表观遗传学的特点范文

时间:2024-01-03 17:39:11

导语:如何才能写好一篇表观遗传学的特点,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

表观遗传学的特点

篇1

关键词:表观遗传学 教学 研究生

中图分类号研究生教育是高等教育的重要组成部分,是培养高素质、高层次人才的重要手段。今天的社会对研究生的全面素质和创新能力提出更高的要求,而专业课教学是研究生教育的最基本部分,是提高研究生专业素质和创新能力的直接途径,因此,提高专业课教学水平对研究生的培养具有十分重要的意义[1]。随着生物技术和医学科学技术的迅速发展,知识更新速度加快,学科之间相互交叉、相互渗透,边缘学科和新兴学科不断涌现。表观遗传学是近几年来生命科学迅速发展的前沿学科之一,其理论与技术已经广泛渗透至生物学、基础医学、临床医学及预防医学的各个学科。表观遗传学是我们学院学术型硕士研究生专业课程和专业学位硕士研究生专业知识模块的主干课程。如何适应新形势下研究生培养的需要,笔者主要针对研究生表观遗传学教学谈一些自己的看法及建议。

1 教师业务素质的提高

生物医学模式的转变对教师的业务素质和能力提出了相应的更高要求。不仅要求教师有生命科学、基础医学和临床医学的专业知识,而且还要有生物医学理论方面的知识,同时要求教师的技术知识层次能跟上生物医学实验技术推广周期不断缩短的趋势。我们在研究生的表观遗传学教学中,随时进行文献调研,密切关注最新高水平期刊和学术会议的相关信息,不断补充传达的最新知识。引导学生关注当前研究活跃的肿瘤、衰老、心血管疾病、感染性疾病与表观遗传学的最新研究进展情况,着重介绍营养、环境、应激、细胞代谢在表观遗传变化中的重要作用机制。这些新知识非常受研究生的欢迎,引起他们浓厚的兴趣。通过这些新知识的学习,不仅开阔了研究生的学习视野,启发了他们的创新思维,同时使他们形成良好的文献调研和学术研讨的习惯,逐步形成和掌握正确的科研方法,为即将开展的课题研究工作奠定了坚实的基础。在教学过程中反过来能进一步促进教师知识结构的不断更新,达到教学相长的目的。

2 改革教学内容,形成完整的表观遗传学知识结构体系

与经典遗传学以研究基因序列决定生物学功能为核心相比,表观遗传学主要研究基于染色质事件对于这些“表观遗传密码”的建立和维持的机制,及其如何决定细胞的表型和个体的发育。在表观遗传学研究生课堂教学过程中必须具有一定的前瞻性,引导研究生关注表观遗传学学科的发展动态,密切注意学科的交叉和延伸,紧跟表观遗传学的发展方向和学科发展的突破点。课堂教学过程中把最主要的精力放在表观遗传学学科领域发展最活跃最富潜力的研究方向上,例如表观遗传机制在癌症等疾病中的作用机制,细胞代谢与表观遗传变化的关系等。表观遗传学是生命科学中一个普遍而又十分重要的新研究领域。它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫、病毒感染复制等许多疾病的发生和防治中亦具有十分重要的意义。在教学过程中主要内容包括:表观遗传学概论,DNA甲基化,组蛋白修饰,染色质重塑,基因组印记,X染色体失活,siRNA与miRNA介导的调控,表观遗传学与疾病,表观遗传学与癌症,天然产物及中草药的发展对表观遗传学的展望,表观遗传学的治疗进展。上述内容形成完整的表观遗传学知识结构体系。在教学过程中,通过有选择地插入一些小型专题讲座及相关的研究历史背景资料的方式,介绍和强调学习和掌握表观遗传学的重要性,既活跃了课堂,又把课程从枯燥的理论讲解中解放出来,同时激发了研究生的学习积极性,拓宽相关的知识面[2]。同时在教学过程中注重前沿进展内容的加入,如代谢、营养、环境等影响因素与表观遗传学的相关进展。

3 改革教学方法,培养研究生的创新能力

本课程所授课的对象是已具备一定自学能力和学习主动性的研究生,最重要的是培养他们科学地发现并解决问题的能力、准确表达个人思想见解的能力以及科研创新能力。本课堂选课人数一般在十人左右,因此课堂教学的特点在于小班授课。由于是小班教学,增加了教学的灵活性和增强了师生之间互动的可能性,师生之间的交流与沟通增多。因此在教学过程中采用教师课堂授课、学生参与研讨、学生讲授等多种教学方式,强调讲授、研论、文献调研、学术讲座、论文报告、文献综述等多种方式并重的原则。在教学过程中,合理安排时间,让研究生充分参与到教学的研讨,结合自己的研究方向发表自己独特的见解,阐述自己的学术观点,这种教学方式为研究生迅速进入科研工作的角色奠定了坚实的基础,增强了研究生创新能力的培养。发挥现代多媒体技术在教学中的重要作用,电子课件与板书相结合,同时采用图片、视频播放、动画等多种方式的应用。倡导启发式教育,摒弃灌输式教学方法,讲授基本理论知识的同时注意结合科研最新进展情况拓宽学生知识面,加强学生创新能力的培养,使学生的理论基础和实践应用能力同步得到提高,取得了较好的教学效果。对由于受学时限制而不能在课堂上详细介绍的前沿内容可使用讨论法,安排学生课后自学,启发学生提出问题,通过课堂讨论得到解决。还可以在部分单元结束后,要求研究生根据自己的专业方向,结合查阅最新的文献资料,撰写小专题报告,组织交流讨论,以便巩固学生所学知识,并进一步拓宽知识面。研究生不同于本科生,他们有强烈的求知欲孥,有较高的学习热情,有较强的自学能力,所以在教学中倡导自学,组织讨论,是因材施教、培养研究生创新能力的好方法。

4 多种考核方式结合,检验教学效果。

在研究生的考核方面,不仅仅局限于对课内授课内容的掌握程度,还可以采用综述、专题小报告、PPT汇报、模拟课题设计等综合考核方式,注重知识的活学活用和创新意识的培养,这样才有利于研究生即打好广博、坚实的理论基础,又能其重组知识框架,只有这样,研究生的创新意识才能够得到增强。

研究生创新能力培养是受多因素复杂交错影响的,要提升研究生的创新能力,既要保证培养研究生的客观条件充足,又要发挥研究生的主观能动性。研究生教育只有适应知识经济时代的要求,才能不断培养出符合社会需要的高层次创新型人才。表观遗传学既是目前迅速发展的学科和热点领域,在生物医学各种学科存在着千丝万缕的联系。它也是我们学院研究生重要的专业基础课,对于培养研究生的创新意识,培养研究生发现问题、解决问题的能力具有重要的作用。只有在教学实践中不断地提高教师自身素质,调整教学内容,改进教学方法,才能达到预期目的。

参考文献

篇2

HIC-1在肿瘤发生中的作用机制肿瘤的发生通常伴随着表观遗传学的改变,包括基因甲基化、组蛋白修饰和非编码小RNA干扰等,这些改变可使基因功能发生变化,从而导致细胞恶变。事实上,异常的表观遗传学修饰是肿瘤形成的必然要素,其已成共识。越来越多的研究证明,HIC-1基因表观遗传学的改变,参与了多种肿瘤的发生。

启动子的甲基化与肿瘤的发生

一般认为,HIC-1是一种肿瘤抑制基因,在多数实体瘤和白血病中表现为表观遗传学沉默,如前列腺癌、非小细胞肺癌、乳腺癌、胃癌和肝癌、食管癌、非精原生殖细胞癌、儿童髓母细胞瘤、神经胶质瘤和室管膜瘤。应用甲基化特异性PCR(MSP)和重亚硫酸盐测序发现,人类许多实体瘤和白血病中HIC-1均表现出高甲基化。例如,Yamanaka等在研究前列腺癌的发生与7种基因甲基化的相关性时发现,HIC-1的甲基化率为99%;Eguchi等在非小细胞肺癌标本检测出33%的肿瘤组织和31%非肿瘤组织中有HIC-1启动子的甲基化,且基因的甲基化程度与肿瘤分化程度呈负相关;Fujii等对39例原发性乳腺癌组织研究发现,有26例肿瘤组织(67%)出现HIC-1基因的完全甲基化。一般认为HIC-1启动子区域的高甲基化可抑制HIC-1表达,且整个HIC-1基因的表达水平随肿瘤的发展不断降低。

HIC-1的表观遗传学失活可能促使细胞在肿瘤形成早期调整生存模式和信号通路,或调整一系列特异性转录因子的表达。将HIC-1基因人为导入该基因失活的肿瘤细胞株可明显降低肿瘤细胞的成活率。然而,HIC-1启动子甲基化也被发现存在于儿童正常脑组织、成人脑和前列腺上皮组织中。此外,在已确诊的急性白血病和慢性粒细胞性白血病慢性期的病人中,仅有少数病人出现HIC-1甲基化。但在复发的急性淋巴细胞白血病和急转的慢性粒细胞性白血病病人中,HIC-1均表现出高甲基化。故HIC-1甲基化已被认为是造血系统肿瘤的晚期事件,提示降低HIC-1的表达可能存在其他机制。通过以上例证说明,HIC-1启动子区域的甲基化程度与肿瘤的发生、发展有密切关系。干预肿瘤细胞HIC-1启动子甲基化,有可能对抑制肿瘤的发生、发展具有积极作用。

HIC-1与p53抑癌基因的协同作用

HIC-1识别的一个重要靶点是SIRT1(thesilentmatingtypeinformationregulationhomolog1),该基因编码一种去乙酰酶。SIRT1可使p53去乙酰化,降低p53基因对细胞凋亡和(或)增殖的调节能力。据报道,在正常生理情况下,HIC-1能抑制SIRT1转录,进而抑制p53去乙酰化;但在肿瘤细胞中HIC-1表观遗传学的失活,导致SIRT1水平升高。p53因去乙酰化作用而失活,促使细胞抵抗凋亡而成活。另外,HIC-1的启动子区域存在PRE,意味着HIC-1是p53的直接靶基因,p53能激活HIC-1的转录而不依赖于其甲基化状态。因此,这个p53/HIC-1/SIRT1调节通路是HIC-1作为肿瘤抑制基因发挥作用及其与p53协同作用的重要途径。

