继电保护基本要求范文

时间:2024-01-04 17:46:23

导语:如何才能写好一篇继电保护基本要求,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

继电保护基本要求

篇1

Abstract: In order to cut off the fault circuit in a very short period of time and maintain the continued work of non-faulty equipment when power system failure or abnormal operating,protection devices must be used. In order to make protection device can play a better role,timely and correctly complete its main tasks,the distribution system proposed requirements of selectivity,speed and mobility,sensitivity and reliability of relay protection.

关键词:供电系统;继电保护;要求

Key words: power supply system;relay protection;requirement

中图分类号:TM77 文献标识码:A文章编号:1006-4311(2010)33-0094-01

1继电保护的任务及原理

1.1 继电保护的任务当被保护的设备或装置发生故障时,保护装置应迅速动作,有选择地将故障部分断开,以保证非故障部分继续工作;当设备出现不正常运行状态时,保护装置将发出相应信号,以便通知值班人员及时采取必要措施。

继电保护装置的主要作用是防止电力系统事故的发生和扩大,限制事故的蔓延,提高供电的可靠性。所以说,继电保护装置是电力系统的一个重要组成部分,它对保证电力系统的安全运行起着十分重要的作用。

1.2 继电保护的基本原理为了对电力系统发生故障或不正常运行状态时,实现其相应的保护作用,继电保护装置通常由测量部分、逻辑部分和执行部分组成。

测量部分主要由测量元件构成,其作用是反映和转换被保护对象的电气参数,如电流增大、电压降低以及电压与电流之间的相角差等,经过测量元件的转换后与给定值进行比较并送至逻辑部分。

逻辑部分的作用是根据测量部分输出的结果进行逻辑判断,即判断被保护设备的状态,确定保护装置是否动作,以及如何动作(瞬时或延时)等。

执行部分的作用则是根据逻辑部分的判断,最后完成保护装置的使命,即跳闸、发出信号或不动作。

2对继电保护的基本要求

2.1 选择性当电力系统中任何一个环节发生故障时,继电保护要保证使最靠近故障点的断路器首先跳闸,将故障部分切除,使停电范围尽量缩小,以保证其他元件继续正常运行。要使保护装置具备能正确挑选并切除故障部分、以减小故障停电范围的能力即保护动作的选择性要求。满足这种要求的目的,是为了减小故障停电造成的损失,提高系统供配电的可靠性。

2.2 速动性为了减轻短路故障电流对电气设备的破坏程度,继电保护装置在发生短路故障时应尽快动作将故障切除。快速切除故障部分可以防止故障范围扩大,加速系统电压的恢复过程,减少用户在故障时低电压下的工作时间,有利于电动机的自启动,提高电力系统运行的稳定性和可靠性。

为了满足选择性,企业供配电系统的继电保护需要一定时限,允许切除故障的时间一般为20~55s。速动性和选择性往往是矛盾的,一般应首先满足选择性。但应在满足选择性的情况下,尽量缩短切除故障的时间。切除故障所需要的时间等于继电保护装置整定的延时时间及其动作时间与断路器跳闸至灭弧时间的总和,为此,应尽量采用快速继电保护和快速断路器。但在允许有一定延时来切除故障的场合,不一定要选用快速动作的断路器和继电保护装置,以便降低设备投资费用。保护装置在无法兼顾选择性和速动性的情况下,为了快速切除故障以保护某些关键设备,或为尽快恢复系统的正常运行,有时也只好牺牲选择性来保证速动性。

2.3 灵敏性灵敏性是指在所规定的保护范围内发生所有可能发生的故障或不正常工作状态时,保护装置的迅速反应能力。希望的保护范围是指在该保护范围内故障时,不论故障点的位置以及故障的类型如何,保护装置都能敏锐且正确地使继电保护装置的启动元件启动。反应能力是用继电保护装置的灵敏系数(灵敏度)来衡量。如果保护装置对保护区内极轻微的故障都能及时迅速地反应和动作,就说明保护装置的灵敏度高。继电保护装置的灵敏度一般是用被保护电气设备故障时,通过保护装置的故障参数,例如短路电流与保护装置整定的动作参数例如动作电流的比值大小来判断的,这个比值叫灵敏系数,亦称灵敏度,其大小代表灵敏度高低。

对于反映故障时参数量增加而动作的保护装置,其灵敏度的为灵敏度=保护区末端金属性短路时的最小计算值/保护装置动作参数的整定值。

对于反映故障参数量降低而动作的保护装置,其灵敏度的涵义为:灵敏度=保护装置动作参数的整定偷保护区末端金属性短路时的最大计算值。

对不同作用的保护装置和被保护设备,所要求的灵敏度是不同的。要求保护装置不但在最大运行方式下三相金属性短路时能可靠地动作,而且在最小运行方式和经过较大的过渡电阻两相短路时(最不利于启动的情况)也能可靠地动作。最大运行方式是指被保护线路末端短路时,系统等值阻抗最小,而通过保护装置的短路电流为最大的运行方式。

最小运行方式是指电力系统处于短路阻抗为最大,短路电流为最小的状态的一种运行方式。即指被保护线路末端短路时,系统等值阻抗最大,而通过保护装置的短路电流为最小的运行方式。

校验保护装置的灵敏度,应根据对保护装置动作最不利的条件进行计算,即把灵敏度校验点选在保护区末端,只校验在最小运行方式下该点发生两相短路时,保护装置的灵敏度是否满足要求。

2.4 可靠性可靠性是当保护范围内发生故障和不正常运行状态时,保护装置能可靠动作,不应拒动或误动。继电保护装置的拒动和误动都会造成很大损害。为保证保护装置动作的可靠性,应尽量选用质量好、结构简单、工作可靠的继电器组成保护装置;保护装置的接线要力求简单,使用最少的继电器和触点;正确调整保护装置的整定值;注意安装工作的质量,加强对继电保护装置的维护。

保护装置的选择性、速动性、灵敏性、可靠性对一个具体的保护装置,不一定都是同等重要的。在各项要求发生矛盾时,应进行综合分析以选取最佳方案。例如,为了满足保护装置的选择性,往往要降低一些速动性要求;而有时为了保证速动性。

参考文献:

[1]夏蕾,等.浅谈供电系统继电保护的可靠性[J].科协论坛,2010,1.

[2]时敏,胡松.小议10kV供电系统继电保护[J].科技资讯,2009,2.

篇2

关键词:继电保护;原则;原理

中图分类号:TB文献标识码:A文章编号:1672-3198(2012)15-0194-01

电力系统中发生故障时,若不采取有效措施,势必给经济带来重大损失。因此,一旦电力系统中出现故障时,必须尽快地将故障切除,恢复正常运行,减少对用电单位的影响;而当出现不正常运行方式时要及时处理,以免引起设备故障。继电保护的任务就是自动、迅速、有选择性地将系统中的故障切除,或在系统出现不正常运行情况时,发出各种信号。

为了保证对用电单位的连续供电,故障切除后应尽快地使电气设备再次投入运行或由其他电源和设备来代替工作。因此,电力系统中除安装大量保护装置外,还需装设各种自动装置,如自动重合闸、备用电源自动投入以及自动低频减载装置等,它们虽属电力系统自动化的范畴,但与继电保护装置有密切关系。

继电保护是用来保护电力系统和用电设备安全可靠运行的一种装置。人们发现在电力系统中发生短路时,会产生很大的电流,因此,首先出现了反应电流的保护装置。最初的电流保护就是熔断器,而且把它作为重要电气设备的保护。随着电力系统的发展,设备和系统容量都越来越大,系统接线也越来越复杂,因此在许多情况下,单靠熔断器就不能很好地满足快速、灵敏、有选择地断开故障的要求,于是就开始采用继电器作用于断路器跳闸的继电保护装置。

