数学建模基本步骤范文

时间:2024-01-04 17:46:32

导语:如何才能写好一篇数学建模基本步骤,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模基本步骤

篇1

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

篇2

一、数学建模在高中数学课程中的意义

数学课程的最大特点,是公式、定理和概念较多,虽然练习题非常多,但基本上都是对现实问题的抽象.因而,很多学生对数学不感兴趣.尽管如此,但数学的学习,对于每个学生来说都非常重要.特别是数学建模这一块的教学内容,是学生运用数学知识解决实际问题的一个良好平台,不仅要求学生能够对以前学过的数学知识灵活运用,还要求学生能够对现实问题进行分析,并采取有效的方式解决.所以,数学建模能够培养学生的逻辑思维能力、分析判断能力等,提高学生运用所学知识解决实际问题的能力.

二、苏教版高中数学教材对数学建模的处理

1.框架结构与习题、例题.

在苏教版高中数学教材中,其函数模型部分被安排在函数部分的最后一节中.从这里可以看出,数学模型的建立是比较难的.苏教版主要是通过几个事例,结合人口模型和行星模型,对模型建立过程中的主要问题进行相关的阐述,再做出相关的归纳整理.与此同时,教材也安排了“钢琴与指数曲线”来帮助学生理解数学建模.不过,其例题数量偏少,而且问题的情境设置与学生的日常生活相距深远,不方便学生理解题意.

2.细节方面的处理.

苏教版的高中数学教材对技术的使用阐述的比较详细,强化学生对数学建模的操作过程的记忆,这对学生以后对数学建模的深入理解有较大益处.在例题的讲解方面,苏教版着墨较多,特别是对于如何解题部分,讲解得非常详细.

三、关于高中数学教材对数学建模处理的一些思考

1.循序渐进.

由于数学建模需要学生具备一定的理论联系实际的能力,但是高中学生的理论联系实际能力整体来看不是很强.所以,教材对数学建模的处理,应采用循序渐进的方式.也就是说,尽量让学生从一些较为简单的建模知识开始学习,随着时间的推移,年级的增加,可增加数学建模内容的篇幅.这反而能使学生愿意学习数学,提高他们的抽象思维能力.教材的设置也应根据不同地区的学生知识状况,安排不同层次的学习顺序.

2.取材于生活.

选用学生比较熟悉的材料,作为例题的主要内容,让学生有一种解决实际问题的氛围,提高他们的学习兴趣.对于部分与实际生活联系密切的例题,教材可以通过情境设置、设问等方式,引起学生的注意.在具体的数学建模过程中,教材具体详细地阐述某一个实例.通过这种典型案例演示的方法,使学生掌握基本的数学建模的方法.就数学建模的一般步骤来看,主要分为审题、建模、解模和结论.

3.处理方式多样化.

考虑到高中学生的课业负担重,他们很难在较短的时间内,完成整个建模过程,教材中可以将模型的解答或处理分成多个小步骤.这样,既能缓解学生的课业负担,又能使学生的分析能力得到培养.另外,可以将处理过程中的重点事项和非重点事项区别开来,节省学生处理数学模型的时间.现举例分析.教学目标:使学生掌握基本的函数的定义域和值域的求法,并通过对实际问题的分析,锻炼他们的逻辑思维和数学建模的能力.教学方法:通过创设情境,使学生的注意力由课外转向课内.例题:一辆汽车的行驶速度为60km/h,汽车的行驶路程与行驶时间的关系式为:y=60x+20.(1)本题所涉及的变量有哪几种?这几种变量之间呈现什么样的关系(用平面图表示).(2)以上的关系式,初中学习阶段称之为什么?教师引导:(1)用集合的语言阐述上述两个问题的共同特点?它们涉及哪些集合?引出函数的定义,并提醒学生注意相关问题.例题演练:(1)x→y,y2=x,x,y属于整数.要求学生判断该等式是否为函数……教学评价:(1)集中解答学生的各种问题,提升学生的学习兴趣.(2)吸纳学生提出的各种建议,促进数学建模课程的有效开展.

篇3

数学建模思想在数学教学中原则

大多数高中阶段的学生具备了数学推理能力和逻辑抽象思维能力,故数学建模思想在客观上存在了在学校平时的教学中生根发芽、茁壮成长的优良土壤,如果这时数学教师在数学课堂教学中给学生有意识地传播数学建模思想的种子,数学建模的思想很快就会在学生的头脑里成长起来,从此以后,学生就会多方位、宽视角来学习数学知识,将知识在实践中运用、在实践中把知识升华,让理论和实践相互结合、相互促进。故数学建模思想在数学教学中实施必须遵循一定的原则。

(一)可行性原则

让学生具备一定的数学知识和掌握必要的数学基础是学校数学教育的首要目的,也就是说为学生将来接受高等教育和在工作中自学数学知识作一定的准备工作。数学是一门源于生活并能较好地适用于生活、指导生活的学科,所以教师在平时的课堂教学里将生活中的实际问题与所授数学知识相结合更能有效地提高课堂教学效率。现代社会,网络已经遍及我们生活的方方面面,当然我们的学生也具备了一定的计算机网络水平。学生完全可以借助网络海量的知识储备和强大的引擎搜索能力对某一方面的数学知识进行初步的了解和深入的探究,而数学建模一般都需要一定程度地了解生活中的某些问题,再根据具体实际问题产生的原因及其性质建立相关数学模型来使问题得到解答的过程,学生时代是一个人了解世界、认识世界的刚起步阶段,故在课堂中引入数学建模的思想也是为了学生更好地加深对世界的了解[2]。再者,高中阶段的学生从小学就开始了对数学知识的积累,具备了一定的数学理论,如等比数列、集合、简单的导数和初步的积分等,但总体而言,学生对数学知识的认识还仅仅停留在数学知识只可以用来应对考试上,如果数学教师在课堂上能够及时地引入生活中的一些问题,并运用该数学知识对实际的生活问题进行建模,使实际问题得到完美的解答,这不仅能让学生知晓数学的强大威力更能极大地激发学生学习数学的热情和引起学生学习数学的兴趣。比如教师在讲授等比数列知识时,完全可以引入居民银行储蓄问题,讲解线性规划时引入卡车运输最优方式问题。这样不仅让学生体会到了拥有知识的成就感,还能反过来加强学生对数学知识的深度理解并在深度理解的基础上创造性地运用知识。故在学校的数学教学中引入数学建模的思想和方法是可行的。

(二)必要性原则

学生高中阶段所学的数学知识大多数是比较基础的知识,但正是这种最为基础的知识才给高大的“数学大厦”的建立奠定了坚实牢固的地基,它是学习各种高级数学知识、发展各种科学技术的必要条件,故高中阶段数学知识和相关数学思想的重要性是不言而喻的。但当前的学校数学教育模式仍然存在着忽略数学基本定理及基本数学概念形成的实际过程、基本理论的几何意义,过分强调数学知识体系的严谨性以及数学知识系统的完整性等问题。学生在数学的学习中必然要面对形形的数学定义及概念、各种各样的数学定理和许多复杂抽象的数学公式,因为在数学教学过程中教师忽略了数学知识与实际生活之间的密切关联性,所以特别容易造成学生迷茫和厌学的情绪,最后丧失对数学的学习兴趣。故教师在数学的授课中要十分注意加强数学理论与生活实践的巧妙结合,使学生喜欢学习数学。数学建模恰好就是能巧妙地将数学理论与实际问题联系起来的纽带[3]。数学建模是学生通过对所研究的实际问题进行广泛地收集资料和数据,在经过仔细的研究观察事物的固有规律和内在特征,知晓问题的主要矛盾,在这个基础上运用相关数学理论知识、数学方法和数学思想对该问题合理建立相关的数学模型,再运用计算机等工具求解建立起来的数学模型,把得到的数学结果再拿回到实际问题中验证、分析,根据误差出现的原因对数学模型进行修改和完善使实际问题得到彻底解决的过程。故对实际问题数学建模的过程也是一个充分加强数学理论与数学实践的过程。学生数学建模的过程不仅需要对实际的问题进行分析、提炼、归纳和总结,还必须对该问题所涉及的数学知识进行推理演绎,使之彻底唯理化。这个过程将对学生的实践动手能力和创新能力的培养有极大地提高。故在学校教学中引入数学建模思想是相当必要的。

