流体力学的基础范文
时间:2024-01-04 17:47:57
导语:如何才能写好一篇流体力学的基础,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词: 流体力学;实践教学;教学改革
中图分类号:O35
流体力学是材料成型、机械、航空航天、土木、化工等多个学科的专业基础课程,主要研究生产、生活中遇到的流体平衡和运动规律的问题。流体力学具有理论性强、公式推导和基本概念多、对学生的数学物理知识要求高、应用广泛等特点。熟练掌握流体力学这门专业基础课程,对解决工程实际问题有着重要的意义。
结合实际的教学经验,目前的流体力学课程教学中存在如下问题。首先,大量的基本概念、定理、公式和理论模型需要学生掌握,抽象复杂,教师满堂灌输,学生被动接受,导致“教师难教,学生难学”的现象。其次,流体力学虽理论性较强,但与工程实际息息相关,课堂习题和课后练习往往与工程实际脱节,学生缺乏理论联系实际,不能很好地将所学知识应用于实际工程问题。再次,流体力学课程实验多为演示实验,学生不能主动设计实验并加以验证,不利于培养学生思考问题、分析问题、解决问题的能力。
针对流体力学课程特点和存在的问题,本文从教学内容、教学方法、教学考核等方面,对流体力学教学改革进行探讨。
一、 优化理论和实验教学内容
流体力学理论应该以掌握概念为基础,以分析计算为手段,以加强应用为目的来展开。教学过程中,应对教学章节划分轻重主次,进行合理取舍,课堂中引入工程实际问题,进行习题练习和思考分析,提高思考和解决问题的能力,培养出应用型人才。在内容选择上,根据专业人才培养方案的思路和流体力学自身规律,优化选取教学内容,注重点面结合。在完整全面介绍基础知识的前提下,实时穿插介绍流体力学最新科研成果、科学研究热点和具体的工程应用实例。在理论教学内容安排方面,应该遵循由简到繁,由易到难的原则,明确课程主线的基础之上,突出重点的基本概念、掌握基本方法和技巧、培养学生的思维方式。
在流体力学实验教学环节,学生可以加深对基本概念的理解和对重要公式的应用。实验教学内容分为三类:必开实验模块、选开实验模块和自主设计实验模块。在必开实验中,应该围绕流体力学最重要的理论内容,进行理解和掌握,去粗取精,探究核心内容。在选开实验中,应该结合流体力学科研热点和科研动向,整合实验教学资源,理论联系实际,进行工程应用的培养。自主设计实验模块从无到有,应该增大次模块比例,适当增加学生人数,培养学生自主创新和研发的能力,学生的实验作品,可进行展览或参赛,激发学生的创新热情,提高综合素质。
二、 改进教学方法和手段
流体力学课程内容复杂枯燥且抽象,对于高等数学的要求较多,大部分学生学习困难较大。为了培养学生学习兴趣,激发创造力,我们应该对教学方法进行探索和改进。
为了丰富课堂内容,教师应该巧妙地设计身边有趣的问题,将问题抛进课堂,启发学生的思维。例如,介绍伯努利方程之前,可以搜集吹纸片和吹风机吹乒乓球等有趣的伯努利现象,向学生提出问题,引入相对枯燥的课程内容,从而提高学生的学习兴趣。在课堂教学过程中,适当介绍最新的研究成果和研究热点,可以调节课堂气氛,极大地丰富了学生的知识面,提高学习积极性。例如讲解动量方程时,可以介绍军舰的不同推进方式,增加学生对流体力学用于军事装备的了解,增强了学习动力。教师讲解课堂内容时,不能仅限于内容本身,应该引入研究背景、科学家的研究思想和发展进程。通过此类介绍,使学生学会在实际工作中发现问题、提出问题、分析问题和自主解决问题,通过理论联系实际,从而达到培养综合能力的目的。最重要的是,教师讲解应该形成清晰的立体空间,讲解知识点的过程中,注意点线面相结合,形成清晰的脉络,有利于学生对课程的掌握。
三、 完善课程考核方式
考核的目的在于考察学生掌握程度,检验教学成果,从而促进教学方法的改M和课程的优化改革。因此,流体力学的课程考核应该在一定程度上反映学生的主观能动性,这样有助于营造良好的课堂氛围,促进教师与学生之间的互动和交流。相比于期末考试成绩占百分之百比重的传统考核方式,目前综合考核的方式更加人性化、合理,操作起来也更加复杂。
目前,我院主要采用平时成绩和期末成绩综合考核的方式进行课程评价。平时成绩包括课堂考勤、作业和实验报告,每一个部分占一定的成绩比例。平时成绩是学生对该课程的学习状况、掌握情况的重要反映,也是教师及时了解教学整体情况的重要途径,平时成绩应该是考核中最重要的内容。在平时成绩考核过程中,教师应该对作业和实验内容进行精心设计和优化,不能盲目采用题海战术,应分轻重主次,让学生对各章节的学习有的放矢,有利于调动学生学习积极性,进行综合素质的培养。期末考试可以采用开卷、半开卷的新形式,着重考核学生利用知识分析问题的能力和创新能力。
结束语:
流体力学对后续专业课程的学习和解决实际工程问题是非常重要的,教师应该在教学过程中不断发现问题、分析问题和解决问题,不断改善教学方法,最终提高教学质量,培养学生的综合能力。
参考文献
[1]张志宏,顾建农,王家楣.“流体力学”课程教学改革的实践与探索[J].高等理科教育,2006(5):87-91。
[2]欧阳莉.“流体动力学”教学内容及考核方法研究[J].大学教育,2015:117-118。
[3]杨扬,张勤星,王利霞,李倩.工科流体力学教学方法与改革[J].大学教育,2015:129-130。
篇2
关键词:高等流体力学;教学内容;教学方法;教学模式
中图分类号:G643 文献标志码:A 文章编号:1674-9324(2014)10-0192-03
近几年,计算流体力学与各种工程实际问题的结合越来越密切,已成为解决各种流体流动与传热问题的强有力工具,并已成功应用于建筑、环境、流体机械等技术科学领域。过去只能靠实验手段才能得到的某些结果,现在已可以借助于计算流体力学的手段来完成。在高等建筑院校的土木工程、环境科学与工程等学科中,因涉及大量的流体流动问题,因此,普遍开设了研究生课程――高等流体力学(计算流体力学)。
多年来,计算流体力学的教学内容主要是有限差分法、有限元法、离散化方法等,重点仍然是算法的数学基础、收敛性的证明及离散精度的讨论。在教学过程中发现学生对课程中涉及的大量数学推导感到乏味,课程学完后,如何采用计算流体力学方法对一个具体的流体流动问题进行模拟和分析,学生往往感到无从下手,并且难以正确采用计算流体力学的理论和方法解决工程实际问题,因此学生也不能学以致用。当前的研究生课程教学,不仅在分析问题的深度和广度上显得不足,在教学方法上也存在灵活性不足,互动性不够,缺乏新颖性等问题。因此,结合学科的发展特点对计算流体力学课程现有的教学内容、教学体系及教学方法进行改革,并进一步将计算流体力学理论与解决工程实际问题紧密联系在一起,培养和提高学生的学习能力和创新能力显得尤为必要。
我校研究生课程“高等流体力学”的教学内容紧密围绕计算流体力学的内容,课程组在重庆大学研究生重点课程和重庆市研究生重点课程教改项目“高等流体力学”的资助下,对教学体系、教学内容、教学方法等方面的改革做出了一些尝试,力图使其教学内容反映学科的特色,发挥计算流体力学本身应有的优势。此外,由于研究生课程教学学时有限、学生基础不均,因此,在教学过程中,合理选择教学内容、提高教学效率、拓展课程的专业视野、增强学生学习主动性,使得课程学习更好地服务于课题研究,是该课程必须考虑的几个主要环节。本文围绕高等流体力学课程教学改革进行了一些探讨,并提出了一些建议。
一、优化教学内容