通过以上论述,我们不难发现,对继电保护装置的基本要求是选择性、速动性、灵敏性和可靠性。

1 选择性

系统发生故障时,继电保护装置应有选择地切除故障部分,使非故障部分保持继续运这种性能称为继电保护装置的选择性。继电保护的选择性,可采用下面二种方法获得:

(1)对带阶段特性与反时限特性的保护装置,用上下级断路器之间动作时限和灵敏性相互配合来得到选择性,即由故障点至电源方向逐渐降低其灵敏性与提高时限级差。具体要求是:时限级差应有0.5秒以上,上级断路器保护整定值应比串联的下级断路器保护整定值至少大1.1-1.15倍(即配合系数KPh)。

(2)继电保护装置无选择性动作而以自动重合闸或备用电源自动投入的方法来补救。

2 速动性

短路时快速切除故障,可以缩小故障范围、减小短路电流引起的破坏程度、减小对用电单位的影响、提高电力系统的稳定。因此在可能条件下,继电保护装置应力求快速动作。上述性能称为继电保护装置的速动性。

故障切除时间等于继电保护装置动作时间与断路器跳闸时间之和。目前油断路器的跳闸时间约0.15-0.1秒,空气断路器的跳闸时间约0.05-0.06秒。一般快速保护装置的动作时间约0.08-0.12秒,现在高压电网中快速保护装置的最小动作时间约0.02-0.03秒。所以切除故障的最小时间可达0.07-0.09秒。对不同电压等级和不同结构的网络,切除故障的最小时间有不同要求。—般对220-330千伏的网络为0.04-0.1秒,对110千伏的网络为0.1-0.7秒,对配电网络为0.5-1.0秒。因此,目前生产的继电保护装置,一般都可满足网络对快速切除故障的要求。

但速动性与选择性在一定情况下是有矛盾的,根据选择性相互配合的要求,在某些情况下,不能用速动保护装置。

对于仅动作于信号的保护装置,如过负荷保护,不要求速动性。

3 灵敏性

继电保护装置对被保护设备可能发生的故障和不正常运行状态的反应能力要强,要求能够灵敏地感受和动作。这种性能称为继电保护装置的灵敏性。

继电保护装置的灵敏性以灵敏系数来衡量。对不同作用的保护装置和被保扩设备所要求的灵敏系数是不同的,在《继电保护和自动装置设计技术规程》中都有规定。

4 可靠性

继电保护装置对被保护范围内发生属于它应动作的各种故障和不正常运行状态,应保证不拒绝动作,而在正常运行或即使发生故障但不属于它应动作的情况下,应保证不误动作。这种性能称为继电保护装置的可靠性。保证继电保护装置能有足够的可靠性,应注意如下几点:要求选用的继电器质量好、结构简单、工作可靠;设计接线时,力求简化,使用继电器和继电器触点最少;正确选定继电保护的整定值。由于计算及检验的误差,保护的整定值应是在保护的计算值上乘一个可靠系数kk。一般可靠系数kk取1.2-1.5;高质量的安装、定期检验和维修继电器。

上述对继电保护装置的四个基本要求互相联系,又互相制约。因此,在考虑继电保护方案对应根据具体情况,对四个基本要求统筹兼顾,并辨证地看待和解决这四个基本要求之间的矛盾。最后,继电保护装置在满足四个基本要求下还应尽量简单。

继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。

篇3

【关键词】继电保护装置;电力系统;35kV变电站

随着我国社会经济的稳步发展,电力需求不断增大,越来越多的变电站不断建设起来。35kV变电站作为我国电网的重要组成部分,其安全性和可靠性是电能能否稳定传输的重要保障。电力系统在运行过程中,会因为各种各样的原因发生故障,由电力系统故障引发事故所造成的损失往往是不可估量的,因而,继电保护技术和装置的应用已成为确保电力运行安全和稳定的最迫切的任务。

一、继电保护装置的基本构成

通常来讲,完整的继电保护装置由测量部分、逻辑部分和执行部分三个部分组成。尤其是在微机继电保护装置中,上述三个部分更是不能够截然分离开的。

1.测量部分

测量部分由数据采集、数据处理、保护判据运算等部分组成。测量部分是针对测量得到的被保护对象的相关电气量进行计算,并将计算结果与给定的整定值进行比较,比较结果以“是”、“非”、“大于”、“不大于”等逻辑信号的形式表达,进而做出是否需要执行保护动作的判断。

2.逻辑部分

逻辑部分基于测量部分给定的各输出量的大小、性质及输出的逻辑状态和其出现顺序或组合,使继电保护装置按一定的逻辑关系进行分析和对比,最后确定是否应该发出报警信号或使断路器跳闸的动作信号,并将相关的信号指令传送给执行部分。

继电保护装置中常用的逻辑关系回路包括:“与”、“或”、“非”、“是”、“否”、“延时启动”、“延时返回”等。

3.执行部分

执行部分,即继电保护装置的输出部分,执行部分的任务是根据逻辑部分输出的信号,最终实现该继电保护装置所承担的保护动作。

二、电力系统中继电保护装置的动作过程

对于继电保护装置来说,其动作过程可分为启动、判断和闭锁三个阶段。

第一个阶段启动,当系统处于正常运行的状态下,继电保护装置的启动元件会将各个出口闭锁,只有当电力系统处于某种故障条件下,相应的启动元件才会具备启动条件,准备启动相应的出口。

第二个阶段判断,是指在满足了启动条件的前提下,由继电保护装置内部的逻辑判断部分进行分析和判断,而此时起到决定性作用的评判标准,便是前期输入到装置中的“整定值”。如果反馈没有达到整定值的标准,那么装置不会做出任何反映;如果满足了整定值的要求,则保护装置将进入最后的闭锁阶段。

第三个阶段闭锁就是在反馈满足了保护装置整定值的要求的前提下,在对相应出口发出启动指令之前进行的对电力系统中一些附加条件的自行判断的过程,一旦附加条件也得到满足,跳闸指令将被发出,进而实现保护动作。

三、在35kV变电站中继电保护装置的主要任务

1.监视系统运行状况

35kV变电站是电力系统的重要组成部分,承担了区域供电的任务,所以一旦发生重大故障,将严重威胁该区域的供电稳定和用电安全。而当故障发生时,继电保护装置将快速、准确地向距离故障点最近的上级断路器发出跳闸指令,以求尽可能地控制故障的影响范围,弱化故障对电力系统的影响。因此,在35kV变电站选用继电保护装置时,应该着眼于大局,合理地完成继电保护设计、装置选型和安装调试,使整个电力系统连接成为一个统一的整体,这样才能够确保对35kV变电站及相应电力系统进行合理、有效地跟踪和监视。

2.及时反馈电力系统的非正常状态

应用于35kV变电站中的继电保护装置的另一项主要任务,即及时反馈相应电气设备的非正常运行状态。当相关的电气设备及元器件出现异常状态或满足需检修的条件时,继电保护装置将通过通信系统将信息及时反馈给值守人员,以便做出相应处理。

四、35kV变电站对继电保护装置的基本要求

对于35kV变电站,继电保护装置的主要作用是:当元器件或外线路发生有可能危及电力系统运行的故障时,装置自动发出报警,并在一定条件下发出跳闸指令使相应断路器跳闸,以避免由于故障的进一步扩大化而造成更大的损失甚至事故。现阶段我国35kV变电站所采用的继电保护装置需要满足四项基本要求,即:灵敏性、快速性、可靠性和选择性。

1.灵敏性

灵敏性所指的是继电保护装置对发生在其保护的范围内的任何元器件故障,以及非正常运行状态的反应能力。

应用于35kV变电站中的继电保护装置,要对相关设备的正常运行及故障状态具有明确的感知、判断并做出相应的动作,从而最大限度地控制故障带来的隐患。一般来说,装置的灵敏性是要根据相关的灵敏度系数来设定的,而并非越高越好。

2.快速性

对故障部分迅速地进行切除,不但可以提高电力系统并联运行的稳定性,减少设备在低电压状态下的运转时间,也可以减小故障元器件的损坏程度,进而避免对电力系统更大规模的破坏。因而,当电力系统发生故障时,应力争使继电保护装置能够快速地动作,将故障切除。

