有关数学建模的论文范文

时间:2024-01-03 18:10:20

导语:如何才能写好一篇有关数学建模的论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

有关数学建模的论文

篇1

首先对学生进行宣传,介绍学科能力竞赛的目的和作用,其新颖、创新的竞赛形式,高额奖学金及部分高校已将该活动列入该校自主招生资格选拔A类计划。这样,学生就会先对这个活动产生兴趣。我们学校这是第三次参加这种比赛,也是在2012年才熟悉这条路,最终在2013年的高考取得了丰硕的成果,并且相对数学竞赛来讲,来得比那个要容易。经过近一周的介绍,最终班级里数学成绩好的16名同学报名参加了这次竞赛活动。接下来的日子就是帮同学们上网查阅近几年的笔试题,与他们一起讨论解决问题。

二、解题能力的培养

其中我们遇到的困难是,这里面需要解决学生怎样通过阅读理解将文字语言转化为数学符号语言,这一点恰恰是教学的一个盲点,学生不能对应用问题进行有效的阅读理解。日常教学中,我们要注意指导学生在阅读中形成阅读想象、阅读联想、阅读思维、阅读情感等稳定的阅读心理要素,持之以恒地训练,使学生形成良好的阅读理解能力。其次,应加强学生运算(特别是近似计算)能力的培养,应鼓励学生使用计算机、计算器等工具。由于我的学生是高一,刚刚脱离初中,所以在很多方面还是比较欠缺的。

三、建模论文的写作

(一)建模论文的标准组成部分

建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力。一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成。

(二)建模论文的写作步骤

1. 确定题目。选择一个你感兴趣的生活中的问题作为研究对象,并根据研究对象设置论文题目。最好是找一位或几位老师帮助安排研究课题。在确定好课题后,应该写一个写作计划给指导老师看看,并征求他们对该计划的建议。

2. 开展科研课题。去图书馆、互联网上查阅与课题相关的资料,观察有关的事件,收集与课题相关的信息。同时如果有条件的话,可以去拜访相关领域的专家和学者。然后将前期所收集到的资料与自己所学的相关知识组织在一起,进行论文的结构论证。完成这些工作后,你应该要制定一个课题时间安排表,这样能保证书写论文的循序渐进。记住在开始写论文后,一定要不断地和老师、家长进行沟通,让老师和家长斧正论文中出现的明显错误,并能提出一些更好的研究建议。在论文写作结束以后,一定要得出结论。

3. 完成论文写作。完整的论文在完成以上步骤之后就可以新鲜出炉了,完成论文后,一定要再看一遍自己的论文有没有错别字、计算错误、图形的移位或偏差等。最后,在论文的结尾处应该写上感谢的话,感谢帮助你完成这篇论文的所有人。

篇2

随着高职教育改革的不断深化,高职院校毕业生的就业能力和竞争力有所提高,就业状况不断改善,但毕业生就业形势仍然十分严峻。这固然有节节攀升的毕业生数、毕业生自身就业观念、供需结构失衡等方面的问题,但毕业生综合素质不够高、就业能力不够强等方面的问题依然突出。就业能力是指学生在校期间通过知识学习和综合素质开发而获得的能够实现就业理想,满足社会需要,保持工作及晋升和继续发展的内在素质和才能,是一种与职业相关的综合能力。“职业素养”、“专业知识与技能”、“学习能力”、“实践能力”、“社会适应能力”、“创新能力”、“与人交往能力”、“规划与应聘能力”等,是高职院校学生应具备的基本就业能力。对于高职院校毕业生,用人单位更看重其“专业技能”、“实际操作能力”、“学习能力”、“敬业精神”“、沟通协调能力”、“创新能力”等方面的能力素质。而“学习能力”、“运用知识解决问题能力”、“沟通协调能力”、“创新能力”这些基本就业能力是高职院校学生比较欠缺的素质。

二数学建模对培养学生就业能力的作用

笔者在指导学生参加全国大学生数学建模竞赛的过程中,体会到数学建模活动对高职院校的学生的综合素质和就业能力的提升起着十分重要的作用,有利于高职教育人才培养目标的实现。

1提升学生自主学习的能力

数学建模竞赛赛题所涉及的知识面较广,甚至有许多是学生未曾涉及过的领域(如,2012年赛题中的C题:“脑卒中发病环境因素分析及干预”与医学领域有关),学生仅凭已有的知识是难以甚至不能完成竞赛,这就要求学生不仅需要复习好已经学过的知识,还必须积极、主动去学习新知识,扩大知识面,如,数学软件的使用、论文写作方法、不包括在高职人才培养方案中的一些数学内容(如数值计算等)、查找相关文献资料并从大量文献中吸取所需知识的技巧等知识,学生都须通过自主学习的途径来掌握。这个过程有助于学生自主学习能力的提升。

2提升学生运用知识解决问题的能力

数学建模是一个将错综复杂的实际问题简化、抽象为合理的数学结构的过程。在建模过程中,就是要针对生产或生活中的实际问题,通过观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,结合数学及其他专业知识的理论和方法去分析、建立起反映实际问题的数量关系。这个过程就是运用所学的数学知识和其他专业知识的过程。数学建模竞赛题涉及的数据量往往大且复杂,求解、运算过程十分繁琐,手工计算很难甚至无法得到结果,需要使用计算机来辅助解决问题,例如,常使用MATLAB等数学软件进行模型初建、模型合理性分析、模型改进等;使用SPSS等数理统计类软件,完成数据处理、图形变换和问题求解等工作,这是个运用计算机知识的过程。可见,数学建模能培养学生运用数学及其他专业知识、计算机知识等解决实际问题的能力,有利于拓宽学生的就业技能。

3提升学生分析问题和创造性解决问题的能力

培养创新能力数学建模赛题来自于实际问题之中,有极强的实际应用背景,而对竞赛选手完成的答卷(论文)的评价一般没有标准答案,评价时主要是看对问题所做假设的合理性、建模的创造性、结论的正确性和文字表述的清晰程度,评审者更青睐有独特创意的论文。这就要求参赛学生充分发挥想像力、创造力,在通过分析、讨论,迅速洞察问题的实质和特征之后,做出合理的假设,并综合运用数学知识和其他相关知识,创造性地确定或建立数学模型。可见,数学建模过程是个提升学生的分析问题能力,创造性解决问题的能力的过程,具有培养学生创新能力的作用。

4提升学生的团结协作能力

数学建模竞赛不同于一般竞赛,单独一个队员是无法完成竞赛的,必须通过团队三队员共同的努力,才能在72个小时内完成论文,交上答卷。这要求在竞赛的过程中,需要根据队员的特点,进行分工合作,发挥各自的长处,发挥团队的整体综合实力。在团队中,由有较强组织协调能力的队员来负责协调三人的关系,安排工作流程和工作任务;由有较强写作能力的队员来保证写出较流畅的论文;由有较强计算机应用能力的队员来使用数学软件,负责建立、检验数学模型;竞赛过程中,队员间必须精诚团结、相互配合、集体攻关,才能在竞赛中取胜。因此,数学建模竞赛过程是个提升学生团结协作能力、培养学生的团队精神的过程,这对培养学生适应社会的能力起到积极的作用。

三高职数学建模课程教学改革的思考毋庸置疑

篇3

关键词:数学建模;问题驱动;数学建模竞赛;课程教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)03-0143-03

《数学建模》课程具有知识面广、形式多样、教学难度较大等特点。因此,一般认为数学建模的教学是一个不断学习、不断提高、不断探索和改革的过程。我们在广东工业大学《数学建模》课程的具体教学实践过程中的指导思路是:以培养学生对现实世界建立数学模型的能力为目标,以学生通过自学和查阅相关资料解决实际问题为目的来组织教学工作。李大潜院士曾指出“数学教育本质上是一种素质教育,《数学建模》的教学及竞赛是实施素质教育的有效途径”。数学建模课程和竞赛为我校大学生提供了一个运用数学、学习数学、提高数学综合素质的平台,该项活动对提高学生的合作精神、解决问题的能力和自学能力都有很多的帮助。然而,目前传统的课堂授课模式过分注重教师的主体作用,忽视了学生自我探究能力和自主学习能力的培养,压抑了学生的主动性和积极性。要改变这种现状,就必须改革现有的课堂教学状况,探索培养、引发学生主动学习的新型教学模式。美国神经病学教授Howard Barrows于1969年创立了基于问题和项目的学习(Problem Based Learning,简称PBL)理念教学法,这是一种全新高效的教学方法,是以问题驱动为中心的教学模式。近年来,这种理念在澳大利亚的维多利亚大学、美国samford大学、丹麦的奥尔堡大学等世界知名大学得到广泛重视和应用推广,并呈现出不同的形式和多元化的发展特色。在我们国家这种教学理念目前主要实践在医学、市场营销、生物化学、实验教学、毕业论文的写作等领域过程。在数学教学中还很少有人使用这种方法,因此,探索这种教学理念在《数学建模》课程中的实践具有重要的理论价值和实际意义。

一、《数学建模》教学现状及问题

我校是以工科学生为主体的省属重点高校,很多工科院校的大学生对学习数学公共课程的重要性认识不足,对数学公共课在他们后续学习专业课的重要性不够了解。因此逐步提高我校工科大学生对数学公共课的认识水平,加强培养他们的数学综合素质已经十分必要了。令人高兴的是广东工业大学的大学生们对《数学建模》课程和数学建模竞赛活动有着非常浓厚的兴趣和积极性,且已经有不少学生在比赛中获得了不俗的成绩。因此,加强数学建模教学和数学建模培训对我校学生有着重要意义。目前,广东工业大学数学建模课程教学和数学建模竞赛活动分为三个模块:数学建模A,主要针对数学专业的学生;数学建模B,主要针对非数学专业的专业选修课;数学建模公共选修课,专业面向全校对数学建模感兴趣的学生。另外还为应用数学学院的学生开设了“数学建模实验”与“数学建模课程设计”的相关课程,逐步形成了理论与实践相结合的教学模式。由于《数学建模》课程的教材一般有多个知识单元构成,知识的跳跃性较强,因此,我们曾经的教学方法是安排三个老师,每个老师分别负责讲授自己数学的专业领域,这样做的好处是能充分发挥老师的专业特长,让学生了解到该专业方向的最新国内外动态和进展。然而这样做给我们对学生的考核造成了一定的难度,我们曾经尝试过闭卷、开卷和交论文考查等多种方式,这样考核方式各有各的优势和劣势。如何才能找到更好的教学和考核方式,这是我们一直在具体的教学实践中不断探索和努力的方向。这几年我们一直把问题驱动教学法的思想融入我们的数学建模教学活动中,已经取得了初步的成效,这种方式能既考查到学生运用数学知识解决实际问题的能力,又能让学生自己动手解决自己感兴趣的问题,虽然这些问题可能对学生具有一定的难度,但是它能真正考核到学生的实际水平,这正是我们所愿意看到的。在我们以往的数学建模竞赛培训中存在着许多问题,培训上采取以教师为中心、以填鸭式讲授为主的传统教学模式,课时非常有限,而教学内容容量又比较大,学生在很短的时间很难消化这些知识。因此造成开始报名的时候学生积极性很高,课时到培训快结束的时候,剩下来坚持学习的学生就大大减少了。因此,这种填鸭式的培训让学生消磨了学习数学公共课的热情和积极性,而且也不能提高学生的综合数学能力。因此,对数学建模课程教学和竞赛的培训的改革势在必行。