计算流体力学(Computational Fluid Dynamics,简称CFD)已经超越了其传统的外延和内涵,不再仅仅是一些数学理论和概念,而正成为一门建立在经典流体力学与数值计算方法基础之上的新型独立学科。就CFD本质来讲,流体动力学是建立能准确描述具体流动过程的数学微分方程组,依据模拟几何模型和流动过程特点给予相应的边界条件,最后,联立求解方程组,得出一定精度的模拟结果[1]。CFD兼有理论性和实践性的双重特点。特别是随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件,可以通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到研究物理问题的目的。商用软件的出现为学生学习掌握计算流体力学提供了有力的辅助手段,但是计算流体力学所依赖的基本流体力学知识和数学基础仍然是非常重要的。因此,为顺应科学的发展和工程问题研究的需要,计算流体力学作为一门重要的研究生学位课程,在教学中既要注重理论知识讲解,还需拓展其实际应用范围。对于普通建筑工程类专业的研究生来讲,最关心的是如何用CFD手段来解决本研究领域的实际问题,所以关键是掌握计算流体力学关于建模、离散、湍流模型的选择、对流差分项的格式及时间积分格式的特点等内容;学会如何编制自己的CFD程序;如何使用现有的商用软件。
课程的教学目标,要求学生完成高等流体力学课程的学习后,必须掌握流体力学的分析推理方法,常见湍流计算模型以及相关软件(CFD)的使用,要具备利用高等流体力学知识分析和解决实际问题的能力。在课程内容方面的设计上,应注意内容的系统连贯和循序渐进,便于学生掌握基本理论和分析流体力学问题的基本方法。
优化的教学内容包括以下几个部分:①矢量场论;②流体力学基本概念及运动描述;③流体力学基本方程组及其求解;④湍流现象及湍流研究的基本方程;⑤粘性流体流动的数值分析方法;⑥离散化方法;⑦对流与扩散以及流场计算;⑧软件――CFX及其应用。其中,为了加深对流体力学的理性认识和理解,掌握流体力学中的思维特点和较综合的分析推理方法,使学生在理论修养和实际处理流体力学问题的能力上都有明显的提高,课程组教师在教学过程中,新增了离散化方法、对流与扩散以及流场计算和软件应用三个部分的内容。增加了CFD软件的实践教学环节,注重学生的对软件的使用操作的理解,使其学以致用。减少了势流计算、粘性流动解析解以及边界层理论这部分内容。加大了CFD应用程序这部分内容。
教材选用本校课程组编写的《高等流体力学》,帕坦卡编写的《传热与流体流动的数值方法》,和陶文铨编写的《数值传热学》;参考教材选用吴颂平翻译的《计算流体力学基础及其应用》,王福军编写的《计算流体动力学分析》,张兆顺著的《涡流大涡数值模拟的理论和应用》;实践教材选用孙纪宁编著的《ANSYS CFX对流传热数值模拟基础应用教程》;此外,我们还建立了相关的学习网站,网站上有课程大纲、教学内容、学习辅助材料等。
课程学时数共45学时,采用“两段制模式”教学,即将计算流体力学课程分为既有关联、又相互独立的两部分。第一部分以基础知识为主,第二部分以应用为主。两部分独立讲授,第一部分着重讲述流体动力学基本方程、离散化特征、对流差分格式、边界条件的处理、紊流模型等,第二部分讲述流体流动仿真与CFD软件应用。授课对象为学术型硕士、专业型硕士,授课对象是掌握较强流体力学知识的学术型硕士研究生时,强化第一部分内容;授课对象是专业学位研究生时,则侧重第二部分内容。
二、丰富教学方法,注重自主学习能力
1.凝练教学内容,提升教学起点。为了使高等流体力学课程的知识更好地为建筑环境与设备工程、市政工程、环境工程等专业服务,需要对教学内容进行凝练。通过参阅其他理工科院校相关院系的教材和讲义,从中精选出适合专业需要的内容编写教材,并对某些不足进行改进,注重内容的系统性和连贯性,使之既能清晰反映高等流体力学的基本理论,又能结合上述几个专业的实际应用特点,与专业课进行有机衔接和整合。着重收集了与建筑土木工程相关的流体力学内容。
考虑到研究生的知识水平和知识结构与本科生有较大区别,并且多数学生已经掌握了工程流体力学的一些基础知识,选取的教学内容具有较高的起点,使学生在较高的层面上学会应用流体力学这个理论工具。
2.采用精讲多练的教学方法。教学方法由讲授、联想、解疑、归纳、作业这几个部分组成。其中讲授要抓住重点难点,由浅入深的讲解,由于课时较少,内容多,要求学生在上课前充分准备每一讲的内容。在课程教学中改变教师讲、学生听的习惯做法,使学生在课堂上积极思考、踊跃发言。
高等流体力学课程具有理论性强、数学推导能力要求高的特点;但是另一方面,其课时相对较少,为了解决内容深与课时少的矛盾,在授课方法上侧重于精讲多练。对关键的基础理论部分(如流体力学基本守恒方程的推导),安排较多的学时讲深讲透,使学生能够从本质上掌握流体力学这个理论工具。同时,课后安排与基本理论密切相关的习题和工程问题让学生加以训练,使学生加深对理论的理解和消化,同时提高应用理论工具解决实际问题的能力。
3.利用板书、多媒体技术、网络辅助教学相结合的教学手段。高等流体力学课程是一门理论性和应用性都很强的学科,授课手段不应一成不变。在公式推导过程中较多地采用板书的方式更符合学生的思维习惯;对于一些实际工程问题或自然中存在的流体力学现象,采用动画或视频的形式展示更加生动形象,可以帮助学生较快地建立感性认识,从而更好地理解复杂规律。同时,利用网络及时向学生提供教学资源,包括:课程大纲、授课教案、讲义、课后习题、国内外相关教材等资料,旨在给学生提供一个全面、简便、轻松的教学环境。
4.利用试验和CFD模拟加深学生对基本理论的理解。本课程利用学校和学院的实验设备资源,开设演示性实验、验证性试验和设计性试验。安排适量的CFD程序操作课程,并邀请国内外大型设计院人员讲解CFD软件,加深学生对流体力学工程应用的理解。此外,课题组任课教师所从事的科研活动,也给不少学生提供了实践的机会和场所。收集了与建筑土木工程相关的工程案例,通过案例讨论和分析,增强学生学习理论知识的兴趣,提升课程教学的互动效果,增强学生运用理论知识分析并解决工程实践问题的能力。
5.启动双语教学。为了便于学生快速准确地理解国际上关于本学科的新知识和先进技术,使学科技术更好的与国际接轨,我们在教学中逐渐开展了双语教学。考虑到学校的实际情况、学生英语水平参差不齐等问题,一开始就全部采用外语教学,势必会影响教学效果,因此在学生学习初期使用母语教学,然后逐渐地部分或全部使用第二语言(英语)进行教学。同时我们加强师资队伍建设,培养年轻的老师出国深造,能够更好地讲解国外原版的专业教材,使学生能够阅读相关技术知识的英文文献资料,在双语教学实践中并且结合工科专业特点,能熟练运用相关的英文编程工具和商业软件,能够应用英文处理和交流相关问题,拓展课程中的专业视野。
三、教学模式:互动式教学
保罗・佛莱雷说过:“没有了对话,就没有了交流;没有了交流,也就没有真正的教育。”[2]互动式教学可以提高学生的学习水平和协作能力,因此成为国际上大力推行的教学策略之一[3]。
相对于本科教育,研究生教学中更注重对学生独立解决实际问题能力的培养,所以在研究生课程教学中更应该采用互动式教学模式,可以更好地激发学生的创作力和培养独立思考能力。教学中改变一味地灌输,注重方法,突出学生的主体地位,发挥其主动性,积极开展讨论式、演讲式、辩论式、案例式等多种形式的教学方法,激发其主动思维、辨析、讨论的热情。我们在课程教学中设计了以小组为单位,针对实际工程问题,进行仿真案例计算。在教学中应当尽量将讲授的新知识转化为学生感兴趣的问题,使抽象的理论内容借助生动具体的案例和多媒体场景形象化;关注学生的个体差异,创造出能够调动学生积极性和学习兴趣的课堂氛围,使学生在宽松的环境中学习和探索。
四、结束语
在计算流体力学的教学实践中,作者把握《高等流体力学》中的重要思想方法,流体力学问题的本质,进行深入浅出、生动活泼的讲解。同时结合作者的科研项目、生活、生产中的实际问题,向学生传授治学方法,培养学生的自主学习能力和创新意识,通过近年的实践收到了良好的效果。
参考文献:
[1]翟建华.计算流体力学(CFD)的通用软件[J].河北科技大学学报,2005,26,(2).
[2]保罗・佛莱雷.被压迫者教育学[M].上海:华东师范大学出版社,2001.