故障切除的总时间,等于继电保护装置和断路器的动作时间的总和。通常情况下,继电保护装置的速断保护动作时间约为0.02s到0.04s之间,有些装置可以达到0.01s到0.02s之间;而断路器跳闸动作时间通常为0.06s到0.15s之间,比较灵敏的断路器可能达到0.02s到0.04s之间。

3.可靠性

针对发生在电力系统中的各种各样的故障或非正常模式下运行的状态时,继电保护装置要避免误动、拒动等情况的发生,在快速判断系统运行状态是否正常的同时,做出相应的正确且可靠的动作。

4.选择性

当运行中的电力系统发生故障时,继电保护装置在保证快速和可靠的同时,要有针对性地对故障段的供电进行切除,即选择距离故障点最近的开关设备进行关断处理,从而达到使故障影响范围尽量缩小、保障系统中没有故障的部分仍能够正常工作的目的。

参考文献:

[1]王文灿 35kV变电站继电保护装置的科学应用[J]. 中国高新技术企业 2011(20)

篇4

【关键词】220KV电网;继电保护;变压器;短路计算

1.继电保护的基本原理

继电保护装置应在系统发生故障或不正常运行时,迅速,准确的切除故障元件或发出信号以便及时处理,因此,继电保护装置是电网及电气设备安全可靠运行的保证。继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。电力系统发生故障后,工频电气量变化的主要特征是:

(1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

(2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

(3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20o,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60o~85o,而在保护反方向三相短路时,电流与电压之间的相位角则是180o+(60o~85o)。

(4)测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值。正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。

2.继电保护的基本要求

继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。

2.1 选择性

选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。

2.2 速动性

速动性是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。一般必须快速切除的故障有:

(1)使发电厂或重要用户的母线电压低于有效值(一般为0.7倍额定电压)。

(2)大容量的发电机、变压器和电动机内部故障。

(3)中、低压线路导线截面过小,为避免过热不允许延时切除的故障。

(4)可能危及人身安全、对通信系统或铁路信号造成强烈干扰的故障。

故障切除时间包括保护装置和断路器动作时间,一般快速保护的动作时间为0.04s~0.08s,最快的可达0.01s~0.04s,一般断路器的跳闸时间为0.06s~0.15s,最快的可达0.02s~0.06s。

对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。

2.3 灵敏性

灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。系统最大运行方式:被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大运行方式;系统最小运行方式:在同样短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。

保护装置的灵敏性是用灵敏系数来衡量。

2.4 可靠性

可靠性包括安全性和信赖性,是对继电保护最根本的要求。

安全性:要求继电保护在不需要它动作时可靠不动作,即不发生误动。

信赖性:要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。

继电保护的误动作和拒动作都会给电力系统带来严重危害。即使对于相同的电力元件,随着电网的发展,保护不误动和不拒动对系统的影响也会发生变化。

以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。

3.变压器中性点接地的确定

3.1 变压器中性点接地位置和数目的选择原则

电力系统中性点接地方式有两大类:一类是大接地电流系统;一类是小接地电流系统。

通常,变压器中性点接地位置和数目按如下两个原则考虑:一是使零序电流保护装置在系统的各种运行方式下保护范围基本保持不变,且具有足够的灵敏度和可靠性;二是不使变压器承受危险的过电压,为此,应使变压器中性点接地数目和位置尽可能保持不变。

在中性点直接接地电网发生接地短路时,零序电流的大小和分布与电网中变压器中性点接地数目和位置有很大关系。在系统不失去中性点接地的前提下,安排一部分变压器中性点接地运行,另一部分变压器中性点不接地运行,并使变压器中性点接地数目及位置尽量不变,以保证零序保护动作范围的稳定和具有足够的灵敏性。

(1)在单母线运行的发电厂和高压母线上有电源联络线的变电站变压器中性点应接地。

(2)在具有两台以上的变压器,而且是双母线固定连接方式运行的发电厂和高压母线上有两回以上电源联络线的变电所,每组母线上至少有一台变压器的中性点直接接地,这样当母联开关断开后,每组母线上至少保留有一台变压器的中性点直接接地。

(3)在单电源网络中,终端变电所的变压器中性点一般不应接地。

(4)在多电源的网络中,每个电源处至少应该有一个中性点接地,以防止中性点不接地的电源因某种原因与其它电源切断联系时,形成中性点不接地系统。

(5)变压器低压侧接入电源,当大接地电流电网中发生接地短路而该电源的容量能够维持接地点发生的电弧时,则变压器的中性点应该接地,如果该电源的容量不是足以维持接地电弧时,则中性点不接地。

(6)为便于线路接地保护配合,在低压侧没有电源的枢纽变电所,部分变压器的中性点应直接接地。

(7)接在分支线上的变电所,低压侧虽无电源,但变压器低压侧是并联运行的,为使横差差动保护正确动作,变压器的中性点应接地。

(8)自耦型和有绝缘要求的其它变压器,其中性点必须接地运行。

3.2 变压器中性接地的数目和位置

主变中性点的投入数量和位置直接影响系统的零序阻抗,零序阻抗的变化又改变着零序电流的分布。考虑到零序保护的灵敏性和变压器中性点绝缘,系统过电压,保护整定配合等因素,零序阻抗应基本不变。如你厂接线为双母线,一般应保持一条母线上有一台变压器接地。如为单母线,有两台及以上变压器接在母线上时,就保持一台变压器中性点接地。备用变的220KV侧中性点接地也是算作220KV系统的接地点的,与主变的中性点接地无异。一般情况下,备用变与中性点接地的主变是分别运行于不同母线的。为了接地短路时,变压器不会受到过电压的危害,又能使零序电流的分布基本不变,系统中各变电站的变压器接地情况如表1所示:

表1 变压器中性点接地情况表

变电站名称 A B C D E

变压器台数 1 2 3 4 2

220KV侧中性点接地变压器台数 1 1 2 2 1

4.短路计算

4.1 短路概述

短路是电力系统的严重故障。所谓短路,是指一切不正常的相与相之间或相与地之间发生通路的情况。产生短路的原因有元件损坏、气象条件恶化等。在三相系统中可能发生的短路有:(1)三相短路;(2)两相短路;(3)两相接地短路;(4)单相接地短路。电力系统的运行经验表明,在各种类型的短路中,单相短路占大多数,两相短路较少,三相短路机会最少。从短路计算方法来看,一切不对称短路的计算在采用对称分量法后,都归结为对称短路的计算。

4.2 短路计算的目的

在设计中,短路计算是其中的一个重要环节。计算的目的主要有以下几个方面:

(1)以便选择有足够机械稳定度和热稳定度的电气设备,如断路器等,必须以短路计算作为依据。

(2)为了合理地配置各种继电保护和自动装置并正确整定其参数,必须对电力网中发生的各种短路进行计算和分析。

(3)进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也包含有一部分短路计算的内容。

(4)确定输电线路对通讯的干扰,对已发生的故障进行分析。

实际工作中,根据一定任务进行短路计算时,必须首先确定建设条件。一般包括,短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施等。从短路计算的角度看,系统的运行方式指的是系统中投入运行的发电、变电、输电、用电设备的多少以及它们之间相互连接的情况,建设不对称短路时,还应包括中性点的运行状态。不同的计算目的,对应的计算条件不同。

4.3 短路计算条件

在实际工作中,根据一定的任务进行短路计算时必须首先确定计算条件.所谓计算条件是指短路发生时系统的运行方式,短路的类型和发生地点,以及短路发生后所采取的措施。为使所选电器具有足够的可靠性、经济性和合理性,并在一定时期内适应电力系统发展的需要,作验算用的短路电流应按下列条件确定:

(1)容量和接线:按本工程设计最终容量计算,并考虑电力系统远景发展规划一般为本期工程建成后的5-10年,其接线应采用可能发生最大短路电流的正常接线方式,但不考虑在切换过程中可能短时并列的接线方式。