(三)教师高素质化原则

教师是学校课堂教学的主导者,能否在数学课堂中顺利向学生渗透数学建模的思想,关键在于任课教师的素质。故教师强大的知识结构就自然而然地成了数学建模成功实施的保障。现在学校的一些教师由于传统教育思想的根深蒂固,将数学教学简单粗糙地认为数学知识的唯一功能就是应付数学考试,造成学生数学的含义理解不清、定位不准,只能勉强识记一些数学公式及解题技巧,全然谈不上对数学意义和实际运用的探究。还有一些教师“只见树木,不见森林”,认为数学教学只是简单的数学问题,只要具备了“渊博”的数学知识就一定可以把学生的数学教好,全然不顾数学学科与其他许多学科相融合关联,这类教师也因知识面不很开阔或教学思想不够开阔不能胜任数学建模的重任。故要想数学建模思想之花在校园教学的热土中绽放光彩,就必须对学校现行教学模式进行深化改革以让教师树立新式的教学价值观。只有教师具备了广阔的知识面和眼界、对数学拥有足够深刻的理解、一定的数学建模意识和数学建模能力才能在课堂上顺利引进并成功实施,否则的话,实践数学建模思想就是无源之水、无本之木。故在课堂上实施数学建模思想必须有高素质的数学教师来保驾护航。

在学校教学中应用数学建模思想的一般步骤

我国著名数学家李大潜院士曾这样描述数学建模思想———“数学的学习应该将数学建模的方法和思想融入教学的过程中”[4]。在李大潜院士的影响下,一些学校都一定程度地将数学建模思想和方法引进到平时课堂的数学教学中。那么如何在堂课数学教学中引入数学建模思想呢?其步骤一般如下:

第一,教师要结合课本,把应用题作为数学建模方法的起始点。在这一步骤中,教师要结合课本内容将课本中的知识与生活实际问题相联系,加强对应用题的分析与解答,让学生充分感受数学知识在实际生活中的价值,激发学生对数学的学习动力,享受数学知识运用的乐趣,并加深学生对数学建模的初步认识[5]。在这一步骤中,教师在应用题的选取上要拿捏得当,选择的太简单容易使学生产生一种“数学建模特别简单,不学都会”的错觉,进而态度浮躁;相反,如果选取的太过困难,会对学生学习数学建模的积极性造成重大打击,失去对数学建模学习的兴趣。在应用题的情景中,应选择比较贴近现实生活的例子,比如运用数列知识来计算电影院的座位个数。这一步的首要任务是将数学建模思想顺理成章地引入到数学建模的实际操作中,重点是有意识地训练学生的文字阅读理解水平和培养学生数学语言转化的能力。在这个过程中教师要积极指导学生应该如何确定实际问题的性质与具体数学函数对应性关系以使学生对数学建模思想有一个相对深刻的认识和理解。第二,教师在数学教学课堂上举办一定量的数学建模专题活动。通过对第一步骤的认真执行,学生已经对数学建模思想有了较为深刻的认识并拥有了初步的数学建模能力。这一

步主要是让学生亲自动手对所要研究的实际问题进行摸索探究,在实际问题的练习中学习知识、使用知识。总之,让学生在实践中体味数学、学习数学、运用数学。教师可以针对某一具体问题专门组织一次数学建模活动,将班级的同学分为不同的小组,各个小组各司其职、协同合作,最终完成一个相对完善的数学建模报告。

篇4

关键词:数学模型;数学建模;模型应用

21世纪是知识经济的时代,数学作为一种工具不仅在科技方面,而且在人们日常生活和工作中有着广泛的应用。以计算机信息技术的广泛应用为标志,数学渗入了自然科学和社会科学的各个领域。时至今日,从社会学到经济学,从物理到生物,几乎每一个学科领域都有数学的身影。另一方面,自第二次世界大战以来,针对技术、管理、工业、农业、经济等学科中的实际问题发展起来一批新的应用数学学科。社会对公民的数学应用能力及创新能力等方面的要求不断提高,这些对数学教育提出了更多、更新的要求,促使人们对数学教育的现状和功能进行深入的思考,数学建模进入中学,正是在这种情况下实现的。

一、数学建模的有关概念

1.数学模型

数学模型指对于现实世界的某一特定对象,为了某一特定的目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能够解释特定现象的现实状态,或者能预测对象的未来状况,或者能提供处理对象的最优决策或控制等。数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的。各种数学公式、方程式、定理、理论体系等,都可称为数学模型。如函数是表示物体变化运动的数学模型,几何是表示物体空间结构的数学模型。

2.数学建模

数学建模是建立数学模型并用它解决问题这一过程的简称,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的关系的确定的数学问题,求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。《普通高中数学课程标准》中认为:数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。

3.中学数学建模

(1)按数学意义上的理解

在中学中做的数学建模,主要指基于中学范围内的数学知识所进行的建模活动,同其他数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生的认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。

(2)按课程意义理解

它是在中学实施的一种特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累数学、学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,改变学生的学习过程和学习方式,实现激发学生自主思考,促进学生交流,提高学生学习兴趣,发展学生创新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。

二、数学建模的步骤

数学建模一般有以下6个步骤。

1.建模准备

了解问题的实际背景,明确建模目的,尽量掌握建模对象的各种信息和数据,寻求实际问题的内在规律,用数学语言来描述问题。

2.建模假设

根据实际对象的特征的建模的目的,对实际问题进行必要简化或理想化,并利用精确的语言提出一些恰当的假设,这是建模至关重要的一步。如果对问题的所有因素一概不考虑,无疑是一种有勇气但方法欠佳的行为,所以要充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了是处理简单,应尽量使问题线形化、均匀化。

3.模型建立

根据问题的要求和假设,利用对象的内在规律和适当的数学工具,构建各变量之间的数学关系(数学模型)。这时,我们便会进入一个广阔的应用教学天地,这里在高等数学、概率:“老人”的膝下,有许多可爱的“孩子们”,“他们”是图论、排队论、线性规划、对策论等。一般来说,在建立数学模型时可能用到数学的任何一个分支。同一个实际问题还可以用不用方法建立不同的数学模型。当然数学模型是为了让更多的人明了并能加以应用,所以在达到预期目的的前提下,应该尽可能地采用简单的数学方法建立容易实现的模型。

4.模型求解

利用获取的数据资料,对模型的所有参数做出计算(估计),可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代数学方法,特别是计算机技术。一道实际问题的解决往往需要复杂的计算,许多时候还得将系统运行情况用计算机模拟出来,因此,编程和熟悉数学软件包便很重要。