篇3
关键词:工程流体力学;教学研究;改革探索
作者简介:李小川(1976-),男,河南焦作人,扬州大学能源与动力工程学院,讲师;田萌(1977-),女,陕西安康人,扬州大学能源与动力工程学院,讲师。(江苏?扬州?225127)
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)23-0047-01
“工程流体力学”课程在能源动力类工科专业中占有非常重要的地位,主要研究流体(液体和气体)的平衡、运动规律及其实际工程应用的技术科学,是力学的一个重要的分支学科。通过本课程流体力学的基本概念和基本原理的学习,学生掌握分析和解决本专业中涉及流体力学问题的能力,为后续专业课程学习奠定基础,然而当前的教学效果并不理想。自然界和人类生活中,以及工农业生产的各行各业中均广泛存在流体流动现象,但是由于缺乏对生活的观察,学生很难做到对课本讲授内容形成直观映像。此外,自然界中的流动现象往往包含多种流动方式,在理论分析与公式推导中涉及许多复杂的数学理论与方法,经验公式多,且不易理解记忆,给学生的学习带来很大困难,导致教师难教、学生难学,实践与应用起来更是难上加难,教学效果不理想,教学目的难以实现。还对后续专业课的学习造成很大影响,进而影响本科教学的整体质量。因此,“工程流体力学”教学改革势在必行。
一、“工程流体力学”教学调查研究
“工程流体力学”课程通常是开设于热能动力工程专业二年级阶段。对扬州大学的学生的问卷调查显示,多数学生对“工程流体力学”课程的评价是“难学”。为何会有这样的评价,通过分析发现,存在几个方面的原因。
1.研究对象比较抽象
“工程流体力学”课程本身研究对象是流体,没有一定的形状和具有流动性,这是流体区别于固体的本质特征。这一特征决定了流体力学研究理论比较抽象、经验公式繁多且推导过程复杂不易理解、易混淆,进而导致了本课程教师难教、学生难学,教学效果不够理想。因此,能否将前面学习过的对“固体”平衡和运动物理规律的分析方法通过比拟的方式移植到“流体”上,并使其形成正向的学习迁移是学生能否很快的掌握本门课程学习方法、学好本课程的一个很重要的方面。[1]
2.教师与学生
“教学”包括“教”与“学”两个方面的内容,忽视任何一个方面都有可能造成教学效果的不理想。理论课教学是工程流体力学课程教学的主要方面,是进行实验指导和应用于工程实践的基础。某些任课教师为了自己的方便省事,教材和教学内容仍然是多年前的老教材,对现阶段流体力学的发展方向和研究成果,以及本学科的最新科技前沿理论及工程应用进展不能做到及时更新,教学内容与实际应用严重脱节。
教学方法单一呆板,无法吸引学生的兴趣。经常看到这样一种现象:教师在讲台上只顾着自己滔滔不绝地讲,忽视了课堂教学的互动性和学生的主观能动性,学生了无兴趣的在座位上睡觉、开小差、玩手机,基本上是教师在向学生单方面地传授知识,这样的教学效果是很低的。[2]
本专业本科生新的培养方案中课程设置有这样一个特点:课程增加,课时压缩,总学分保持不变。“工程流体力学”课程理论课学时从64压缩到48学时,在教学内容总量不变的情况下,每堂课教授的内容,即学生需要接受的信息量就大大增加了,严重增加了学生的负担。“浮躁”是当代很多大学生所普遍具有的心理特征,导致的直接结果是学生自制力差、怕吃苦,上课前不预习、课后不认真复习、作业普遍抄袭。
二、教学改革的目标
围绕当前“工程流体力学”课程教学中存在的问题,以提高课程教学质量、实现教学目标为目的,进行了如下方面的改革:改变教育理念,以课程改革与教学适应新时代的要求为目的;加强教学方法与教学手段的改革,提高“教”的质量;加强课程的应用性,解决基础理论课程的知识教育、应用能力与创新能力的培养,全面提升学生的综合素质;加强课程教学评价与考核体系改革,引入全程教学评价与考核机制。[3]
三、“工程流体力学”教学改革探索
从上面的分析可知,“工程流体力学”课程教学效果不理想存在很多方面的原因,因此,教学改革也要同时从多方面入手才可以起到事半功倍的效果。以下是笔者在扬州大学热能与动力工程专业本科生课程教学中进行的探索与尝试,取得了较好的效果。
1.教学方法的探索与实践
篇4
赵立娟
马亚生
顾 磊
[摘 要] (工程流体力学)是能源与动力工程专业学生的专业基础课,合理的评价体系能充分调动学生的学习积极性,提高学习效果。结合(工程流体力学)课程教学特点及现状,对该课程的多元评价模式进行设计,并在教学中进行探索,结果表明教学效果多元评价方案能调动学生学习兴趣,激发学生的创造力。
[
关键词 ]工程流体力学;多元评价;教学改革
中图分类号:G642.3 文献标识码:A文章编号:1671-0568(2014)35-0051-03
一、 (工程流体力学)教学现状
《工程流体力学》是能源与动力工程专业学生的专业基础课,有着承上启下的作用,对后续专业课程的学习有着重要的影响。科学、全面、合理的评价体系能提高学习评价质量、提高学生学习的积极性。但目前的评价模式存在一定的局限性,没能起到评价的导向作用,需要进一步改进。
1.教学中存在的问题。 《工程流体力学》课程要求学生要具备高等数学、大学物理、理论力学、材料力学工程热力学等基础课程的知识,尤其对高等数学和力学知识要求较高。同时也是泵与风机、汽轮机、锅炉、制冷、空调、换热器、液压传动、水力输送等课程的基础。 《工程流体力学》的授课内容是学生将来从事相关专业技术工作和科学研究工作重要的必备知识。流体力学是力学的一个分支,研究对象是不具有固定形状的流体,研究理论比较抽象、一些流体现象不能凭直观感觉或经验去解释,且经验公式繁多、推导过程复杂。目前该课程的教学效果不是很理想,教师难“教”、学生难“学”已经成为师生的共识。河海大学(以下简称“我校”)热能与动力工程专业开设了4学分,64学时(含8学时实验)的工程流体力学课程,由于是90人以上的大班,教师无法深入了解学生。学生中存在着平时不学,考前突击,考完全忘的现象。教学没有循序渐进,易造成后续课程学习上的困难。 《工程流体力学》是面向工程技术中的流体力学,学生对大量无规律的经验公式死记硬背是没有意义的,能够综合运用所学知识分析解决问题才是教学的目的和核心。传统的教学与评价方式对学生没有导向性,学习的积极性不高,主观能动性没有得到很好地发挥,对身边的流体力学问题无从下手,很难做到学以致用。
2.评价方式存在的问题。根据课程教学、学生反馈、后续课程等多方面的调查分析,目前《工程流体力学》课程学习评价的局限性表现在以下方面:
(1)评价的主体单一。现有的《工程流体力学》评价模式主体的是教师。所有环节都由教师进行评价,过于强调教师在教学中的主导作用,忽视了学生作为学习主体的地位。学生被动接受评价信息,存在客观性缺失的现象。
(2)评价的内容片面。传统的《工程流体力学》学习评价内容包括平时成绩(书面作业、出勤、实验)和期末考试。期末成绩占70%,平时成绩占30%。考试成绩作为主要内容来评价学生学习成效,其最大缺点是侧重于结果,忽视了过程。不能充分反映学生的学习态度和实际能力。工程流体力学课程学习目的是学以致用,所以既要重视学习过程,也要对学生实践动手能力、创新能力、科研攻关力进行全面培养。
(3)评价的方式单调。 《工程流体力学》课程的评价方式是考试分数。虽然在一定程度上能反映学生对知识的掌握程度,却不能客观地反映学生积极的学习态度、学习效果及学以致用的能力。考核的仅是学生对知识“复制”的能力,即评价的是学生的记忆和保持水平,没发挥出学生的主观能动性。在近几年的教学中有出现不少高分低能学生,他们在课程考试中可能会取得较好的成绩,但对于课本之外知识的获取能力较差。部分学习成绩好的学生还表现出死钻牛角尖的特征,缺乏从宏观上把握问题的主旨及方向。高能低分的情况屡见不鲜。因此,评价的方式应有侧重,引导学生学习基本理论,重视解决问题能力和创新意识的提升。
二、 (工程流体力学)课程的多元评价模式的分析
学生各自有不同的特征,在学习过程中能表现出多方面的能力,各种能力的水平是有差异的。学生的学习效果应采多元的评价模式来进行,多方面考察学生的学习状况和效果。 四针对《工程流体力学》课程的特点,多元评价模式包括以下几方面:
1.评价主体的多元化。授课教师、学生个人、小组都作为评价主体,在条件允许的情况下后续课程的教师也可以作为评价的主体。教师由“一家之言”变为评价活动的参与者和组织者。学生由被动的被评价者变成评价主体的参与者。学生的能力是多方面的,有各自的优点与不足。学生能参与自己学习效果的评价,能使学生的主动性、自尊心、心理个性得到张扬,发挥学生的自主性、探索性和创造性。将3-5名学生组成小组既可训练学生的组织协调能力也有助于学生整体素质的提高。多元化的评价主体,有利于教师与学生之间的沟通,以及学生之间的相互学习与合作,提高了评价结果的客观性。
2.评价内容的多元化。按照工程流体力学教学内容的可分为概念学习、原理学习以及解决问题等几个阶段。不同阶段评价的内容应有不同的侧重点。概念及原理阶段的学习评价应以引导学生掌握基本理论、能独立思考,培养学生的思维模式为目的,侧重于启迪学生的创造性思维。解决问题阶段是以引导学生科学观察、将流体力学知识与日常生活、水利、水电、能源、环境、化工等相关行业的实际工程有机结合。侧重于学生流体力学知识的运用能力、理论联系实际的创新意识、动手情况、团队合作精神等。