二、《数学建模》教学改革的三个方面

为了解决目前数学建模教学中存在的问题,必须从《数学建模》课程本身特点出发,改革课堂教学模式,加强学生主动学习环节、实际建模训练环节的教学,将问题驱动教学模式运用到《数学建模》课程的教学过程中去。这样不仅对改变《数学建模》这门课程的教学现状有着积极的意义,而且以点带面,对其他相似或相同特点课程的教学改革也具有很好的促进、借鉴作用,切合我校培养高素质应用型人才的定位,也符合我校2010版培养方案的制订要求,更推动了新时期新形势下的大学数学教学改革。下面分别就指导思想、教学方法和培训方法三方面的改革探索进行论述。

1.指导思想的改革。《数学建模》课程和数学建模竞赛活动是培养具有综合数学素质的复合型专业人才的内在要求。在具体教学实践过程中我们应该强调学习数学公共课的重要性,而不是简单地讲授数学知识点;必须强调的是学生通过自己的努力学习自主地解决所面临的实际问题,而不是成为数学解题能手;必须强调学生在数学建模学习中的主体地位和主观能动性的发挥,而不是学生被动的接受知识点。我们教学改革的目标是要突破纯粹的教师讲、学生听、做习题的教学模式,这种教学模式要突破传统的填鸭式教学,要通过有趣的实际例子激发学生学习数学公共课的积极性,要不断提高学生对数学公共课的兴趣,逐步培养学生建立数学模型的能力和利用计算机等其他技术解决生活中的实际问题的能力。《数学建模》课程和数学建模竞赛本身就是一个具有挑战的科学研究和学习过程,无论是数学建模教学还是数学建模比赛,我们做的目的都是要提高我们工科大学生的数学综合素质,为将来学好专业知识打下良好的数学基础。因此,我们提出问题驱动教学法来组织数学建模的教学和培训工作。通过该方法来充分调动学生学习数学公共课的积极性,让学生在全国数学建模比赛的具体实际活动中体会团结合作精神的重要性,通过告诉学生要学会学习、学会思考、学会与人为善,进而提高他们的动手能力、协助能力和沟通能力,为他们将来走上自己的工作岗位奠定基础。

2.教学方法的改革。选择正确的有效的教学方法能更好地确立教学内容,实现教学目标和培养学生的创新能力。鉴于传统的数学建模教学模式无法达到大幅提高学生综合能力的预期目标,我们提出了以问题驱动为指导思想的新的教学方法――问题驱动教学法。问题驱动教学模式的特点是以学生为学习主体,教师通过问题驱动,引导学生自主学习课程内容,并利用学过的理论知识来解决这些实际问题,最后总结归纳和评价。问题驱动是一种让学生以小组形式共同学习和解决问题的教学策略,通过这样的教学策略,可以让学生们在学习知识和解决问题的过程中培养探究问题解决的技能以及自主学习的技能,实现知识意义的建构。这种教学模式无疑对创新型人才的培养有着积极的意义。黄东明等人还在问题驱动教学理念的基础上提出了双环互动教学模式。在具体的教学实践过程中,我们经常把问题布置给学生,要求他们在一周的时间内自己去收集相关资料,寻求问题的解决方法,这种教学模式不再是传统的填鸭式教学过程,而是以学生自己为主体,要求学生充分发挥主观能动性和积极性。并且我们要求学生把自己准备好的解决问题的方法在讲台上给所有的同学讲解,并且要回答同学的提问。整个学习过程好像一个论文答辩过程,这样的教学模式既能充分调动学生的主观能动性和学习积极性,又能充分发挥学生自己的聪明才智,在实践中体会团队合作的重要性。

3.培训方法的改革。全国大学生数学建模竞赛所涉及的内容相当广泛,常用到的数学理论包括高等数学、线性代数、概率论与数理统计、数学规划、微分方程、离散数学等,常用到的软件有Matlab、Lingo、Mathematics等。在建模过程中常常需要用到学生从未学习的知识来解决实际问题。因此,我们在培训过程中必须要训练学生快速学习新知识并立即运用新知识解决问题的能力。数学建模竞赛是以提交论文的方式进行结果评定的,故在培训的过程中还应该特别注重论文撰写的能力。为了适用数学建模比赛的要求,结合我们在《数学建模》课程教学的改革实际情况,把“问题驱动教学法”运用到竞赛培训中去。在提出驱动问题时,教师可以根据现阶段学生所掌握的知识情况,挑选一个具体的实际问题,学生根据所给问题首先进行归纳分析,然后查阅相关新知识和准备可能要用到的软件。在这个过程中学生需要主动学习可能没有接触到的新知识和软件的新功能,并进行参考文献的泛读和优秀论文的精读。通过对优秀论文的细节把握,提高学生处理实际问题的能力和论文撰写的能力。最后学生建立数学模型并撰写论文。最后由老师对论文进行点评,指出其优点和不足,并提出修改意见。经过近年来教学方法与培训方法的改革试验,学生对数学建模的兴趣大大提高,竞赛成绩稳步上升,取得较好的成果。

三、其他方面的探索

1.加强教师队伍的建设。“问题驱动法”的教学,特别是在学生自主学习阶段需要的一个教学团队。所以加强师资队伍建设是《数学建模》课程教学改革成功与否的关键。一方面,教师应加强学习,提高自身素养,掌握先进的教学理念,同时还要对教学内容进行深刻研究,能从现实生活的各种社会经济现象中发现数学问题,并且用数学语言加以描述。另一方面,各个教师应在教学方法创新上不断实践。传统的数学教学活动都是沿袭着“定义―定理―推论―例题”的模式进行,这种模式既使学生感到数学乏味,也使得原来对数学感兴趣的学生易生厌倦,因此,加强探索新的教学方法迫在眉睫。如何进行高水平的教学,吸引更多的学生热爱和喜欢数学,把学到的数学知识用得更广、更深入,是我们教师不得不思索的问题,更是我们教师要做的主要工作。

2.教材建设的改革。目前的《数学建模》教材多种多样,不过大多数太注重数学的理论性和完整性,这样就使得实用性不强,与实际问题脱节,常常让学生无所适从,很难培养学生运用知识解决问题的能力。经过我们对这门课程的改革常识,我们深刻体会到教材建设应遵循的原则如下:①实用性。教师将要教学的内容强调数学公共知识在实际问题中的作用,在教材的深度和广度上应尽量符合工科大学生的实际需要,适时对数学定理和推论进行删减,增加一些与当前实际问题相关的教学内容,由现实生活中的热点经济、工程实际问题引入数学模型。②可读性。根据该门课程的特点和教学改革的需要,教材中的主要内容要用简单的教学语言表达抽象概念,越简单的越好,这样一般学生容易理解和掌握,尽量使枯涩的数学知识变得生动趣味。③前沿性。教材中的内容既要兼顾传统知识又要引入前沿热点问题,既要强调数学推理又要重视数学工具软件和其他计算机技术的运用。综上所述,教材建设是今后我们在该门课程改革实践中要重点解决的问题。

3.考核方法的改革。目前大多数的数学建模考核方法是闭卷考试,而一般数学考试题目侧重证明与计算,忽略了对实际问题的应用,没有达到《数学建模》课程建设的目标,无法考核学生运用知识解决问题的能力。这与《数学建模》课程设置的初衷相违背。因此,采用多种考核方法相结合。例如,让学生做一些小的开放性课题,撰写类似数学建模比赛的论文,在对工科学生专业知识结合的同时,讲授数学建模的特点和应用领域,这样既可以激发学生对数学建模的兴趣,又能增加他们对数学的理解。在考核过程中我们可以适当加大平时分的力度,淡化对试题的考核,加强学生对具体问题解决能力的考核。

今年恰逢我国数学建模竞赛开展20周年,数学建模竞赛活动的规模得到了空前的发展。数学建模教学和数学建模竞赛活动是我们工科院校的一门重要课程,它为提高工科大学生的数学综合素质和数学在其他专业的应用发挥了重要作用。实践证明,通过进行数学建模竞赛活动,可以大大拓展学生的知识面;充分发挥学生的主观能动性,强化学生自主学习的意识和能力;提高学生的创新能力和解决问题的实际能力;还可以促进学生的团队合作精神。总的来说,问题驱动教学模式在数学建模教学和数学建模竞赛的培训过程中的实践表明:这种教学理念和数学建模的本身的特点是十分吻合的,而这种教学模式对于指导我们进行教学改革具有重要的理论意义和实践价值。

参考文献:

[1]Barrows HS,Tamblyn RM.The portable patient problem pack:a problem based learning unit[J].J of Med Edu,1977,52(12):1002-1004.

[2]杜祥云,Anette Kolmos,Jette Egelund Holgaard.PBL:大学课程的改革与创新[J].高等工程教育研究.2009,3:29-35.

[3]鲍立军,邹余粮,韩小兵,苟文丽,安芳.PBL教学法在妇产科学临床实习教学中的应用与实践[J].中国医学教育技术,2010,24(1):81-83.

[4]鄂筱曼.PBL在市场营销双语教学中的应用[J].科技信息,2009,5(30):309-310.

[5]伊艳杰,张长付,李欢庆.运用PBL教学檩式提高工科生物化学教学质量[J].科技信息,2009,8(3):19-21.

[6]李晓华,黄衍强,赵丽娟,等.PBL教学模式在“医学微生物学”设计性实验教学中的应用与探讨[J].右江民族医学院学报,2009,31(5):901-902.

[7]Adele M,Jennifer S,Suzanne T,eta1.Problem-based learning in the fourth year of the Mpharm at Manchester[J].The Pharmaceutical Journal,2005,(274):119.

