所有节点的交换都使用oxc(即光交叉连接设备),该设备具有可信度高,容量存储大和高度灵活的特点。由于不需要进行电信号的处理,因此允许不同协议和编码的同时存在,从而使信息的传播和运输实现了透明化。光纤通信用户需求的不断扩大,通信网的传播和运输容量也随之增加,所以,光纤通信技术已到达一个全新的高度。
2.2 高速光纤计算机网
FDDI,即光纤分布式数据接口环网,占据了高速的光纤计算机领域,其为光纤传输的媒介,所以,在区域网的范围内,光纤分布式数据接口环网有非常好的实用效果,尤其是对于如今兴盛的校园网建设更具有非常巨大的贡献。
相比普通的计算机网络应用,我国很多高校实现了校园网的普及,如电信宽带的无线路由,移动公司的无线网,联通公司的无线网卡。这都是由于大学生对于互联网的应用呈现逐渐迫切的趋向,而校园网具有速度快,便捷,方便的优点得到高校大学生的普遍接受和欢迎。校园网有一些新的特点:一是校园网的规模庞大,覆盖的地域很广,但就网络节点就有数千个;二是应用的环境趋向多元和复杂,用户端的需求逐渐呈现多样性,这就需要校园网提供更加全面的终端服务;三是使用位置分散,杂多,很多学校的教学楼,学院楼都分布着很多子网络;四是设备非常复杂,各种计算机类型,这使得组网方面显得比较复杂和困难;五是存在的子网络的分割很多,使得网络的使用呈现出了较为分散的状态;六是系统的开发性能很强,使得校园网处于不断发展的优良态势。
3 小结
综上所述,光纤通信仍处于不断发展的良好状态,随着更多新的科学和技术的出现,光纤通信一定会有更多实质性的突破,比如光纤通信中普遍存在的色散,衰减的现象等。希望致力于进行光纤通信研究的工作人员能够更好的进行研究,早日发现更好,更快,更便捷的光纤通信系统,为人类的信息化发展贡献更大的力量,使光纤技术能够凭借着其自身优越的技术和实用的功能,广泛适用于社会上的各个方面,逐步改善现代人的生活质量,在更大程度上进一步推进现代文明的不断前进和发展。
参考文献
[1]周春红.浅谈光纤通讯的发展趋势及应用[J].城市建设理论研究,2013,17(9):52-53.
[2]郝晓宇.光纤通讯技术及其发展[J].硅谷,2012,10(22):85-86.
[3]张.光纤通讯发展趋势探讨[J].电源技术应用,2013,2(8):156-158.
篇6
关键词:光纤通信技术 发展 现状 趋势 展望
一、光纤通信技术的发展及现状
光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。
目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。
二、光纤通信技术的趋势及展望
目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。
(一)向超高速系统的发展
目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。
(二)向超大容量WDM系统的演进
采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。
(三)实现光联网
上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。
由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。
(四)开发新代的光纤
传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。
(五)IPoverSDH与IpoverOptical
以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。
篇7
近年来,光纤通信在我们日常生产、生活中的应用越来越广泛,并且受到越来越多人的认可。光纤通信除了具有传输容量大、损耗小、速率高和抗干扰能力强的特点外,还具有自身体积小、重量小的优势,由此为光纤通信的良好发展前景奠定了基础。光纤通信自诞生以来,其传输效率及质量不断提高,光纤到户是光纤通信发展的代表成果,本文笔者将对光纤通信中光纤到户分别从应用现状和发展两方面进行阐述,以不断深入了解光纤通信技术的应用,从而促进我国光纤通信产业的快速、稳定发展。
一、光纤通信技术概述
光纤通信技术始于1880年,在其发展过程中,不断取得惊人的里程碑,从初始的传输容量到2000年已增加至1万倍,并且每年的光纤用户也在不断的增加,直至当今光纤通信已被普遍应用于社会生产、生活中。
光纤通信,全称光导纤维通信,即通过光导纤维来传输信号,从而实现信息传递、传播的一种高速率、大容量的通信方式。光纤通信从其本身来讲,主要由光纤光缆、光交换传输、光有源器件及光网络等组成,具有体积小、重量轻、损耗小、容量大、速率高及抗干扰能力强等多种优势与特点,是我国通信产业和市场的发展趋势。
二、光纤通信技术应用现状
1、光纤接入技术
在当今信息通信网络中,光纤接入技术与通信网络中的主干传输网络一并视为信息传输通信的关键性环节。光纤宽带接入网是信息传输的最后一站,也是最贴近信息使用者的重要阶段,其中按照光纤接入到达位置的不同,可分为不同类型的应用,光纤到户就是其中的一个组成部分。