HIC-1与p53的双杂合性缺失模型进一步证实了HIC-1以及HIC-1与p53协同作用在肿瘤发生、发展中的意义。Chen等研究发现,HIC-1+/-小鼠在老年时期发生一系列具有性别依赖性的恶性肿瘤,HIC-1+/-p53+/-小鼠骨肉瘤的发生率(35%)较p53+/-小鼠(20%)高,且具有年龄依赖性。在64只HIC-1+/-p53+/-小鼠中发现5例乳腺肿瘤(4例腺鳞癌,1例肌上皮瘤)及7例卵巢肿瘤,在p53+/-小鼠中仅发现1例卵巢血管肉瘤,而在HIC-1+/-小鼠中未发现上述肿瘤。

HIC-1在肿瘤发生中的其他作用机制

最近研究表明,肿瘤细胞中HIC-1的失活能使成纤维细胞生长因子结合蛋白1表达增加,从而导致血管形成或增生。Zhang等发现,HIC-1能调节ephrin-A1(EFNA1)基因的直接转录,从而抑制上皮肿瘤的形成。另外,实验结果表明,HIC-1是一种新的细胞生长调控机制中的核心分子,这种HIC-1介导的信号通路的中断将导致异常细胞增殖和肿瘤形成。Boulay等发现,肿瘤发生过程中HIC-1的缺失通过上调乳腺上皮细胞中β2肾上腺素能受体的表达促使肿瘤转移。此外,HIC-1还是调节细胞生长及凋亡关键基因的中心转录调节因子,在髓母细胞瘤中HIC-1对Hedgehog信号通路具有抑制作用,在干细胞功能中HIC-1能调节Wnt信号通路。

HIC-1在肿瘤治疗中的意义由于HIC-1基因受p53基因调控,而p53基因又是迄今报道人类肿瘤中突变频率最高的基因之一,且目前报道的p53基因突变肿瘤中有75%以上为错义突变,致使p53基因功能丢失,因此,通过活化其下游HIC-1作为靶点,是p53基因突变肿瘤治疗的有效选择;而对于野生型p53肿瘤,若联合HIC-1靶点干预可能效果更佳。在许多实体瘤及白血病中,由于HIC-1启动子甲基化导致HIC-1沉默或低表达,DNA甲基化状态可用DNA甲基化酶抑制剂消除。因此,HIC-1成为DNA甲基化酶抑制剂5-氮杂-2-脱氧胞苷(5-Aza-2`-deoxycytidine,Decitabin,5-CdR)的治疗新靶点。Nicoll等研究发现,通过5-CdR恢复HIC-1功能有可能改善乳腺癌病人的预后。另有研究表明,5-CdR的联合应用可增强头颈部鳞状细胞癌的放射治疗效果。另外,Eggers等通过临床研究发现,HIC-1可作为预测肾癌病人无复发生存率的独立因子。因此,深入研究HIC-1基因的功能与作用机制,将有助于应用靶向药物治疗肿瘤。

篇3

【关键词】钉螺;血吸虫病;生物学特性;人工培养;综述

【中图分类号】R532.21【文献标识码】A【文章编号】1673-5234(2015)12-1148-03

血吸虫病(schistosomiasis)是一种严重的共患寄生虫病,呈全球分布。在我国主要流行的是日本血吸虫病。2013年全国共报告血吸虫病感染184943例,晚期血吸虫病患者29796例[1],血吸虫病的流行位居水传播疾病之首,严重影响我国的社会经济发展和人类健康。钉螺(Oncomelaniahupensis)是日本血吸虫的唯一中间宿主,主要分布在亚洲东部和东南部,中国内地仅有湖北钉螺一种,钉螺分布与血吸虫病的流行息息相关。目前防控该病最常用的方法是消灭钉螺,人工培养钉螺对研究钉螺的生物学特性和筛选灭螺药物具有重要意义。本文对钉螺的生物学特性和人工培养的方法进行综述。

1钉螺的生物学特性

1.1形态学

钉螺为水陆两栖,常栖息于田间、池藻等淡水水域。它主要由螺壳和软体两部分组成,软体部分的前部为头、颈、足和外套膜,后部是内脏;表面有纵肋者称“肋壳钉螺”,壳长约10mm,宽约4mm。壳面光滑者称为“光壳钉螺”,比肋壳钉螺稍小,长、宽分别为6mm和3mm,多见于山丘地区。钉螺形态学特点主要包括形态特征、解剖结构等方面。钉螺早期的研究重点集中在钉螺内外部的形态结构变化,如螺壳形状、螺肋的数目及厣核的旋数[2],并以此来认识与鉴别钉螺,如巴西钉螺被认为是光壳钉螺的一种,螺壳黑色,螺壳外唇无隆起线,壳光滑有黄色“假眉”,厣与齿舌与湖北钉螺相同[3]。钉螺的形态特征是研究钉螺的分类、遗传和进化的基础,分布于山区的光壳钉螺和分布于湖沼水网地区的肋壳钉螺生存条件不同。湖北钉螺具有遗传多样性,而且具有不同程度的遗传变异[4]。石朝辉等[5]通过对湖北庙河上下游钉螺调查发现,两个地区钉螺分别为光壳钉螺和肋壳钉螺,上下游螺群的遗传距离并无明显差异。

1.2分类学

钉螺俗称钉螺蛳,为动物界第二大动物门-软体动物门腹足纲中的一类,有雌雄之分。早期对钉螺分类的研究主要是以钉螺形态学和解剖学为依据的,自1913年宫入庆之助和铃木稔在日本证实光壳钉螺为日本血吸虫的中间宿主以来,对钉螺分类的依据主要是根据形态和解剖结构,如螺壳、螺厣和螺肋数目及齿舌形态特征。美国Bartsh根据螺旋数、齿式将钉螺分为Oncomelania、Katayama和Schistomophora[6]。有学者发现螺壳颜色、螺厣、齿舌等差异不大,认为钉螺的分类以形态结构为依据并不严谨[7-8]。近年来分子生物学技术的发展对钉螺分类的研究起到了重要作用。George等[9]通过对中国大陆不同地区、不同种群钉螺的同工酶进行比较,再结合螺壳形态学的基础将湖北钉螺再分成3个亚种:滇川亚种(O.h.robertsoni)、福建亚种(O.h.tangi)和湖北亚种(O.h.hupensis)。牛安欧等[10]利用单重复序列锚定PCR技术(SSR-PCR)将中国大陆7省的湖北钉螺分为4类。周艺彪等[11]采用微卫星锚定PCR分子技术对19个种群钉螺的基因DNA进行分析,进一步验证了中国大陆湖北钉螺分为滇川亚种、广西亚种、福建亚种和指名亚种等4个亚种。

1.3遗传学

钉螺的生物特征、地理分布以及日本血吸虫和钉螺之间的相容性都与钉螺遗传学特性密切相关。表观遗传学、分子遗传学和景观遗传学的研究应用在生物灭螺中起着不可替代的作用。早期,表观遗传学常用来作为钉螺分类依据,刘月英等[12-13]认为中国大陆钉螺属于一属一种,世界各地钉螺作为同一种属只有种下亚种和地理株之分,但种下具体如何分类尚未得到解决。随着分子生物学的发展,钉螺种群同工酶谱的分析、DNA基因序列的研究进一步得到发展。日本血吸虫与钉螺之间的相容性主要取决于两者之间的同工酶等位基因[14],而且不同种群的钉螺对日本血吸虫的相容性不同[15]。周晓农等[16]研究了中国9省34个地区螺群的同工酶,结果表明钉螺种群间的变异程度较大,而同种群内的变异较小,肋壳钉螺的遗传变异分化程度小于光壳钉螺,且钉螺从喜马拉雅山脉扩散至世界各地,因环境变化,基因也发生了剧烈漂移。景观遗传学是在2003年由Manel[17]首次提出,其结合了景观生态学和种群遗传学的特点,意义在于研究物种微进化与景观环境之间的关系,为研究钉螺遗传变异分化提供了新的研究方法[18]。崔斌等[19]采用微卫星锚定技术对湖北松滋地区不同景观环境下钉螺遗传特性进行分析,结果表明湖北钉螺种群间遗传变异并不明显,而钉螺个体间变异显著。景观遗传学作为一门新兴学科,将人类及其活动纳入了研究范畴,在理论和方法方面有很大的发展空间。

1.4生态学

钉螺繁殖、分布及扩散等生态学特征与血吸虫病的流行息息相关。钉螺生态学的研究对血吸虫病的传播和预防可以起到理论指导作用。钉螺的生长繁殖易受灭螺药物和环境改变的影响,其分布密度与植被盖度有关[20]。林丹丹等[21]对鄱阳湖的自然环境进行研究发现植被总盖度与钉螺分布成正比,总盖度越高钉螺分布越广。地形是影响钉螺分布重要的因素之一,杨慧等[22]对云南地形的考察,发现云南地形以山区为主,呈孤岛性分布,扩散不明显,建议灭螺范围应以阳性钉螺分布地区为主,并适当扩大范围。钉螺的扩散方式主要以主动扩散和被动扩散为主,水流、光照强度、钉螺吸附能力以及水中障碍物均可影响钉螺的扩散[23]。此外,自然因素和社会因素如水灾、水利工程建设及旅游开发等也可影响钉螺分布与扩散。