(2)短路种类:一般按三相短路验算,若其它种类短路较三相短路严重时,则应按最严重的情况验算。

(3)正常工作时,三相系统对称运行。

(4)所有电源的电动势相位角相同。

(5)电力系统中各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化。

(6)短路发生在短路电流为最大值的瞬间。

(7)不考虑短路点的电弧阻抗和变压器的励磁电流。

(8)元件的计算参数均取其额定值,不考虑参数的误差和调整范围。

4.4 短路类型

由电力系统不对称故障分析,短路电流正序分量可以统一写成:

式中表示附加电抗,其值随短路型式的不同而不同,上角标(n)是代表短路类型的符号。上式表明,在简单不对称短路的情况下,短路点电流的正序分量,与在短路点每一相中加入附加电抗而发生三相短路时的电流相等。这个概念称为正序等效定则。短路电流的绝对值与它的正序分量的绝对值成正比,即:

式中,m(n)为比例系数,其值视短路种类而异,各种简单短路时的和m(n)如表2所示:

表2 简单短路时的和m(n)表

短路类型 m(n)

三相短路 0 1

两相短路接地

两相短路

单相短路 3

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。

参考文献

[1]贺家李、宋从矩,电力系统继电保护原理[M].中国电力出版社.2004:74-41.

[2]毛锦庆.《电力系统继电保护实用技术问答》第二版[M],北京:中国电力出版社 1999

[3]谷水清、李凤荣,《电力系统继电保护》[M],中国电力出版社

[4]马长贵.《高点网继电保护原理》[M],北京:水利电力出版社,1987.

篇5

【关键词】发电厂;继电保护;装置性能

1.引言

在电力系统中,继电保护装置作为重要的安全卫士可以在短时间内将故障隔离,从而防止故障的继续蔓延,对电网造成更大的危害。在电厂中使用继电保护装置同样重要。就继电保护技术本来来说,其技术性较强,其关键技术体现在分析故障和处理故障上。本文对此进行了探讨。

2.发电厂继电保护作用及要求分析

将继电保护技术应用于发电厂中,主要原理是检测系统出现的异常信号并给出报警,同时将故障自动切离系统,提前对可能出现的故障进行防范。具体而言,继电保护在发电厂中的作用表现为:进行故障监测,如:在设备发生故障之前,继电保护装置能够进行异常信号的感知,并将故障切离系统,有效防止了元件的损坏;另外,继电保护装置在处理故障时十分迅速,可以避免停电。分析继电保护的基本要求,由于它要完成检测、报警、故障隔离等多种功能[1];因此,满足继电保护装置运行的基本要求是非常有必要的,应该符合其选择性、灵敏性和速度性。

3.继电保护装置工作原理分析

在发电厂中,常常会出现设备线路故障现象,这些故障必然会导致系统电流和电压的改变,如果改变值超出了系统所能够承受的范围,智能控制系统会给出相应的报警信号,技术人员也可以直接向断路器给出断开指令,以此实现故障的隔离,尽可能的减少故障所涉及的范围,这就是继电保护装置的工作原理。就其本质来说,它是对系统中的故障电流、故障电压或者是其他参数的变化进行监测,从而做出判断,给出动作指令。同时,继电保护装置也可以依据实际需要,将动作依据设定为其他参数,如:在变压器油箱中,可以将瓦斯的变化设定为其故障的参考信号。不管是采用什么参数,其基本原理和结构都是类似的;包括:测量装置、逻辑装置以及执行装置[2]。

4.继电保护装置基本性能

分析继电保护装置的基本性能,主要有以下几点:

1)可靠性

继电保护装置的可靠性直接关系到其使用效果;其可靠性主要表现在两个方面,一是故障动作的准确性,另一个是不会产生误动作。可靠性是最基本的要求,对此,需要从多个方面来保证:在配置上要合理,装置的制造质量要过关,技术性能要满足要求等。在电厂中,电力设备通常都有两个独立的回路,在断路器上分别装有不同的继电保护装置,两套设备互补,以实现对线路的保护。

2)选择性

在电厂中,继电保护装置需要进行故障判断,在决策制定时存在一定的选择性,是先断开故障的设备还是先断开故障的线路;此外,装置中的保护元件也具有选择性,需要配合其灵敏系数,以实现对设备和线路的保护。

3)灵敏性

继电保护的灵敏性可以通过灵敏系数体现,它是指能够允许的电流和电阻的变化范围。一旦电流超出灵敏系数范围,装置就会启动隔离功能。通过整定的方式可以实现灵敏系数和选择性的确定。

4)快速反应性

继电保护的快速性要求很容易被理解,当故障出现时,只有快速的将其隔离出去,才能保证其对系统造成的伤害最小。

5.继电保护装置的应用

继电保护装置在发电厂中的具体应用体现在以下几个方面。

5.1 对发电变压器组的保护

继电保护装置在保护发电厂中的发电变压器组时,需要对机组的型号予以充分的考虑;如:在某一大型的发电厂中,机组等设备的造价很高,维护起来十分复杂,停机检修会造成较大的经济损失。对此,在使用继电保护装置时,要求其配置可靠、灵敏并且快速。考虑到该电厂的实际情况,在对发电机和变压器进行保护时,选择了G60以及T60等保护设备;在对厂用变压器以及励磁变压器进行保护时,采用了C30保护设备。采用的这些保护装置具有十分成熟的技术,功能十分全面,在其硬件上包含有能够实现数组控制的相应处理器和芯片。可以采用DSP进行数据处理;因此,保护装置的效率能够得到提高。在实际应用中,可以依据具体情况对保护装置进行灵活选择,其依据是:发电机组的型号、电气控制系统的具体特点等;只有这样才能保证保护与运行控制之间的良好配合。另外,还应该考虑到装置的经济性和维护方面。

5.2 对发电厂电力系统的保护

机电保护装置在进行电厂电力系统保护时,需要充分考虑配合性,即:基于合理减少二次电缆,有效提高对应网络的自动化水平。如:在某发电厂中,将一套电厂用电监控系统配置在两台低压机组上,另外,将系统与上层的DCS相连接,并通过通信网络与继电保护装置相连接;利用监控系统可以实现对电度量的采集,并完成传输,最终实现对保护动作量的遥测以及通信。这种方式最终实现了对电源及保护装置的控制,它不仅提供开关遥控,还可以实现保护定值的查询和修改;自动化控制的可控性提高了,整个发电厂的电力系统更加安全。

5.3 对发电厂直流系统的保护

在发电厂中,直流系统是重要的组成部分,它为保护、开关以及自动装置等提供直流电[3]。因此,保证直流系统的可靠稳定对于整个电厂来说意义重大,它同时也是继电保护装置准确动作的前提条件和有力保障。对于厂用直流系统而言,其配置原则依据的是电气一次系统的分区;考虑到直流系统的远近,可以实现直流系统的冗余配置。如:在某发电厂中,由一套直流供电系统负责机组主厂房发电机组、自动控制装置、输煤系统保护等供电[4]。因此,继电保护装置需发电厂中的直流系统实施保护。

6.结束语

本文分析了电厂中继电保护的作用,对其工作原理进行了阐述,重点对其基本性能和特殊处理以及具体应用进行了探讨。总而言之,发电厂中的继电保护装置应用十分普遍。继电保护装置不仅需要具备共性的功能和性能,还应该依据发电厂的实际情况,在保证可靠性、选择性和灵敏性的前提下,针对具体网络实施保护。另外,为了满足发电厂智能化生产的需要,在选择继电保护装置时,应该配合自动控制系统,实现保护系统的自动化,从而提高保护效果。

参考文献

[1]曹汝鹏.电厂继电保护装置的应用与检修探讨[J].电力技术,2009(22).

[2]张兵海,王献志,李晓文.抽水蓄能机组几种特殊发变组保护整定配置原则探讨[J].水电自动化与大坝监测,2010(1).