光纤到户英文缩写为ftth,它为光纤宽带提供全光的接入方式,正因为如此,光纤到户可以充分利用自身光纤的宽带特性,本文由收集整理传输大容量、高速率的宽带信息。就目前来讲,光纤到户的应用主要有两种,一种为光纤无源接入技术,另一种为光纤有源接入技术。光纤无源接入技术,即指一点到多点xpon技术;光纤有源接入技术,即指点对点的xpon技术。光纤接入技术在信息通信中的应用,打破了传统信息传输能力的通信网瓶颈问题,从而最大程度的激发了信息通信网络中城域网和核心网的传输容量潜力。通常光纤接入技术,与sdh、atm和以太网等多种技术相结合使用,并产生gpon、apon和epon。与此同时,产生的不同技术将用于信息传输的不同阶段,如gpon主要用于电路交换性的业务支持,epon主要起到信息传输的点对多点的连接作用,同时光纤到户技术中也不可缺少epon技术。相比于gpon和epon,apon则因atm的技术问题遇到发展问题,对于此种状况,通过时间表明可使用sdh来代替,然而庞大的费用和复杂的技术,使apon技术的发展受到了一定的限制。
2、波分复用技术
波分复用技术,可简记为wdm,其工作原理和优势为能够充分运用单模光纤低损耗区带来巨大的带宽资源。光纤信息传输过程中,可根据不同信道光波的波长将其划分为不同的信道,此时光波需要充当传输信号的载体,同时在信号发射端使用合波器整理不同波长的光载波信号,并将其集合起来发送信息,另外在信号传输的接收端,仍然使用合波器将传输光载波信号分别区分开来。在此过程中,不同长度信道光波长度形成的不同光载波信号可以看做是不同的独立的个体,即实现在一根光纤中不同光信号的复用传输。近年来,波分复用技术不断完善,如现如今的wcdmm技术,即粗波分复用技术,它的传输通过波分复用技术的的集体发送和划分,使其在传输范围为80km内的性价比达到最高,由此也受到了多数光纤通信使用者的好评与认可。
三、光纤通信技术的发展前景与趋势
1、光纤到户。
光纤到户是光纤通信产业中的重要发展成果,即将通信用光网络单元安装在需求者所在的区域(居家/企业),实现光接入网通信的最终目的。我国是通信大国,而光纤通信又是整个通信网络的重要组成部分,且具有自身独特的优势与特点,为此光纤通信在我国通信产业中占有重要的市场。本文笔者对发展光纤到户通信的的意义和发展前景、趋势进行分析与论述,发展、普遍我国光纤到户通信,应充分了解并掌握其市场意义与发展趋势和前景。
(1)、光纤到户通信具有重要市场意义。首先,光纤到户是实现三网融合的可行通信媒介,是最终实现三网融合的有效、可行办法。传统的信息通信是由各个运营商所掌控,由此造成利益性的运营质量差、效率低等,此种现象阻碍了我们通信产业的发展与进步,而通过光纤到户实现的三网融合,可在满足运营商利益的同时,更好的满足信息通信使用者的需求,使信息通信质量更高、有效性更高、容量更大;其次,光纤到户通信可带动与其相关产业的发展,如信息产业、光电子产业、网上业务和服务业务等。对于信息产业和光电子产业,管线到户通信都有涉及,这是因为要实现光纤到户需建立相应的光纤网,此时就需要大量的光纤、相应的系统设备和光电原、器件等;另外,光纤到户通信也将在一定程度上提高社会生产、生活效率,因为光纤到户将为不同地点、不同职业、不同需求的人提供一个交流、会议及服务的平台,从而在一定程度上提高办事效率和经济效益。
(2)、光纤到户通信的发展前景与趋势。目前,光纤到户通信的过程中局部结合了光纤无源光接入技术光纤无源接入技术的应用,给光纤到户带来了巨大的变革。光纤无源光接入技术,简称pon,在光接入网络系统中起着调度动态带宽和提供良好组播的重要作用。光纤无源光接入技术与其他相关技术相比,具有传输容量大、距离长、故障率低及寿命长等多种优势。经实践证实,光纤无源光接入技术解决方案可如下图所示:
光纤无源光接入技术应用解决方案
除上述外,对于光纤到户接入的建设,应积极做好相关工作。第一,光纤接入网的到户建设应紧密的结合实际,通常主干光纤多采用pon、sdh,配线光缆多采用pdh、pon;第二,光纤通信中光纤到户的建设逐步向着规范化的建设施工规范发展,这将有效保证光纤到户的接入质量。同时,立足于网络发展的角度,光纤到户应以voip为明确的主推方式,以满足光纤到户接入建设。
2、全光网络
目前我国在局部上已经实现了光网络通信,即通信网络中节点之间的全光化,并没有实现通信网络的整体全光化,例如在网络结点出仍有电器件的存在,这将在一定程度上限制信息传输的容量和速率,为此全光网络是光纤通信的重要发展趋势。全光网络的实现,应使用光结点代替传统的电结点,其中网络节点之间也是光节点。全光化的信息传输网络,将有利于提高信息传输容量、速率和可靠性,降低误码率,从而促进我国光纤通信的稳步发展。
篇8
关键词:光纤通信核心网接入网光孤子通信全光网络
光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。
1 我国光纤光缆发展的现状
1.1 普通光纤
普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。
1.2 核心网光缆
我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。
1.3 接入网光缆
接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。
1.4 室内光缆
室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。