5.讨论与验证

根据模型的特征和模型求解结果,继续分析讨论。将模型分析结果与实际情况进行比较,以此来验证模型的准确性、合理性和适合性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释,说明模型的使用范围和注意事项。如果模型和实际吻合较差,则应该修改假设,再次重复建模过程,直至获得满意的结果。

6.模型应用

把所得到的数学模型应用到实际问题中去,应用方式因问题的性质及建模的目的而异。由上可见,这是个系统的内容,我们有必要对它的教育价值进行分析。

三、中学开展数学建模教学的意义

1.数学建模教学可以激发学生学习动机和兴趣

我们都说兴趣是最好的老师,现代教育学和心理学的研究表明,当学习的材料与学生已有的知识和经验相联系时,学生对学习才会感兴趣。学生缺乏学习数学的兴趣和动力一直是困扰中学数学教育的一个重要问题。这个问题可以通过将数学建模的思想融入常规教学来解决。有许多学生认为:“数学源于生活,生活依靠数学,我喜欢将课堂上所学的知识用于生活中”;“平时做的题都是理论性较强,实践性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性,我们愿意研究这样的问题”;“数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对学习数学的重要性理解得更为深刻,也使我们更加重视实际应用”。数学建模可以使学生领略到数学的魅力,对数学的学习产生更浓厚的兴趣。数学建模把课堂上的数学知识延伸到实际生活中,呈现给学生一个五彩缤纷的数学世界。数学建模问题如银行存款、手机付费等方面的问题都贴近实际生活,有较强的趣味性,学生容易对其产生兴趣,这种兴趣又能激发学生去更努力地学习数学。

2.中学数学建模有利于培养学生运用数学的意识

目前的中学生已学习了很多数学知识,但大多数学生只会用这些知识来解决课本上的习题,对于实际问题不会把所学知识灵活应用,使实际问题教学化,更谈不上创新。数学建模为数学理论和具体实际应用之间架起来了一座桥梁。事实证明,只有将数学与现实背景紧密联系在一起,才能帮助学生真正获得富有生命力的数学知识,使他们不仅理解这些知识,而且能够应用。数学建模的问题都来源于生活,问题的背景都是学生所熟悉的。例如,银行贷款问题、电视塔的高度与信号覆盖面积问题、商场打折销售与购物方案问题等。数学建模就是将这类实际问题适当简化,找出变量与变量之间的关系,转化成数学模型,然后利用数学知识及计算机等工具处理模型。因此,数学建模的过程正是帮助学生学会用数学的思想、方法、语言来表达、描述和解决实际问题的过程。

3.中学数学建模有利于培养学生勇于探索、积极主动的学习方式

在数学建模中学生是主体,老师充当学生的参谋与仲裁。数学模型的建立是通过学生对知识点和概念的操作,自己去发现、设问、设计、探索、归纳、创新的过程,能激发学生对数学的好奇心与求知欲,锻炼克服困难的意志。社会的发展需要终身教育,而学生在学校只能获得其需要的部分知识和初步能力,更多的必须在其后来的人生历程中依靠自主探索、主动学习而获得,只有不断地充实自我才能适应不断变化的社会需要。

4.中学数学建模有利于培养学生想象力、联想力和创造力

由于数学建模的问题都是开放性的,没有统一答案,没有现成模式,也不可能直接利用公式得出结果。因此,需要学生通过收集有价值的数据、查阅大量的文献资料及利用网络去获取有用的知识,分析问题与数学之间的关系,确定一个数学模型,然后进行解决。数学建模过程是一种创造性过程,它需要一定水平的观察力、想象力以及一些灵感和顿悟,往往要求学生充分发挥联想,要求学生面对错综复杂的实际问题,能快速地抓问题的要点,剔除冗长的信息,把握其本质,使问题趋于明确。学生要经历从生活语言、其他学科语言到数学语言的多层次转化,这些将非常有利于锻炼学生的想象力、联想力和创造力。

5.中学数学建模有利于培养学生自学能力和查阅文献的能力

数学建模的对象常常是一些非数学领域的实际问题,需要的很多知识也是学生原来没有学过的,老师不可能用过多的时间为学生讲授,只能通过学生自学和小组讨论来进一步掌握,这将有助于培养学生的自学能力,同时在参加建模过程中,需要学生在有限的时间内从大量资料中迅速找到和汲取自己所需信息,这可以锻炼和提高学生使用资料的能力,这两种能力都是学生将来从事工作和科研所必备的。

6.中学数学建模有利于培养学生的计算机应用能力及论文写作与表达的能力

许多数学建模需要计算机才能完成,许多数学推理、计算、画图都需要相应的数学软件帮助完成,大量的数据也要靠计算机来处理。很多模型的检验也要利用计算机模拟完成。建模论文的编辑、排版、打印也都离不开计算机。因此,通过数学建模将有助于提高学生使用计算机的能力。中学建模的结果常常需要解题报告或论文的形式写出来,这就要求学生必须能够将自己所做的工作用准确严密的语言表述出来。这也是对学生的写作和表达能力的锻炼。

7.中学数学建模有利于培养学生团结协作的精神

传统教育过于强调人与人之间竞争的一面,我们的考试也需要考生单兵作战,不需要也不允许彼此合作。现在中学生大多是独生子女,凡事往往以自我为中心,很少考虑其他人的感受,因此与人合作的能力较差。较复杂问题的数学建模,由于要花费大量的时间和精力,经常以小组合作的形式开展。在同组成员中,有的数学基础好,有的计算机好,有的擅长写作,大家各取所长。这对培养学生相互合作的团队精神极为有益。

四、我国开展数学建模教学的现状

中国是一个数学教育大国,长期以来形成了一套完整的中学数学教育体系和培养人才的方法。中国学生数学基础扎实、知识系统,有相当强的数学理解能力,在多次国际数学奥林匹克比赛中,成绩斐然。但由于传统的以知识灌输为主的知识教育占主导地位,使教学模式和教育方式过于固定。随着时代的进步和科技的发展,人们越来越觉得数学素质是一个人的基本素质的重要方面之一,而掌握和运用数学建模方法是衡量一个人数学素质高低的一个重要标志。受国际数学教育发展趋势和社会需求的影响,我国中学数学酝酿并进行着一系列的改革,改革的主要目的是要把中学数学与我们周围的现实世界适当联系起来,使学生既能了解数学的用处,达到学以致用的目的,同时也是为了进一步激起广大中学生学习数学的热情,更生动活泼地掌握数学的思想和方法。数学建模进入中学正是我国数学教育改革下的产物。

1.数学建模及相关内容逐步进入中学课堂

受西方国家的影响,20世纪80年代初,数学建模课程引入到我国的一些高校,短短几十年来发展非常迅速,影响很大。1989年,我国高校有4个队首次参加美国大学生数学建模竞赛。在美国大学生数学建模竞赛的影响下,1992年11月底,中国工业与应用数学学会举行了我国首届大学生数学建模联赛。从那以后,数学应用、数学建模方法、数学建模教学的热潮也迅速波及中学,使得我国有关中学数学杂志中,讨论数学应用数学建模方法、数学建模教学的文章明显多了起来。教育部2003年颁布的《普通高中数学课程标准》把数学建模纳入了内容标准中,明确指出:(1)在数学建模中,问题是关键。数学建模的问题应是多样的,应是来自于学生的日常生活、现实世界、其他学科等多方面的问题。同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系。(2)通过数学建模,学生将了解和体会解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。(3)每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。(4)学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息。(5)学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。(6)高中阶段应至少为学生安排一次数学建模活动.还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来。这标志着数学建模正式进入我国高中数学,也是我国中学数学应用与建模发展的一个里程碑。