篇6

【关键词】发展史;基本概念;任务;作用;应用分析;未来前景

1 继电保护的发展史

电力系统发生短路是不可避免的,伴随着短路,则电流增大。为避免发电机被烧坏,最早采用熔断器串联于供电线路中,当发生短路时,短路电流首先熔断器,断开短路的设备,保护发电机。这种保护方式,由于简单,时至今日仍广泛应用于低压线路和用电设备。由于电力系统的发展,用电设备的功率、发电机的容量增大,电网的接线日益复杂,熔断器已经不能满足选择性和快速性的要求,于1890年后出现了直接装于断路器上反应一次电流的电磁型过电流继电器。19世纪初,继电器才广泛用于电力系统保护,被认为是继电保护技术发展的开端。1901年出现了感应型过电流继电器。1908年提出了比较被保护元件两端电流的电流差动保护原理。1910年方向性电流保护开始应用,并出现了将电流与电压相比较的保护原理,导致了1920年后距离保护装置的出现。20世纪50年代,随着晶体管的发展,出现了晶体管式继电保护装置。60年代,有了用小型计算机实现继电保护的想法。90年代后半期,数字式继电保护被大量运用。

2 电力系统继电保护的基本内容

2.1 基本概念

系统中电气元件发生故障和不正常运行状态虽然无法避免,但是系统发生事故却可以预防。一方面加强电力设备的维护和检修;另一方面在电力系统中每个元件上装设一种有效的继电保护装置,当电气元件发生故障和不正常运行状态时,该装置能迅速作用于断路器,切断故障元件的供电,或向值班人员发出信号以及时进行处理,就可以大大减少发生事故的机率。这就是继电保护的基本概念。

2.2 任务和作用

1)有选择性地将故障元件从电子机械系统中快速.自动地切除,使其损坏程度减至最轻,并保证系统其他无端障部分继承运行。

2)反应系统的不正常工作状态,一般通过发出警报信号,提醒值班人员处理。在无人值班情况下,继电保护装置可视设备承受能力作用于减负荷或延时跳闸。

3)继电保护装置还可以和电力系统其他自动装置配合,在条件允许时,采取预定措施,缩短事故停电的时间,尽快恢复供电。

综上所述,继电保护在电力系统的主要作用是通过预防事故或者缩小事故范围来提高系统运行的可靠性。

2.3 基本要求:

1)可靠性:指保护该动作时动作,不该动作时不动作。确保切除的是故障设备或线路。

2)选择性:指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备、线路的保护或断路器失灵保护切除故障。避免大面积停电。

3)灵敏性:指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。保证有故障就切除。

4)速动性:指保护装置应能尽快地切除短路故障。其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。

2.4 基本原理

继电保护的基本原理是利用被保护线路或者设备故障前后的某些突变的物理量为信息量,当突变量达到一定值时,启动逻辑控制环节,发出相应的跳闸脉冲或信号。

3 电力系统继电保护技术的应用

3.1 电力系统继电保护功能应用的分析

在电力系统继电保护的应用中广泛用到了继电保护装置的电容器保护、主变保护、母联保护以及线路保护等功能。这些功能的应用,能够有效的对电力系统输变电过程中的设备进行保护从而避免了故障的发生,节省了资金。

3.2 网络背景下继电保护技术应用的分析

现代自动化技术的快速发展,在电力系统继电保护技术中广泛使用了网络、计算机科学以及综合自动化等技术。这些现代化自动化技术的结合和运用,使得现代电力系统继电保护装置更加智能化和网络化。首先,单片机技术在电力系统继电保护中的运用,使继电保护达到了微机化,为继电保护装置提供了更为精确和灵活的操作。其次,计算机技术和网络技术在继电保护装置的广泛应用使得继电保护工作更为网络化、信息化。在加快了数据处理的速度的同时有效的达到了远程故障调节在线监控与报警信号等目的。此外,网络技术、计算机技术、通信技术的综合运用。在电力系统继电保护装置和中心监控系统之间建立起紧密的关系,节省了相关工作人员监控调节的步骤,使得工作更加智能化。

篇7

关键词:继电保护、用电安全、维护措施

电力系统是一个非常复杂的由发电、输电、配电以及售电等几个环节构成的有机整体,其中任何一个环节出现问题,都有可能导致终端用户无法正常使用电力。继电保护是确保电网安全运行的一个重要的构成部分,同时也是目前的技术条件下电网运营不可或缺的一个部分。如果继电保护系统自身出现任何的问题,都有可能使其无法有效的发挥相应的保护作用,从而造成电气设备的损坏,甚至引发整个电力系统的崩溃。从这个角度来看,研究电力系统继电保护的运行及其维护问题,对于保障电力系统的安全具有非常重要的现实意义。

1电力系统对继电保护的基本要求与继电保护的可靠性

1.1电力系统对继电保护的基本要求

从目前来看,继电保护只有能够达到如下几个方面的性能才能够满足电力系统的基本要求。首先,继电保护需要具备选择性,即当电力系统发生事故的时候,基点保护装置能够有选择的将事故段切除,使得其他的电网还能够正常的工作,换而言之就是要断开距离事故点最近的开关设备,但是不能够影响其他的部分。其二是要具备快速性,即当事故发生的时候,要及时的相应,从而尽量的反之损失的扩大,减轻事故的影响;其三是灵敏性,即基点保护装置要能够对其保护范围内的任何事故以及不正常运行状态及时的识别并且反映;最后是可靠性,即继电保护系统要能够可靠地运行。

1.2继电保护的稳定性及其相关因素

前文已述及,继电保护系统本身要具有稳定性,才能够使得真正出现问题的时候,系统能够始终工作并且及时的处理相关的问题。同时,我们也只有了解影响到继电保护可靠性的相关因素之后,才能够有针对性的制定相应的相关的运行维护措施。

(1)软件因素对继电保护可靠性的影响

软件错误或者工作的不正常都有可能导致继电保护装置发生误动或者拒动,日前影响危机保护的软件可靠性的因素主要包括了需求的分析定义不够准确、软件的结构设计出现失误、定值输入错误以及编码有误等问题。

(2)硬件因素对于继电保护系统的可靠性影响

继电保护系统中的保护装置、二次回路、通信接口、断路器以及其他的辅助装置如果发生故障,都有可能影响到继电保护系统的可靠性。这些电力网络的重要组件,其可靠性不仅仅关系到继电保护系统自身的可靠性,同时还关系到整个电力系统的可靠性。

(3)人为因素对继电保护系统可靠性的影响

继电保护系统的安装人员完全凭经验或者臆想,而不按照系统的设计要求接线或者在检修的过程中误操作,运行的人员的误操作等问题都有过发生,而且确实对继电保护系统的可靠运转造成了较大的影响。

2电力系统继电保护的维护措施

2.1严格按照继电保护装饰运行维护的要求进行操作或检修

运行人员要严格的依据继电保护的运行规程,对继电保护装置及其二次回路定期巡视,按照检修要求的规定更改定值,并且检查交流电压回路,使得保护装置在任何情况之下都不失去电压。按照保护装置自身的规定或者说明书在其允许的负荷电流之下对电气设备或者线路的负荷潮流进行监视,一旦发现存在可能误动的情况,要及时的与继电保护的维修或者生产部门联系,同时将信息向上级汇报。紧急情况之下,可以先行停用,并且及时的通知和督促有关部门消除并且处理相关问题。对于继电保护系统工作过程中的掉牌信号以及灯光信号,要准确记录,并且及时的将相关信息汇报,便于及时的发现问题,查找原因。