3.评价方法的多元化。依据评价内容不同,可采用量化评价和质量评价两种方法。这两种评价方式的各项评价指标都要有明确的含义。量化评价各项指标要做到规范,易于操作,利于学生按照指标要求不断修正自己的努力方向,以达到良好学习效果。质量评价是需确定学生是否积极、方向是否正确而对某些细节和小的利弊得失采取模糊评价的方法,包括到课率、课堂表现等。
三、 (工程流体力学)课程多元评价设计与实践
1.《工程流体力学》课程的多元评价过程。①根据教学目标,合理设定评价内容的各项具体指标及权重系数,并在开始教学时公布评价的各项具体细则:②教学过程评价主体根据评价指标对各项评价内容进行评价,引导学生在评价过程中学习:③教学活动后统计分析各项评价数据,得出学生学习《工程流体力学》评价结果;④根据需要及时将评价的结果反馈给学生本人、授课教师、辅导员、家长及后续课程的教师。通过以上环节,学生对自己的学习状况有了客观的认识,授课教师可以在评价的结果中了解学生的普遍不足,在今后的教学中有所侧重,后续课程的教师可以根据学生的掌握情况来调整授课安排,能对《工程流体力学》教学效果起到很大帮助。
2.《工程流体力学》课程多元评价体系。 《工程流体力学》的评价内容包括课堂表现、作业、实验操作、实验数据,实验报告、小测验、小组学习、课程大作业和期末考试。 《工程流体力学》课程多元评价体系见图1。
评价内容的不同评价主体也略有不同。例如,由于整个授课的周期较长(通常为16周)会在期中安排小测验,目的是帮助学生巩固以前学过的知识,这部分内容的评价由教师来完成比较恰当,也方便教师根据学生的掌握情况来调整课程的安排。
表1给出了《工程流体力学》评价内容的各项指标与权重。评价主体根据各项指标给出每项评价内容相应的等级或分数,成绩加权平均得到各项评价内容的成绩,最后总成绩是由各项评价内容的分数乘上权重系数计算得出。
工程流体力学多元评价侧重于学习独立分析、解决实际问题的能力的提升,因而对学生在过程中的能力的体现评价内容权重系数较高,如大作业中分工任务的完成情况占到总成绩的10%。质量评价的部分内容是按等级制来计分的,级别包括A+、A、A-、n+、B、B-等。这些等级在录入成绩管理系统时需换算成百分制,对应关系如表2所示。
笔者在教学中用多元评价方式对学生《工程流体力学》的学习效果进行探讨。以课内大作业为例,之前的学生从未做过该项内容,在近两年的教学中尝试要求学生根据所学的工程流体力学的内容,联系实际工程,以小组的形式完成流体力学的理论在实际应用情况调查的大作业。如学习了流体静力学后,学生以小组为去调查研究流体静力学在实际工程中应用,可以是千斤顶中“帕斯卡原理”,电梯的失重与超重,或者过山车为什么不允许高血压患者乘坐等,最终用PPT展示给大家。在PPT制作的过程中,有前期资料的准备,又有中期的编辑,还有后期的展示。学生能根据自己的特长在小组承担一定的任务,在完成的过程中,发现他人的优势和自己的不足,取长补短。同时,每次学生的展示活动都进行现场评价,让学生对自己的表现有直接的了解。此外,还对大作业中创新的内容在评价时给予鼓励和加分。两年的实践表明,学生对流体力学的学习兴趣增加,各项评价内容能积极主动完成,对实际生活通到的一些流体现象有理性的认识。例如,曾有一组学生结合所学的流体绕流知识,实践验证了“打水漂”的技术要点。这些说明合理的评价方式对提高学生的学习效果、激发学生的创造力是有导向作用的。
篇5
论文关键词:工程流体力学;教学研究;改革探索
“工程流体力学”课程在能源动力类工科专业中占有非常重要的地位,主要研究流体(液体和气体)的平衡、运动规律及其实际工程应用的技术科学,是力学的一个重要的分支学科。通过本课程流体力学的基本概念和基本原理的学习,学生掌握分析和解决本专业中涉及流体力学问题的能力,为后续专业课程学习奠定基础,然而当前的教学效果并不理想。自然界和人类生活中,以及工农业生产的各行各业中均广泛存在流体流动现象,但是由于缺乏对生活的观察,学生很难做到对课本讲授内容形成直观映像。此外,自然界中的流动现象往往包含多种流动方式,在理论分析与公式推导中涉及许多复杂的数学理论与方法,经验公式多,且不易理解记忆,给学生的学习带来很大困难,导致教师难教、学生难学,实践与应用起来更是难上加难,教学效果不理想,教学目的难以实现。还对后续专业课的学习造成很大影响,进而影响本科教学的整体质量。因此,“工程流体力学”教学改革势在必行。
一、“工程流体力学”教学调查研究
“工程流体力学”课程通常是开设于热能动力工程专业二年级阶段。对扬州大学的学生的问卷调查显示,多数学生对“工程流体力学”课程的评价是“难学”。为何会有这样的评价,通过分析发现,存在几个方面的原因。
1.研究对象比较抽象
“工程流体力学”课程本身研究对象是流体,没有一定的形状和具有流动性,这是流体区别于固体的本质特征。这一特征决定了流体力学研究理论比较抽象、经验公式繁多且推导过程复杂不易理解、易混淆,进而导致了本课程教师难教、学生难学,教学效果不够理想。因此,能否将前面学习过的对“固体”平衡和运动物理规律的分析方法通过比拟的方式移植到“流体”上,并使其形成正向的学习迁移是学生能否很快的掌握本门课程学习方法、学好本课程的一个很重要的方面。
2.教师与学生
“教学”包括“教”与“学”两个方面的内容,忽视任何一个方面都有可能造成教学效果的不理想。理论课教学是工程流体力学课程教学的主要方面,是进行实验指导和应用于工程实践的基础。某些任课教师为了自己的方便省事,教材和教学内容仍然是多年前的老教材,对现阶段流体力学的发展方向和研究成果,以及本学科的最新科技前沿理论及工程应用进展不能做到及时更新,教学内容与实际应用严重脱节。
教学方法单一呆板,无法吸引学生的兴趣。经常看到这样一种现象:教师在讲台上只顾着自己滔滔不绝地讲,忽视了课堂教学的互动性和学生的主观能动性,学生了无兴趣的在座位上睡觉、开小差、玩手机,基本上是教师在向学生单方面地传授知识,这样的教学效果是很低的。
本专业本科生新的培养方案中课程设置有这样一个特点:课程增加,课时压缩,总学分保持不变。“工程流体力学”课程理论课学时从64压缩到48学时,在教学内容总量不变的情况下,每堂课教授的内容,即学生需要接受的信息量就大大增加了,严重增加了学生的负担。“浮躁”是当代很多大学生所普遍具有的心理特征,导致的直接结果是学生自制力差、怕吃苦,上课前不预习、课后不认真复习、作业普遍抄袭。
二、教学改革的目标
围绕当前“工程流体力学”课程教学中存在的问题,以提高课程教学质量、实现教学目标为目的,进行了如下方面的改革:改变教育理念,以课程改革与教学适应新时代的要求为目的;加强教学方法与教学手段的改革,提高“教”的质量;加强课程的应用性,解决基础理论课程的知识教育、应用能力与创新能力的培养,全面提升学生的综合素质;加强课程教学评价与考核体系改革,引入全程教学评价与考核机制。
三、“工程流体力学”教学改革探索
从上面的分析可知,“工程流体力学”课程教学效果不理想存在很多方面的原因,因此,教学改革也要同时从多方面入手才可以起到事半功倍的效果。以下是笔者在扬州大学热能与动力工程专业本科生课程教学中进行的探索与尝试,取得了较好的效果。
1.教学方法的探索与实践
(1)俗话说“良好的开端是成功的一半”,第一堂课的重要性也就不言而喻了。兴趣是学生学习的直接原动力,能否在开始就激发学生对“工程流体力学”课程的学习兴趣是学好本课程的关键。运用多媒体技术,通过生动的视频和动画向学生展示生活中随处可见的流体力学现象。如,男孩子喜欢足球、乒乓球的比较多,可以用“香蕉球”和“弧圈球”现象的流体力学解释来吸引他们的注意力,还有其他的现象如高尔夫球表面的凹坑设计依据,飞机机翼能够产生巨大升力,跑车外形设计成流线型又是什么道理等等。此外我国正在实施的“南水北调”工程同样涉及很多流体力学相关知识,以上这些事例都是学生所非常熟悉而又在学习之前无法用理论来解释的现象,很容易引起学生的注意力和想要探索的兴趣。
(2)合理使用多媒体。在流体力学的教学过程中,采用多媒体有利于学生对流动现象的感性认识,加深对概念的理解,提高学习兴趣。但是,采用过多或华丽的多媒体也会产生一些负面作用,如多媒体教学替代板书节约了时间,增加了授课容量,但相应的讲课速度也就比较快,学生不易吸收和消化,容易造成学生“跟不上”进度,产生厌学情绪。因此,传统板书与多媒体有机结合的教学方式可以充分利用各自的优点,达到最佳教学效果。当然,不同教学方式之间的比例分配的“度”是需要关注的问题。
2.教学内容的选择
“工程流体力学”课程是机械、能源、化工、动力、建筑、生物、航天等专业的重要的专业基础课,这些专业具有不同的特点,对流体力学知识需求的侧重点也不同。因此,教材的选取要有针对性,即根据本专业特点和要求、学生层次来选择教材。此外,教师要能够跟踪掌握现阶段流体力学最新的发展方向与研究成果,不断更新和补充教学内容,做到课程内容的与时俱进。
3.重视实验教学
实验教学是“工程流体力学”课程教学必不可少的组成部分,属于实践教学环节。通过实验对理论进行验证,从而加深对课程基本概念和理论的理解和掌握。在基础实验外增加设计性实验、建立开放性实验室,锻炼学生的动手能力,培养学生发现问题、分析问题和综合运用所学知识解决实际问题的能力。