[8]汤丰林,申继亮.基于问题的学习与我国的教育现实[J].比较教育研究,2005,26(1):73-77.

[9]黄冬明,聂振雯.基于PBL双环互动教学模式的研究[J].宁波大学学报(教育科学版).2010,32(1):119-122.

篇4

【关键词】高中数学;建数学模型;建模能力;意识

在传统教学中,数学知识与学生的生活背景相脱节,知识不能“学以致用”,这样就无法满足现代社会对数学教育的要求。新课程倡导在高中数学教学中培养学生的数学实践能力,促使学生认识到数学的应用价值。众所周知,高考指挥棒的影响力是不容忽视的,为走出传统教学误区,应专家学者的要求,在近年来的高考题中,应用类问题的分值比例也在逐年加大。数学模型作为一种数学语言,是被用来描述现实世界的,培养学生的数学建模能力可以有效的提高学生的问题意识和实践能力。那么,如何在教学中培养学生数学建模的能力呢?

一、培养学生建立数学模型的意识

数学家怀特海曾说过:“数学就是对于模式的研究。”因此,教师要重视在日常教学中培养学生的建模意识。

1.教师首先要提高自身的数学建模意识

这对习惯于传统教学方式的教师来说是一个挑战,因为这种思想和自己原有的知识结构和专业发展发生了冲突。同时,我们也要认识到这种改变更是一种机遇,它给了我们学习新的数学建模理论的机会,给了我们把数学知识应用于解决现实问题的机会。

2.结合教材,引起学生对建模思想的重视

数学模型的建立要与教材使用结合起来,例如,讲立体几何时可以引入立方体模型,把有关的数学定理和规律引入到模型中解决;有关储蓄和信贷的问题可以引入数列模型来教学等。

3.通过数学史的介绍激发学生的建模意识

众所周知,数学上有很多重要的发现不是依靠逻辑思维,而是来源于直觉思维,它们甚至就是数学家们直接观察、比较后突发灵感的发现,这其中很多都有数学模型的影子,像著名的欧拉“七桥问题”、笛卡尔坐标系、费尔马大定理以及哥德巴赫猜想等,不胜枚举。经常向学生介绍这些数学小故事,通过数学家的行为来影响学生,可以促进他们产生效仿的意愿,激发他们的数学建模意识。

4.注重与其他学科的联系

数学被称为自然科学之父,是因为学习其他自然科学甚至社会科学的时候,都离不开数学思想和方法。例如物理中的牛顿引力定律和生物种群在理想状态下的“J型曲线”增长都是典型的数学模型。在教学中加强数学与其他学科的交叉联系,不仅可以加深学生对其他学科知识的理解,也让学生深刻认识到数学建模的重要性,提高他们的建模意识。

二、数学建模要生活化

我们建立数学模型的根本目的就是为了解决现实生活中的问题。因此,在教学中我们也要关注数学建模的生活化。这就给我们教师提出了一个更高的要求,我们要经常保持对生活的好奇心和关注力,发掘生活中的建模素材,这不仅有利于激发学生的建模意识和兴趣,还能够培养学生将知识应用于生活的实践能力。

例如,现在交通上查酒后驾驶是我们都知道的,这里面就隐含着一个数学问题。国家标准规定,车辆驾驶员血液中的酒精含量大于或等于20 mg/100ml,小于80 mg/100ml为饮酒驾车,血液中的酒精含量大于或等于80 mg/100ml为醉酒驾车。现有一起交通事故,在事故发生3小时后,测得司机血液中酒精含量是60%(mg/ml),又过了2小时后,测得其酒精含量降为40%(mg/ml),要求判断:事故发生时,司机是否违反了酒精含量的规定?根据常识可知,血液中酒精的含量是随时间递减的,这时就可以引导学生应用反比例函数来建模求解。

又例如购房热是当前社会的一个热点话题,很多家庭选择使用购房贷款,银行现在提供的还款方式有很多:等额本息还款、等额本金递减法、等额递增还款法、等额递减还款法、等比递增还款法、等比递减还款等,选择哪一种还款方式更适用呢?借助这样的话题,我组织学生到家庭、社区、银行去做调查,并用数学建模法比较每种还款方式,撰写报告,报告中还根据不同的家庭收支情况具体分析了哪一种还款方式更加实用。

三、在课外活动中培养学生的建模能力

课外活动是课堂教学的辅助,它不受时间、地点和内容的限制。这种开放式的学习形式深受青少年的喜爱,是提高学生实践能力的重要途径。以往的传统教学中不重视学生的课外活动,往往采用随意、忽略的态度,或者干脆就取消了学生的课外活动,这对培养学生的主体意识、创新意识和实践能力是极为不利的,在新课程的背景下,我们提倡让学生在“学会”、“会学”的基础上还要“乐学”,因此,开发数学课外活动课,通过培养学生的数学建模能力来培养他们的实践能力是切实可行的。

数学课外活动的形式多种多样,既可以是师生一起研讨数学建模问题,如一起观察实际现象、采纳实际数据、讨论求解方案、让学生宣讲求解的结果或小论文等,也可以是由一个学生或一组学生就实际问题进行数学建模活动,如举办数学建模讲座、数学建模欣赏、数学建模竞赛、数学建模阅读、数学建模小论文写作,办数学建模小报等,丰富学生数学建模活动。研究的问题也很丰富,可以是课本上的知识应用,也可以是生活中的实际问题,如电梯问题、七桥问题、四色问题、体育彩票问题、超市打折促销问题等。

素质教育的出发点是促进学生的全面发展,光凭知识传授是远远不够的,重要的是在教学中必须坚持以学生为主体,将教学的重心转移到培养学生的实践能力上来。建模教学也是如此,我们不能脱离学生搞一些不切实际的建模教学,要注意一切的教学活动必须以调动学生的主观能动性,培养学生的创新思维和实践能力为出发点,引导学生自主活动,自觉的在学习过程中构建数学模型,这是数学教育本身的需要,也是社会发展的需要。

参考文献:

[1]胡安兴.数学建模在高中数学教学中的实践与探索[D].广州大学,2011.

[2]郭志辉.新课程背景下高中数学建模教学研究 [D].温州大学,2011.

篇5

高职高专数学建模教学改革从1992年举办首届数学建模竞赛至今,数学建模活动已经在全国各高校,特别是在本科院校中得到了蓬勃发展,培养了一大批富有创新观念和实践能力的优秀本科生,推动了本科院校的教学改革。然而,数学建模在高职高专院校只是刚刚起步,有许多问题尚需研究解决。同时,我国高职院校对数学建模作用的认识不深,对数学建模活动的开展、数学建模竞赛的组织等都缺乏经验。本文根据自己参赛的成功经验,对高职学院开展数学建模活动进行探索,并提出了一些建议和看法。

一、高职院校开展数学建模活动的重要意义

数学建模对于提高学生运用数学和计算机技术解决实际问题的能力,培养创新与实践能力,培养团结合作精神,全面提高学生的素质具有非常积极的意义,同时,也对教学改革起到了重要的促进作用。

(一)数学建模活动是高职高专院校培养应用型人才的需要

数学建模活动重在实践与应用。从问题分析到模型建立、从模型求解到结果分析、从模型评价到应用前景展望,既没有固定的模式可循,也没有现成的方法可套用。参赛学生必须经历问题分析、查找资料、调查研究、筛选研究方法、建立模型、利用计算机及数学软件求解、完成论文的过程。不仅培养学生运用数学知识分析和解决实际问题的能力,同时,可以充分模拟学生毕业后参加实际工作的情况。数学建模对于高职院校培养创新型应用人才具有深远意义。

(二)开展数学建模活动是提高高职高专学生综合素质的需要

数学建模竞赛和教学对提高学生的综合素质具有重要作用,是对学生能力和素质的全面培养,既丰富、活跃了学生的课外活动。通过总结近几年的经验,发现以下几点值得肯定:(1)学生应用数学进行分析、推理、计算的能力得到大大提高;(2)学生应用计算机、数学软件能力大大提高;(3)培养了学生独立查找文献、在短时间内消化、阅读、应用的能力;(4)培养和发展了学生的创造力、想象力;(5)培养了学生组织、管理、协调、合作能力;(6)培养了学生的交流、表达和写作能力;(7)培养了竞赛意识、坚强的意志力;(8)培养了学生自律、“慎独”的优秀品质。

(三)开展数学建模活动是高职高专数学教学改革的需要

高职数学教育本身面临的问题,就是教学内容与教学时数的矛盾问题,即如何在较少时间里让学生掌握必需而够用的数学知识;另一个问题,就是教学内容与实用性有机结合的问题。高职数学课程的教学改革应以突出数学的应用性为主要突破点。高职数学课程的一个重要任务就是培养学生用数学原理和方法解决实际问题的能力。在这些问题上,数学建模是一个可以选择的解决途径,是一个突破点,抓住了这个突破点,可以牵一发而动全身,进而推动高职数学课程教学改革。

二、高职院校数学建模竞赛的组织与培训

数学建模活动在本科院校已经开展了很多年,本科院校对数学建模竞赛的组织与培训工作有了有效的模式和成功经验。高职高专院校由于参加数学建模活动时间较短,各方面的工作还处在摸索当中。同时,由于高职学生的基本功较差,数学课课时较少,使得高职院校数学建模竞赛的组织与培训也有别于普通本科院校。下面结合我院的成功经验,从三个方面介绍我院在数学建模培训与组织中的一些做法、体会和收获。

(一)认识到位,重视到位,宣传到位

认识到位,主要是指对数学建模的意义和重要性的认识到位。数学建模竞赛涉及面广,通过数学建模竞赛不仅可以检测出一个学校学生的综合能力、综合素质和创新能力,也可检测出一个学校的综合办学能力和在办学过程中存在的问题。基于此,数学建模活动的开展得到了教育部的高度重视,将其作为衡量高校教学质量、人才培养水平、反映学生综合素质的重要标准。这也是国内、国际数学建模竞赛日益红火的重要原因。不仅要对数学建模竞赛认识到位,还要重视到位。数学建模竞赛的培训和组织工作是一项系统工程,需要投入大量人力、物力、财力,涉及各个部门,需要学校领导的支持、协调和重视。

初次接触数学建模的学生对它的认识比较肤浅、模糊,所以,需要宣传到位。主要可以从以下几个方面入手:(1)高数任课教师在教学过程中介绍数模活动;(2)通过校报、广播、墙报等媒介宣传数模活动;(3)举办数学建模普及讲座;(4)介绍数学建模知识,刊登参赛学生体会;实践证明,这种立体化的宣传方式,可以吸引众多优秀学生参加数学建模,为数学建模活动的开展打下良好基础。