1.5生理生化

钉螺的生理生化对研究灭螺药物的作用机制以及灭螺效果具有重要意义。杜小华等[24]用不同浓度的水和乙醇提取物配置成不同浓度的羊踯躅溶液进行灭杀钉螺实验,结果显示浓度不同的提取物处理钉螺后的灭杀率不同,其中以70%乙醇提取物灭杀钉螺的效果最佳。周康等[25]通过实验发现瑞香狼毒同上述几种药物一样对钉螺的主要能量代谢物质糖原有较强的抑制作用,而且以浓度为70%乙醇提取物的效果最好。黄春兰等[26]用硫酸、蒽酮比色法鉴定湖北钉螺各月份的肝、头足部肌肉和整体软体组织的糖原含量,结果表明整体软体组织和肝的糖原含量随着时间的推移而下降。吴明煜等[27]用不同浓度的蛇床子总香豆素处理液浸泡钉螺,在浸泡液处理的前96h内,钉螺体内糖原的含量随着浸泡时间的延长而降低,说明蛇床子总香豆素可以影响钉螺的糖原含量。胡彦龙等[28]研究发现田皂角甙当浓度超过0.80g/L时可以明显降低钉螺体内糖原含量,降低的幅度达12.49%~73.16%。刘金涛等[29]发现浓度大于0.85g/L的苦楝子可以降低钉螺内的糖原含量,降低幅度为10.78%~69.94%。过氧化物酶、三磷酸腺苷酶、琥珀酸脱氢酶、乳酸脱氢酶是钉螺进行有氧呼吸的关键酶,抑制这些酶的合成可以有效地杀灭钉螺。顾文彪等[30-31]用苦楝叶提取液浸泡钉螺发现三磷酸腺苷酶、琥珀酸脱氢酶和乳酸脱氢酶降低,而一氧化氮合成酶增高,一氧化氮合酶的升高可以使NO合成增加,破坏钉螺机体内的线粒体氧化磷酸化,使能量合成受抑制,达到杀灭钉螺的效果。王万贤等[32]分别采取樟树的新鲜叶、茎皮和根皮调配成1%、0.5%、0.1%、0.05%等4个不同浓度的溶液处理钉螺,结果显示钉螺体内的过氧化物酶的活性随着浸泡的时间延长活性降低,其中以根皮的效果最好,叶的效果较差,建议大量种植樟树作为生态林可达到较好的抑螺效果。

2钉螺的人工培养研究

2.1钉螺螺卵的孵化和幼螺的生长

对于钉螺螺卵的孵化和幼螺的生长,主要的影响因素为温度、水和食物。钉螺螺卵的正常孵化需要在水中或是湿润的泥面上[33],饲料以奶粉及复合动物饲料为主,其中藻类喂养幼螺存活率较高,达90%以上,且生长良好[34-35]。田建国等[36]采用了收集螺卵恒温孵化法、直接恒温孵化法和自然状态孵化法三种方法对钉螺螺卵进行孵化,结果显示泥土也可以影响钉螺螺卵的孵化。

2.2成螺的人工培养

成螺培养因实验目的不同,室内培养方法也不尽相同,常用室内培养感染性钉螺是泥盘草纸饲养法[37]。成螺培养主要为感染性钉螺,其中毛蚴感染钉螺的比例至关重要,张聪等[38]采用泥钵内铺细土泥法,按毛蚴与钉螺数量比为5:1、10:1、20:1三种不同比例进行感染,结果显示毛蚴感染的比例为10:1时,钉螺阳性感染率最高。

3结语

篇4

关键词 行为遗传学;数量遗传学;分子遗传学:基因:人格

分类号 B845

1 引言

人格是一个人独特精神面貌的整体反映,是需要、动机、兴趣、态度、价值观、气质、性格、能力等多个方面的整合。它的形成和发展与遗传因素息息相关。然而,人格的遗传性究竟如何?到底哪些基因在起作用?它们又是如何起作用的?针对诸如此类的问题,行为遗传学家们试图为我们提供有效的解答,并由此形成了一个重要的研究领域,即人格行为遗传学研究。

人格行为遗传学研究就是运用行为遗传学理论和方法来考察和揭示人格特征(包括人格障碍)和人格差异的遗传基础问题。它强调遗传基因是塑造人格核心特征和造成人格个别差异的主要因素,但并不忽视环境的作用,甚至主张人格特征与人格差异是多种基因、多种环境以及基因与环境动态交互作用的结果。早在19世纪中后期,英国心理学家高尔顿(Galton,F.)就首先利用家谱法和双生子法研究了人格差异的遗传基础。尽管他的研究因未将遗传和环境区分开来而具有诸多局限,但它“为人类行为的变异范围提供了档案证明并且说明了行为变异存在遗传基础”(Plomin,DeFries,McClearn,& McGuffin,2008),是运用行为遗传学方法研究人格差异的先驱性尝试。高尔顿之后的20世纪,人格的行为遗传学研究因行为主义主流范式的盛行而长期遭到“冷遇”。前者强调人格的遗传性,而后者坚持环境论并认为人格由社会化的习惯决定,两者的矛盾在这种势力不均的情势下曾一度不可调和。

但近几十年来,行为主义的逐渐衰落和现代生物学特别是分子生物学的飞速发展分别为人格的行为遗传学研究提供了巨大发展空间和发展动力,并使它由传统的数量遗传学取向发展到分子遗传学取向。分子遗传学取向是发端于20世纪初而到20世纪末才应用于人格研究的一种新取向,它在研究方法和研究理念上都较数量遗传学取向具有革命性突破,目前正以惊人的速度发展着。可以说,人格遗传学研究进入到分子遗传学时代(Johnson,Penke,& Spinath,2011)。不过,两种研究取向在基本思路方面各有特色,在具体研究方面都取得了很多有价值的成果,积极推动了人格行为遗传学研究的复兴和发展。

2 数量遗传学取向

人格的数量遗传学(quantitative genetics)研究取向主张运用双生子研究、收养研究等设计来估计群体中遗传因素对人格表现型方差的贡献率,旨在用数量化的手段从宏观上估计某种人格变异在多大程度上是由遗传效应引起的,并考察遗传通过与环境交互作用或相关影响人格的方式以及这些效应发生的具体情境。

2.1 人格遗传率

数量遗传学衡量人格遗传性大小的核心指标是遗传率(heritability),即在某群体内观测到的人格总变异中能被遗传变异解释的百分比,它既可以揭示遗传是否影响某种人格特征又可以指明这种影响达到何种程度。人格遗传率可以用公式h2=Vg/Vp(其中h2代表人格遗传率,Vg代表遗传导致的人格变异,V。代表观测到的人格总变异)来表示,数值在0~1之间,越接近于0,说明变异越少源于遗传;越接近于1,说明变异越多源于遗传。需要指出的是,遗传率估计具有如下三个特点:第一,它具有群体特异性,仅仅适用于解释样本或群体的人格差异,而不适用于描述个体人格的遗传性;第二,它假定遗传因子和环境因子之间不存在相关或交互作用;第三,它会因测量方法和计算方法不同而有细微差别(郭永玉,2005;Larsen & Buss,2009)。

2.2 数量遗传学设计

为了把基因和环境对人格差异的贡献分离开来,数量遗传学家采用了家族研究、双生子研究和收养研究等多种研究设计。家族研究是最早用于人格研究的行为遗传学方法,但它不能将遗传与共同环境的作用区分开来,因而不能得出准确的遗传率;双生子研究是现代人格行为遗传学研究最常用的一种有效方法,它在一定程度上克服了家族研究的缺陷,但它的等环境假设和代表性也往往令人担忧:收养研究作为一种强有力的自然实验法,是“解开影响家族相似性的遗传和环境源之结的最直接方法”,避免了双生子研究中的等环境假设问题,提供了环境影响人格差异的最佳证据,但它也存在三个争议,即代表性、生前环境影响和选择性安置效应(Plomin et al.,2008)。

鉴于以上三种方法各有其长处和不足,在过去的20多年中,数量遗传学家已经开始利用家族研究、双生子研究和收养研究的组合设计来研究人格。例如,研究分开抚养的同卵双生子就把双生子研究和收养研究各自的优点进行了有效整合,并且分开抚养的同卵双生子在某种人格特质上的相关系数可以直接解释为遗传率的一个指标(Larsen & Buss,2009)。另外,随着离异和再婚现象增多而产生的继亲家庭研究,自然地综合了家族研究与收养研究的优势,也是一种有趣和有效的组合研究设计。对多组比较的组合设计,甚至简单的收养和双生子研究,现代行为遗传学通常采用模型拟合(model fitting)的方法进行统计分析,即建立一个反映各种遗传和环境因素对某种人格特质贡献大小的结构方程模型,并将其与观测到的相关进行比较,从而估计出遗传和环境的影响程度(郭永玉,2005)。

2.3 具体研究与发现

数量遗传学取向的人格研究者利用上述设计主要对人格特质、人格障碍以及态度与偏好的遗传性问题进行了考察。

2.3.1 人格特质

数量遗传学关于人格特质的研究主要涉及人格的五大特征,即外倾性、宜人性、责任心、神经质和经验开放性,其中研究最充分的要数外倾性和神经质。多数数量遗传学研究表明,“大五”人格模型中的所有因素都具有中等大小的遗传率,并且此研究结果在不同年龄段、不同性别以及不同文化背景的样本群体中具有普遍一致性(saudino,1997;Loehlin,McCrae,Costa,& John,1998)。例如,两项以双生子为被试的研究表明,神经质和外倾性的遗传率估计值分别为43%和52-54%(Wray,Birley,Sullivan,Visscher,& Martin,2007;Rettew,Rebollo-Mesa,Hudziak,Willemsen,& Boomsma,2008)。以往数量遗传学对“大五”人格的研究通常都以正常人群为被试,最近许多研究开始关注异常人群“大五”人格的遗传性问题。例如,Kendler,Myers和Reichborn-Kjennerud(2011)的研究表明,边缘型人格障碍与“大五”人格中的神经质维度存在显著的遗传正相关,而与宜人性和责任心维度存在显著的遗传负相关。Hare等人(2012)的研究表明,躁郁症患者人群“大五”人格的遗传率(23%~32%)某种程度上低于正常人群的研究结果(40%~60%)。我们固然可以推测是异常人格影响了“大五”人格遗传率的变化,但要得出确切的因果结论还需依赖未来数量遗传学和分子遗传学更加细致的综合研究。