4.课程评价与考核体系
对于“工程流体力学”课程来说,学习要达到的目的是学生运用所学知识对实际工程问题的进行分析和解决的能力,而不是对课本理论知识和大量复杂公式的记忆能力。因此建立合理、公正、客观的课程评价与考核体系非常重要。针对学生普遍存在的平时不努力、考前几天突击考试的现象,摒弃“一考定成绩”的考核方式,采用灵活的、全程考核方式取得了很好的教学效果。具体做法是:提高平时成绩所占最终成绩权重,包括出勤率、课堂互动和讨论、小测试、作业质量等平时学习各方面的表现;期末考试成绩权重减少,采用闭卷方式,但考题中所涉及的公式、图表等会在试卷中集中给出,并增加一些干扰公式进去,既避免了学生花大量时间去记忆毫无规律可言、而又易忘的经验公式,同时也达到了考核学生选取基本理论和公式去分析、解决实际问题的能力,实现了教学目的。
篇6
关键词:汽车;空气动力;计算流体力学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)20-0180-03
流体力学是人们在利用流体的过程中逐渐形成的一门学科,它起源于阿基米德对浮力的研究,由于数理学科和流体工程学科相互推动而得到发展[1]。现如今已经成为航空航天、车辆、机械、环境生物等工程学科的基础之一。通过对流体力学的基础理论的学习,结合汽车工况,发现流体力学在汽车设计中具有重要的应用。
汽车自19世纪末诞生至今,汽车工业以惊人的速度发展。当今21世纪科技突飞猛进,汽车工业已成为与人类生活息息相关的时代骄子。近年来,国家加大交通设施的投资建设,高速公路、高架桥等交通网络四通八达,不仅缩短了城市之间的距离,更极大地改善了人的日常生活。为减少汽车的能耗、汽车的操纵稳定性以及改善汽车的动力性,对汽车设计中的安全性、环保性提出了更高的要求[2]。为此,本文以流体力学基本理论,对汽车行驶时的空气阻力、汽车表面受到的压力、气动升力、气动侧力等不可忽视的关键因素进行理论分析,探讨流体力学在汽车研究方面的应用。
一、基于流体力学的汽车空气阻力分析
汽车直线行驶时受到的空气作用力在行驶方向上的分力称为空气阻力。空气阻力主要分为摩擦阻力和压力阻力,期中压力阻力约占空气阻力的91%,成为汽车阻力的主要作用。空气作为流体,具有粘性,根据牛顿定律,粘性流体在流动过程中层与层之间存在相互作用,空气在车身表面产生的切向力即为摩擦阻力,这是合力在行驶方向的分力;而作用在汽车车身表面上的法向压力的合力称之为压力阻力,可分为形状阻力、干扰阻力、内循环阻力和诱导阻力。其中,形状阻力是压力阻力的主要部分,并与车身形状有直接关系,是影响空气阻力的主要因素;干扰阻力是车身表面凸起物引起的气流干扰而产生的阻力,只占压力阻力的14%;内循环阻力(12%)是空气流经车体内部时构成的阻力;诱导阻力(7%)也叫压差力,是由于流经车顶的气流速度大于流经车底的气流速度,使得车底的空气压力大于车顶,从而空气作用在车身上的垂直方向的压力形成压力差[3,4],如图1所示。
空气阻力是影响燃油消耗的重要因素。最大限度地减小整车空气阻力是降低油耗的有效方法,降低油耗的同时也能减少排放并降低使用成本[5]。有试验表明,空气阻力系数每降低10%,燃油节省7%左右。因此,减小空气阻力主要依赖于空气阻力系数的减小[4]。目前,汽车空气阻力的计算或仿真多以流体仿真为基础,从动力学理论出发,利用相应的物理模型,建立相关流体运动模型。采用的软件有PowerFLOW、FLUENT、CFD等。多年以来,PowerFLOW分析软件是汽车行业中空气动力学的重要工具。利用此软件可以分析整车的总体空气阻力数据外,也可以充分利用流场数据,研究环绕整个车身的空气流体动力学行为,研究阻力的细化、量化等,以此来指导汽车设计并优化[5]。
二、基于流体力学的汽车表面压力分析
汽车行驶时,前方气流首先与车身前部作用,使气流受阻,降低速度,在气流压力作用下,车头前部形成一个正压区,汽车周围的压强分布如图2所示。这部分气流分为两股,一部分通过发动机罩、前挡风玻璃、驾驶室顶向后流去;另一部分,通过车身下部,向车尾流去,如图2 b)中所示。流向上方的这股气流在流经车头上缘时,由于缘角半径相对较小,气流来不及转折,导致局部分离,所以在上缘角附近存在很大的吸力峰。随后,气流又重新附着在发动机罩上。
传统的汽车外形设计、压力分析等以风洞实验研究为主,实验成本极高[4,6],对汽车外形的气动特性研究十分困难。计算流体力学(CFD)是流体力学的一个重要分支,以计算机科学、数值计算方法的发展为基础,是流体力学理论分析、计算科学及数值计算方法共同发展的产物。伴随着CFD方法的不断发展、进步,利用CFD软件分析汽车气动性能成为可能。采用这一软件对空气动力学的计算,能够较为精确地分析汽车三维外流场,准确的研究汽车表面压力,可以帮助工程技术人员直观、深入地分析汽车气动特性;更重要的是相对于实验分析,CFD软件研究可以缩短汽车设计研发周期、降低成本。
三、基于流体力学在气动升力分析中的应用
汽车气动升力的来源与机翼类似,由于汽车是在地面上行驶,地面效应是影响汽车气动升力的重要因素。汽车气动升力包括压差升力和粘性升力,其中压差升力占主要部分。压差升力一方面是由于汽车上下表面曲率不同,形成上下表面压差产生;另一方面是由于地面效应,汽车底部和地面之间形成了一个类似于渐缩喷管的气流通道,使得汽车底部形成负升力。
研究表明,当汽车速度超过70km/h,车身所受的气动力成为影响汽车性能的主要因素之一[7]。汽车在行驶中,气动升力随车速的提高,对汽车的稳定性和经济性有一定的影响。气动升力的存在降低了汽车轮胎对地面的压力,影响了汽车的动力性和制动性能;同时,气动升力的存在降低了轮胎的侧向附着力和侧偏刚度,从而影响了汽车的操纵稳定性[8]。
当汽车高速行驶时,气动力对汽车各性能的影响占主要地位。随着汽车速度的增加,汽车的滚动阻力受气动升力的影响逐渐减小;而汽车的气动阻力则随着车速的增加迅速提高。研究表明,当汽车车速为70km/h左右时,汽车所受的气动阻力和滚动阻力几乎相同。当汽车车速大于150km/h后,所受的气动阻力是滚动阻力的2―3倍。显然,汽车高速行驶时,气动升力的影响则更为显著。所以为了保证安全,对高速行驶时的气动升力提出了更高的要求[9]。
空气作为汽车受力分析中的主要流体,在流过汽车车身的整个过程都受流体质量守恒、动量守恒和能量守恒等流体力学的支配。计算流体力学就是通过这些基本的控制方程来分析汽车周围流场中空气的运动。在理论方面,对气动阻力和气动升力的研究是根据伯努利提出的“路径理论”为基础进行分析[10],这一理论基础便是流体动力学,理论中要充分考虑雷诺数、流态等基本流体动力学要素;在数值计算上,也主要是基于气动力学计算的流体模型进行分析。当今社会,车辆的设计速度和公路允许的行车速度越来越快,所以解决高速行驶时发飘的问题是非常有必要而且是保障驾驶安全的重要举措。
四、流体力学在气动侧力分析中的作用
危险不一定来自背后,危险也会来自侧面。在高速下发生的交通事故,除了气动升力的作用外,还有相当一部分是由于气动侧力的作用。当气流与汽车的纵对称面平行时,是不存在气动侧向力的。但在汽车实际行驶中,气流不会总是与汽车的纵对称面平行,当气流与汽车存在横偏角时,汽车都会产生气动侧向力。也就是说侧向力的来源就是由于受到了侧向气流的作用。在实际h境中侧向来流的来源比较复杂,如自然界阵风、汽车驶过大桥、车辆超车等情况。
气动侧力对汽车性能影响的研究是一个较广泛的领域,而且对汽车主要性能有着不可忽略的影响[11]。汽车受侧向风时,在车身侧板处就会产生强烈的气流。这一气流的存在不但破坏了驾驶室与车身之间正常的小涡流状态,而且还会形成旋涡稠密气流区,增大车身正前方的阻力,使汽车相对原直线行驶方向发生偏移,造成潜在危险[12],因此,气动侧力也是汽车设计中必须分析的一个重要因素之一。
自然界中的侧向风变化非常复杂,侧风的方向、波长的变化等都对流场产生重要影响,所以气动侧力的分析相对更加复杂。采用复杂的风洞实验方法可以对侧风进行研究,但利用风洞实验再现汽车遇到侧风的复杂工况是非常困难的。而采用计算流体动力学(CFD)方法研究瞬态侧风是非常有效的,且能够提供更多的瞬态变化信息,可对实际行驶过程中的汽车气动性能进行更深入的研究[13]。
五、结语
流体力学相关理论及对应的软件在汽车研究设计中的应用受到越来越多的关注,不但可以节约成本、优化设计效果,相关软件的使用也使设计更科学、安全、环保和人性化。现代汽车设计中,车辆的设计速度和公路允许的行车速度越来越快,空气阻力是影响车辆动力性、燃油经济性等汽车性能的重要影响因素,汽车的安全性能是当今人们高质量生活水平能得以保证的前提。充分利用流体力学在汽车空气阻力、压力、气动力等方面的应用来提高车辆各方面的性能。流体力学与汽车设计相关知识的交叉,将对汽车实车造型与分析评价产生重大影响,逐渐成为汽车产品开发、设计的主要理论知识。
参考文献:
[1]解小琴.流体力学在汽车车身设计中的应用[J].四川职业技术学院学报,2015,25(6):1672-2094.