2.目前数学建模教学存在的问题

(1)数学课程标准没有对数学建模的课时和内容作具体安排,也没有统一的教材和规定,这就让一线教师在具体实施过程中漫无边际,无从下手。(2)专门针对中学数学建模的研究起步比较晚,很多中学教师教学负担较重,在大学期间没有接受过这方面的教育,对数学建模概念、建模意识、建模意义都很模糊。许多建模步骤不仅要求有相应的数学知识,还需要物理、化学、生物学方面的知识,还经常需要计算机进行模拟、计算、检验等。知识面狭窄,指导数学建模的教学就会存在诸多问题。(3)能适合中学生水平的建模问题不多。由于高中数学仍以初等数学为主,微积分、概率统计等高等数学知识深度有限,传统的数学教学不够重视数学的应用,涉及数学知识应用的地方较少,已有的习题和问题不完全适应新课程下的数学教学,所以中学的数学建模教学基本处于初始阶段,这让有心尝试者有巧妇难为无米之炊的感觉。(4)搞数学建模和当年联系实际,搞“三机一泵”,开门办学付出如出一辙,有走回头路之嫌。(5)相应的评价体系并没有建立,由于高考指挥棒的影响,加上高中课时有限,完成教学计划尚不十分从容,还要应付会考、高考,老师和学生不愿花费精力进行建模,即使开展也是讲一些高考中的应用题.

五、如何开展数学建模教学

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何进行高中数学建模教学谈几点体会。

1.要重视各章前问题的教学,使学生明白建立数学模型的实际意义

教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,要求学生学完后尝试解决这一类问题。这是培养创新意识及实践能力的好时机,要注意引导,对所考查的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的求知欲,如不可挫伤学生的积极性,失去“亮点”。

2.通过应用题的教学渗透数学建模的思想与思维过程

学习应用题,使学生多方面全方位地感受数学建模思想,让学生认识更多的数学模型,巩固数学建模思维过程。

解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是根据题意列出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。

3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性与活泼性

在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围才能使围成的面积最大等,用砖块搭成多米诺骨牌等。

总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。

参考文献:

[1]章士藻.数学方法论简明教程.南京大学出版社,2006.

[2]黎海英,祝炳宏.新课程标准下的中学数学方法论.广西教育出版社,2006.

[3]熊惠民.数学思想方法通论.北京:科学出版社,2010.

[4]袁振国.教育新理念.教育科学出版社,2002.

[5]朱水根.中学生数学教学导论.教育科学出版社,2001-06.

篇5

应用数学这门学科的实践性非常强,其能与纯粹理论数学彼此补充。现在几乎所有的社会部门与科学领域都在大量的运用应用数学,此学科在其中所发挥的作用也日益增大。在应用数学的教学中合理的融入数学建模思想这是应用数学教育在今后发展的必然趋势。本文主要分析了目前应用数学的发展状况与未来发展趋势,分析了数学建模思想的作用与意义,同时介绍了数学建模的基本操作流程,以期促进数学建模思想在应用数学的教学中的有效渗透。

【关键词】

应用数学;数学建模思想;理论数学

在应用数学中主要涵盖“应用”以及“数学”两大内容。第一部分内容即为和应用相关的数学问题,是归属在传统数学的范畴;第二部分即为与数学应用相关的问题,也就是借助数学手段,研究以及解决各种问题的过程。现在,数学这门科学和其他科学紧密融合、彼此影响,人们也开始更加关注应用数学处理实际问题的巨大作用。与此同时,数学建模思想不仅能充分显示出数学的重要价值,同时也在其中慢慢得以渗透,逐渐变成现代应用数学的关键组成部分之一。

一、应用数学的发展现状与未来发展趋势

作为一门数学,应用数学更是属于一门科学。很长时间以来,许多人都不知该如何将数学实际与理论充分结合,这主要是因为学生尚未在应用数学中真正的融入数学建模思想。现在,我国数学教育主要还是教授单纯的数学,很少涉及应用数学内容。所以,人们就会觉得数学科目比较枯燥、没有实用价值。为了改变现状,在不改变传统数学教学体系的基础上,在其中合理的融入应用数学有关知识,可以有效的提高学生的学习热情,指导其借助数学知识合理的解决实际问题。

在应用数学创建初期,仅仅具有几个分支,然而随着长时间的发展与沉淀,很多学科间出现了更多的交叉融合,于是应用数学也慢慢发展为具有很多发展方向的学科,其应用领域逐渐扩展,现在已融入到社会经济发展的各个行业以及各个领域,基本上在所有的科学领域都已融入应用数学,而应用数学和很多学科之间的关联日益紧密,发挥的作用的越来越大。其中包括保险与金融等行业,同时也包括生态学与信息学等学科。相信随着科技的进步,应用数学的发展潜力与空间都会越来越大。

二、数学建模思想

(一)数学建模思想的作用与意义

现在数学建模思想已变成教学的一个关键内容。首先,数学建模思想能帮助学生更加了解应用数学,借助具体实例的作用引导学生发现应用数学的应用价值,同时能够自主的尝试解决问题,在此过程中领悟应用数学与建模思想的作用与价值;其次数学建模思想能够对实际问题进行描述。由于数学学科具有概念抽象、结论准确、逻辑严谨等特点,同时其主要是研究数量存在关系以及空间形态等,因此应该严格保证被描述现象的严密性与准确性,数学建模思想能充分满足此要求。其能够将抽象与复杂的问题具体化以及简单化,同时可以形象、生动的展示数学图像以及数学公式,完成理论基础以及实际应用数学的有机结合。

(二)数学建模的基本操作流程

在应用数学中,数学建模具有非常关键的作用。其基本操作流程为:(1)提出问题。借助提出的问题能够准确判定数学建模的目的与类型,此环节对数学建模的成败具有非常重要的意义;{2}分析数据。此环节必须要保证数据的完整性以及准确性,然后科学的处理与转变数据,从而获得其内部隐藏的信息;(3)提出假设。在确定数学建模的根本目的以后再实施此步骤,其属于后续建模的重点,所提出的假设不可太简练,也不可太繁琐,不然就会拉大数学模型距离从而丧失自身意义;(4)构建数学模型。在此环节中,必须要在严谨的数学推理的作用下发现研究对象的本质特征,再借助于规范的数学语言将此进行简练的描述,从而利于求解以及运用模型;(5)求解。此环节即为对初建的数学模型实施求解,从而保证在实际生活中可以对其有效应用。必须要注意的是:建立模型并非是数学建模思想的终极目标;(6)分析模型。此环节的目地即为减少误差,从而提高模型的普遍性以及科学性;(7)检查。在一个数学模型构建完成以后,要严格的检查其完整性与可行性;(8)应用。在确保所建数学模型的科学性与有效性以后,就可以合理的对其展开应用。

三、结语

目前,在实际生活中,应用数学中还尚未充分的渗透数学建模思想,特别是在教学过程中,很多学生都不了解数学建模思想的内涵,觉得其无任何应用价值。由此观之,在数学教学中尚未充分融入数学建模思想,而且一些教师对此也了解甚少,其掌握的相关知识与进行的练习都较少,这样数学教学质量也无法提高。因此,广大数学教育工作者应充分掌握数学建模思想以及应用数学的根本内涵,了解其应用价值与操作流程,从而将数学建模思想充分的融入到应用数学中,提高数学教学质量,并提高学生的学习热情与创新能力,促使学生能够借助数学知识更加有效的解决实际问题。