(二)数学建模培训

高职院校学生数学基础薄弱,绝大部分学生从没接触过数学建模知识,需要对他们进行系统化培训。针对这些特点,我们合理地制定了培训计划,并分阶段实施:

第一阶段(上半年)为初级培训阶段。这一阶段主要在周末进行,内容包括开设有关数学应用专题讲座,初步树立学生的数学应用意识,针对基础差的学生,还应补充数学基础知识,主要是线性代数和概率论知识。据统计,从数模竞赛开赛至今,70%的赛题为优化类或者需要运用优化理论的题目,所以,这一阶段的另一个重要培训内容就是优化建模与数学规划理论。

第二阶段(暑期)为暑期集训阶段。数学建模涉及众多数学分支和多种建模方法。这一阶段,我们采用专题化的培训方法,把培训内容分为若干联系而又相对独立的专题,按需施教,并在每一个专题培训后安排与其相关的建模问题,学用结合,使学生快速掌握建模知识和建模方法。具体安排如下:

第三阶段,为模拟实战与案例分析阶段。这一阶段,主要选择历年真题对学生进行实战模拟,完全按照竞赛的实际要求,令学生在三天内交出论文。其目的是使学生在教练的论文点评与案例分析指导下,不断发现和改正存在的问题,全面提高建模水平,掌握应赛的必要技巧。

(三)数学建模组赛

数学建模的组赛也是一项系统的工作,涉及方方面面和各个部门。

报名与队员选拔。数学建模需要长期积累,报名以学生自愿为主,数学任课教师推荐为辅,要求报名的学生具有较好的数学基础,有自我提高的要求,有较好的纪律性等。在学生自愿报名后,教练组要根据学生在校表现、高数课程的学习情况等,确定参加数学建模培训的学员,以降低培训中学员的流失率,选拔优秀学员。我校的做法是:在报名初期做一次初步筛选,入选的学生进入数学建模第一阶段的初级培训,根据学员数学规划课程的成绩,选拔进入集训的学员。集训后,根据其建模能力和综合素质,选拔进入第三阶段培训的学员。最后,在第三阶段中期,根据学生模拟实战的表现情况最终确定参赛队员。后勤保障培训期间,指导教师和培训学员都必须全身心投入其中;竞赛期间,学生除了吃饭以及少量的休息时间外,要把所有的精力全部放到建模上。这就要求有关部门有坚强的后勤保障,让教师和学生没有后顾之忧。在后勤保障方面,我校的做法是:由基础部负责具体实施,各相关部门大力配合,为保证竞赛活动顺利进行,学院每年拨出专款为竞赛购置必要的设备及所需教材、资料等,为数学建模竞赛活动提供可靠的经费保证。学院为每支参赛队伍配备三台计算机。实践证明,我院取得的优异成绩与领导的重视、各部门的支持是分不开的。

三、以数学建模为切入点推动高职数学教学改革

(一)以数学建模为切入点推动高职数学教学内容和教学方法的改革

目前,高职数学的教学内容基本沿袭了经典数学的三大块:微积分、线性代数、概率论与数理统计。这些内容都是单纯的数学理论,缺乏与实际问题的结合,并且游离于专业课之外,不仅不能引起学生的学习兴趣,而且也是专业系部压缩数学课时的因素之一。教师的教学方法也只是注重数学知识的灌输,教师讲解、教师设问、教师给出标准答案,只管教不管懂,这种常规的“填鸭”式教学方法很难调动学生学习数学的热情和积极性。

高职教育是培养高等应用型技术人才的教育。因此,高职数学的教学内容应充分体现“以应用为目的,以必需、够用为度”的原则,并将其作为专业课程的基础,强调其应用性以及解决实际问题的自觉性。一方面,可以进一步扩大数学建模的受益面,有条件的情况下可以开设《数学建模》与《数学实验》课程,系统介绍数学建模的思想方法以及数学软件的使用方法;另一方面,可以在高职数学教学中融入数学建模思想,将一些实际问题引入教学内容,利用一定的课时讲解浅易的数学建模,以增强数学内容的应用性、实践性、趣味性。在教学方法上,应注重理论联系实际,注重将数学的应用贯穿于教学始终,提倡“启发式”“互动式”的教学模式,采用多媒体、数学实验等多种形式。

(二)以数学建模为切入点推动高职数学教学手段和教学工具的改革

随着现代科学技术的飞速发展,数学的应用领域日益广泛。数学建模的赛题都是一些经过适当简化加工的实际问题,这些问题为数学知识的应用提供了很好的实例。这些实例能使学生认识到数学如何有用,进而深入了解数学应用的方法和技巧。在数学建模中,为了求得模型的解,必须使用计算机和相关数学软件,数学应用与计算机已紧密结合。传统的教学手段――一支粉笔、一块黑板,已不适应数学的发展和应用,计算机进入数学教学势在必行。首先,可以在数学教学手段上引入多媒体教学,提高学生学习数学的兴趣;其次,在教学工具上引入数学软件求解数学问题,采用数学实验课的形式,促进数学与计算机的结合。

目前,高职院校只有少数人参与数学建模活动,而且大部分高职院校只是为了竞赛而开展这项活动。对于如何扩大受益面的问题,本专科院校做了一些有益探索,如开设数学实验课程或数学建模课程,但对于学制较短、职业性较强的高职院校来说,能否借鉴他们的经验开设选修课,如何开设并安排数学建模的教学内容等,仍是有待解决的课题。

数学建模提供的教学、培训模式和竞赛方式,在成绩较好的学生中取得了良好效果,但对于基础较差的学生却是一项高难度活动。因此,需要在实践过程中不断探索适用于高职院校所有学生的数学建模。

参考文献:

[1]何文阁.在高职院校开展数学建模活动的意义与实践[J].中国职业技术教育,2005,(9):40.

[2]张纬民.对数学建模竞赛实施的点滴探索与认识[J].大学数学,2010,(3):33-34.

篇6

“数学模型是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具而得到的一个数学结构。”数学作为一门技术的应用,是在深入调查、充分了解研究对象的信息、作出简化假设的基础上,用数学的理论和数学的思维方法以及相关知识去解决实际问题,可以直接利用现有的数学模型,也能够创新建立新的数学模型和方法,然后,对数学模型进行分析、计算,用得到的结果来解释实际问题,并接受实际的检验。这个全过程就称为“数学建模”。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学实现科学技术转化的主要途径。数学建模是一项创造性的工作,其特征是:问题具有现实性和挑战性,分析结果具有非唯一的开放性,强调了数学方法的过程性与发展性、各学科知识的综合性和应用性。数学建模的思想和方法已渗透科学、技术、工程、经济、管理及社会生活的各个方面,在分析与设计、预报与决策、控制与优化、规划与管理等诸多方面都有着非常具体的应用。一般认为,数学建模对能力的要求有以下几个方面:第一是具有较强的“数感”,对给定的复杂问题背景进行数学化分析的能力;第二是对数学知识与方法的综合应用和创新、建立数学模型的能力;第三是数学模型的求解能力,包括对计算机和数学软件的使用能力;第四是调查研究和搜集资料的能力;第六是良好的协调和合作能力;第七是较强的数学语言和文字语言的表达能力。可以归结称为“数学建模的能力”。对数学建模能力的培养是数学教育的一个重要方向,可以认为,数学建模教育以其独特的内容和方式契合了复合型人才的培养目标要求。

二、数学建模教学的内容和师资准备

随着科学技术的迅速发展和计算机技术的日益普及,数学的应用从传统的物理、力学等领域逐渐扩展到经济、金融、信息、环境、医学、管理、服务等各个学科及交叉领域。数学建模的专业领域涉及面广、建模方法形式灵活,基本方法包括初等分析方法、概率统计方法、微分方程方法、评价方法、优化方法、预测方法、决策分析方法等。数学建模教学的一般方式是以学生为主,教师利用一些事先设计好的问题激发学生的学习兴趣,引导学生主动查阅文献资料,帮助学生建立并完善相关的知识储备,鼓励学生积极开展讨论和辩论,并对困难和问题进行及时分析和评价等。数学建模教学要求教师具备良好的知识基础、数学素养和较强的教学指导能力。从知识准备上主要有以下三方面:1.数学专业知识。数学理论知识是数学建模必不可少的知识基础。数学建模的基本方法实际是应用数学的各个分支,涵盖了运筹学、统计学、数学规划、最优化方法、图论、数学实验等多门课程内容,要掌握其中最核心的技术和方法。2.数学应用背景知识。数学建模教学的问题都来自工程技术和社会生活,具有较强的实际专业背景,如全国大学生数学建模竞赛的赛题2004年的“电力市场的输电阻塞管理”、2006年的“艾滋病疗法的评价及疗效的预测”、2008年的“数码相机定位”、2009年的“汽车制动器试验台的控制方法”等,对实际背景的认知是解决问题的关键。3.应用软件知识。常用的综合应用软件如Matlab、Mathematica、优化软件Lingo/Lindo、统计软件SPSS、图论工具软件等一些专业应用软件包。在教学实践中,教师应能根据实际问题应用计算机技术辅助教学,对软件进行合理的使用,并能对学生利用计算机分析处理实际问题能力进行培训,以缩短教学理论与实际问题的距离。从知识结构来看,数学建模的全部教学不可能由一位教师单独完成或单独完成的难度非常大,因此,很多学校是由教师团队来共同协作完成教学和竞赛培训的。一般是每个专题模型的教学由一位教师负责。但各个专题又不完全是相互独立的,每位教师必须具备对应用数学各学科的宏观驾驭能力,才能对学生进行方向性的指导。而数学应用的背景知识往往是数学教师所缺乏的,因此必须要求教师具有较强的合作意识,能与不同学科专业的人进行广泛的合作与交流,才能促进知识的横向联系,形成优势互补。