1.5 电力线路中的通信光缆
光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。
2 光纤通信技术的发展趋势
对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。
(1) 超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。
仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。
篇9
1光纤通信技术发展的现状
(1)波分复用技术。波分复用技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。
(2)光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有fttb、fttc、fttcab和ftth等不同的应用,统称fttx。ftth(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。
2光纤通信技术的应用
光纤比其他材质的通信材料有着更大的优势,因此在各行各业都得到了广泛的应用,在很多领域,光纤通信技术也得到了极大的提高。
2.1应用于广播电视行业
光纤技术有很多优点,它传输速度快、有较强的抗干扰能力,光纤较细,体积小、占用空间少,频带宽、传输和铺设也非常方便,这些优点使得它对信号的质量不会产生影响,也容易受到干扰,传输速度也非常快,因此可以在广播电视网中发挥作用。光纤已经成为广播电视行业的主要传输信号的介质,广播电视领域已经形成了机遇光纤网络的电视网。光纤可以传导出高质量的音频、视频,非常适合在数字化的节目制作网络中应用,因此现在城市中主要就是应用光纤进行传输。另外,广播电视网络是建立在光网络基础上的,所使用的光缆的传输质量和传输效果都非常好,从而确保信号能够可靠地进行传输。
2.2应用于电力通信
目前我国很多地区的电力系统都在使用或者正在建设专用的电力通信网络,主干线和接入网等网络已经基本实现了向光纤转变的工作。现在我国已经大规模应用光纤通信网来进行电力传输了,而且发展得都比较完善,光纤已经广泛地应用于数据、宽带、语音、电力生产等业务。光纤通信对电力系统的正常、安全运行有重要作用。
2.3应用于军事
信息化的战争使得信息技术广泛应用于军事装备,所以世界各国都在大力将光纤技术应用于军事准备。光纤通信有极大的容量,且可以防止信息被窃听,因此非常适合应用于保密要求极高的军事通信领域。光纤有着很强的抗干扰性,因此对敌方的破坏有很大的抵抗作用。光纤的宽带较宽,同一条光缆可以传输多路数据,用最少的光缆数量可以传输最多的数据,非常适合应用于军事中的战术、局部和空中等通讯系统。
2.4应用于电信干线的传输网络建设
目前光纤通信技术已经广泛应用于通信事业,光纤通信网络的建成已经能够满足不同复杂的通信要求,光纤技术在我国电信干线中传输网络建设中已经得到了广泛应用,促进了我国经济建设的发展。
3光纤通信技术的发展展望
在政府的大力支持下,我国的通信行业已经有了长足的发展,但是面对着世界电信市场的快速发展形势,光纤通信技术还要寻求更加广阔的发展局面。
3.1大力发展光接入网通信技术
现在我国大部分的网线还是传统的双绞线,比较落后,但是随着光接入技术的发展使网络完全数字化、智能化、集成化。光纤技术要向光接入网络通信技术发展,只有这样才能降低光纤的维护费用,减少故障的发生。同时,新设备的开发可以促进信号覆盖范围的扩大,使节点数减少。由此可见,今后要大力发展光纤的优势,促进光网络的建立。
3.2大力应用新生光纤促进光纤通信技术的优化
现在网络用户大都使用城域网和干线网,由于用户的需要不同,已经有新一代的光纤应运而生,即全波光纤等,虽然我国通信技术已经有了很大发展,但是我们依旧要坚持前进。要想实现更大的发展,就必须重视新材质的应用,对新生光纤深入研究。传统的光纤难以满足用户对阐述的高速度、长距离的要求,因此必须加强对新型光纤的开发,使其成为新一代网络建设的基础。现在已经出现了g.655光纤和全波光纤等新型光纤,他们能够适应网络传输的不同需要,帮助通信行业实现更高的发展目标,不断推进通信行业的发展,不断满足人们的需求。
3.3光纤系统的超高速趋势
国内外的通信行业都有一种现状,那就是网络传输的速度难以满足网络容量的要求。各行各业的用户都对网络的传输速度提出了更高的要求,要想满足他们的要求,就要扩大网络的容量。传统的光纤通信采用tdm方式,传输速率提高,传输成本就会下降。现在传播速率已经由二十年前的45mbps上涨到10gpbs,上涨了两千多倍,所以,今后光纤行业的发展必须注重传输速度的提高,从而增加传输量,方便宽带和多媒体业务的发展。
4结语
篇10
关键词:光纤通信技术特点发展趋势光纤链路现场测试
一、光纤通信技术
光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层称为包层,包层的作用就是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路;光波在光纤中传输,不会发生信息传播中的信息泄露现象;光纤很细,占用的体积小,这就解决了实施的空间问题。
二、光纤通信技术的特点
2.1频带极宽,通信容量大。光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。