参考文献:

[1]

篇6

关键词: 高中数学 应用题 解题技巧 学习兴趣 教学策略

1.引言

随着数学知识的实际运用逐渐受到人们的关注,高中应用题在新课标中占据十分重要的地位,更是每年高考中必考的项目,其重要性不容小觑。在高中数学课堂教学中,应用题所占的比例是最大的,贯穿于每个知识点中。由于其选材面光,涉及面比较广,综合指数较多,因此应用题教学是数学课程教学的难点和重点。据可靠数据显示,每年高考中,考生应用题的得分率是最低的,比例仅占卷面分数的15%。本文通过对高中应用题解题技巧进行探究,从克服学生对应用题的心理障碍,提高学生的兴趣着手,提高学生的解题能力。

2.高中数学应用题的教学实践

由于高中生的年龄大都在15~18岁,他们的认知水平和心理素质已经逐渐接近成人。也正因为如此,他们能够逐渐进行合乎逻辑的抽象思维活动,能够独立收集现实材料,进行综合分析,发现事物的本质。因此,在教学过程中要充分结合学生的认知水平和思维特点进行教学,提高应用题的解题能力。

2.1重视基本理论和解题思想教学

为了培养学生的数学应用意识,提高学生的应用题分析和解题能力,在教学中要结合具体的问题,分析解题技巧,教会学生基本的解题思路和方法,增强学生的建模意识,让学生体验建模过程。应用题的基本解题思路是将实际的问题进行抽象化,概括知识点,用数学语言进行转化、表达,回答实际问题。具体可以从以下几个步骤着手进行。

2.1.1审题

由于高中应用题涉及面广,选材复杂,综合性强,涉及知识点多,因此在审题时,学生需要在抽象的环境中理解和分析题目,摒弃无关因素,将实际问题转化为数学问题,充分利用每一个已知条件,理顺它们之间的关系。在审题的时候从粗读到细读,缜密地分析题目给出的因素,以及它们之间的数量关系。

2.1.2建模

通过审题明白题目要求后,进步一教会学生建模,分析题目中各个因素之间的关系,通过已知条件求出位置条件。可以用数学方式进行表达,通过字母表示它们之间的关系,内在联系是什么。将文字语言转化成模型,找出存在联系的已知条件,建立数学模型。

2.1.3计算

通过基础理论计算数式,得出数学结论或者题目正解。

2.1.4检验

将得到的正解或者结论进行验算,根据实际意义进行适当删减,最后还原为实际问题。

例如:某市人口总数为300万人,如果年自然增长率为1.5%,写出该城市人口总数y(人)与年份x(年)的函数关系式。

在解题中可以这样引导学生进行审题,先粗读,找出题目设计的关键词与可用信息。然后细读,找出题目中给出的已知条件,所求的未知条件是什么,它们之间存在什么样的联系。然后建模,将实际问题转化为数学问题,找出它们之间的联系。经过讨论后通过数学基本解题思路进行解题,从特殊的数量,即1年、2年……进行抽象归纳,找出规律,最后得出函数关系式y=300(1+1.5%)x。

2.2培养学生的归类意识

建模是应用题解题环节中的重点和难点,只有正确转换模型,才能够找到正确的解题思路。为了更好地传授建模的过程,增强学生的建模能力。在教学应用题时,要结合学生的认知水平和教学的实际知识点,引导学生将应用问题进行归类,以便更好地掌握熟悉问题的实际圆形,顺利解决在解题过程中建模难的问题。在归类的时候,可以将应用题分为以下几类:a.行程问题;b.概率问题;c.增长率问题;d.排列组合问题;e.合力问题。这样,学生在建模的时候就可以根据不同类型的题目准确建模。分类还有一个优点,就是在分类的时候,学生可以结合认知结构里熟悉的知识点,熟悉的题型,结合以往同类问题的解题思路进行解题,增强学生的学习信心,打破对应用题的心理障碍。通过分析解题技巧,激发学生的学习兴趣,提高应用题的解题能力。

2.3有针对性地进行教学

应用题教材素材选材涉及面广,知识综合性强。因此,在教学时要有针对性,要有所侧重地进行教学,才能够顺利激发学生的学习兴趣,提高学生的解题能力。

2.3.1注重例题

例题是教材中最具代表性的应用范例,要注重对例题的讲解和例题解法的传授,根据不同的题型进行教学。例题是连接理论知识和实际问题之间的桥梁,具有很强的示范性。因此,讲解例题时,要注意分析各个数量之间的关系,然后根据题型建模,将实际问题转化为数学问题,得出结论后再将数学问题转化为实际问题,例题在这个过程中都会有一个规范的解体步骤,具有很强的示范作用。因此,数学任课老师要注重对例题的讲解及分析,通过例题启发学生分析问题、解决问题的能力,培养学生的解题思路,提高学生的解题水平。

2.3.2作业实践

充分利用课本的练习题,让学生学会自己动手,应用课堂所学知识点解决问题。通过布置课堂作业和课后作业的方式,让学生进行实践,独立解决问题,培养学生的审题、建模、解题、转换的能力。题目要具有一定的代表性,建模的目的性要强。教师在批改作业或者讲解的时候,就可以根据学生存在的问题有针对性地进行指导,规范学生的解题过程,增强学生的学习信心。

2.3.3加强课外阅读

课文要求的阅读材料,数学老师可以根据教学进度给学生布置阅读任务,要求学生进行课外阅读,培养学生的阅读能力,扩大知识面,激发学生的学习兴趣。

3.结语

运用数学语言可以准确有效地解答生活中的数学难题。通过培养高中生的数学应用意识,提高高中生的数学应用能力,可以有效激发高中生的学习兴趣,提高学生在考试中的得分率。在高中应用题教学中,要帮助学生形成一种抽象思维,主动向学生展示数学在实际生产生活中的广泛运用,让学生充分认识到数学是与生活息息相关的,只有这样,才能激发学生的学习兴趣,提高高中应用题教学的成效。

参考文献:

[1]朱爱英.高中数学应用题教学策略分析[J].课程教育研究(新教师教学),2013(32).