三、数学建模教育在独立学院的创新模式探索

(一)独立学院的办学特色国家依靠“新机制、新模式”推动高等教育的规模扩张,由普通本科院校和社会力量合办独立学院,人才培养目标以应用型为主。独立学院在中国高等教育领域还属新生力量,必须在教育教学管理、人才培养模式、学科专业建设方面开拓创新,力争形成特色,创出品牌,赢得社会影响力和美誉度。从以下三点可以看到独立学院在办学机制和教育资源优化方面对应用型人才培养有着独特的优势。1.灵活的专业设置,创新的教学体系。与公办普通高校相比,独立学院拥有更多办学自,专业设置以市场需求为导向,以应用型专业为主,有良好的就业前景和发展潜力,其理论教学体系依据培养高素质应用型人才的要求,按职业活动实践的需要来重新组合课程,培养出的学生不仅应掌握扎实的基础知识,更重要的是具有较强的实践能力。2.年轻化的师资队伍。独立学院的师资队伍一般由母体学校的聘任教师、退休教师、本学院的专职专任教师、外校或社会上的专家教师等组成。根据《普通高等学校独立学院教育工作合格评估指标体系》要求,专职专任教师占教师总数不低于1/2,其中具有高级职称和具有研究生学位的比例均占30%以上,目前主要以引进优秀硕士毕业生为主,这样一支年轻的教师队伍在思想上更具有与时俱进的创新理念,大胆尝试新的教学模式,既善于从老教师身上学习宝贵的经验,也敢于向传统挑战。3.资源优化与共享。独立学院通常以文、理、工、法、商、管理等多专业共存,是小规模的综合性大学,不同专业的学生和老师有更多的交流,在资源配置方面具有灵活的适用性;为更好地培养学生的自主创新实践能力,独立学院积极组织学生开展各种课外科技创新活动,为学生提供自主开展科学实验和实践创新的专业实验室,不同专业资源共享;与社会力量合办的模式有助于学校充分利用各种社会资源,到企业去开展实践,建立校外实习基地,使得学生有更多机会接触到行业专家的专业指导,有效地使理论和实践相结合。

四、数学建模教育在独立学院的发展现状

在独立学院“基础知识够用,应用特性鲜明”的整体教学原则的基础上,数学课程的教学改革提出了“精讲多练,去掉理论性太强的内容,增加实践性教学内容,注重提高学生的应用能力”的目标。但在实际教学中发现,单学科的知识能够解决的实际问题是很少的,由于课程的基础性特征及课时限制,也未能很好体现出数学知识与技术在解决更广泛的专业问题的宏观指引作用及实现功能。在大部分学生的基础相对较弱的独立学院,更直接影响了学生学习的积极性。但从每年组织全国大学生数学建模竞赛时学生的报名情况可见,独立学院的学生并不缺乏学习的积极性和主动性,正是数学建模所突出的数学应用的特点和技术功能激发了学生的求知欲望,希望学以致用。但是,一方面,开设数学建模课程的课时不会太多,参加建模培训班的同学更是有限。目前针对各类数学建模竞赛所采取的赛前短期集训方式,虽然在一定程度上可以有针对性地提高学生的竞赛能力,但从长期目标来看,数学建模的能力并不是短时间集训突击能获得的,学生也普遍感觉很累,而且对数学方法的深入领悟是经过实践应用的长期坚持和循序渐进而慢慢形成的。另一方面,独立学院的专任教师都比较年轻,对于数学建模教学经验不足。最初的模式是由学院教师负责组织学生参与,而由学院聘请主办高校的有经验的教师对学生进行授课,这在一定程度上缓解了师资缺乏的压力,但外聘教师上课来,下课走,没有太多时间与学生进行沟通和交流,也容易造成教学与实践交流脱节的局面。另外,部分教师依然受传统教育方式的影响,填鸭式的教学违背了数学建模教育的初衷,使得大部分学生逐渐望而生畏、敬而远之。

五、数学建模教育在独立学院开展的创新模式

为了更好开展数学建模教育,我们结合独立学院独特的灵活办学机制和资源共享优势,提出“优势+全面”的数学建模教育模式。

(一)创新的教学体系改革,为数学建模教育提供切实保障

1.将数学建模教育渗透到基础课程教学中

高等数学或微积分等基础课程是绝大多数专业的必修课程,课时多,当前大多数教材的例子多是几何应用或物理应用,理论上大都是连续型的,而且信息量较少,不能较好体现现代数学思想和现代数学方法,相对于应用型人才的培养而言,有些理论已滞后于实际的需要,有些对于新的科研成果并没能及时更新,急需改进或推广。在独立学院的教学改革体系下,基础课程的教学改革也能广开思路,制定适合学生发展需求的教学大纲,选择或自编应用功能较强的教材,立足于基础教学,从不同的细节和角度渗透、穿插适当的数学建模知识,注重培养学生的建模意识。如在教学中除了讲清高等数学的产生背景、研究对象、知识体系外,更要介绍其应用概况;通过工程实例和经济实例强调分段函数、复合函数的概念,介绍函数的拟合和分析方法;在第二个重要极限公式教学中介绍连续复利模型和人口增长模型;作为零点存在定理的应用,介绍“椅子在不平的地面上能放稳吗?”的数学模型;由最值推广产生最优化方法等。将数学建模教育渗透到基础课程教学中,做好数学基础课和数学建模课之间的衔接工作,这应该成为数学建模教育中最基础的部分。

2.基础选修和阶段性竞赛培训相结合

每学期开设40学时左右的数学建模选修课,允许不同专业不同年级的学生一起选课,学习基础的数学建模方法和软件技术。同时,建立网上教学平台和资源建设,为学生提供课程学习资料,提供网上答疑和开设讨论区,让学生加强学习交流。通过延长学习周期和延伸学习空间,让学生不致于倍感压力和难以消化,轻松学习。针对数学建模竞赛的赛前集中培训也可以分段开展,分初级、中级和强化培训,一般是鼓励二至三年级已参加过选修课的学生参加。主要是按照数学建模竞赛的规范和要求全面展开练习。初级阶段为建模培训做好准备工作,如应用计算机网络资源实现文献查找和资料搜集,以及实际调查取证等相关技能培训,数据分析和处理的技术方法,如常见的回归分析、相关分析、聚类分析等数理统计中常用的数据分析的方法等;中级培训主要以案例分析和论文选读为主,选择有学科代表性、方法代表性和综合性较强的典型建模问题和论文进行分析学习,这是培训过程的重心;强化培训是进行竞赛模拟实战训练,选定模拟题目让参赛小组按照竞赛的要求完成问题分析、模型建立和求解、论文写作等全过程,指导教师针对学生的论文写作过程中存在的问题进行点评和指导。对数学建模的这种开放式教学模式,要建立开放的评价体系,相信学生有独立创新的能力,只要学生有兴趣参与,成果的好坏是次要的,坚持培养学生良好的思维品质,如自觉的创新意识、积极的求知欲、顽强的毅力、良好的分工合作能力。

3.数学建模文化活动纳入教学大纲,加强对数学建模文化和成果的宣传

很多大学都有数学建模协会,其宗旨是传播数学建模文化、组织学习活动,如名家讲座和经验交流等,同时为全国大学生数学建模竞赛选拔队员。通过协会精心策划的活动,让更多学生感受到原来数学与生活是那么的贴近,数学的应用那么广泛,真正理解数学、热爱数学。与其他实践应用型竞赛活动相比,数学建模的成果很难以成品的形式直观展示出来,但可以通过学生以报告的形式发表自己的创意和演示模型,让学生通过现场讲演分析和与同学互动,让更多学生了解建模的过程和分享成功体验。要更好发挥社团活动的作用,首先,要建设规范的管理制度,将数学建模协会活动的组织与开展纳入数学建模教学大纲,设立创新学分,形成完整的数学建模教育体系。另外,还要形成一套较为成熟的活动开展监督机制,聘请专业老师指导,以保证活动的健康发展。

(二)高学历年轻化的教师队伍,为数学建模教育注入新的活力

1.加强数学教师与其他专业教师的交流和开展联合教学

为了更好开展数学建模教育,独立学院应大胆选拔培养本院教师作为教学骨干力量。我国目前的硕士研究生的培养仍以单一的科研型、学术型为主,新进的青年教师长处是学科理论基础好,对于实验室研究方式和论文报告驾轻就熟,但是缺乏对实际问题的深切了解,缺乏从理论向实际成果转化的实践经验,而且教师的单一知识结构已不能适应数学建模教学的需要。在独立学院多专业共存发展的格局下,可充分发挥其他学科专业教师对数学建模内容实际应用背景分析的优势,促进知识的横向联系,形成优势互补。也可以组织不同学科专业的老师参与数学建模教学,与学生有更直接的交流。通过具体指导学生开展数学建模竞赛,也能使年青教师获得全面发展和提高。这对独立学院的年青教师培养也起到促进作用。同时加强与其他同类院校的交流学习,切实制定符合独立学院学生特点的教学和培训模式。

2.开展师生合作型创新实践项目课题研究

很多数学建模的题目都是很好的科研题材,可通过设立学生“数学建模创新实践项目”活动专项资金,由学生自主选题或指导老师申请项目课题,创造条件让学生有更多机会参与科研工作,真正实现从调查研究、数据收集、统计分析到解决问题、实践应用和信息反馈等实际实践活动的全体验,提高学生数学应用意识和创新能力。另外,数学建模可以为学生提供很好的毕业设计题材。青年教师充满热情,乐于与学生交流,在师生合作的过程中,更容易产生思想的碰撞和创新的灵感。数学建模活动是以“微科研”的方式进行的,教师要加快教学观念的更新,只有提高自己的科研意识、研究水平和洞察力,才能以严谨的科研风格影响学生,以良好的科研能力指导学生。

(三)优质资源共享,为数学建模教育提供实践基地

1.不同专业的学生合作学习,取长补短

现代各学科的不断交叉和融合,学生的知识面也要求以专业为核心的多向发展。通过数学建模内容的实际背景分析,了解不同科学领域的分析方法。数学建模教学是促进学生跨专业学习的很好途径。数学建模教学一般以学生的合作学习方式开展,可以鼓励不同专业的学生组队,发挥各自的专业特点、优势,在解决问题过程中取长补短。独立学院多专业共存发展的机制使得各种资源共享,使得学生跨专业学习有了强大的依托,对数学建模问题所涉及的一些其他专业技术原理增进了了解。例如,广西大学行健文理学院建立的“创新实验教学中心”已建有计算机软件开发与实训室、电子产品设计室、机电产品制作室、生物工程设计室等,并拥有了计算机、计算机网络、工业控制计算机、单片机开发装置、可编程控制器、印刷电路板设计制作装置等软硬件设备,建立起了一支勇于创新、相对稳定的指导教师队伍。这些优质资源的共享也为数学建模教学实践提供了便利,特别是有助于对一些工科技术背景的理解。