2.2严格遵循状态检修的基本原则

继电保护系统的检修不应该按照定时检修的原则进行,而应该按照状态检修的基本原则,首先确保设备的安全运行,加强设备的状态监测与分析,从而确定合理的、科学的状态检修间隔以及检修的具体项目。在检修的过程中,要按照总体规划、分步实施、先行试点然后逐步推广的基本原则进行。实施继电保护系统的状态检修是一项非常复杂的系统工程,在我国也是出于探索阶段。因此,具体的实施过程中,要有长远的目标,同时也要总体的构想,稳扎稳打,分步实施,在取得了一定的试点成功之后,再全面推广。

2.3完善设备管理信息系统

为了更好的防范软件因素以及硬件因素对继电保护系统可靠性造成的负面影响,就要将继电保护系统纳入到设备管理信息系统的管理范畴之内。而设备信息管理系统则需要对继电保护系统的所有相关软硬件发生的变化进行详细的记录,这就为继电保护的状态检修提供了详实的数据支撑。

2.4确保装置技术要求符合当地安全运行条件

由于不同的区域在气候条件、电力负荷方面都有着较大的差异,这也就对继电保护系统的性能提出了不同的要求,在日常操作的过程中,要注意继电保护系统的性能、架构与当地的环境条件相符,如果不相符应该及时的向上级汇报,尽可能的推动继电保护系统与当地实际条件的适配。

2.5加强对配电屏的巡视检查

一般的,在配电屏上的,都有电气元件的名称、标志以及编号,要巡视这些标志是否清晰、正确,同时对所有的操作把手与按钮的位置与现场实际情况是否相符要检查清楚。检查配电屏上的分与合的指示灯工作是否正常,对隔离开关、断路器以及熔断器等的触点牢靠程度进行检测,并且了解其是否存在过热变色等异常现象。对于二次回路,要检查其是否有导线或者绝缘层的破损与老化问题,一旦出现这些问题要及时的更换,同时对于绝缘电阻也要加以检查。还需要了解仪表的情况,是否存在工作不正常与表盘玻璃松动的问题。在巡视的过程中,对于灰尘要及时的清扫,防止灰尘中的金属物质导致的电气短路与其他的故障。

2.6加强运行维护

在断路器跳闸之后,如果需要对触头以及灭弧罩及时的进行更换,要在更换之前对导致跳闸的原因进行分析,了解清楚之后才能够再次合闸运行,否则如果问题没有消除,断路器还是会跳闸。对于频繁操作的交流接触器,应该确定2-3个月检查一次,校验其吸引线圈,是否能够达到正常操作的要求。同时,还要对熔断器的熔体以及当前所处环境的实际负荷之间是否匹配,如果不匹配要及时的更换成匹配的熔体,并且要检查其各个连接点之间的接触是否良好,是不是存在烧损现象。

3结语

随着科技的不断发展,以及相关技术在电力安全领域的应用,我们的用电安全也在得到越来越强大的波爱护,尤其是随着在线监测系统与无线通信技术的发展,我们有理由相信,继电保护的未来会逐步朝着智能化、网络化的方向发展,这也对我们的相关工作者提出了新的要求,不仅仅要能够对现有的继电保护系统的运行及其维护做到心中有数,同时也要注意知识结构的更新,适应未来继电保护系统的发展。

参考文献:

[1] 唐文. 对当前电力系统继电保护的运行维护分析[J]. 中国新技术新产品. 2012(07)

[2] 许文彬. 浅谈电力系统继电保护维护措施[J]. 中国科技信息. 2012(02)

[3] 王育武. 浅析10kV配电网的继电保护分析[J]. 工程建设与设计. 2011(03)

[4] 焦玉振. 10kV继电保护装置的运行维护研究[J]. 华电技术. 2008(12)

[5] 方勇灵,陆榛,宋福海,夏可青,祁忠. 一种继电保护故障信息智能分析方案及应用[J]. 电力系统保护与控制. 2013(05)

[6] 王峰,张弛,贺春,陈志光. 一种继电保护故障信息系统在线通信报文分析工程方案[J]. 电力系统保护与控制. 2013(05)

篇8

关键词 :35kV 变电站 ;继电保护装置 ;基本要求;状态检修;监视电力系统

中图分类号:TM411+.4 文献标识码:A 文章编号:

前言

电力系统的飞速发展对继电保护不断提出新的要求,各大电力系统的容量和电网区域不断扩大,继电保护装置在35kV变电站中的应用也越来越广泛,继电保护装置的基本任务是:自动,迅速,有选择性将系统中故障部分切除,使故障元件损坏程度尽量可能降低,并保证该系统无故障部分迅速恢复正常运行。

一、35kV 变电站对于继电保护装置的基本要求

35kV变电站中应用的继电保护装置主要作用是:当电力系统发生组成元件或线路等故障时,如果有可能危及到电力系统的运行安全,继电保护装置可以自动发出警报,并且通过断路器进行跳闸处理,从而有效控制了故障的进一步扩大。从国内现阶段的35kV变电站建设情况而言,继电保护装置必须满足以下基本要求:

(一)快速性

当35kv变电站出现短路故障时,保护装置可以迅速进行故障切除,从而减于短路电流引起的电力系统破坏,有效缩小故障的影响范围,从而提升了电力系统的安全性。

(二)可靠性

当35kV变电站出现各种不正常运行方式或故障时,保护装置应保持可靠的动作,绝不能出现拒动或误动的现象,即要保证继电保护装置的动作足够可靠。

(三)选择性

在35kV变电站的供电系统发生运行或安全事故时,保护装置可以有选择性的进行事故段的供电切除,即将距离事故点最近的相关开关设备进行断开处理,从而保障了其他部分电力设备或线路的正常运行。

(四)灵敏性

在35kV变电站中应用继电保护装置,要对设备的正常运行状况和相关故障做出灵敏的感受和地作,从而最大限度的缩小了故障的危害性。一般情况下,继电保护装置的灵敏性是根据相关灵敏系数进行衡量的。

二、35kV 变电站中应用继电保护装置的主要任务

由于变电站对于运行管理的要求较高,特别是随着国内35kV变电站建设中,电力系统的结构与运行方式日趋复杂,而传统的电磁感应原理、晶体管继电保护装置在保护中存在灵敏度低、动作速度慢、关键部件易磨损、抗震性差等缺陷,所以,微机型继电保护装置在国内35kV变电站中得到了广泛的应用。从电力技术的角度进行分析,35kV变电站中应用微机保护装置的任务,主要表现在以下两个方面:

(一)监视电力系统的整体运行情况

当35kV变电站的电力系统元件发生各种故障时,继电保护装置可以自动向故障元件最近的断路器发出跳闸指令,以保证故障元件对于电力系统运行影响的最弱化。由于35kV变电站承担了区域供电的任务,一旦出现严重的运行故障,将严重影响到区域供电的稳定性。因此,在应用继电保护装置时,必须从保护电力系统全局安全的角度出发,按照规范的要求合理进行继电保护装置的设计、选型和安装,将电力系统连结成统一的整体,这样才能保证电力企业对于35kV变电站电力系统的整体运行情况进行科学、有效的监视。

(二)及时反映相关电气设备的不正常工作情况

在35kV变电站中应用继电保护装置,及时反映相关电气设备的不正常工作情况也是其主要任务之一。当相关电力设备出现不正常运行状况,或者达到维修条件时,继电保护装置应及时通过信号传输系统将故障信息发送至值班人员,以便值班人员可以根据相关标准,利用远程控制系统进行故障的排除,或者组织人员及时进行维修。

三、35kV 变电站继电保护装置的状态检修

在35kV变电站应用微机保护装置时,不但要充分发挥其各项功能和作用,而且要根据相关操作要求和技术规范,科学进行其状态检修,以保证保护装置始终处于最佳的运行状态。在继电保护装置的状态检修中,检修人员必须坚持认真、负责的工作态度,明确自身职责的重要性,对于任何细小的问题都要进行深入的分析,从而在保证继电保护装置实际运行效果的前提下,促进35kV变电站的安全、稳定运行。