篇7

一、过好阅读关

在考试里面,失分较多的题目,很多时候不是学生真的不懂做,而是没有认真的读题目,没有弄懂题意,就匆匆下笔。因此,数学应用题的教学跟阅读有着很大的关系,必须过好阅读第一关。许多学生为了尽快完成作业,只是模仿做题,根本没有养成认真阅读教科书的习惯。根据这种情况,我从低年级抓起,强化阅读。首先,课前预习时,划定具体的阅读的内容并提出阅读要求,课堂上进行各种形式的检查,达不到要求的重新阅读;句、段、例、注释,都要读懂,从中获取准确的信息。其次,根据学生的知识水平和教学目标每天在黑板上写一道应用题让学生阅读,在上课时让学生复述,并指出相关的数量关系,培养学生主动获取信息的意识。

(一)掌握阅读的方法

首先,粗读识大意。应用题一般文字比较多,信息量比较大。这就要求学生需要快速地阅读一遍,了解题目的大体内容:题目简述的是哪一类问题,已知条件是什么,问题是什么,涉及到什么基本概念其次,细读抓关键。找出题目中关键词语和关键句子,这是实现综合认知的起点。学生在粗读基础上逐字、逐词、逐句进行细读,弄清其含义和内在的联系。比如,“不少于”、“最少”、“都是”、“增加到”、“增加了”等关键词语在解题中经常起到关键作用,必须抓住、抓准。

(二)提高阅读的能力

首先,让学生高度的认识到阅读在数学学习中的重要作用,尤其是在应用题的学习中更加重要。培养他们主动阅读的习惯,使其积极地阅读教材;其次,精心指导学生阅读,教会他们阅读的方法,循序渐进。例如,可让学生做阅读笔记,进行阅读小结,培养学生的阅读概括能力

二、学会建模

(一)重视课本,打好基础

教材中有许多丰富的实际问题,如体积问题、航行问题、细胞分裂问题等,这些问题都是数学建模的最基本的素材。教师可以根据学生的知识能力水平和教学目标选编一些典型的熟悉的实际问题进行练习,以便加强学生的数学建模意识,培养学生的数学建模兴趣,选取的练习题既要简单新颖,又能让学生能够独立完成,但是在严格,列式、分析、求解、书写等方面都要严格、规范,让他们尝到数学建模的乐趣,打牢基础。

(二)归类整理

应用题文字多,信息多,在阅读理解、信息筛选方面要求很高,同时还得提取已有信息,实现信息迅速转换,把实际问题转换成数学符号、数量关系,达到建立数学模型的目的。在提取已有的信息时,必须注重提取线索的作用。提取的线索与记忆痕越接近,越有效。因此,在教学中必须加强对学生归类整理的指导,并提供基本的建模思路,使学生能快速、准确地进行数学建模。

(三)联系实际,抓好源头

数学应用题基本上来源于生活实际、社会实践和科学实验,学生对一些概念和专业性术语往往艰难理解或者理解不够深。这样,教师可以利用放假或周末时间组织学生参加社会实践,搜集数学建模的素材,探讨建模的方法。比如,到农村了解农民增收的评估,到工厂了解产品的生产,到规划设计部门了解城市规划问题,到银行学习借贷利息的计算等,都可以大大丰富信息学习的内容,提高学生的学习积极性,强化学生们应用意识。

(四)改题编题

在数学教学中,教师可以大胆鼓励学生改编教材中的习题、例题,比如改变已知条件、改变数量关系、改变结论等,、反复琢磨,真正体会编题者的目的。另外,也可让学生在网上搜集素材,编制新题,进行建模练习。对编题有新意的学生要加以表扬,充分调动他们学习编题的积极性。

(五)举办讲座

根据各年级不同的教学进度,每个学期可以举办一到两次应用题学习的专题讲座,归纳教材内容,梳理建模的思路,归类学生存在的问题,以便巩固教学成果,增强学生的数学建模能力。高一年级可以把函数应用题、数列应用题作为重点。高二年级可以把不等式应用题作为重点。高三年级可以把探索性应用题作为重点。

三、过好运算关

(一)思想要高度重视

很多学生只注重列式,认为思路对了就没有问题了,对简单的计算粗心马虎,对复杂的算式缺乏耐心,究其原因是因为思想不够重视,不注意锻炼良好的运算习惯。因此,要加强思想教育,让学生明白计算失误带来的严重后果,平时就注意培养可靠的运算习惯。

篇8

关键词:高中;数学;教学

教育的目的是培养学生生存和生活的能力,高中数学教学应注重培养学生发散性思维和解决实际生活问题的能力,这样的教学才是成功的教学.而高中数学建模教学方式可以实现这一目的。

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法,探寻解决过程

新课改理念非常重视因材施教、以人为本,也就是在教学过程中需要重点突出学生的自主学习过程与探究过程,让学生在问题分析与解决过程中获得能力与方法。数学建模是一种较好的思路与方法,构建建模教学策略,需要明确以下原则:①明确建模步骤,包括问题简化、思路分析、模型假设与构建、问题求解以及模型检验和修正、模型解释与应用等。教师运用建模案例引导学生掌握必要的技巧与手段。②突出普适性方法,如关系分析、类比分析、平衡原理、数据分析以及图形(图表)分析方法等,都是适用范围较广的方法。③加强方法关联,重视多种方法的灵活转换与综合运用。

三、注重案例式教学

注重案例式教学是值得教师学习的提高教学效果最有效的方法.通过分析典型的数学案例理解建模的优势,提高数学建模的教学效率.例如,甲、乙2人相约到某地相遇,该地距离出发点为20km,他们约定一个人跑步,而另外一个人步行,当跑步者到达某个地方后改为步行,接着步行的人换成跑步,再步行,如此反复转换,已知跑步的速度是10km・h-1,步行的速度是5km・h-1,问至少花多少时间2人都可以到达目的地。这种相遇问题在数学教学中应该经常见到,这是一种典型的案例题,通过典型案例的数学建模教学,不仅可以让学生对问题更加印象深刻,而且可以使得学生更容易接受数学建模教学的方式,从而提高数学建模教学的效果。

四、加强数学开放题教学

高中数学教师可以通过加强数学开放题的教学提高数学建模教学效果.因为数学开放题可以锻炼学生开放性思维和创造性思维.开放题可以接近生活中的现实问题,例如,随着科技的发展和能源的消耗过剩,现今市场上出现3种汽车类型,一是传统的以汽油为原料的汽车,二是以蓄电池为动力的车,三是用天然气作为原料的汽车.通过对这3种类型的车使用原料成本进行分析比较,并建立数学模型,分析汽油价格的变化对这3种车所占市场份额的影响.这种开放性的试题,没有具体的答案,只要学生所建的数学模型能够将问题说得通,都算是成功的数学建模。

五、活化教学方式,引导实践探究

数学建模具有实践性、综合性与活动性特点,需要结合实际问题展开建模过程,深化理论分析,激励学生反思对比、自主探究、优化选择:

(1)鼓励自主探究,强化学生建模思路,创新思想,促进学生提升独立自主的能力与构建完善的思维模式。

(2)激励学生创新建模思路与方案,发散思维。

(3)寻求优化选择,引导学生反思与优化建模方案,深度互动交流,优化选择。

通过以上教学策略,可以强化学生数学建模思路与方法,这几个教学策略存在紧密联系.通过精选建模问题构建建模教学策略的载体;通过聚焦建模方法开拓学生思维,鼓励学生思维创新是建模教学的核心;强化建模策略是实施高中数学建模教学策略的灵魂,针对特定的问题选择科学的思路,落实针对性的建模策略;活化教学方式是实施建模教学的保障,能提升教学效率,促进学生探寻解决问题的方法.通过将以上建模教学策略有机结合、综合运用,能够促进高中数学建模教学顺利展开,提升学生数学科学素养,实现三维课程教学目标。

六、结束语

建模教学的实施在促进高中数学教学高效进行、提高学生科学文化水平的同时还能够帮助学生提高实践能力和创造能力,推动素质教育的发展。建模教学的推进是一个漫长的过程,需要社会各界的共同努力。希望本文提出的关于高中数学建模教学的改进策略对于当代高中数学教学有所帮助,推进国家高中数学素质教育进程。