2.2损耗低,中继距离长。目前,商品石英光纤和其它传输介质相比的损耗是最低的;如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。
2.3抗电磁干扰能力强。石英有很强的抗腐蚀性,而且绝缘性好。而且它还有一个重要的特性就是抗电磁干扰的能力很强,它不受外部环境的影响,也不受人为架设的电缆等干扰。这一点对于在强电领域的通讯应用特别有用,而且在军事上也大有用处。
2.4无串音干扰,保密性好。在电波传输的过程中,电磁波的传播容易泄露,保密性差。而光波在光纤中传播,不会发生串扰的现象,保密性强。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。正是因为光纤的这些优点,光纤的应用范围越来越广。
三、不断发展的光纤通信技术
3.1SDH系统光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。伴随着科技的进步,特别是计算机网络技术的发展,传输数据也越来越大。分组信号与连续码流的特点完全不同,它具有不确定性,因此传送这种信号,是光通信技术需要解决的难题。而且两种传送设备也是有很大区别的。
3.2不断增加的信道容量光通信系统能从PDH发展到SDH,从155Mb/s发展到lOGb/s,近来,4OGB/s已实现商品化。专家们在研究更大容量的,如160Gb/s(单波道)系统已经试验成功,目前还在为其制定相应的标准。此外,科学家还在研究系统容量更大的通讯技术。
3.3光纤传输距离从宏观上说,光纤的传输距离是越远越好,因此研究光纤的研究人员们,一直在这方面努力。在光纤放大器投入使用后,不断有对光纤传输距离的突破,为增大无再生中继距离创造了条件。
3.4向城域网发展光传输目前正从骨干网向城域网发展,光传输逐渐靠近业务节点。而人们通常认为光传输作为一种传输信息的手段还不适应城域网。作为业务节点,既接近用户,又能保证信息的安全传输,而用户还希望光传输能带来更多的便利服务。
3.5互联网发展需求与下一代全光网络发展趋势近年来,互联网业发展迅速,IP业务也随之火爆。研究表明,随着IP业的迅速发展,通信业将面临“洗牌”,并孕育着新技术的出现。随着软件控制的进一步开发和发展,现代的光通信正逐步向智能化发展,它能灵活的让营运者自由的管理光传输。而且还会有更多的相关应用应运而生,为人们的使用带来更多的方便。
综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术是目前光纤传输的研究热点,而在以后,科学家还会继续对这一领域的研究和开发。从未来的应用来看,光网络将向着服务多元化和资源配置的方向发展,为了满足客户的需求,光纤通信的发展不仅要突破距离的限制,更要向智能化迈进。
四、光纤链路的现场测试
4.1现场测试的目的对光纤安装现场测试是光纤链路安装的必须措施,是保证电缆支持网络协议的重要方式。它的目的在于检测光纤连接的质量是否符合标准,并且减少故障因素。
4.2现场测试标准目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。①光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同的光纤系统,它的标准也不同。目前大多数的光纤链路现场检测应用的就是这个标准。②光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。这种测试的标准是固定的,不会因为光纤系统的不同而改变。
4.3光纤链路现场测试光纤通信应用的是光传输,它不会受到磁场等外界因素的干扰,所以对它的测试不同于对普通的铜线电缆的测试。在光纤的测试中,虽然光纤的种类很多,但它们的测试参数都是基本一致的。在光纤链路现场测试中,主要是对光纤的光学特性和传输特性进行测试。光纤的光学特性和传输特性对光纤通信系统对光纤的传输质量有重大的影响。但由于光纤的特性不受安装的影响,因此在安装时不需测试,而是由生产商在生产时进行测试。
4.4现场测试工具①光源:目前的光源主要有LED(发光二极管)光源和激光光源两种。②光功率计:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。③光时域反射计:OTDR根据光的后向散射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等。从某种意义上来说,光时域反射计(OTDR)的作用类似于在电缆测试中使用的时域反射计(TDR),只不过TDR测量的是由阻抗引起的信号反射,而OTDR测量的则是由光子的反向散射引起的信号反射。反向散射是对所有光纤都有影响的一种现象,是由于光子在光纤中发生反射所引起的。
虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。
参考文献:
[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006.(4).
[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信.2004.(2).
- 上一篇:关于火灾安全的心得体会
- 下一篇:桥梁工程课程设计