2.利用独立学院的企业和社会资源,互补互足

从全国大学生数学建模竞赛的社会影响来看,赛题一般来源于工程技术和管理科学等社会多方面经过适当简化加工的实际问题,有些是直接由企业直接提供的,如2006年“出版社资源配置”就是由高等教学出版社提供的素材形成,因此赛题的实用性也引起了一些有关企业的关注,希望通过对赛题的进一步研究,使研究成果在生产和管理实践中得到直接应用。独立学院独有的校企合作模式以及广阔的多专业校外实习实践基地资源,有利于实现教学和社会资源互补互足。在校方的全力支持下,选择合适的数学建模应用项目促进横向科研及其成果的转化,让学生真正体验到建模的实用性。

篇7

谈到建模,大家首先联想到数学建模。数学建模是把一个称为原型的实际问题进行数学上的抽象,在作出了一系列的合理假设以后,原型就可以用一个或者一组数学方程来表示。

本文讨论的财务建模包括财务问题的数学建模,但是也包括下文谈到的计算机建模。因此我们定义,财务建模是用数学术语或者计算机语言建立起来的表达财务问题各种变量之间关系的学科。将一个问题用模型表述以后可以检验特定问题在不同假设条件下的不同结果,也可以用来预测在不同条件下特定问题未来的发展。

对于一个复杂的财务问题,有时要写出它的数学模型可能是不现实的或者不可能的。在此情况下如果我们能够用计算机来模拟该问题并且分析它的运行结果,就可以了解和掌握它的内在规律,预知它的未来发展。在这种情况下,虽然我们没有找到精确的数学模型,但是可以说找到了它的计算机模型。因此在上面财务建模的定义中我们增加了计算机模型的内容。

因此,财务建模是利用数学方法以及计算机解决财务问题的一种实践,是研究分析财务数量关系的重要工具。通过对实际问题的抽象、简化,再引入一些合理的假设就可以将实际问题用财务模型来表达。财务模型可以表现为变量之间关系的数学函数,也可以在完全不清楚数学表达式的情况下用计算机来模拟或者推测变量之间的依赖关系。前者是数学模型,后者是计算机模型。找出变量之间关系的数学模型可以为实际问题的解决提供非常方便的条件,但是面对当今复杂的经济问题和现象,并非所有的问题和现象都有明确的数学模型。在这种情况下,找出问题的计算机模拟模型也是非常有意义的。财务建模既包括财务问题的数学建模,也应包括相应问题的计算机建模。举一个例子,当前非常热点的问题:如何根据企业财务数据和其他有关数据对企业的风险作出评估,即如何建立企业财务预警模型就是一个典型的财务建模的例子。当然如果能够找到企业财务数据和风险之间的确定的数学关系对企业财务预警有很大的意义。但是如果这个关系一时不能找到,那么建立风险预警的计算机模拟系统对此问题的解决也是非常有帮助的。另外,文献[5]和[6]提供了一个股票估价模型的例子。在该例中,使用者可以输入贴现率、股利增长率、所要求的最低回报率等参数,然后模型可以计算出该只股票的价值,从而为股票投资提供参考。

财务建模是研究如何建立财务变量之间关系的理论和方法的科学。通过财务建模,我们可以找出财务变量之间的相互依存关系。现实世界中财务变量之间的关系有两种:一种是确定性的关系,另一种是随机性的关系。因此,财务模型也可分为确定性模型和随机性模型。确定性模型研究财务变量之间的确定定量关系,例如折现现金流模型等。随机性模型反映的是财务变量之间在一定概率意义下的相互依存关系,例如资本资产定价模型。因此,财务建模不仅讨论确定性模型建立的理论和方法,也探讨随机性模型建立的理论和方法。

财务建模是一门理论性很强的学科,具有坚实的理论基础和理论依据。它的理论基础包括数学、统计学、财务管理学、金融学、会计学、计算机程序设计等等,因此财务建模是一门交叉性很强的学科。

财务建模又是一门实用性很强的学科,是各级学生包括研究生、本科生都应掌握的一项技能。财务建模的基本内容应该包括:现金流计算模型、最优化模型、投资组合模型、估价模型、统计建模以及财务数据时间序列分析等[1]。这些内容在财务与金融计算中是非常有用的,是将来学生走上工作岗位以后必不可少的技能,因此应该在大学或者研究生阶段予以学习和掌握。

二、财务建模的意义

财务建模的意义可以总结为如下几点:

1.财务建模可以推动财务理论的向前发展

首先,财务问题的模型研究本身在财务理论研究中就占有非常重要的地位。文献[4]讨论了很多会计学和财务管理中非常重要的模型,例如,资本资产定价模型(CAPM)、投资组合模型、证券估价模型、Black-Scholes期权定价模型等。这些模型既是财务理论重要的内容,又是该学科最活跃的研究领域。很多作者由于对某个模型的研究而获得了很高的学术地位,有的甚至获得了诺贝尔奖。从理论上深入研究如何建立财务模型不仅可以追溯前人科学研究的足迹,而且可以为自己的财务研究打下良好的基础。财务建模对推动会计和财务理论的发展将起到不可忽视的作用。

另外,财务建模在财务理论与实际问题之间架起了一座桥梁。财务建模着力于用定量的方法刻画和解决实际问题。当找到了实际问题的数学模型,那么一个新的理论可能就宣告诞生;当将一个理论应用于实践并得出了与实践相辅的结论,那么该理论在这一经济体中就得到了验证。如果一个理论不能在一个经济体中得到很好的应用,那么我们就要思考对于当前的问题什么样的理论才是适合的理论。于是通过财务建模我们就去寻找符合实际的模型。该模型或者是原理论的修正,也可能是一个完全不同的新的结果。在这种情况下同样可能预示着一个新理论的诞生。当然,在一个模型上升为一个理论之前,可能该模型只适合于一个特定问题,但是我们也可以说财务建模为解决这一特定问题起到了巨大作用。财务建模不仅可以用于验证已有理论的观点和方法的正确性和严密性,同时也可以成为新理论诞生的土壤、契机和工具。

2.财务建模方法的讨论也可以为实证研究提供很好的方法论基础

财务建模不仅可以验证规范研究所提出的观点和方法的正确性和严密性,同时财务建模方法的讨论也可以为实证研究提供很好的方法论基础。在文献[3]中,作者深入研究并总结了当今实证会计研究的理论和方法。由于现在实证研究愈来愈受到重视,因此掌握实证研究的方法至关重要。财务建模的方法很多都可以用于实证研究,甚至可以说财务建模本身就是一种实证研究。因此,学习财务建模可以为实证研究打下非常好的基础。

财务建模的工具对于财务建模问题的研究至关重要。过去财务建模大多通过微软办公软件Excel来完成。对于统计建模,大家采用较多的有SAS、SPSS等。现在用MATLAB应用软件包建模使财务建模更加得心应手。MATLAB是一个功能完备,易学易用的工具软件包。MATLAB的主要特点是:计算能力强,绘图能力强,编程能力强。MATLAB的使用扩充了财务建模研究的内容,并为财务建模提供很好的计算机支持。用MATLAB作为工具不仅可以提高财务建模的效率,而且可以以非常直观的方式将自己的模型表现出来,更可以创造出适合于特定企业和特定情况的模型系统。笔者在总结多年财务建模研究的心得和体会的基础上,为研究生开设了“MATLAB财务建模与分析”课程并出版了同名教材[1]。在为研究生讲授此课的过程中,深感财务建模对研究生今后实证研究的重要作用,也体会到学生学习该门课程的热情和投入精神。同学们通过该课程的学习不仅掌握了财务建模的基本理论和方法,也提高了进一步学习会计和财务理论的兴趣和热情。MATLAB统计建模为财务随机模型的建立提供了非常强的工具。对财务数据进行统计分析或者根据统计分析的原理建立财务变量之间的相互依存关系是统计建模的重点内容。我们知道,在自然界和人类社会中,有些变量和变量之间表现出了确定的依存关系,但是大量的变量之间存在的却是不确定的,有时需要重复出现多次才能表现出来的关系。这样的关系就是变量之间的随机关系。随机关系需要根据统计原理应用统计分析的方法来建立。

MATLAB提供了专门用于统计分析和统计建模的统计工具箱。利用统计工具箱提供的标准函数,使用者可以完成统计上的绝大部分数据分析任务,如:假设检验、方差分析、回归分析、多元统计分析等。而且MATLAB还提供了易学、易用的图形用户界面,使用户在最短的时间内就可以掌握较复杂的统计分析技术。如果将MATLAB的编程能力和图形能力充分利用起来,那么用户还可以设计出能够完成特定功能、特定任务的模型系统。因此,笔者认为,财务建模的较理想的软件平台是MATLAB。建议在财务建模的理论研究和实践中使用MATLAB作为其工具。

3.新会计准则下财务建模对会计人员的意义

在新会计准则下,财务与会计的界线更加不明确。所以,财务建模在新会计准则下具有更重要的意义。过去会计人员可能只需要了解借贷原理就可以当好会计。但是新会计准则下如果只了解借贷就可能不会成为一名合格的会计。例如,在文献[2]中,作者论述了公允价值的引入使资产价值的计量和入账复杂化了。如果不了解如何利用现金流量模型估计公允价值,在某些情况下就不能准确入账。在文献[1]中,笔者还给出了其他一些新会计准则下财务建模的例子。

因此,新会计准则的采用使得原来只有财务管理人员才去考虑的问题现在会计人员也不得不考虑。财务建模可以帮助会计人员或者财务管理人员更好地、准确地贯彻新会计准则,提供更可信的会计信息。

4.财务建模可以作为管理决策的辅助工具

通过财务建模可以将大量的报表数据转化为更有价值的财务决策信息,因此财务建模可以作为管理决策的辅助工具。决策者可以利用模型输出的信息进行决策,提高决策的科学性和

财务建模为实际问题的解决提供了定量分析和计算的方法。有助于人们全面、系统地把握实际问题的特征、性质和结构,有助于对实际问题做出更进一步的认识。当将实际问题抽象为一个财务模型以后,人们就可以根据此财务模型对该实际问题的未来发展作出预测。因此,建模的目的不是为了建模而建模,而是为了利用模型对实际问题加以抽象,从而更好地把握问题。特别是为更好地把握实际问题未来的发展提供帮助。比如说,价值分析是当今财务理论研究中的一个非常重要的领域。如果我们能够找出一个根据财务数据及其他资料计算企业价值的分析模型,那么我们就可以根据此模型在股市中找出价值被低估的股票,从而指导我们的投资实践。另一方面这样的模型也可以为资本市场的监管部门提供股票异动及监管的客观依据,从而为资本市场的规范提供保障。