[2]简洁,张铁山,严萍华,邵成峰.空气动力学对汽车性能的影响[J].拖拉机与农用运输车,2012,39(5):37-41.
[3]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.
[4]张楠.计算流体力学软件在汽车气动问题研究中的应用[J].重庆电子工程职业学院学报,2011,20(2):125-127.
[5]章林凤.汽车空气阻力和散热性能的仿真及优化[J].汽车科技,2013,(1):31-36.
[6]王俊,龚旭,李义林,叶坚.CFD技术在汽车车身设计中的应用[J].汽车技术,2013,(4):14-17.
[7]谷正气,郭建成,张清林,金益峰.某跑车尾翼外形变化对气动升力影响的仿真分析[J].北京理工大学学报,2012,32(3):248-252.
[8]张勇,谷正气,刘水长.车身姿势对风洞试验气动升力测量影响研究[J].汽车工程,2015,37(3):295-299.
[9]刘加利,张继业,张卫华.真空管道高速列车气动阻力及系统参数设计[J].真空科学与技术学报,2014,34(1):10-15.
[10]刘强,白鹏,李锋.不同雷诺数下翼型气动特性及层流分离现象演化[J].航空学报,2016,(35):1-11.
[11]于梦阁,张继业,张卫华.横风下高速列车流线型头型多目标气动优化设计[J].机械工程学报,2014,50(24):122-129.
篇7
根据流体力学课程的性质、特点,结合自身的工程实践经历和教学体会,文章从优化教材内容、提炼讲授方法、发挥传统教学模式优势、挖掘多媒体教学潜力、培养学生科研能力等方面,探讨了流体力学课程教学改革的具体措施和成效,提出了有益于学生理解流体力学重点内容的教学方法。此研究对改善流体力学课程的教学效果、探索大专业背景下的专业基础课教学模式有一定的参考意义。
关键词:流体力学; 教学改革; 实践教学; 创新能力
中图分类号:G420 文献标志码:A 文章编号:
10052909(2013)04004103
流体力学是关于流体机械运动规律及其应用的一门学科,是力学的一个分支。中国各高校的土木工程、流体机械、农林、石油化工等专业均开设了流体力学课程,它属于专业基础课。
该门课所涉及的基本原理和基础理论对专业课的学习、课程设计、毕业设计以至解决工程实际问题等起着非常重要的理论支撑作用和指导意义。尤其对于工科学生,他们毕业后大部分在生产一线从事技术管理工作,必须具备一定的专业基础、技术应用和现场协调能力。这就要求流体力学课程教学将理论知识与实践能力培养相结合,将课堂教学与实践教学相结合,不断改进教学方法,积极探索适应工科学生专业设置和就业主导方向的课程教学新模式。兰州交通大学在土木工程、环境工程、市政工程、建筑环境与设备工程、热能动力工程等专业均开设了流体力学课,在长期的教学实践中积累了一些该课程的教学体会。
一、优化教材内容,课堂讲解力求深入浅出
流体力学课程体系的主要内容包括基本理论和实验两大部分。由于流体力学学科的快速发展以及社会对各专业学生知识结构要求的不断变化,有些在用教材已不能满足教学要求。因此,教师在备课时要尽可能多地参阅质量高、实用性强的教材,力求对同一个问题进行多角度分析。教学中应将不同教材版本的不同提法告诉学生,让学生课后独立思考并提出自己的见解。在制定教学计划时,应该从课程内容的系统性和完整性出发,将教材原有章节顺序重新调整,便于学生对相关知识的理解。比如,在讲解流体运动学基础、动
力学基础时,先从粘性流体三维不可压缩流动的运动微分
方程(即N-S方程)入手,对实际流体的流动特征进行描述,学生就可获得流体动力学的基本轮廓,进而了解只要该方程中粘性力项为零就可得到理想流体运动微分方程。在此基础上,再令加速度项为零(即流体处于静止状态或相对平衡状态),就可得到流体平衡微分方程(即欧拉方程)。通过这一调整,省去了许多推导过程,而且也能让学生对流体质点运动的力学机制有更明晰的认识。
在课堂讲解上,教师要力求做到深入浅出。流体力学中的一些公式或方程的推导过程很繁杂,教师过多地罗列推导内容会导致学生的厌学情绪,甚至有些听不懂的干脆就放弃学习。比如,在讲解流体微团运动分析时,可以将多数学生儿时玩的“泥球沿坡面下滚”游戏作为例子来讲解,因为大部分学生有过这样的亲身体验,他们很容易理解泥球在滚动的同时将伴随变形和旋转,这样后面的推导就容易被学生接受了。在讲解管嘴出流时,可以学生每天接触的水龙头用水的例子。比如在12∶00-13∶00期间用水,12∶00时流出水龙头的水流速度很大,随着锅筒内水位的逐渐下降,到接近13∶00时用水,在同样的水龙头开度下,水龙头内的水流速度明显要比12∶00时的流速小,学生由此很容易理解有效作用水头与排水量的关系。
二、发挥传统教学模式的优势
传统教学模式即教师以讲解、板书的形式将知识传授给学生的一种教学方法。该方法在不同层次的教学活动中发挥了积极的作用。教师生动、形象的描述以及肢体语言能使学生有身临其境之感,这种教学模式有利于教师主导作用的发挥,教师可以根据课堂上学生的反应来适时调整讲解速度和思路,并以板书的形式突出重点和难点。流体力课程中有相当一部分内容是力学知识和数学知识的综合,只有通过严密推导或作图才能比较透彻地讲清其基本原理。比如连续性方程、能量方程、动量方程、(N-S)方程等是流体力学中的经典理论,也是难点所在。只有通过板书推导,学生才能理解其物理事实,明确其解决工程问题的一般思路和步骤。流体微团运动分析一节是运动学中的核心内容,许多学生很难理解流体微团能同时具有“平动、变形(线变形和角变形)、旋转”三种运动趋势。这就要求教师从介绍速度分解定理入手,通过理论推导和对流体微团运动变形的图示两种方法来讲解。水击现象中伴随管道中压力和流速交替变化从而引起压力波的“顺向”及“逆向”传播过程,如果不通过在黑板上逐步图示的方法,学生很难明白水击发生的物理实质。另外,传统教学方法也能展示教师的板书和绘图功底。如果教师的书法很漂亮,徒手绘图效果好,能增加学生对教师的敬重感,从而激发他们对流体力学课程的学习兴趣。
三、深挖多媒体教学潜力
随着科技的飞速发展和国家对教学投资力度的加大,现代化的教学手段在提高课程教学质量上发挥了重要作用。在流体力学课程教学中,通过播放课件、视频、教学片等,能让学生很直观地理解流体流动的具体特征。比如,漩涡的形成、管嘴出流时真空区的形成、两个相邻局部阻碍之间的干扰等现象,这些内容用枯燥的文字描述是很难理解的,但利用多媒体演示,学生从动态的、形象逼真的图像中就很容易理解流体力学现象。紊流是一种高度复杂的三维非稳态、有旋流动。对其流动规律的研究一直是流体力学学科领域的热点和难点。紊流中,存在高流速层的流体质点进入低流速层,并与低流速层质点发生动量交换,以及低流速层流体质点进入高流速层与高流速层质点发生动量交换的过程。过去教师通过板书图示讲解之后,仍有近70%的学生不理解雷诺应力与紊流脉动的因果关系。但是,通过动漫形式显示具有不同初速度的流体质点进入另一流层后对两个流体质点速度在不同方向的影响过程,使这一复杂问题简单化,学生也容易接受。另外,利用教学录像,学生对流体力学现象尤其是大海的潮起潮落、龙卷风运动、桥墩后尾流变化,以及1940年美国塔科马海峡大桥由于风振而坍塌的整个过程印象深刻。多年的经验表明:多媒体在教学中的运用对于激发学生学习流体力学的兴趣、增强求知欲、开阔视野起到了积极的作用。但是,多媒体教学潜力的开发取决于教师的前期投入,也就是说,授课前教师必须投入大量的精力制作多媒体课件,使其包含丰富的教学内容,同时还能调动学生积极的参与意识[1]。只有这样,作为传统教学方法辅助手段的多媒体教学,才能在帮助学生理解难点、掌握重点、提高学习效率上发挥越来越重要的作用。
四、加强科研实训,开阔学生视野
引导学生参与科研活动,在科学研究中增长学生的专业知识,开阔学生的学术视野。教师在完成课堂教学任务之后,就课内某一知识点引导学生查阅相关文献,开展科学研究,培养学生的科研意识,提高其认知水平。学生以书面形式定期反映自己在查阅文献和学习研究中的收获。教师根据学生书面总结的完成情况给予评价。此外,教师也鼓励学生主动参与校内外的科研活动,并定期写出自己的体会交指导教师评定[2-3]。学生参与的科研内容即使与其所学专业的学科领域有一定距离,也将得到支持,因为参与科研活动对学生能起到开阔视野、激发科研热情、训练科研思维的作用[4]。同时还将进一步密切科学研究与专业学习之间的关系,为学生进入更高层次的学习和工作打下坚实的基础[3]。
流体力学是一门系统性和理论性都较强的课程,它既体现了经典力学的基本思想,也反映了数学、物理、机械等多学科在现代工程中的交叉应用。在学分制教学管理体制和大专业背景下的人才培养模式,根据学生的基础和专业培养目标来寻求合适的教学方法,构建有创新特色的流体力学课程教学改革体系,是一个艰难而漫长的过程,还需要在今后的教学工作中作出更多的努力。
参考文献:
[1] 杨小林, 杨开明, 严敬,等.流体力学课程教学改革探析[J].高等教育研究, 2006, 22(2):47-48.