除“大五”人格外,研究者还对活动水平(activity level)和“精神病”人格特质的个别差异进行了行为遗传学分析。活动水平是气质的一个组成元素,其个别差异出现于生命早期,并随着时间推移在儿童身上表现出稳定性。Spinath,Wolf,Angleitner,Borkenau和Riemann(2002)对300对双生子的研究表明,活动水平存在40%的遗传率。“精神病”人格特质包括权术主义、铁石心肠、冲动性不一致、无所畏惧、责备外化和压力免疫等方面。Blonigen,Carlson,Krueger和Patrick(2003)对353名男性双生子进行了研究,发现所有这些“精神病”人格特质都表现出中等或高等的遗传率。

数量遗传学研究发现,尽管不同研究设计所得出的具体数值会有所不同,但一般的人格特质都具有较高的遗传率估计值(Krueger & Johnson,2008)。

2.3.2 人格障碍

数量遗传学系统研究的人格障碍主要有精神分裂型人格障碍、强迫型人格障碍和边缘型人格障碍。精神分裂型人格障碍具有轻微精神分裂样症状,用个人访谈法和问卷法所做研究表明,它具有非常高的遗传率(Kendler,Myers,Torgersen,Neale,& Reichbom-Kjennerud,2007)。强迫型人格障碍是一种神经精神病状态,以思想、情感、观念以及行为的反复为典型症状,它所包含的五个因素即禁忌、污驰/清洁、疑虑、迷信/仪式和对称/囤积的遗传率位于24%和44%之间(Katerberg etal.,2010)。上述两种人格障碍可能是精神机能障碍遗传连续体的一部分,因为它们分别与精神分裂症和强迫焦虑症之间存在某种程度的遗传重叠(Plomin et al.,2008)。边缘型人格障碍是一种以心境反复无常、自我认同感紊乱、情绪冲动以及行为不稳定等为主要表现的人格障碍,它很大程度上受遗传基因影响。例如,对荷兰、比利时和澳大利亚三个国家5000多名双生子的数量遗传学研究表明,加性遗传效应(additive genetic effect)可以解释42%的边缘型人格障碍变异,而且这一结果具有跨性别和跨国别的一致性(Distel et al.,2008)。最近一项10年的双生子纵向研究发现,边缘型人格障碍特质在14~24岁的各个年龄段都具有中等的遗传率,且遗传率有随年龄增长而轻微上升的趋势,而这些特质的稳定性和变化受遗传因素高度影响,一定程度上也受非共享环境的影响(Bornovalova,Hicks,Iacono,& McGue,2009)。

2.3.3 态度与偏好

稳定的态度和偏好通常被看作人格的一部分,并表现出广泛的个体差异。数量遗传学家对态度和偏好的遗传性进行了饶有趣味的考察。综观多数研究可知,态度的核心特征传统主义具有中等的遗传率。例如,一项明尼苏达的双生子研究表明,传统主义的遗传率为63%;一项对654名收养和非收养儿童的纵向研究表明,遗传对保守态度具有重要影响,并且显著的遗传影响早在12岁时就已产生(Larsen & Buss,2009)。然而,并不是所有态度和信仰都表现出中等水平的遗传率,这要因所研究的态度类型而异。例如,一项对400对双生子的研究表明,对上帝的信仰、对宗教事务的参与以及对种族一体化的态度的遗传率为零(Larsen&Buss,2009)。基因似乎也影响职业兴趣或偏好。一项用修订版的杰克逊职业兴趣量表(JVIS)做的研究表明,34种职业兴趣中有30种的遗传率在37%和61%之间(schermer & Vernon,2008)。这表明,我们绞尽脑汁作出的职业选择很大程度上受到我们从父母那里继承的基因的影响。但值得我们注意的是,为什么有些态度和兴趣具有较高的遗传性,而有些态度和信仰的遗传性不明显甚至为零?或许未来的行为遗传学研究能够给出答案。

3 分子遗传学取向

人格的分子遗传学(molecular genetics)研究取向主张在DNA水平上用基因测定方法研究特定基因对人格表现型的影响效应,旨在超越传统人格数量遗传学研究仅停留在统计学层面考察遗传率的局限,而从微观层面直接鉴别对人格产生重要遗传影响的具体基因或基因组合,以精确揭示人格特征(包括人格障碍)或人格差异的根本遗传机制。

3.1 人格候选基因

已知人类基因具有数万种之多,要想从中找出对人格起作用的特定基因是件困难的事情。况且,复杂的人格或行为特质并不简单地遵循孟德尔的单基因遗传定律,而是同时受作用幅度不完全相同而又相互协同和相互作用的多个基因的影响,这就又大大增加了确定这些基因的难度。因此,研究者不可能对所有基因都进行考察,更多的是考察候选基因与人格的关系。人格候选基因(candidate gene)是被假定与某一人格特质有关的基因,通常人们已了解其生物学功能和序列,它们可能是结构基因、调节基因或在生化代谢途径中影响性状表达的基因。研究者一般通过了解相关生理机制来确定人格的候选基因。例如,用于治疗活动过度的药物常含有多巴胺,因而像多巴胺受体、多巴胺启动子和多巴胺转运体这样与多巴胺有关的基因便成为候选基因研究的目标。我们通常缺乏哪些基因是人格候选基因的强假设,因此试图将那些与具有生理作用的DNA标记有关的基因与人格联系起来的做法是很有道理的(张丽华,宋芳,邹群,2006)。

3.2 研究策略

人格分子遗传学研究者主要采用连锁策略和关联策略来寻找和鉴别对特定人格或行为特质有广泛遗传影响的具体基因。连锁策略(linkagestrategy)采取从行为水平到基因水平的“自上而下”的研究思路,它以携带某种人格特质或障碍的家系为研究对象,对连续几代人的DNA样本进行分析,以确定是否有对该人格特征影响较大的特定基因存在。由于研究者并无假定的候选基因,这种策略对定位单基因遗传特质的强效基因十分有效,但当牵涉若干个作用较小的基因时它便不再那么有效。然而,大多数复杂的人格或行为特质往往牵涉多个微效基因,于是另一种较新的关联策略(association strategy)便成为最常用的确定人格基因的策略。关联策略采取由基因到行为的“自下而上”的研究思路,通过考察拥有某种特定基因(或等位基因)的个体比没有该基因的个体在某种特定人格特质上的得分是高还是低,来确定候选基因与人格或行为特质之间的关联情况,即一种可能的因果关系。关联策略比连锁策略更容易找到只有微弱效应的特定基因,但系统性不够强。

随着人类基因组多态性研究以及SNP分型技术的发展,全基因组扫描(genome-wide scanning)逐渐成为一种标志性的分子遗传学人格研究策略(Strobel & Brocke,2011)。它主要包括对人格表现型的全基因组连锁分析和全基因组关联分析,先将人格表现型的相关位点定位于染色体某个区域,然后再进行候选基因研究或连锁不平衡分析,确定其具体基因位点。例如,一项用全基因组扫描做的研究表明,伤害回避与8p21染色体区域存在显著相关(zohar et al.,2003)。

3.3 具体研究与发现

基因主要是通过大脑中的神经递质系统来影响人格的,因而参与调节神经递质系统的基因便成为主要的候选基因。在Cloninger等人的人格心理生物模型中,新颖性寻求(novelty-seeking)、伤害回避(harm-avoidance)和奖赏依赖(reward-dependence)三种气质维度被假定分别与大脑调节不同类型刺激反应的三种神经递质系统即多巴胺(dopamine)系统、5-羟色胺(serotonin)系统和去甲。肾上腺素(noradrenaline)系统相联系。此类理论假设促使人格分子遗传学研究者们主要从这三种神经递质路径考察了基因多态性与人格之间的关系。

3.3.1 多巴胺系统

多巴胺是脑部负责快乐和兴奋的一种积极化学物质,它的缺乏会促使个体积极寻求有效物质或新异经验以增加多巴胺释放。到目前为止,人格研究中最早且最多关注的DNA标记是位于第11号染色体短臂上的多巴胺D4受体基因(DRD4)。1996年,两个独立研究小组同时在《自然遗传学》上报告了DRD4基因的3号外显子中的48-bp VNTR多态性与新颖性寻求之间存在正相关,标志着人格分子遗传学研究的初步登场(Ebstein & Israel,2009)。其中,Ebstein领导的小组运用三维人格问卷(TPQ)对124名犹太健康志愿者进行了测量,发现长重复段DRD4等位基因对新颖性寻求具有6%的解释效应,而未发现它与另外三个TPQ指标(奖赏依赖、伤害回避和坚持性)有显著关联(Ebstein et al.,1996);Beniamin领导的小组运用大五人格量表修订版(NEO-PI-R)对315名美国成人和兄弟姐妹进行了预测测量,也发现拥有长重复段DRD4等位基因的个体比拥有短重复段DRD4等位基因的个体新颖性寻求水平显著高,并且发现长重复段DRD4等位基因与NEO-PI-R量表的外倾性和责任心两个维度显著相关,而在其他三个维度即神经质、开放性和宜人性上未见此结果(Benjamin et al.,1996)。对于这两种研究的结果可能的解释是,拥有长重复段DRD4等位基因的个体对多巴胺的相对缺乏反应敏感,需要寻求外界新异经验来增加多巴胺释放,而拥有短重复段DRD4等位基因的个体倾向于对脑中已经存在的多巴胺作出高度反应,无需寻求新异经验便可使多巴胺含量达到适当水平。