5.财务建模可以作为经济、管理等社会系统反复试验的重要工具

建模的另一个重要作用就是对于复杂的实际问题,当不可能对其做试验或试验代价太昂贵时,采用模拟建模可以有效地避免或减少试验的破坏程度和代价。例如,当评估一项财务决策对企业的未来发展有何影响时,显然不可能采取试验的方法或者试验带来的损失可能是巨大的、无可挽回的。在这种情况下,如果我们能建立一个模型用来模拟财务决策对企业的未来发展到底有何影响,那么就可以在不承担任何风险、花很少费用的情况下对财务决策的影响作出评估,从而避免盲目决策所付出的代价,为科学决策奠定基础。

根据宏观经济环境的变化和会计处理方法的不同,有些理论和模型可能需要进行不断地更正和调整使其符合特定的环境和特定的历史条件。因此,模型具有鲜明的地域性和时效性特征,而财务建模的理论和方法是使理论和模型适应这种变化的有力武器。财务建模必将成为未来财务人员的一项重要技能。不掌握这项技能,财务人员便不能适应社会的发展和环境的变化,最终将被历史所淘汰。

三、高等财经院校财务建模课程的建设设想

综上所述,财务建模在财务理论和实践中具有非常重要的意义和作用。财务建模是财务专业和相关专业学生应掌握的一项基本技能。因此,为财经院校的学生开设有关课程已势在必行。

首先,可以在有条件的院校为研究生开设选修课。笔者所在的院校属于财经院校。财经院校的学生对于掌握财务建模的知识和技能的要求更加迫切,因此首先应该在财经院校开设此课程。“十一五”以后国家加大了高校的投入力度,因此现在大多数院校都建立了自己的经济实验室、金融实验室、统计实验室或者会计实验室等。因此开设财务建模课程的硬件条件在大多数院校都已具备,只要再配以合适的软件系统即可。

第二步,待条件成熟以后,将财务建模课逐步推向本科生。财务建模的技能在本科阶段就应该全面掌握,不必等到研究生阶段。对于高年级的本科生,他们已经具备了学习财务建模的基本知识和必要的理论基础,因此在高年级本科生中开设此课程既有必要又有可能。笔者计划待条件成熟时首先为会计和金融专业的大四学生开设财务建模的选修课。

第三步,建议有关部门成立财务建模专业或者专业方向,使财经院校可以培养出财务建模的专门人才,为社会作出更大的贡献。新晨

主要参考文献

[1]段新生.MATLAB财务建模与分析[M].北京:中国金融出版社,2007.

[2]段新生.新会计准则的原则性及其影响[J].会计之友,2007(3).

[3]罗斯·瓦茨,杰罗尔德·齐默尔曼.实证会计理论[M].陈少华等译.大连:东北财经大学出版社,2006.

[4]RichardABrealey,StewartCMyers.PrinciplesofCorporateFinance[M].NY:4thEd.McGraw-Hill,1991.

[5]段新生.MATLAB股票估价模型研究[J].中国管理信息化,2007(9).

[6]段新生.基于MATLAB的股票估价模型设计[J].中国管理信息化,2008(4).

篇8

关键词 花纹;模糊数学矩阵;数学规划;三维建模;蒙特卡罗算法

中图分类号O29 文献标识码A 文章编号 1674-6708(2014)120-0164-03

0 引言

本文根据车辆情况、路面情况以及使用需求的不同,首先在对汽车轮胎花纹形式固定,忽略天气等外界因素,对专业的参数信息进行检索收集。其次以物理知识为基础利用变量控制法和修正系数的思想求得各性能的近似表达公式,用模糊数学的思想建立各种性能指标的权值联系,然后将各性能构建为统一的性能指标,并以此作为规划模型的目标函数。在求解时,为避免各相关性能量纲之间的误差以及减少非花纹结构对性能的影响,引进性能量纲系数并定义为1,性能参数的大小即为各性能的绝对大小。由于车辆、路面情况参数较为客观,将其计入目标函数,而使用需求柔性较大,故把它归入规划模型的限制条件中。从而建立轮胎花纹的设计模型。然后我们用以普通轿车为例对模型进行求解验证,利用蒙特卡罗算法对模型的最优解进行计算,并用SOLIDWORKS软件进行参数化三维建模,结果表明:

对于过程中设计的计算公式与算法的误差研究,我们对模糊矩阵评价法得到的权重,我们将用模糊序列法得到相同的结论,在一定程度上来说,权重是可信的,对于性能参数的数值与相关论文研究中的定性描述做了对应,基本契合,但是性能的绝对量是本文模型的最大问题,但是在某种程度上能反应实际情况。

2 模型建立

本文主要研究普通轮胎花纹形式下的设计要素对汽车性能的影响,以花纹沟的深度、宽度、角度及密集度等要素为规划模型的决策变量,花纹的总体性能参数为目标函数,以工艺设计限制以及使用需求为约束条件,从而建立数学规划模型,并用Solidworks软件进行三维建模。

本模型的大体的架构如同计算机程序般,设置模型的输入端、主体程序、输出端三部分,在输入端,我们考虑到将车辆的情况和路面的情况参数化,其值刚度大主观性小,我们将其建立在目标函数主体,而使用需求参数化,其值刚度小主观性大,故将此建立在规划模型的约束条件部分,为减少模型误差对结果带来的巨大影响,我们对设计要素进行工艺技术限制。我们将花纹的设计要素作为决策变量,并将规划模型的最优解作为模型的输出端,而规划模型即是主题的程序,程序化模型架构让花纹设计更加清晰方便,模型的输出端后我们与建立了程序与应用软件Solidworks的连接,依据结果进行轮胎花纹的三维建模,从而建立花纹设计优化的全过程。

3 模糊数学的权比模型构建

3.1 模糊矩阵评价法计算花纹性能比重

现在用模糊矩阵评价法评估轮胎花纹对汽车轮胎各个性能的影响程度。

轮胎的花纹主要影响汽车牵引性能、防侧滑性能、耐磨性能和排水性能。花纹的影响汽车性能集为U={牵引性能、防侧滑性能、耐磨性能、排水性能},依次对应可记为U=(u1,u2,u3,u4)。

现在来确定两两影响程度的比较fuj(ui)。由前面的评价方法可知轮胎花纹对汽车牵引性能、防侧滑性能、耐磨性能、排水性能影响程度,我们记为:

由此可知,花纹对轮胎各个性能的影响程度可以近似计算得到,牵引性能a0=64.3%、防侧滑性能a1=20.9%、耐磨性能a2=9.6%、排水性能a3=5.2%。所占比的饼状图如下。

4 约束条件确定

4.1 目标函数花纹总体性能的确定

Max f=Pj×a0+Rj×a1+Rj×a2+Wj×a3

4.2 使用需求

噪声需求

噪声的影响因素主要是与沟深有关,研究表明当沟深在一定的范围内噪音较小,并且其值大小能反应噪声减小的效果,故可用其值来近似描述用户在噪声方面的需求。

舒适需求

汽车的舒适度主要体现在汽车的防侧滑性能,其值的大小能说明轮胎花纹对舒适性的需求。

4.3 技术限制

5.2最优化求解

普通轿车轮胎花纹设计规划模型:

决策变量:花纹沟深度a,花纹沟宽度b、横花纹与水平夹角θ、横向花纹块面积占行驶面积的比c、纵向花纹花纹块面积占形式面积的比d

6 模型评价

6.1 优点

1)本文所用模型通过对轮胎的牵引力性能、防滑性能、耐磨性能、排水性能四个性能进行分析研究,较为全面和具有代表性;

2)采用修正系数的思想,将四个性能的标准定义为一个理想最大值的修正值,可以避免其值的多因素研究,为研究带来便利,但是又不失其正确性;

3)本文将复杂的轮胎花纹进行抽象简化,突出主要的影响要素,利用简单的力学和几何学数量关系,从而减少研究的无用功;

4)本文采用模糊数学分析的方法,将本来影响因素众多的几种性能指标,建立较为明确的比重关系,将原本独立的量构建成一个较为成熟的变量来描述轮胎整体的特性,并通过公路对性能的需求参数建立个种类轮胎和各类公路间的契合度,从而得出轮胎适用范围的结论。

6.2 缺点

1)性能参数的计算不是太具体的绝对值,而仅仅是利用1的相对修正;

2)模糊数学方法得出的比重有一定的主观性,不能较客观的反应真正地问题。

参考文献

[1]文学红.轮胎花纹反求与数字化设计研究,广州工业大学硕士论文,2005,5.

[2]杨忠敏.轮胎胎面花纹及其特点,现代橡胶技术,2013,39:3-4.

[3]彭旭东.轮胎磨损的影响因素.中国知网.第50卷2003.

[4]张彦辉,等,潮湿路面上胎面花纹对轮胎附着性能的影响,农业工程学报,2007,236.

[5]俞淇.子午线轮胎结构设计与制造技术.北京:化学工业出版社,2006,1.

[6]申屠流芳.水稻直播机放沦陷轮胎的设计.农机化研究,2009,9(9):91-93.

[7]江苏工学院,农业机械学[M],北京,中国农业机械出版社,1981.

[8]刘志强.轮胎安全性能影响因素的分析、评价与建模.汕头硕士论文,2003,6.

[9]彭旭东.表面粗糙度对冰路面上滑动轮胎摩擦牵引力影响的研究,汽车工程,2000,22(4):240-243.

[10]赵文杰.轮胎花纹变形特性数值模拟分析,西华大学硕士论文,2012(5).

[11]王野平.论轮胎的磨损,汽车技术,1999(6):19-22.

[12]鲁军.基于自定义特征的轮胎花纹参数化设计的研究,硕士论文,2013(4).