(一)继电保护装置的校验周期和内容

为了保证在35kV变电站的电力系统出现故障时,继电保护装置可以保持正常动作,定期对继电保护装置及相关设备的二次回路进行校验与检查是至关重要的。根据规程,对于微机型继电保护装置,新投入运行的保护装置在运行后的第一年内应进行一次全部检验。以后,每3年进行一次部分检验,每6年进行一次全面的校验。继电保护检验应按照相关规程中规定的项目进行检验,检验时应认真作好记录,检验结束时应及时向运行人员交待,在有关记录簿上作好记录,结束后应及时整理检验报告。

(二)二次设备的状态监测

为了保证继电保护装置中二次设备工作的可靠性与正确性,必须对其状态进行有效的检测,并且合理估计其使用寿命。35kV变电站继电保护装置二次设备的状态检测主要包括:TV、TA二次回路的绝缘性能是否良好,以及各部分测量元件的磨损情况;直流操作、逻辑判断与信号传输系统的运行状态。检修人员必须认识到继电保护装置二次设备与一次设备的状态检测存在较大的不同,二次设备状态监测并不是针对于某一元件,而是要对特定的单元或系统进行有效的监测。例如:在对继电保护装置二次设备中相关元件的动态性能监测中,在线监测技术并不是完善适用的,有时也需要使用离线检测方法,从而才能对于其实际状态进行科学、合理的监测。

(三)故障信息的分层诊断与处理

为了有效提升35kV变电站继电保护装置的检修效率,在进行故障信息的诊断时,可以应用分层诊断的方法,并且根据诊断结果采取合理的检修措施。通常情况,35kV变电站的故障信息分为三层:第一层为常见的遥感信息,即在SCADA系统中快速获取相关开关的变位情况;第二层为继电保护装置的保护动作信息;第三层为各种故障的录波信息。在继电保护装置故障信息的分层诊断中,可以根据相关设备电力开关的动作信息,进行其运行状态的基本判断。如果在判定某一种故障后,继电保护装置仍然存在不正常运行的问题,则要按照要求进行其他层次的故障诊断。另外,在继电保护装置的分层诊断中,还要注意故障相别、故障类型及故障地点的快速确定,并且结合波形对开关、保护、重合闸等部分动作情况的影响,进行全面的分析与考虑。

当35kV变电站发生运行故障时,继电保护装置将自动向监控系统发送大量的故障信息,其中包括相关电气设备的开关动作信息、保护动作信息、时间顺序记录、电气量波形信息、故障录波功能记录等,如果继电保护装置处于正常运行状态,则会根据实际情况自动进行故障辨别和处理。当继电保护装置完全或部分丧失应具备功能时,则表示继电保护装置存在某些运行方面的问题。检修人员可以利用监控室装配的专家系统进行继电保护装置运行状态的检测,迅速查处其不正常运行的原因和控制措施,同时利用信息系统进行反向推理,确定最佳的维修方案。在继电保护装置的维修过程中,应尽量减少对于35kV变电站电力系统的运行影响,从而有效保障区域供电的安全性、稳定性,最大限度的降低因继电保护装置维修造成的各种损失。

结束语

总之,为满足电网对继电保护提出的快速性、可靠性、选择性、灵敏性、要求,充分发挥继电保护装置的效能,科学应用继电保护装置十分重要,而且直接关系到电力企业的经济效益与社会效益。也是保证电力系统安全运行的必要条件。

参考文献

[1] 施怀瑾. 电力系统继电保护(第二版). 重庆大学出版社. 2005.

[2] 李海燕. 电力系统. 北京:中国电力出版社,2006.

篇9

【关键词】继电保护 微护 故障处理

中图分类号:F407 文献标识码: A

一、引言

在电力系统的运行过程中,往往由于电气绝缘损坏,操作维护不当或者外力破坏等原因,造成电力设备故障或不正常的运行状态,为维持非故障设备的继续运行,能及时发现并采取有效措施迅速排除故障点是非常必要的,继电保护的任务即是自动迅速而准确地将故障设备从电力系统中切除,保证非故障设备的继续运行,并防止故障设备继续遭到破坏,及时针对各种不正常的运行状态,自动发出信号,使值班人员得以及时察觉和采取必要的措施,把事故尽可能限制在最小范围内。在供电系统中还采取了备用电源自动投入等自动装置,通过继电保护和自动装置相配合,可在输电线路发生暂时性故障时,迅速投入备用电源,即双电源用户的备自投系统,使重要设备继续获得供电,从而提高对用户供电的可靠性。

二、继电保护的基本要求及运行维护

1 对继电保护的基本要求

1.1 可靠性

是对继电保护的一个最根本的要求,当保护该动作时不应拒动,不该动作时不应误动作,反之,则使保护本身成为事故的根源,造成事故的扩大,其主要原因是由制造安装质量问题以及运行维护管理不当,配置整定不合理等引起的,这就要求从业人员不仅要技术强,还要熟知其性能。经验证明在满足其要求的前提下,应该尽量采用较为简单的保护方式。

1.2 灵敏性

是指保护装置对其保护范围内发生异常现象及故障的反应能力,这种反应能力一般通过被保护设备发生故障时的实际参数与保护装置动作参数的比较来确定,即灵敏系数,灵敏系数越高,表明反应能力越强;对不同的保护装置和被保护设备,灵敏系数的要求也是不同的。但对灵敏系数的要求均大于1,在《继电保护和自动装置设计规程》中明确规定一般不小于1.2。

1.3 快速性

一般要求继电保护快速动作,以尽可能短的时间将故障与系统切除,以尽量减少事故的影响,提高系统并列运行的稳定性,减轻电弧对故障设备的破坏,加速系统电压的恢复,少受故障影响,防止故障的扩大发展。

但对于只是用来反映电力系统不正常工作状态的保护装置,就不要求快速动作,如过负荷保护等都是具有较长动作时限的。

1.4 选择性

系统发生故障时,继电保护装置有选择地切除故障设备,保证非故障部分继续运行,从而将事故影响限制在最小范围内。它通过正确地制定上下级保护的动作时限和电气动作值的大小来达到配合,使下一级开关比上一级开关先动作。

2 继电保护装置的运行维护

继电保护装置的校验周期和内容:

(1)为了保证电力系统故障情况下,继电保护装置能正确动作,对运行中的继电保护装置及其二次回路应定期进行校验和检查。对一般10kV用户的继电保护装置,应每两年进行一次校验;对供电可靠性要求较高的用户以及35KV及以上的用户,一般每年应进行一次校验,此外,在继电保护装置进行设备改造、更换、检修后以及在发生事故后,都应对其进行补充校验。

对于变压器的瓦斯保护,应结合变压器大修同时进行校验。对瓦斯继电器,应每三年进行一次内部检查,每年进行一次充气试验。

(2)对运行中的继电保护装置,应按下列项目进行校验:1)对继电器进行机械部分检查及电气特性检验;2)二次回路绝缘电阻测量;3)二次通电试验;4)保护装置和整组动作检验。

3 继电保护装置的运行维护

(1)在继电保护装置的运行过程中,发现异常现象时,应加强监视并立即向主管部门报告。

(2)继电保护动作开关跳闸后,应检查保护动作情况兵查明原因。恢复送电前,应将所有的掉牌信号全部复归,并记入值班记录及继电保护动作记录中。

(3)检修工作中,如涉及供电部门定期校验的进线保护装置,应与供电部门进行联系。

(4)值班人员对保护装置的操作,一般只允许接通或断开压板,切换转换开关及卸装保险等工作。

(5)在二次回路上的一切工作,均应遵守《电气安全工作规程》的有关规定,并有与现场设备符合的图纸作依据。

三、常见故障处理方法及措施

1 常见的继电保护故障的处理方法

(1)替换法:用完好的元件代替被怀疑有故障的元件,来判断它的好与坏,可以快速缩小故障的查找范围;