此后,一系列研究对DRD4基因与新颖性寻求这种人格特质之间的关联进行了重复验证,但结果并不完全一致。两项分别以德国人和日本人为被试的研究证实DRD4基因与新颖性寻求特质之间的确存在显著关联(strobel,Wehr,Michel,&Brocke,1999;Tomitaka et al.,1999);Burt等人对明尼苏达137个双生子家庭所做的研究发现,DRD4基因与新颖性寻求测量指标之间不存在任何关联(Bun,McGue,Iacono,Comings,&MacMurray,2002);Ekelund等人则得出了与1996年研究相反方向的结果,即在新颖性寻求水平较高的群体中,2次和5次重复等位基因而非7次重复等位基因的频率更高(Ekelund,Lichtermann,Jarvelin,& Pelmnen,1999)。除此之外,有些研究还发现DRD4基因与其他人格候选基因存在联合效应。一项关于1岁新生儿对新异事物反应的研究发现,DRD4基因中的48-bp VNTR与5-羟色胺转运体基因(5-HTT)中的一种多态性存在联合效应(Lakatos et al.,2003)。之所以会出现如此多样的研究结果,可能与样本大小、被试特点(年龄、性别和种族文化等)、测量工具、研究设计等因素有关。例如,分组方法不同所得研究结果就会有很大差异(Tsuchimine et al.,2009)。不管怎样,这都有待于进一步研究证实。

除DRD4基因外,研究者还对多巴胺系统中的其他人格候选基因进行了考察,如多巴胺D2受体基因(DRD2)、多巴胺D3受体基因(DRD3)、多巴胺D5受体基因(DRD5)以及多巴胺转运体基因(DATl)等。一项用多种人格测验所做的研究表明,DRD2基因的-141C插入/缺失多态性与卡氏人格量表(KSP)测量的冷漠以及北欧大学人格量表(SSP)测量的自信缺乏之间存在关联(JSnsson et al.,2003,),而利用气质性格量表(TcI)对被试所做的一项研究表明,-141C插入/缺失多态性和DRD2/ANKK1基因的TaqlA多态性与人格特质之间可能并非存在直接强相关,而是在DRD2基因与ANKKl基因的交互作用条件下才对人格产生影响(Tsuchimine et al.,2012)。在一个由862名个体组成的样本中发现DRD3基因与神经质和行为抑制存在关联,而当该样本扩大到1465人时这种关联未得到验证(Henderson et al.,2000)。有研究表明,DRD5基因可能与人格的持续性发展有关(Vanyukov,Moss,Kaplan,Kirillova,&Tarter,2000)。由于发现DAT1基因与具有某些新颖性寻求特征的注意缺陷多动症(ADHD)存在关联(Jorm et al.,2001,),有人用极端分数个体为被试考察了DATl基因与新颖性寻求之间的关联,结果表明这种效应只在女性被试身上有所显现(van Gestel et al.,2002)。

3.3.2 5-羟色胺系统

5-羟色胺作为一种生物胺,对于人类的攻击性、抑郁、焦虑、冲动、幸福感等情绪情感具有重要调控作用。此系统中最经常被研究的人格候选基因是5-羟色胺转运体基因(5-HTT),该基因越长释放和回收5-羟色胺的效率越高,已有许多研究考察了它与伤害回避等焦虑类人格特质之间的关联。5-HTT基因具有两种多态性:5-HTT基因连锁的多态性区域(5-HTTLPR)和5-HTT基因2号内含子中的VNTR多态性,其中人格研究关注最多的是5-HTTLPR。

1996年的一项经典研究发现,短5-HTTLPR等位基因携带者较长5-HTTLPR等位基因携带者在神经质和伤害回避维度上的表现水平更高(Lesch et al.,1996)。功能性磁共振成像表明,携带一个或两个短5-HTTLPR等位基因复本的个体在对恐怖刺激的反应中表现出更强的杏仁核神经元活动(Harid et al.,2002)。这种由遗传导致的杏仁核对情绪刺激的兴奋性差异支持了该结论。不过,也有一些其他研究并未发现此种关联(Flory et al.,1999;Tsai,Hong,& Cheng,2002)。还有一些研究得出了相反结果。例如,使用极端得分个体做的一项研究发现,短5-HTTLPR等位基因在低伤害回避群体中比在高伤害回避群体中出现的频率更高(van Gestel et al.,2002)。2004年的一份元分析指出。这种可重复性的缺乏很大程度上是由于样本量过小以及所使用的量表不同而导致(Sen,Burmeister,& Ghosh,2004)。分析者发现,运用大五人格量表测量的神经质与5-HTTLPR有显著关联,而运用气质性格量表测量的伤害回避与5-HTTLPR不存在任何显著关联。2008年的另一份元分析也得出了类似结论(Munaf6 et al.,2008)。然而,使用NEO-PI-R量表对4000多名被试进行的一项大型研究发现,5-HTTLPR与神经质或其各维度(焦虑,抑郁,愤怒,敌意,自我意识,冲动。易受伤害性)之间不存在任何关联(Terracciano etal.,2009)。近年来,有研究者发现,与其杂合子同伴或短等位基因的纯合子同伴相比,具有长5-HTLPR等位基因的纯合子个体通常更关注积极情感画面,而选择性地回避一同呈现的消极情感画面(Fox,Ridgewell,& Ashwin,2009)。这表明他们通常更加乐观。使用信息加工眼动跟踪评估法进行的另一项研究发现,短5-HTLPR等位基因携带者在视觉上更加偏爱积极场景而回避消极场景,长5-HTLPR等位基因的纯合子个体更加无偏地看待情绪场景(Beevers,Ellis,Wells,& McGeary,2009)。这表明,短5-HTLPR等位基因携带者可能比长等位基因纯合子个体对环境中的情绪信息更加敏感。对于5-HTLPR与人格特质之间关系的这些看似不一致的结论,还有待进一步研究确证。此外,一项最新研究显示,5-HTLPR与Val66Met两种多态性对伤害回避存在显著交互作用(Ariaset al.,2012)。

除5-HTT基因外,研究者还对5-羟色胺系统中的另外两个人格候选基因5-羟色胺2A受体基因(5-HT2A)和5-羟色胺2C受体基因(5-HT2C)进行了考察。有研究者在双极性精神障碍患者和健康控制组群体中检验了5-HT2A的1号外显子中的一种单核苷酸多态性与伤害回避维度之间的关联,但是没有发现任何关联存在(Blairy et al.,2000)。还有研究者以健康日本人为样本对5-HT2A的5种单核苷酸多态性进行了考察,没有发现它们与气质性格量表的任何维度存在关联(Kusumi et al.,2002)。就5-HT2C与人格的关系而言,研究者发现5-HT2C中的一个点突变与三维人格问卷的奖赏依赖维度和坚持性维度存在关联,并且DRD4与5-HT2C对奖赏依赖存在显著交互效应(Ebstein et al.,1997)。然而,后来的一项重复性研究发现,5-HT2C对奖赏依赖不存在主效应,但DRD4与5-HT2C对奖赏依赖确实存在显著交互效应(Kühn et al.,1999)。

3.3.3 去甲肾上腺素系统

在人格的分子遗传学研究中,人们对去甲肾上腺素系统的关注远不及对多巴胺系统和5-羟色胺系统的关注多,但也取得了一些研究成果。有研究以健康被试为样本,考察了去甲肾上腺素转运体(NET)的一种外显子限制性片段长度多态性(RFLP)与气质性格量表中各维度之间的关系,但没有发现任何关联存在(Samochowiec et al.,2001)。不过,另一项以朝鲜人为被试的研究表明,去甲肾上腺素转运体的T-182C基因多态性与气质性格量表的奖赏依赖维度存在显著关联(Ham,Choi,Lee,Kang,& Lee,2005)。有研究表明,在中国人被试中,αla肾上腺素受体基因(ADRAlA)和0c2a肾上腺素受体基因(ADRA2A)的多态性与三维人格问卷各维度之间不存在任何关联(Tsai,Wang,& Hong,2001)。而之前的另一项研究发现,ADRA2A的一种常见单核苷酸多态性与易怒性、敌对性和冲动性诸测量值之间的确存在某些关联(comings et al.,2000)。关于去甲肾上腺素系统的诸候选基因与人格之间关系的研究,有待进一步加强。

4 总结与展望

行为遗传学通过数量遗传学和分子遗传学两条取径对人格遗传性问题进行了不同层次的详细探索,取得了较为丰富的研究成果,推进了我们对人格遗传程度和遗传机制的深刻认识,也有利于促进人格研究的科学化。人格行为遗传学研究的两类取向各具优势和不足。数量遗传学取向借助生态研究设计从宏观上估计遗传变异对人格差异的解释程度,资料获取经济简单、技术要求低,并且结果解释相对容易,但它无法确切地告诉我们究竟哪些基因或多态性导致了人格差异以及具体作用过程如何(Parens,2004),对研究设计和被试取样的依赖性较强,况且面对遗传与环境实际存在相关或交互作用的不争事实,遗传率的解释意义往往遭到质疑(Lerner,2011)。分子遗传学取向摆脱了数量遗传学取向存在的诸多不足,可以从DAN水平精确细微地探知造成人格障碍或差异的特定基因及其作用机制,但研究程序繁琐复杂,对新兴生物技术要求较高,在人格候选基因的选择上带有推测性,迄今为止尚未产生符合最初预期的可重复的实质性人格研究成果(McClellan & King,2010)。除此之外,两类研究取向还存在诸多共同的问题:一是受测量手段限制,对被试自陈报告依赖性高,往往会造成某些人格特质在防卫或伪装心理作用下被隐藏;二是由于研究设计和技术、被试取样、人格和基因自身复杂性以及环境与基因的交互作用等原因,研究结果的可重复性不高(Kim & Kim,2011);三是受过去百余年消极心理学研究传统的影响,所研究的对象主要是精神分裂症、抑郁症、多动症等病理人群(张文新,王美萍,曹丛,2012),缺乏对健康人群积极人格品质的遗传研究;四是研究成果的现实利用率低,未能把研究所得成果及时有效地转化为现实效益。