篇9

关键词 数学建模 协会 创新精神

中图分类号:O29 文献标识码:A

0 引言

由教育部和中国工业与应用数学学会联合组织的全国大学生数学建模竞赛已成功举办了20届,这项赛事已发展成为我国目前规模最大、影响最大的大学生课外科技竞赛活动。数学建模竞赛活动对学生创新思维的培养和实践能力的提高具有很大的推进作用。

目前,我校学生参加数学建模活动已蔚然成风,每年有300多位学生参加全国大学生数学建模竞赛、全国研究生数学建模竞赛、数学中国数学建模网络挑战杯等数学建模活动,学生在参加数学建模活动的过程中,数学建模意识不断提高,许多人考上了硕士、博士研究生。从事教学工作的同学,注重培养学生应用数学思想方法去发现、分析、解决问题,促进了数学的教学改革,其中有20多位是高校数学老师,他们已成为所在高校数学建模的骨干老师,有的被评为全国大学生数学建模竞赛优秀指导老师,有的被评为全国大学生数学建模竞赛广西赛区优秀指导老师。这一成绩的取得与数学建模协会日常开展的活动是分不开的。

1 数学建模协会简介

我校数学建模协会的前身是广西师范学院数学科学学院(数学与计算机科学系)学生会科协数学建模分会,从1995年开始组队参加全国大学生数学建模竞赛,经过十多届科学生会科协会员的不懈努力,数学科学学院学生会科协数学建模分会发展成为广西师范学院数学建模协会。数学建模协会的理念是“以团队精神、创新意识为灵魂”;宗旨是“致力于活跃学校的社团活动,营造学术氛围”;活动方针“是宣传数模,发展数模,强我数模,让大多数人了解数模,为数模爱好者提供一个展示才华的舞台”;目标是“营造农厚的数学建模氛围,提高数学建模能力和创新能力”。

2 数学建模协会是广大学子的良师益友

数学建模协会在日常的活动中吸收全校数学建模爱好者,组织开展一系列与数学建模有关的活动,对会员进行数学建模的长期指导和培训,为会员进行经验交流提供平台,提高会员对数学建模的认识,树立团队合作精神,让会员的数学建模能力在日常的活动中能循序渐进地提高。会员们在活动中受益匪浅,都把数学建模协会当作自己良师益友。

3 数学建模协会出奇招,数学建模活动氛围浓厚

(1)开设讲座。数学建模协会请全国大学生数学建模竞赛优秀指导老师、 全国大学生数学建模竞赛广西赛区优秀指导老师来给会员们做学术讲座,老师们通俗易懂的讲解,大大提高了会员对数学建模的兴趣,激发和鼓舞会员们主动查阅数学建模的文献资料,开展数学建模问题的讨论、辩论。

(2)以老带新。已参加过全国大学生建模竞赛的师兄、师姐们积极主动对新会员进行培训,培训内容大多数是启发性的,讲一些基本的概念和方法,主要是引导同学们自己去学,充分调动同学们的积极性,充分挖掘同学们的潜能。培训中广泛地采用讨论班方式,同学自己报告、讨论、辩论,了解要使用计算机及相应的软件,如Matlab,Lingo,Spss,甚至排版软件等。

(3)观摩成果展。在每年的学校社团文化艺术节中,展现历届师兄、师姐们在数学建模比赛中取得的优异成绩以及他们走上工作岗位后的风采,营造一种生动活泼的文化环境和学术气氛,让同学们更深入地了解数学建模,主动发扬刻苦钻研、努力拼搏的精神。

(4)建立网站。建立校园数学建模网站,宣传数学建模的有关知识,展示历年全国大学生数学建模竞赛试题和优秀论文,让同学们更加近距离接触数学建模竞赛。同时,在网站上给学生们提供有关数学建模的书籍、网址,方便同学们自主学习;在日常的数学建模学习过程中,如果同学们有什么疑难问题,可以以留帖子的方式咨询、请教;同学们也可以通过校园数学建模的网站相互沟通、交流,相互探讨、研究。

(5)校际合作交流。我校数学建模协会时常与其他高校数学建模协会进行学术交流,其中包括广西财经学院数学建模协会、广西电力职业技术学院数学建模协会、广西教育学院数学建模协会。具体的做法是先由各高校代表介绍各自的特色活动,发展中遇到的困难以及对未来的计划,随后讨论各高校数学建模协会今后的交流与合作可能会遇到的问题以及应采取的措施。各协会一致表示,万事开头难,要有克服困难的信心。各高校数学建模协间的合作与交流不仅是为了建立数学建模联盟,更希望各高校数学建模协会能取长补短,为数学爱好者提供更好的学习交流平台。与区内其兄弟院校协会的合作与交流,促进了我校数学建模学会的发展。

(6)开展数学建模知识竞赛。现代教育思想的核心是培养学生创新意识及能力,而能力是在知识的教学和技能的训练中,通过有意识地培养而得到发展的。教学中,数学建模方法和思想的融入,有助于激发学生的原创性冲动,唤醒学生进行创造性工作的意识,开展数学建模知识竞赛,学生要从错综复杂的实际问题中,抓住问题的要点,并将问题中的联系归成一类,揭示出它们的本质特征,找出解决问题的重点与难点,自觉地运用所给问题的条件寻求解决问题的最佳方案和途径,这一过程能充分发挥学生丰富的想象力和创新能力。

(7)环保展板宣传。为配合环保局的低碳宣传,我们协会以数学建模知识为基础,建立模型来对环保知识进行宣传,这一活动让同学们了解到数学建模的生活性、广泛性、实用性,大大地丰富了同学们的知识面,开拓了同学们在数学方面的视野,充分调动了同学们的学习积极性,激发了同学们的创造性思维。

篇10

“数学是透视世间万象的工具”,用这句话来形容林智对数学的认识,既贴切又恰当。

作为一名科研人员,他有着对埋头实验室做科研的痴迷;作为一个社会人士,他又充满着对世间万物强烈的好奇。他试图用钟爱的数学理论去解构这个世界,把枯燥的论理与世间的繁芜融合起来,化复杂为简单。

他把数学中的偏微分方程、随机过程、渐近方法、变分法、数值模拟等数学理论和工具应用于海洋世界、城市污染防控及各项交叉学科当中,取得诸多原创性成果,得到国内外认可的同时,他并未停下科研的脚步,仍继续把“应用数学”这一学科的价值发挥到实处。

他就是浙江大学应用数学研究所副所长林智,一位青年导师。

从数学到流体力学

1998年,林智就来到华南理工大学应用数学系,从此叩开了数学世界的大门。2002年,他去美国北卡罗莱纳大学读博,一次机遇让他的科研轨迹开始转向。

“在美国攻读博士期间,由于二年级时进入了由Richard McLaughlin和Roberto Camassa两位教授主持的“应用数学及海洋科学联合流体力学实验室”担任助教,主要指导本科生进行实验研究和整理数据,自此对流场中的各种混合输运问题产生了浓厚的兴趣”。

于是,林智选择了McLaughlin和Camassa两位教授作为论文导师,并在美国自然科学基金会“数学与地球科学协作”(CMG)项目的资助下进行博士阶段的学习。从此,正式进入流体力学科研领域。

“万物皆数”――古希腊数学家毕达哥拉斯的这句话固然过于夸张,但林智始终相信,数学的魅力就在于它的抽象理论应用能够揭示各种现象和问题的本质,让人们发现这个世界的精彩。

林智在前人研究基础上,认为在流场中“混合输运建模分析能够帮助我们了解自身所处生存环境的变化规律,同时能够在实践工程中预测、防控这一类过程,而且在经典流体问题――比如刻划湍流和混沌的特征和形成机制的研究上,也是常用的数学手段”。

从2005年开始,林智就在利用类Sobolev多尺度测度和概率工具刻划混合输运、建立广义弥散―扩散模型、对混合输运作变化法优化控制等方面积极探索,取得到一些原创性成果。

流场中混合输运方面的系列研究,让林智建立了全面的数学建模思想体系。之后,他开始把眼光转向了更为真实、复杂的海洋世界。

解构海洋世界

海洋,辽阔而又深邃。自古以来,人类从未放弃对海洋世界的探索。从远古时期的鱼盐之利、舟楫之便,到航海时代的战略要塞、运输渠道,再到现代文明的深度利用、服务社会,海洋的应用价值被逐渐提升,蕴藏在海洋中的丰富资源被逐一发掘。

近年,随着海洋经济步伐的持续加快,海洋环境的保护之声日渐迭起。因此,更好地了解海洋环境、利用海洋中数量庞大的生物资源,就成为新时代海洋发展战略中的关键一环。

痴迷于流场中混合运输问题的林智认为,“微小生物个体的流动产生混合输运,已经成为多个学科领域专家所关心的问题”。在这种局面下,要与地球科学、生化医药和工程控制等交叉学科科研人员展开联合研究。

2010年起,林智就把数学建模思想应用在了海洋中生物资源模拟上。

他寻找到志同道合的人,共同建立了模拟生物体游动产生标量混合输运的首个随机流体力学模型。原创性地刻画了稀疏生物个体随机游动产生的统计力学问题,并导出了同时适用于势流场和Stokes流场的等效扩散系数公式。

在主持的国家自然科学基金青年基金项目“标量混合输运的统一测试分析、仿真及优化控制”时,面对复杂流下标量的混合输运的混合测试问题,基于混合输运问题的多尺度、多机制特性,他探索出一种能应用在各种尺度和物理图景、具有广适性的统一混合测度,并在此基础上建立数学模型和导出优化控制策略,揭示了混合输运现象的本质和规律,同时为标量混合的科学和工程实践提出了最大利益化模型。

通过直观地引入类Sobolev范数的多尺度混合测度,基于经典热扩散方程进行的广义偏微分方程建模,他得到了在混合程度上与精确解等价的等效标量分布……这一系列原创性成果,具备更好的广适性,在国内外引起强烈反响。

回国短短几年,林智就与浙江大学海洋科学和工程系、国家海洋局第二海洋研究所展开合作,建立了长久的合作关系,开展了稳定广泛的学术交流,为今后海洋流体问题的全方位研究,搭建了更加坚实的科研平台。

大数据下的城市建模

流体,不仅仅只局限于海洋。

随着城市化建设的脚步加快,各色污染物大量涌现,对空气、土壤产生了极大威胁,严重阻碍了各大城市的良性发展。

“我希望数学能够突破原有框架,为人类发展服务”。2014年,浙江大学与帝国理工大学成立“联合数据科学实验室”,这为从不拘泥于实验室做科研的林智带来了一个契机,他开始从反问题的角度,研究考察城市环境内各种污染物的生成、传播和控制问题。

纵观我国科研领域近几十年的发展,有关反问题的理论研究、数值计算和分析方法一直备受重视,例如在一些国家重大战略需求的科学领域和工业研究中(如工业、环境监测、医学诊断、设备安检、地质勘探等)均广泛应用。尤其是以数学为中心,聚集了大量物理、化学、材料、医学、环境、计算机等多学科、多领域的科学家,早已开展了深入的交叉合作。

基于此,他积极参与了两项国家自然科学基金项目――“应用反问题的建模与计算”和“反问题的数学建模、计算及应用”。项目结合英方的高性能数值算法和浙大数学系团队的反问题方面的建模成果,展开了研究。一方面,通过对正问题的研究评价和预测污染物的影响;另一方面,能过反问题的研究反演介质参数、污染源位置和强度等性质,进而对污染进行优化控制。