[2] 王烨, 孙三祥, 张济世.《水泵及水泵站》课程设计教学新模式研究[J].高等建筑教育, 2010, 19(3): 117-119.
[3] 王烨, 陈焕新.《水泵及水泵站》课程设计教学改革[J].高等建筑教育, 2011, 20(3): 91-94.
[4] 马宝峰,李岩, 郭辉,等.基于科研问题的力学综合实验教学研究与实践[J].力学与实践, 2012,34(1): 103-105.
Investigation and practice on multiangle teaching method of fluid mechanics
WANG Yea, LI Yaningb
(a. School of Environmental and Municipal Engineering; b. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Gansu 730070, P. R. China)
Abstract:
篇8
关键词:辅助教学软件;流体力学;教学模式
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2016)40-0273-02
一、引言
多媒体技术,尤其是网络技术在现代教育教学中应用越来越广泛,能创建新型的教学模式,改善传统课堂教学的效果。应用计算机技术开发教学软件,帮助学生自主选择学习内容,弥补课堂教学的不足,及时检验所学知识的掌握程度,这种教学方式称为CAI(Computer Assist Instruction),即计算机辅助教学[1]。《流体力学》是很多工科专业的一门专业基础课,如安全工程、环境工程、土木工程等。该课程是一门理论与实践紧密结合的课程,涉及的高等数学和物理学的知识比较多,基本概念比较多,计算公式比较多。学生普遍反映该课程的学习难度比较大,理解和掌握该课程的内容比较困难,学习的积极性和主动性不高[2]。随着教学模式的变化及研究型教学的要求,如何提高学生学习兴趣、培养学生能力、及时检查学习效果,最大程度地调动学生的学习积极性和主动性,是教学面临的主要问题之一。作者在近几年的教学实践中,根据《流体力学》课程的教学要求及特点,设计并开发了《流体力学》辅助教学软件,在教学实践中取得了良好的教学效果。
二、教学软件的结构设计
本课程开发的《流体力学》辅助教学软件包括四个模块:系统管理、课程要点、工程实例、自我测试。
1.系统管理。系统管理模块包括用户管理、试题管理、学习记录等功能。《流体力学》辅助教学软件需要登录,登录界面包括学号和密码两个部分。学生以用户身份进入软件后,可以修改密码、查看学习记录,但不能使用试题管理功能。教师用户用管理员账号登录,可以增加、删除用户,能增删和修改试题,并能浏览学生学习的详细情况和掌握测试结果等。
2.课程要点。课程要点模块主要包括《流体力学》课程各章节的内容,如:基本概念、流体静力学、流体动力学、流动阻力计算、流体出流及管流等,可根据教学的实际情况增加和删除内容。基本概念部分将课程各章的主要概念集中起来,每章均选取比较重要的、需要学生掌握的内容放在软件中,尤其是对重点的计算公式进行解释,让学生能够有重点地进行学习,提高学习的效率。
3.工程实例。该部分收集了与流体力学知识相关的工程实例,尤其是重大工程实例以及近年来的一些热点问题实例,这样能引起学生的积极性和兴趣。工程实例对应各章内容,包括文字描述、图片、视频等,并提出相关流体力学问题。比如:南水北调工程、长江三峡大坝工程、飞机导弹的研制、溃坝事故、台风登陆等,使学生能理论联系实际、拓宽知识面、提高学习兴趣,培养学生分析问题、解决问题的能力。
4.自我测试。自我测试模块根据不同的知识点设计有不同的题型,主要包括填空题、判断题、选择题、简单计算题和应用题。学生可以自主选择不同题目进行测试,及时了解知识掌握程度和学习效果,查看试题答案可以及时发现自己的薄弱环节。教师查看测试成绩可以了解学生掌握相关知识的情况,发现教学中存在的问题,有针对性地进行改进。教师事先建立测试试题库,并能不断完善。学习完成选择的测试题后可以随时查看成绩和正确答案,教师对主观题可以给出详细的评阅,指出出错的关键点。
三、教学软件功能的实现
1.开发工具的选择。《流体力学》辅助教学软件的开发选取B/S的开发模式,学生能方便使用该软件。选用Visual Basic 6.0作为软件开发语言,VB6.0提供了可视化的Windows界面设计功能,具有强大和快速的数据处理能力。本软件的数据库选取Access数据库,能方便和快速管理各类数据。Access的优点在于它有丰富的开发界面及使用环境,有着强大的报表创建功能[3]。
2.各模块功能的实现。《流体力学》辅助教学软件按照各模块的功能,采用友好的界面实现各部分功能。在菜单中点击各按钮可以进行各模块界面,再点击进入各子功能模块;也可以在下拉菜单中选择子菜单直接进入各子功能模块。自我测试模块先选择题型,再进行各种题型的答题操作。答题时可随时返回重新选择试题,查看试题答案时可以通过链接查看相关知识要点,有针对性地复习课程的基础知识,以便牢固掌握易混淆、难理解的知识点。学生利用互联网的优势,可以不受课堂的限制,随时主动、灵活地选择学习内容,及时查缺补漏,充分调动学习的主动性、积极性。图1为应用题测试界面。
四、辅助教学的效果评价
该辅助教学软件在《流体力学》的教学中连续运用了几年,并不断进行了完善。为了评价该辅助教学软件的效果,设计了调查问卷,以便了解该软件的应用效果。调查问卷如表1所示。
经过几年的教学实践,对回收的有效问卷进行了统计分析。从统计结果看,该《流体力学》辅助教学软件有效弥补了课堂教学的不足,教学内容选择恰当,重点突出,充分体现了计算机辅助教学的优点,软件简便、实用。95%以上的学生愿意使用该辅助教学软件,认为能充分利用课余时间,积极、主动地选择自己感兴趣的内容,拓宽了自己的知识面,激发了学习兴趣,对自己的学习有较大帮助,希望不断丰富和完善该教学软件。
五、结语
素质教育的一个显著特点就是要使学生能主动地学习,采取个体化教学方式,理论联系实际。采用计算机辅助教学软件,学生可以量身定制自己的学习计划,不受时间和空间限制自主选择学习内容,实时检验学习效果,提高学习的兴趣和积极性,取得最佳的学习效果。辅助教学软件的应用是传统课堂教学方式的有益补充,对提高学生的综合素质和能力有重要的促进作用。
参考文献:
[1]胡乡峰,沈慧娟.多媒体CAI课件的制作与评价[J].通化师范学院学报,2012,(6):44-47.
篇9
【关键词】矿井通风;基本概念;理论基础;分析
一、矿井通风基础理论概念问题分析
对矿井通风基础理论概念进行分析的过程中,会涉及到以下几方面的理解难点:
第一,理想气体的性质是属于理想流体还是完全气体。在矿井通风、热力学与物理化学等方面所理解的完全气体与理想流体、气体差异。
第二,在特定条件下,能量方程和动量方程的共性问题。微分型运动方程的成为与积分型动量方程为何存在差异[1]。
第三,利用热力学的第一定律和流体力学能量方程来描述流体流动的特性具有哪些共性。
二、完全气体、理想流体与理想气体关系
(一)理想流体和真实流体
理想流体就是无粘性流体,而真实的流体都具有粘性。但是,因为利用数学描述并处理粘性流体的难度较大,所以,针对像空气和水等粘性比较小的流体,在实际的过程中是将其当作理想流体来研究的,这样可以更好地体现出流体主要的运动特性,再根据所需来对粘性影响因素进行考虑。所以,理想流体只是为了方便研究现实问题而将真实流体简化并抽象后存在的[2]。
(二)完全气体和真实气体
完全气体所满足的热力学参数关系为:
(1)
其中,P是气体压力,R是气体常数,d为气体的密度,T则是气体的温度,而e代表的是单位质量气体的比内能,cv是气体比定容热容。
在公式(1)中的前一公式表示的是完全气体状态,而后一公式表示的则是完全气体热量状态,不符合公式(1)热力学参数关系的气体就是真实气体。
(三)完全气体、理想流体与理想气体区别
现阶段,矿井通风的相关技术与研究工作人员在理想气体的界定方面存在较多疑问,满足公式(1)的参数关系就是理想气体,还是符合无粘性流体理想流体是理想气体?