鉴于人格行为遗传学研究所存在的诸多问题,未来研究应特别注意以下五个方面:

(1)强调两种研究取向的有机结合,在数量遗传设计中加入对特定基因型的直接测量。这两种研究取向各有优缺,可以相互弥补,况且分子遗传学的许多工作需用传统数量遗传学设计综合考虑环境与遗传因素来完成。未来研究可以在数量遗传设计中加入对特定基因型的直接测量,例如,可以先用数量遗传学方法确定某种人格特征是否具有遗传性以及遗传到什么程度,然后再用分子遗传学方法从根本上细微探究影响人格的具体基因及其作用方式。

(2)注重多学科和多范式的有效整合。人格的行为遗传学研究是一项综合性很高的困难工作,涉及遗传学、心理学、生物学、神经科学、医学和社会学等多门学科,因此需要在更广泛的视野下进行多学科的整合研究。人格的遗传机制相当复杂,靠单一研究工具(如自陈问卷)或研究范式很难获得理想结果,今后应在传统研究范式的基础上综合采用脑成像、诱发电位、前脉冲抑制和计算机博弈模型等一些新的研究范式,从多个角度综合考察和相互印证人格与基因的关系,从而弥补由自陈报告带来的弊端,同时克服可重复性低的问题。

(3)扩大对健康人群积极人格品质的研究。未来人格行为遗传学研究不仅要研究病理人群的消极人格品质,而且更要研究正常人群甚至超常人群的积极人格品质,探究它们的遗传性及分子作用机制,为积极人格品质的培养提供遗传学依据。

篇5

关键词:基因组编辑;CRISPR-Cas9;猪;基因功能;网络调控

中图分类号:R34;S828 文献标识码:A 文章编号:0439-8114(2016)24-6510-07

最新的CRISPR(Clustered regularly interspaced short palindromic repeats)分类表将其描述为三大类型和多个亚型,结合生物化学与分子遗传学方法揭示了不同CRISPR-Cas(CRISPR associated protein)类型的特征[1],其中II型系统Cas9比其他更为简便。基于CRISPR-Cas9系统的作用原理,研究人员模拟细菌的成熟crRNA和tracrRNA,在体外人工合成gRNA(guide RNA),同样可以达到特异地切割靶标DNA,从而将该系统简化成核酸酶Cas9和人工合成的sgRNA两个组分,在靶标位点导致所期望的插入、删除或替换,由此开创了新型基因编辑技术,这是该系统的“基因工程功能”。更进一步地,通过点突变得到缺乏核酸酶活性的Cas9突变体,命名为dCas9。突变的dCas9可在gRNA的引导下,实现与DNA结合,但不能切割DNA。而dCas9具有融合异源模块的结构域,利用dCas9这3点特性,将其与一系列具有功能的异源模块融合,实现不同研究目的:转录激活与抑制、探索未知基因及其调控元件的功能、全基因组扫描等,这是该系统的“基因调控功能”。不论是基因工程/基因调控,其工作过程是相同的:gRNA通过序列互补原则将核酸酶带到基因组特定位点,使其与靶标结合。不过,基因工程与基因调控是利用Cas9蛋白的不同形式,包括野生型Cas9与人工突变的dCas9蛋白,以实现各自目的[2,3]。该技术能够快速地构建遗传改造的动物,使得在过去要花费数月或数年的工作现在只需几周完成。CRISPR技术与PCR技术类似,正在给生物工程研究带来革命性的改变,从各个方面影响着生命科学的发展[4]。目前基因组编辑CRISPR-Cas中也主要是应用Cas9系统,下面简称“Cas9系统”。

2013年初以来,Cas9系统的快速创新及其拓展应用,使其成为可替代ZFN和TALEN的第三代基因组编辑工具。2013年Science杂志将Cas9系统选为年度十大突破之一(亚军);2014年美国加州大学伯克利分校生物化学家Doudna博士和德国的Charpentier博士因此共同获得了美国硅谷“科技突破奖”与“阿尔珀特奖”;2015年被Science杂志评选为年度十大突破之首;2016年具有小诺贝尔奖之称的盖尔德纳国际奖授予了三位科学家:Doudna,Charpentier和麻省理工学院的张锋三位博士。几大公司看好Cas9系统的成果商业化前景。Editas Medicine、Intellia Therapeutics和CRISPR Therapeutics等公司已经收到数亿美元的投资。例如,2015年比尔・盖茨等大佬宣布为促进基因编辑技术的蓬勃发展,共投资1.2亿美元参与基因编辑公司 Editas Medicine的B轮融资,Cas9先驱之一张锋是该公司的联合创始人。Editas Medicine计划于2017年采用基因编辑疗法对先天性黑蒙症进行临床试验,这是一种罕见的视网膜疾病,基因突变可能导致眼睛中的感光细胞逐渐消失。据麻省理工W院Broad研究所网站最新报道,农业生物技术巨头杜邦(DuPont)公司宣布对Caribou Sciences公司进行投资,且将获得其专利在农作物使用的独家授权。而Caribou Sciences是Cas9技术首创之一Doudna博士实验室的附属公司。目前,杜邦公司正在温室中种植Cas9编辑的玉米、大豆、水稻和小麦,期望在5~10年内出售Cas9技术的产品。位于明尼苏达州圣保罗的动物生物科技公司Recombinetics正在开发同类动物,包括无须抑制牛角生长的牛和不需要被的猪。2016年6月底,美国国立卫生研究院(NIH)顾问委员会批准了一项申请:利用Cas9系统强化依赖于患者T细胞(一种免疫细胞)的癌症疗法。由于其易用性和通用性,Cas9已经被世界各地的实验室用来改写基因组和重塑细胞,其在医学和农业领域的潜在应用是无穷无尽的,它将开启该行业新一波的产品浪潮和利益追逐。根据瑞士洛桑附近的咨询机构IPStudies介绍,全球已有超过860项CRISPR专利,平均每天新增加一项专利。世界许多遗传学家和生化学家普遍认为,Cas9系统可对所有的生物进行改造,这是一项可改变生命未来的伟大技术,当然,该技术也面临许多伦理挑战。

1 CRISPR-Cas9系统的拓展性应用研究

最初的Cas9只能实现剪切的基因工程功能(CRISPR1.0版本)。每次只能执行一种功能的dCas9是CRISPR2.0。现在研究人员将突变dCas9蛋白与一系列具有功能的异源模块融合,成为能够执行多重功能的CRISPR3.0。这种平台能够执行复杂的程序,适用于研究基因网络机理和更深入探讨复杂性状/疾病[5]。

1.1 同时激活多基因表达/同时抑制多基因

Chavez等[2]设计了三方转录激活子(VP64-p65-Rta)融入dCas9,可探讨一连串基因回路对生物过程(比如组织发育或疾病发生)的影响,也可以精确指导干细胞分化,生成再生医学所需的移植器官。Konermann等[6]应用改造后的Cas9系统成功激活了十个基因,包括长非编码RNA(LncRNA)。这些基因转录效率得到了两倍以上的增长,该研究的意义在于,人们可以用这一技术在活细胞中有效启动任何基因表达[7]。Cas9系统已被成功地用于同时干扰小鼠2个基因和敲除猴与蚕的两个基因[8,9]。多位点编辑将促进多方面研究,包括上位效应的检测和基因组中物理距离非常接近的多基因操作。Ma等[10]同时靶向基因家族的多成员(多至8个位点),突变率平均为85.4%。Zalatan等[11]应用架RNA(scaffold RNA,scRNA),成功在酵母中重新定向了一个复杂的多分支的代谢通路,其中一些基因被激活,另一些基因被抑制(CRISPRa/i)。多基因的组合控制可以帮助人们灵活操纵细胞中的通路,例如,改写细胞命运或者设计代谢通路。Cheng等[5] 报道其CRISPR 3.0版本是Casilio,该系统可结合多个蛋白模块,包括基因激活、基因抑制、染色体荧光标记、组蛋白乙酰转移酶等,以实现不同的目的。

1.2 运用Cas9实施表观遗传学编辑

Kearns等[12]报道dCas9-组蛋白脱甲基酶LSD1 在鼠胚胎干细胞中靶向转录因子Oct4的远端增强子,抑制Oct4转录并失去多能性。许多酶能以不同的机制催化DNA去甲基化,其中,TET(Ten-Eleven Translocation dioxygenase)双加氧酶家族有3个成员:TET1、TET2和TET3,催化的5-甲基胞嘧啶氧化,可启动DNA的去甲基化。Xu等[13]首先向传统sgRNAs中插入两个拷贝的噬菌体MS2 RNA元件,构建了修饰后的sgRNA2.0,这有利于Tet1催化结构域(TET-CD),与dCas9或MS2外壳蛋白融合,以靶向基因位点。结果证明,dCas9/sgRNA2.0指导的去甲基化系统能有效地将靶基因去甲基化,可显著上调靶基因的转录,包括RANKL、MAGEB2或MMP2,而且这结果与它们启动子中相邻的CpG岛的DNA去甲基化密切相关。类似的工作与结果也由Choudhury等[14]报道于模式抑癌基因BRCA1启动子。这些结果不仅可以帮助我们理解在特定背景中DNA甲基化如何调节基因表达的机制,而且也使我们能够控制基因表达与功能,并带来潜在的临床效益。表观遗传效应模块的汇总详见文献[15]。