(2)参照法:通过对正常设备和非正常设备的相关技术参数对比,找出不正常设备的故障点。这个方法主要用于检查接线错误、定值校验过程中测试值与预想值有比较大差异的故障。在进行改造和设备更换之后二次接线不能正确恢复时,可参照同类设备的接线。并在继电器定值校验时,如果发现某一只继电器测试值与整定值相差得比较远,此时,不可以轻易做出判断,判断该继电器特性不好,应当调整继电器上的刻度值,可用同只表计去测量其他相同回路同类继电器进行比较;

(3)短接法:将回路某一段或一部分用短接线短接,来进行判断故障是否存在短接线范围内或者其他地方,这样来确定故障范围。此法主要是用在电磁锁失灵、电流回路开路、切换继电器不动作、判断控制等转换开关的接点是否完好。

2 确保电力系统继电保护正常运行的措施

(1)合理的进行人员配置,使人员调度和协助能顺利进行;明确人员工作目标,以保证电力设备正常运行;

(2)完善各项规章制度:根据继电保护的特点,健全和完善继电保护装置运行管理的规章制度;继电保护设备台账、运行维护、事故分析、定期校验、缺陷处理等档案应逐步采用计算机管理跟踪检查、严格考核、实行奖惩;

(3)实行状态检修:对二次设备实行状态监测方法,对综合自动化变电站而言,是很容易实现继电保护状态监测的。

四、结语

随着电力系统的快速发展,计算机和通信技术的快速提高,继电保护也将沿着计算机化、网络化、保护、控制、数据通信一体化和人工智能化的发展方向去发展。我们应不断学习推进新技术的引进和应用,为电力系统安全运行提供保障。

参考文献

篇10

关键词:电力系统;继电保护;基本要求;安全运行要求;新技术;应用

电力系统安全运行离不开继电保护,特别是近年来我国社会快速发展过程中对电能的需求量不断增加,同时对电能质量也有了更高的要求,这也使电力系统故障频发,通过在电力系统中应用继电保护技术,能够及时、准确发现电力系统存在的故障及运行异常情况,第一时间切断故障线路,确保电力系统安全的运行,而且有效的实现对故障的控制,使电网能够安全、可靠的提供高质量电能供应。

1 继电保护运行要求

1.1 继电保护的基本要求

选择性和速动性作为电力系统继电保护的基本要求。即继电保护在电力系统故障发生时,在有选择性的切断故障线路时,同时还要在确保可靠性和稳定性的前提下快速执行,从而对故障造成的损失进行控制。在电流瞬时增大动作时动作的电流保护即为电流速断保护。在传统速断装置整定值确定时,通常是在离线状态下来假定工作在最大运行状态下线路末端发生短路,以此来确保速断装置的整定值,同时设备需要根据所设置的整定值来进行保护动作。但当前电网结构和规模发生了较大的变化,这也使电力系统故障更具多样性,这也使传统的速断保护装置存在一定的局限性,如整定值与实际运行状态存在区别,这就导致保护装置无法时刻保持在最佳运行状态。而且在最大运行方式下确定的整定值,在其他运行方式时其保护可能存在失效的情况。针对于这种问题的存在,自适应电流速断保护出现并在电力系统中进行运用,其是针对电力系统运行方式和故障状态来实时改变保护性能和整定值,其有效地解决了传统速断装置存在的弊端,其集实时信息采集、信号处理及微机继电保护等于一体,有效地确保了电力系统发生故障时的及时动作。

1.2 继电保护安全运行要求

1.2.1 一般性检查的重要性

在对继电保护装置进行一般性检查,需要对现场连接件紧固情况、焊接点等机械特性进行检查,对于保护屏后的端子排端子螺丝要逐一进行检查,对出现松动的螺母要进行紧固,避免保护拒动或是误动的情况发生。在一般性检查过程中,需要将继电保护装置中所有插件逐一拔下后检查,并插紧,按紧所有芯片,拧紧螺丝,并对虚焊点进行重新焊接。

1.2.2 继电保护装置检验

检验整组试验和电流回路升流试验,这两项工作完成后不允许再拔插件,同时也严禁改定值、改定值区和对二次回路接线进行改变。在其他试验项目完成后需要进行电流回路升流和电压回路升压试验。在继电保护装置定期检验过程中,由于在检验完成、设备进入热备状态或是投入运行时会经常性出现暂时没有负荷的情况,因此在这种情况下不能对负荷向量进行测试,或是打印负荷采样值。

1.2.3 工作记录和检查习惯

工作记录可以作为一份技术档案,因此需要认真、详细及真实的对工作中一些重要环节进行记录,以便其能够为后续工作提供必要的参考。对于继电保护工作记录,需要在规程限定内容以外对每一个工作细节和处理方法进行认真记录,并在工作完成后对所接触过的设备进行认真检查一遍,及时发现工作中存在的疏漏。

1.2.4 接地问题

对于保护屏各装置机箱需要做好接地处理,需要将其与屏上铜排连接,通常情况下生产厂家都已经做好接地处理,因此在实际工作中需要认真检查,确保不存在隐患即可。在检查中需要重点关注保护屏内的铜排与地网之间的可靠连接,为了确保与地网B接的紧固性,可以采用大截面的铜鞭或是导线,使其与接地网紧固连接在一起,连接完成后还要利用绝缘表对其电阻进行测量,确保与相关规程的要求相符。

2 新技术在继电保护中的应用

2.1 继电保护网络化

当前我国处于信息时代,网络成为信息和数据通信的工具的重要技术支柱,在社会生产和生活中具有不可或缺性。同时网络也为微机继电保护提供了重析通信支持。当前继电保护装置只能够对某快速、准确的故障元件进行切除,对事业范围进行控制,其作用较为单一,这主要是由于继电保护装置自身缺乏数据通讯、数据处理和数据上传的联网手段。因此需要加快推进电力系统各主要设备的保护装置实现网络化,这样就能够将每一个保护装置有效的串联起来,并由主站统一对其进行协调管理,确保微机保护装置网络的实现。这样不仅能够在最短时间内对故障性质、位置和故障参数进行判断和检测,而且能够在最短时间发出保护指令,第一时间将故障切除,确保故障范围的缩小,有效地保障电力系统的安全、可靠运行。

2.2 自适应控制技术在继电保护中的应用

这种技术在继电保护中进行应用,主要是通过使保护与电力系统的各种变化有效适应,从而实现对保护性能的改善。利用自适应控制技术,能够有效地对继电保护系统的响应情况进行改善,进一步提高继电保护系统的可靠性。在当前输电线路距离保护、变压器、发电机入自动重合闸等保护中自适应控制技术应用十分广泛,而且获得了较好的保护效果。

2.3 人工神经网络在继电保护中的应用

专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点。人工神经网络具有强大的自适应能力、学习能力和模式识别能力。近几年来,电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。

2.4 变电所继电保护综合自动化技术

变电站继电保护自动化系统在变电站中进行应用,其作为常规自动化系统功能相对简单。顾及着现代通信技术、计算机技术和网络技术的发展,其为系统集成提供了有效的技术支撑,当前继电保护与综合自动化实现了有效结合,在集成、资源共享、远方控制和信息共享方面展现出强大的优势。因此可能将远方终端单元和微机保护装置作为核心,同时将继电保护、控制、测量、信号和计费等诸多功能都纳入到微机系统中,用其来取代控制保护屏,以此来提高一次设备的可靠性。可以说在当前电力系统的快速发展中,变电站综合自动化已成为变电站继电保护的必然发展趋势。

3 结束语

当前电网规模不断扩大,电压等级也呈不断提高的趋势,这就对电力系统运行稳定性提出了更高的要求。继电保护装置作为电力系统中重要组成部分,其安全稳定的运行是保障电力系统正常供电的关键所在。因此需要在实际工作中,为继电保护装置的安全运行提供必要的条件,加快新技术在继电保护中的有效运作,从而加快推动继电保护的网络化、智能化发展步伐,更好的保障电力系统安全、可靠的运行。

参考文献

[1]吴雪峰,邱海,吕赢想.继电保护设备状态检修的探讨[J].浙江电力,2011(05).