参考文献

[1]陈金邓.高中数学建模对学生发展促进作用的调查研究[D].首都师范大学,2013

篇9

关键词:数学建模;专业需求;有效性

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0123-02

数学是在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。社会和经济发展的一个特点就是定量化和定量思维的不断加强。现在,很多科学(特别是很多自然科学)中的数学化趋势有的已初见端倪,有的也已是呼之欲出[1],尤其在经济管理工作中日益体现出了它的作用。学术界在探讨数学科学的技术基础及其对经济竞争力的作用时指出:在经济竞争中数学是不可少的,数学科学是一种关键性、普遍的、能够实行的技术。数学理论已成为正确理解当前经济文献的必不可少的工具,可以说每一项经济学的研究、决策,都离不开数学的应用[2]。经济管理系的学生,也必须掌握好数学建模这一工具,只有掌握了数学建模这一工具才能更好地解释经济现象。只有有效的掌握数学建模的基本原理,并能在实际现象中灵活运用建模技术,才能真正的与经济管理相融合,这就要求数学建模教师提高数学建模的有效性。

一、数学建模方法在经济管理中的重要作用

从经济学的发展可以看出,每一项经济学的研究,都离不开数学。随着量化经济学的发展,数学模型在被应用到经济学的每个领域,数学模型成为现代经济学的一个基本标志,经济数学模型在经济问题和研究中具有不可替代的作用[3]。国家的宏观经济政策能起到什么样的效果,能否对增进整个社会经济福利、改进国民经济的运行状况起到作用,用经济数学模型都可以做出预测。利用数学建模工具可以对国家的宏观经济政策做出预测,提高经济政策的科学性,为决策者提供决策参考依据,减少错误的宏观经济政策带来的损失,保障持续均衡的经济增长。例如宏观经济政策的基本目标之一是保持物价稳定。在经济学中一般用价格指数来衡量一般价格水平的变化。价格指数又分为消费物价指数(CPI),批发物价指数(PPI)和国民生产总值折算指数(GNPdeflator)三种。如何合理的预测各种价格指数,从而提前做出合适的宏观经济政策成为经济学面临的问题。各种价格指数的预测若不运用数学模型往往难以确定。宏观经济中需要大量的运用数学建模和数学模型,微观经济学也不例外。而且数学模型在经济学中的应用对科学技术和经济的发展都起到了很大的作用。在经济理论的指导下,数学模型能将经济学问题抽象化、模型化,这是现实经济学问题需求解决方案必不可少的环节。在经济学中开展数学模型教学可以起到验证理论、理论联系实际的作用,特别是对错综复杂的经济学问题进行模型分析,能使得学生厘清经济运行的内在规律,真正掌握经济理论。运用数学模型来分析经济学问题必是大势所趋。数学模型给经济学研究工作者开辟了一条新的研究方向,使得经济学的研究从定性研究转到了定量研究,使其更加具有理性,更严谨。随着数学模型和经济学的进一步发展,两门学科必将互为裨益,协同发展。

二、完善教学内容

数学模型,实质上将是实际问题数量化的过程,也是数学与所研究问题相结合的过程。如何利用数学语言来抽象、概括实际问题成为数学建模的关键步骤,一个成功的数学模型必须把现实对象和数学符号紧密联系起来。因此,要使数学建模得以成功运用,不仅需要专业的数学知识,还需要应用者具备敏锐的洞察力和分析归纳能力,以及对实际问题的深入了解和广博的知识面[4]。

1.贴近专业,加强数学建模教学内容的针对性、适应性。在数学建模的大纲中明确的指出:本课程的教学目的是让学生增加一些数学的感性认识,初步掌握一些基本的建模方法、建模原理和数学软件的应用。学生通过这门课的学习,在数学知识的综合运用,将实际问题转化为数学问题的能力方面、创新能力、自学能力方面、发散性思维能力方面都能得到一定培养。经济管理专业的学生在以后的工作学习中要解决的问题主要是经济学问题,使经济学的内容和数学建模的方法、原理相互融合,使数学建模成为实际经济学问题和数学原理之间的桥梁。例如,在数学建模讲解差分方程模型时,可以引入微观经济学中的蛛网模型的例子,利用学生了解的均衡价格概念来阐述差分方程平衡点的概念,将抽象的平衡点的概念与均衡价格这一经济学中接触的概念建立联系。通过这一例子既将抽象的数学概念具象化,又将经济学问题的原理数量化。通过这些具体的经济学中的例子,可以使学生进一步了解数学的广泛应用,又可以揭示经济学现象和问题中的数学原理,提高经济管理专业的学生学习数学知识的兴趣。这是专业实例的引入,使我们的数学建模教学更能针对经济管理专业的学生,为后续专业课程的学习打下坚实的基础。

2.数学建模教学应渗透数学教学的全过程。经济管理专业的学生的数学建模课程,讲授内容受到课时的限制,满足不了教学要求。因此,必须将数学建模教学渗透到经济管理专业学生的各种数学课程中去,如,经济数学、线性代数、概率与数理统计、运筹学等。实践证明,在相关数学课程添加数学建模的教学内容和实践教学环节,不但增加了各种数学课程的趣味性,还丰富了各相关课程的教学内容,达到事半功倍的教学效果。学习知识的目的是为了应用,同样在大学期间学习各种数学课程的目的也是为了将数学应用到以后的工作学习领域中。但大部分数学课程仅满足于数学知识的讲解,缺乏应用背景的介绍,脱离了实际问题的数学就成为了无源之水,无本之木。同样学生也会觉得学习数学是没有用处的。因此要将数学建模教学渗透到经济管理专业学生的各种数学课程中去。如,在经济数学中讲解导数这一基本数学概念时,可引入边际与弹性这两个经济学概念,将导数真正的引入经济学中,既使学生了解导数的应用,又使学生了解了边际与弹性的数学原理。在每门数学课结束之前,讲授一个与该课程相关的规模较大的数学模型,并让学生以论文的形式做作业,实现了课程内容的综合训练,使学生对数学模型和所学数学课程有一个更全面的认识。在内容上,数学模型与经济学知识要有机结合,一方面按照数学上的逻辑结构循序渐进地讲解有关知识,在适当的位置插入数学模型的实例,不破坏数学课程原有的逻辑顺序;另一方面还可以结合相关的经济学知识与方法介绍其中的数学模型,特别是在经济管理领域发展起来的一些具有特色的数学方法,例如马尔科夫过程、索洛经济增长模型等。

三、加强实践教学

数学建模要求学生面对一些理论上或应用中的实际问题。这些问题,可能既没有参考资料,也就没有现成的求解方法,更没有答案,这就要求学生独立思考,亲身体验数学的创造和发现过程。数学模型的建立要从实践当中来,为了验证模型的正确性还要回到实践当中去,实践是检验模型的唯一标准,建模的过程也是实践的过程,因此数学建模的教学不能只限于课堂一角,应充分发挥实践教学的作用,引导学生参加建模实践,让学生在实践中感受建模的魅力,使学生能够深切感受到数学理论的真理性和现实力量,培养自己运用理论分析问题和解决问题的能力,从而更好地贯彻理论联系实际的教学原则,进一步提高数学建模课程的教学质量和教学效果。实践教学的强化,必须依赖于长效完善的实践教学机制,这就要求确立合适的培养目标,围绕培养目标,制定实践教学大纲;加强大纲实施中的组织和管理,将实践落到实处;加强认知实习和实训实习的落实,引导大学生走出校门,到实际问题发生的地方去;要通过形式多样的实践教学活动,提高学生的数学建模素质和观察分析实际问题的能力,深化教育教学的效果。实践教学应当结合各个学生专业的特点,采取多样化的形式[5]。参加数学建模竞赛是加强实践教学的有效途径之一。

经过近几年的教学实践,经济管理专业的学生普遍反映对数学的学习兴趣有所增强,对用数学方法处理实际问题也有了初步体会,提高了数学建模教学的有效性。另外,在近年我校在全国数学建模竞赛中也取得了不错的成绩,其中很多经济管理专业的学生也从中受益。

参考文献:

[1]李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006,(1):9-11.