1.3 运用Cas9开展高通量全基因组遗传学筛选

全基因组 CRISPR 筛选克服了传统遗传筛选的缺点,可应用于几乎任何细胞系和任何遗传背景下的筛选[16]。应用其进行遗传筛选的基础是蛋白Cas9修饰后的多种形式融合和sgRNA文库。构建Cas9高通量筛选的文库有两种:阵列文库和混合文库。(1)细胞系中开展遗传学筛选。Wong等[17]创建了Cas9与CombiGEM结合的平台技术,可展望,该平台有着广泛的应用前景,加速系统鉴定控制人类疾病表型的遗传组合,并转化到新药物组合的发现。(2)体内开展遗传学筛选。Ma等[18]将活化诱导胞嘧啶核苷脱氨酶(AID)与dCas9融合成为dCas9-AIDx,在慢性粒细胞中靶标BCR-ABL,鉴定了赋予细胞伊马替尼抗性的已知突变和新突变。Zhu等[19]开发了配对的gRNAs(pgRNAs),产生大片段缺失,应用这种高通量方法确定了51条功能性的lncRNAs,并验证了其中的9个。该方法使科学家们能够快速识别哺乳动物非编码元件的功能。

1.4 光遗传学加CRISPR调控基因表达与靶DNA切割

东京大学和杜克大学基于光诱导的CRY2(色素)和CIB1(蛋白),开发出相似的光遗传学+CRISPR系统,其目的是利用光来开启和关闭基因表达,同时赋予时空控制和可逆性[20-22]。

1.5 通过荧光标记的dCas9对DNA实施标记

Deng等[23]w外构建“dCas9/荧光素”复合物作为探针,可视化基因组位点完全没有引起DNA变性,称为Cas9介导的荧光原位杂交(CASFISH)。dCas9/sgRNA能够在近着丝粒区、着丝粒、G富集端粒和编码基因等位点快速而有效地进行重复DNA元件标记,也适用于初生组织切片的检测。这种技术具有快速、有效、破坏性较少与成本低的特征,为基础研究和遗传学诊断增加了一种非常有潜力的工具。

1.6 CRISPR-Cas9系统同时实现基因工程和基因调控的双重功能

Kiani等[24]开发了Cas9系统一个新策略,能够同时实现基因组工程和基因调控的双重功能。其使用经过改造的gRNA和Cas9蛋白,在切割特定基因的同时调控其他基因的表达。这一技术大大增强了基因组编辑和基因调控的功能性,帮助我们进一步操纵细胞,以揭示重要生命过程背后的复杂机理,比如,癌症耐药性和干细胞分化,或者帮我们设计更高级的人工基因回路。更进一步地,双重功能Cas9可以促进基因工程菌株(例如大肠杆菌)大规模生产化合物和燃料。

1.7 多顺反子基因

Xie等[25]将tRNA与gRNA结合起来,开发合成了一个多顺反子基因,以提高Cas9系统的靶向能力和多重编辑效率,能够在水稻中高效实现多重基因组编辑和染色体片段删除(可达到100%)。Qi等[26]设计多个tRNA-gRNA单元,在玉米中的研究表明,该系统不仅增加靶向位点数目,也能更有效和准确地缺失染色体片段,这对基因功能的完全消除特别是lncRNAs的研究很重要。同时还表明,在一个表达盒中可容纳多达四个tRNA-gRNA单元,用来修饰同一基因家族中的不同成员或同一代谢途径中的不同调控基因。

1.8 Cas9系统应用于多能干细胞

诱导型多能干细胞(induced pluripotent stem cells,iPSCs)可无限地自我更新,而不会丧失分化成所有细胞类型的能力,且绕过了免疫排斥的障碍。iPSCs在再生医学中具有良好的前景,是用于致病突变原位校正的一种理想细胞群。将CRISPR应用到iPSCs中为纠正遗传缺陷疾病开辟了一条新途径,因为iPSCs很难采用传统的基因打靶策略进行操作,尤其是蛋白质介导的基因组编辑方法[27-30]。

1.9 染色体大片段和lncRNA编辑

Shechner等[31]介绍了以CRISPR-Cas9为基础的基因组靶向技术展示:CRISPR-Display(CRISP-Disp),将gRNA-ncRNA融合,能将大片段非编码RNA带到特定DNA位点,同时不影响dCas9的功能。CRISP-Disp系统可容纳约4.8 kb的RNA结构域,这相当于天然lncRNA的长度。除了lncRNA以外,研究人员还对各种天然和人工非编码RNA进行了测试,表明gRNA可以偶联多个非编码RNA结构域,这些结构域可同时且独立起作用。CRISP-Disp可用来解决如下问题:一个lncRN段是如何调控基因表达的?是这个片段的转录本在起作用,还是它本身的序列在起作用?揭示lncRNA在表观遗传学修饰、染色质重塑或者转录调控中做出的贡献。该系统除了研究非编码RNA机理外,对合成生物学来说,CRISP-Disp的灵活性、模块化和多重化特性是很有吸引力的。用CRISP-Disp招募RNA-蛋白复合体到特定位点,可以设计出复杂的基因调控回路。Yoshimi等[32]开发出了两种基因改造新技术:lsODN(long single-stranded oligodeoxynucleotide)和2H2OP(Two-hit two-oligo with plasmid)),来完成相对较长的DN段,如GFP(Green fluorescent protein)序列的靶向基因敲入,提高基因编辑的效率。第一种方法是利用lsODNs作为靶向供体。第二种方法是共同注射两个gRNAs作为“剪刀”切割基因组DNA和供体质粒DNA中的靶位点,两个短ssODNs作为“浆糊”连接切割位点的末端。利用开发出的两种基因改造方法,该研究小组成功实现了高效、精确敲入GFP基因,导入了近200 kb的大片段基因组区域,这是采取传统方法不可能做到的。并用人源基因替代了大鼠基因,构建出了基因人源化的动物。这两种基因敲入方法将会提高遗传工程改造的效率。研究人员高度期待这些遗传工程生物将用于药物研发、转化和再生医学等广泛的研究领域。

1.10 研究蛋白质工程

Hess等[33]开发了一种称为重利用体细胞超突变的原位蛋白质工程新技术,命名为CRISPR-X。研究人员利用dCas9召集胞嘧啶氨酶(AID)变异体,其携带有经过MS2修饰的sgRNAs,能特异地诱变内源靶标,限制脱靶伤害。它能产生不同点突变的多样文库,同时靶向多个基因组位点,结果从中找到了引发Bortezomib耐药性的已知和新突变。还利用超活化AID变异体,同时诱变了转录起始位点上游和下游的位点。这些结果均表明 CRISPR-X是一种强大的工具,能帮助科学家们创建复杂的原始遗传突变文库,分析完善蛋白质工程。

2 CRISPR-Cas9系统在猪中的研究进展

Cas9系统出现之前,已经有文献报道了其他技术的基因组编辑猪[34],现在利用Cas9系统的报道层出不穷。这里重点综述Cas9系统在猪研究中的进展,因为猪不仅提供肉食,同时其在生理学、免疫学和基因组学上与人高度相似,器官大小也比啮齿动物有优势。

2.1 功能基因研究

Su等[35]合成sgRNA时用猪U6启动子代替人U6启动子,获得更佳的打靶效率;Wang等[36]显微注射Cas9 mRNA和sgRNA至猪原核期胚胎,筛选出打靶效率最高的sgRNA;He等[37]将携带GFP和红色荧光蛋白(RFP)的Cas9质粒先后转染猪胎儿成纤维细胞,通过双重荧光筛选提高打靶成功效率;吴金青等[38]应用SSA(Single-strand annealing)报告载体,使Cas9系统对猪胎儿成纤维细胞的打靶效率提高5倍左右。八聚体结合转录因子4(OCT4)是参与调控胚胎干细胞自我更新和维持其全能性的重要转录因子之一。Kwon等[39]研究表明Cas9系统可针对孤雌胚胎实现基因OCT4的敲除和敲入。Lai等[40]构建了一个猪OCT4的报告系统,其内源性OCT4启动子可直接控制RFP,因此荧光能准确地显示内源性OCT4的激活,并获得了在内源性OCT4基因启动子下游具有tdTomato基因敲入的猪胎儿成纤维细胞(PFF)系。Cas9系统编辑的PFFs被用作体细胞核移植(SCNT)的供体细胞,在SCNT胎儿的囊胚和生殖嵴中检测到了强大的RFP表达,并制备了两头有生命力的基因编辑猪。

2.2 提高生产性能

肌肉生长抑制素(Myostatin,MSTN)基因对肌肉生长发育具有重要调控作用。Crispo等[41]、Cyranoski[42]、Wang等[43]和张冬杰等[44]利用Cas9系统获得了MSTN基因的双等位基因敲除猪。湖北省农业科学院畜牧兽医研究所Bi等[45]应用Cas9系统制备了无选择标记的MSTN基因敲除克隆猪。首先,利用Cas9系统介导的同源重组敲除猪初生细胞中MSTN的一个等位基因。然后,用Cre重组酶来切除选择标记基因,有效率为82.7%。免疫印迹显示,克隆猪MSTN大约有50%的降低,同时肌原性基因在肌肉中的表达有所增加。组织学显示,肌纤维数量增加,但是肌纤维大小保持不变。超声波检测显示,最长肌大小增加,背部脂肪厚度降低。该研究提供了一种可靠的途径用于家畜良种生产,也提出了一种策略来减少潜在的生物学风险。中国农业科学院北京畜牧兽医研究所的李奎教授领导研究团队,首次利用Cas9系统获得了位点特异性的基因敲入猪模型[46],得到一个新的基因组“安全港”位点:pH11位点,通过Cas9系统分别在细胞、胚胎和动物体内的该位点插入了大于9 kb的基因片段,实现了稳定高效的基因表达。

分化簇 163(Cluster of differentiation 163,CD163)被认为是猪繁殖与呼吸综合征病毒(PRRSV)的受体基因,分化簇1D(CD1D)是一类抗原递呈因子。Whitworth等[47]利用Cas9系统分别敲除CD163和CD1D的基因编辑猪;经过蓝耳病毒株攻毒后CD163双等位基因敲除猪未表现出临床症状,具有良好的抗蓝耳病能力。中国农业科学院北京畜牧兽医研究所利用Cas9系统进行抗PRRSV和抗猪传染性胃肠炎(PEDV)的CD163和CD13双基因编辑猪的制备,正在开展相关验证鉴定工作。这些研究在养猪业引起了高度关注。