在各个领域中,理想气体的界定都存在差异,所以,很容易导致完全气体、理想流体与理想气体在概念上混淆[3]。在矿井通风与热力学等著作中将理想气体定义为符合公式(1)的完全气体,主要原因就是热力学的研究范围就是以气体的状态变化特性为重点。但是,在大部分的国外矿井通风以及流体力学的著作中是把符合公式(1)的气体定义成完全气体,并将理想气体当作理想流体中的一部分,所以,理想流体的特性就是无粘性气体。主要的原因就是在流体力学的领域中,经常使用理想流体作为总称,并不会将理想气体独立出来介绍。
三、数学描述矿井风流流动规律
流体是物质运动状态中的一种,所以同样遵循物质运动的规律,并且物质运动的规律还可以对流体运动的规律进行描述。
(一)系统与控制体
系统,主要是涵盖确定不变的物质集合,而在流体力学中,主要指的就是确定流体质点所组成的流体团。与此同时,系统的边界会随着流体的运动而运动,通常情况下利用拉格朗日法来对流体团形成的系统流动规律进行分析[4]。然而流体质点的运动比较复杂,所以进行数学分析比较困难。
控制体,就是相对于某一固定不变的坐标系,物体所流过的体积,并且其边界也是始终固定不变的。
(二)欧拉型基本方程
1.微分型运动方程
流体流动过程中的时变加速度与位变加速度的数学公式可以表示成:
(2)
公式(2)是利用牛顿第二定律来描述流体流动规律的。
2.积分型动量方程
积分型动量方程的单位就是动量对于时间的变化率,也就是控制体内的动量对时间变化率是作用于控制体内流体上合外力和单位时间经过控制面流入流体动量的和,具体的方程关系式为:
(3)
3.微分型运动方程和积分型动量方程共性分析
将公式(1)与(2)进行对比,公式(2)主要是对流体运动特性进行描述的微分型,也就是分析描述单位质量的流体,其动量对于时间变化率和单位质量流体内部受力关系。L、T、M分别代表距离、时间与质量量纲,则公式(2)中的右边量纲就是 ,也就是加速度量纲,因此被叫作运动方程。而公式(3)所描述的则是流体运动特性的积分型,可以将公式右边量纲表示为 ,所以被称作动量方程。
四、热力学第一定律和能量方程关系
流体在实际的流动过程中,会产生热能与机械能的转换现象,同时由于流体温度的变化会使流体的密度与阻力等发生变化[5]。因此,流体流动的规律需要使用热力学第一定律或者是流体力学的能量方程来表示与分析,因为它们的理论基础相同,也就是能量守恒定律。在单位时间内传入控制体内的热量、经过控制面流入流体总能量与外界对控制体内的流体所作功的总和与控制体内的流体总能量相对时间变化率是一致的。所以,热力学中的第一定律与能量方程都可以描述涉及热现象流体的宏观流动过程。
结束语:
综上所述,在热力学与流体力学等基础理论的发展过程中,积极地推动了矿井通风动力学的发展与进步,然而,在实际的矿井通风安全工作中,技术工作人员始终很难把矿井通风的动力学与热力学以及流体力学等基础理论相互联系起来,并且在实际的应用过程中,会混淆不同领域基础理论的公式。并且,流体流动基础理论和矿井通风理论的严重脱节也会导致其他基础理论在矿井通风动力学中的实际应用效果。但是,通过文章对各基础理论的分析与矿井通风基本理论的联系,强化了两者间的理论联系。
参考文献:
[1]陈宁,陆愈实.基于GIS的矿井通风预警信息系统研究[J].中国矿业,2012,21(3):111-113.
[2]黄俊歆,王李管,熊书敏等.矿井通风系统三维联通巷道建模算法及其应用[J].中南大学学报(自然科学版),2012,43(8):3173-3179.
[3]杨茹馨,谢贤平,韩孟微等.应用层次分析法确定矿井通风系统评价指标的权值[J].河南科学,2012,30(10):1525-1529.
篇10
关键词 计算流体力学;风机;数值模拟;发展前景
中图分类号TP31 文献标识码A 文章编号 1674-6708(2012)73-0209-01
0引言
随着国民经济的的不断进步和发展,风机的产生在国民经济的生产发展中起到很大的促进作用,风机将随着时代的发展,不断更新技术研究,从而能够更好的适应经济发展的需要,传统的风机设计,人们仅靠试验取得数据和经验公式,试验发现问题,改进设计。但由于试验研究方法受到各种条件的限制,很多模拟参数的测量受到很多不良因素的影响,给测量结果带来很大的困难,很容易降低风机数值的实用性,对风机数值测量的误差加大。而现阶段,由于科学技术的不断发展,利用商业CFD软件对风机的全三维流场进行模拟已越来越普遍,也就是利用计算流体力学对风机进行数值模拟的研究,给数值模拟工作带来了很大的便利,通过对计算结果进行了分析,模拟结果有助于理解风机内部的流动规律。
1 计算流体力学的概念分析
计算流体力学(Computational Fluid Dynamics,简称CFD)起源于20世纪60年代,当时的学科兴起跟计算机的技术发展有很大关系,随着人们对其不断的发展和研究,计算流体力学已经被广泛的应用,各种商品化的CFD通用性软件开始应用这类力学研究,同时更是对很多工业领域的生产发展起到很大的作用,计算流体力学以计算机为基础,利用数值的方法进行对流体力学各类问题的研究和模拟,主要在离散格式、湍流模型与网格生成等方面进行相对的数值试验、计算机模拟和分析研究,利用计算流体力学研发出得CFD技术,不仅极大的克服了传统流体力学中不完善的问题,而且还在应用领域得以全面的扩大,很多核能、化工、建筑等领域都有其力学的涉略。风机在以上领域也有其所用之处,为此,计算流体力学对风机的设计和研究也有很大的作用。
2 风机的数值模拟分析
众所周知,风机的国民经济发展的重要工具,其在对生产过程中发出的大量湿、热、工业粉尘、甚至有害气体和蒸汽都有着有效的防护和净化处理的作用,同时还能回收再利用,有效的对资源进行合理的分配整合,其中风机在纺织业的作用较为突出,络筒机的离心风机提供了吸纱的作用,不仅可以免去资源浪费,还能减少纺纱机的能源消耗,有效的提高纺纱质量,具有更多的促进作用。在工业发展中,风机从节能、降低噪声污染的角度来说,尤其更大的促进作用,因此在风机的设计原理上,更多的要注重高效率,但就目前市面上的风机产品,可谓参差不齐,很多规格和品种配套性极差,为此在工业应用上也受到了很大的影响,需要对已有的风机进行改造,数字模拟其实是以电子计算机为工具,把数学模型蕴藏的定量关系展示出来,利用计算流体力学对风机的复杂流动问题的模拟计算,通过数值离散求解流体运动方程,揭示风机流体机理和流动规律,从而研制出新的风机设计,使整个产品从开发到运用都能够达到更为经济和省时的作用。
3 基于计算流体力学的风机数值模拟的应用
利用计算流体力学来研究风机的数值模拟,这种方法对风机的设计提供更为依据原理,对风机的不断完善起到促进作用,其应用范围很广,例如:通过对地铁专用轴流风机的设计来说,这类风机主要应用在地铁车站和隧道区间内,因其受都流量大、压头高和功率大等特点的制约,试验成为了地铁轴流风机的设计检验的一般途径,但是却在人力物力上有极大的消耗,造成设计成本的浪费。为了克服这一弊端,采用计算流体力学的原理,对地铁轴流风机采用进行数值模拟,主要是对地铁轴流风机在不同转速和安装角度进行模拟,通过得出的最后结果进行指导设计方案,并将模拟结果与厂家的试验数据作了对比,酌情查处风机是否有需要改动之处,从而提高风机的设计效率,具有明显的应用价值和经济效益。
4结论
以上对计算流体力学的风机数值模拟的分析和研究,计算流体力学不仅是对风机的设计有很大的促进作用,更大的提高风机的设计效率,随着科学技术的进步,其作用会越来越大,充分了的利用计算机和数值数学的结合,对流体力学的各类问题进行数值试验、计算机模拟和分析研究,以解决实际问题。从而有助于人们对风机的构造设计进行深入了解和不断完善,依靠合理的计算来优化风机的设计技术,计算流体力学不仅是科学技术革新的依据,更是极大满足了国民经济发展的需要,计算流体力学进行对风机数值模拟的技术研究,更是对设计高效率的风机具有重大意义。
参考文献
[1]黄其柏.离心风机旋转频率噪声的理论与声辐射特性研究[D].西部大开发 科教先行与可持续发展——中国科协年学术年会文集,2009.