[2]吴传生,李艳馥.经济数学课程教学资源建设的探索与实践[J].中国大学教学,2007,(4):15-17.

[3]塔娜.经济数学模型的应用及表现[J].内蒙古科技与经济,2010,(23):27-28.

[4]李扬.普通高校文科专业的数学课程之我见[J].中国校外教育,2009,(1):83-85.

[5]任永辉.高职院校思想道德修养与法律基础课实践教学研究[D].长沙:湖南大学,2011.

篇10

关键词: 高职数学教学 数学建模 数学应用

随着教育改革的深入进行和“数学应用意识”的加强,知识经济社会对高职数学提出了新的要求。高职数学教学应以运用数学解决实际问题为目标,以数学建模作为改革的切入点,让学生在建模过程中学会用数学思维去认识和思考自己所生活的环境与社会[1],培养学生的创新思维能力和综合素质。

一、数学模型、数学建模和数学建模发展沿革[2]

数学模型还没有统一准确的定义,一般来说,“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,对于一个现实世界的一个特定对象,为了一个特定目的,根据其特有的内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。涉及实际问题的数学模型,还具有抽象性、准确性、非预制性和演绎性等特性。数学模型按模型的表现特性和所描述的不同的现象和过程,大致有四种:确定性数学模型、随机性数学模型、变突性数学模型和模糊性数学模型。当然,由于现实世界关系的复杂性和多样性,有些数学模型也可能是兼有几类特性的混合型数学模型。

数学建模即为建立数学模型的过程。建模即是对研究对象进行科学的分析、简化、抽象的过程。运用数学建模解决实际问题的一般步骤是:模型准备—模型假设—模型构成—模型求解—模型分析—模型检验—模型应用。

早在上世纪70年代,国外不少发达国家的有识之士已经开始研究开展数学建模活动,各种建模案例相继出现。大约在上世纪70年代末80年代初,英国著名的剑桥大学专门为研究生开设了数学建模,并创建了牛津大学与工业界研究合作的“OSGI”。与此同时,在欧洲、在美国等工业发达国家开始把数学建模的内容正式列入研究生、大学生乃至中学生的教学计划中,并于1983年开始举行两年一次的“数学建模和应用的教学国际会议”进行定期交流。80年代以后,数学建模已成为国际数学教育改革的主旋律,世界各国的课程标准也都要求在各年级或多或少地含有数学建模内容。我国工业与应用数学学会从1992年开始举办了“全国大学生数学模型联赛”,并发展成为现在的“全国大学生数学建模竞赛”。以数学建模竞赛为契机,国内很多大学将数学建模融入数学课程教学中,并将数学建模和数学实验等相关课程设置为基础课、必修课,培养学生的数学综合能力。数学教学必须适应社会实际需要,数学建模进入高职院校的课堂,既符合数学教改需求,又顺应社会发展大潮。对于高职数学教育教学而言,不仅需要让学生掌握数学计算方法和逻辑思维,更需要培养学生用数学工具和数学软件分析和解决实际问题的意识和能力。传统的高职数学课程教学体系无疑偏重于前者,引入数学建模则是加强后者的一种有益尝试。

二、高职数学建模活动设计

1.高职数学建模的活动设计目标

①系统地获得数学建模的基本知识、基本理论和方法。②培养数学应用意识,体现数学的实际应用价值。③提高学生学习数学的兴趣,培养学生学会团结合作,提高分析和解决实际问题的能力。④了解数学建模过程,培养数学创新能力和数学建模综合素质。

2.高职数学建模的活动设计原则

数学建模的教学设计应反映数学教育发展和改革的方向,具体说来它更应强调发展学生的数学应用能力、逻辑推理能力、软件使用能力和自主学习能力。

3.高职数学建模的活动设计内容

①理论知识方面:根据理论结合实际的原则,要求学生重点掌握数学模型的建立和求解方法。基本掌握的内容:初等模型、数学规划模型、微分方程模型、图论与网络模型、概率统计模型等。②实践技能方面:要求学生重点掌握数据处理的基本方法,能够使用Lindo、Lingo求解各种规划问题,使用Matlab求解微积分和微分方程,进行数据拟合,参数估计、假设检验、回归分析等概率问题。

三、我院高职数学建模活动实践

1.将数学建模融入高职数学主干课程

数学教学中引入数学建模,关键是要以生活实际应用来导入案例,从金融、工程、美学、经济等方面创设真实学习情境。近几年来我们一直把数学建模和数学课程有机结合起来,从学习情况来看,已初见成效。通过数学教学中数学建模的应用,学生更加体会到数学知识的重要性,更加重视数学的学习。将数学建模融入高职数学主干课程,在教学中积极推进教学改革,各模块综合复习中加入数学建模和数学上机实验知识,较好地调动了学生的学习积极性。

2.积极开设数学建模相关选修课

在《国家中长期教育改革和发展规划纲要》和《教育信息化十年发展规划》的指引下,为了进一步促进信息化教学,我们摒弃了传统的数学教育方法,教学中多次尝试数学建模和数学试验。自2005年以来,我们一直对大一大二的学生开设了《数学模型》、《数学实验》、《数学建模与数学实验》等选修课,受到学生的热烈欢迎。课程的开设对全面培养大学生数学素质和有关专业所需要的数学知识起到了很大的促进作用。通过多位老师的实践和探索,由谢珊主编,刘志峰主审,吕靖、覃东君和陶盈老师参编的《数学建模与数学实验》校本教材已正式投入使用,这本书得到了师生普遍好评。

3.认真组织数学建模活动

学院数学教研室教师每年认真组织学院的高等数学竞赛和数学建模活动,丰富了学生的课余生活,在数学建模竞赛中也取得了一定的成绩:获得国家二等奖一次,获得省二等奖两次,获得省三等奖两次。实践证明,积极参与数学建模知识学习的学生在毕业之后发展潜力更大,无论是从学生受益面,还是在提高大学生综合素质方面,数学建模教学改革模式都取得了很好的成效[3]。

高职数学中融入数学建模对学生综合素质的培养是一项长期艰巨而有意义的工作。教师要根据学生的实际水平,进行准确的定位,寻找数学建模教学的起始点和切入点,提高学生的应用和建模能力,使他们能够自觉地应用数学的思想和方法去分析观察理解和解决问题,增强迎接未来社会竞争的能力,将数学建模思想融入教学中,使抽象的教学内容具体化、清晰化,使学生主动学习,积极思考,重视数学应用,从而提高了教学质量[4]。学无止境,数学建模融入高职数学教学改革应随着数学实践和教学经验的积累,及时补充新鲜血液。数学建模在我院的推广普及,培养了学生的综合素质和实践能力,对数学教学改革起到了推动作用。

参考文献:

[1]谢珊等.更新高职数学教育理念深化教学改革[J].现代企业教育,2011(11):58.

[2]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003:3-18.

[3]曹秀娟等.数学建模大众化教学改革模式的探索[J].中国校外教育,2010(11):130-131.