2.3 研究人类疾病的动物模型

猪是人类医学研究极佳的动物模型。vWF(von Willebrand factor)的基因是引起人血管性血友病的主因。Hai等[48]应用Cas9系统靶向猪vWF外显子,目的基因插入/缺失突变效率达到 68.8%(11/16);单等位基因突变和双等位基因突变的vWF抗原水平均极显著低于野生型个体(P

再如,去除所有主要淋巴细胞的猪是研究人X-染色体连锁的严重联合免疫缺陷(SCID)患者病毒感染和免疫受损发病机理的理想动物模型。破坏IL2RG的猪比啮齿动物敲除IL2RG模型更接近于SCID表型。Lei等[50]利用Cas9系统快速生成双基因RAG2/IL2RG敲除猪,成功建立了人诺如病毒(HuNoV)感染的免疫缺陷的猪模型,因为RAG2/IL2RG缺陷猪缺乏B细胞、T细胞和自然杀伤细胞。Yu等[51]成功地通过Cas9系统在滇南小型猪产生人类DMD疾病动物模型。

2.4 医学生物反应器

猪除了作为人类疾病模型外,也可作为生产人类需要的产品反应器。例如,赖良学课题组利用精确Cas9系统对猪胰岛素基因进行了无痕定点修饰,3头可以分泌人胰岛素的克隆猪,其中2头完全分泌人胰岛素,而不含猪胰岛素;另一头既分泌人胰岛素也分泌猪胰岛素。牛泌乳量大、乳汁活性蛋白的产量高,因此其乳腺是理想的生物反应器,Peng等[52]通过CRISPR技术建立了人血清白蛋白的生物生产器。人成纤维细胞生长因子2(hFGF2)是一种多功能生长因子,在促进组织生长发育、新血管形成和参与组织修复过程中起着重要的作用,但其在人体内的表达量较低。Jeong等[53]借助Cas9系统将该基因导入到牛成纤维细胞的β-casein基因内含子中,为获得表达hFGF2蛋白的基因编辑牛奠定了基础。谷氨酸棒杆菌是工程化应用传统方法(同源重组)批量生产氨基酸的重要生物机体。Cleto等[54]采用CRISPRi降低该菌的基因PGI和PCK的表达高达98%,降低基因PYK高达97%,从而大大增强了L-赖氨酸和L-谷氨酸产品滴度的比率。这种新谷氨酸代谢工程方法只需要3 d时间,表明CRISPRi可用于快速且有效地代谢途径改造,而不需要对基因缺失或突变。

2.5 异种器官移植

据不完全统计,全世界大概有200万人需要器官移植,而器官捐献的数量远远低于需求数量[55]。尤其是老龄化和慢性疾病的多发,更加导致供体器官严重不足。猪被认为是人体异种器官来源的首选动物,因为猪与其他哺乳动物比较,无论从器官大小、生理结构和基因组相似度都更接近于人,因此,上世纪90年代应用猪生产人类器官项目一度在全球受到追捧,但受阻于猪内源性逆转录病毒(Porcine endogenous retrovi-ruses,PERVs)造成的重大医疗风险。哈佛大学利用Cas9系统对猪肾细胞系PK15中所有62个拷贝的PERV pol(多聚酶)基因敲除,使内源性病毒传递给人的风险降低了1 000倍以上[56]。该研究扫除了猪器官用于人体移植的安全障碍,为全世界亟需器官移植的上百万病人带来希望,也重新燃起了大家对异种器官移植的信心。

免疫排斥反应是猪器官移植另一障碍。α-1,3-半乳糖基转移酶(GGTA1)基因与异种器官移植后的超急性免疫排斥反应显著相关,Sato等[57]在猪胎儿成纤维细胞中通过Cas9系统获得了GGTA1双等位基因敲除的细胞系。Li等[58]针对3个与免疫排斥相关的基因GGTA1、胞苷单磷酸N-乙酰神经氨酸羟化酶(CMAH)和异红细胞糖苷酯合成酶(iGb3S)基因,共转染靶向这2个或3个基因的CRISPR/Cas9-PX330构质粒,最终获得了敲除单个基因及同时敲除2个或3个基因的胎儿或仔猪。利用类似的方法,Estrada等[59]对猪肝脏细胞分别敲除GGTA1、GGTA1/CMAH和GGTA1/CMAH/β4GalNT2(β-1, 4-N-乙酰半乳糖胺基转移酶2)基因。

3 CRISPR-Cas9系统的前景

CRISPR-Cas9系统在如此短的时间内极大地推动了生物学的各个方面研究,例如基因功能解析、基因治疗、人类疾病动物模型、生物生产反应器和农业动植物优质遗传育种。该技术生成的产品,定向改变但不含外源基因/片段,在验证其安全性的基础上,这种经过“基因组编辑”的产品更容易被消费者接受。理论上它不会带来健康或环境方面的风险,但是否应该受到转基因相关法律的约束,美国和欧盟的态度不一致。作为新兴的基因组编辑技术,有必要进一步完善其特异性、脱靶效应和输送方法,以及如何更好地激活细胞自身的同源重组,并探索新型基因组编辑技术及其应用,例如,新CRISPR-Cpfl系统[60]、新型NgAgo系统[61];无序列限制的DNA编辑新工具[62]、纳米颗粒技术[63]等等。

r业动植物改良从来都是一个漫长而繁琐的过程,而如今,科学家因为有了CRISPR技术能够快速而轻松地实现。近两年,许多实验室将这种工具应用在动植物和微生物中,以期获得更高产、更适应环境和更优质的品种。有理由相信,CRISPR-Cas9系统将更好的服务于人类,包括动植物育种。

参考文献:

[1] MOHANRAJU P,MAKAROVA KS, ZETSCHE B,et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J].Science,2016,353(6299):5147.

[2] CHAVEZ A, SCHEIMAN J,VORA S,et al. Highly efficient Cas9-mediated transcriptional programming[J].Nat Methods, 2015,12(4):326-328.

[3] DIDOVYK A,BOREK B,TSIMRING L,et al. Transcriptional regulation with CRISPR-Cas9:Principles,advances, and applications[J].Curr Opin Biotechnol,2016,40:177-184.

[4] WRIGHT A,NUNEZ J,DOUDNA J. Biology and applications of CRISPR systems:Harnessing nature's toolbox for genome engineering[J].Cell,2016,164:29-44.

[5] CHENG A,JILLETTE N,LEE P,et al.Casilio:A versatile CRISPR- Cas9-Pumilio hybrid for gene regulation and genomic labeling[J].Cell Research,2016,26:254-257.

[6] KONERMANN S,BRIGHAM M,TREVINO A,et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J].Nature,2015,517(7536):583-588.

[7] CHAVEZ A,TUTTLE M,PRUITT B,et al. Comparison of Cas9 activators in multiple species[J].Nature Methods,2016,13:563-567

[8] DAIMON T,KIUCHI T,TAKASU Y.Recent progress in genome engineering techniques in the silkworm,Bombyx mori[J].Dev Growth Differ,2014,56:14-25.

[9] NIU Y,SHEN B,CUI Y,et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014, 156: 836-843.

[10] MA H,TU L,NASERI A,et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow[J].Nat Biotechnol,2016,34(5):28-30.

[11] ZALATAN J,LEE M,ALMEIDA R,et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J].Cell,2015,60:339-350.

[12] KEARNS NA,PHAM H,TABAK B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J].Nat Methods,2015,12(5):401-403.

[13] XU X,TAO Y,GAO X,et al. A CRISPR-based approach for targeted DNA demethylation[J].Cell Discov,2016,2:16009.

[14] CHOUDHURY S,CUI Y,LUBECKA K,et al. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter[J].Oncotarget,2016,DOI:10.18632/oncotarget.10234.

[15] LAUFER B,SINGH S. Strategies for precision modulation of gene expression by epigenome editing: An overview[J].Epigenetics Chromatin,2015,8(1):1-12.

[16] SHALEM O,SANJANA N,ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J].Nat Rev Genet,2015, 16(5):299-311.

[17] WONG A, CHOI G, CUI C, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM[J]. Proc Natl Acad Sci USA,2016,113(9):2544-2549.

[18] MA Y,ZHANG J,YIN W,et al. Targeted AID-mediated mutagenesis(TAM) enables efficient genomic diversification in mammalian cells[J].Nat Methods, 2016, DOI:10.1038/nmeth.4027.

[19] ZHU S,LI W,LIU J,et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library[J].Nat Biotechnol,2016.DOI:10.1038/nbt.3715.

[20] NIHONGAKI Y,KAWANO F,NAKAJIMA T,et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J].Nat Biotechnol,2015,33(7):755-760.

[21] POLSTEIN L,PEREZ-PINERA P,KOCAK D,et al. Genome-wide specificity of DNA binding, gene regulation,and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators[J].Genome Res,2015,25(8):1158-1169.

[22] HEMPHILL J,BORCHARDT E K,BROWN K,et al. Optical Control of CRISPR/Cas9 Gene Editing[J].J Am Chem Soc,2015,137(17):5642-5645.

[23] DENG W,SHI X,TJIAN R,et al. CASFISH:CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells[J].Proc Natl Acad Sci USA,2015,112(38):11870-11875.

[24] KIANI S,CHAVEZ A,TUTTLE M, et al. Cas9 gRNA engineering for genome editing, activation and repression[J].Nature Methods,2015,12(11):1051-1054.

[25] XIE K,MINKENBERG B, YANG Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J].Proc Natl Acad Sci USA,2015,112(11):3570-3575.

[26] QI W,ZHU T,TIAN Z,et al. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J].BMC Biotechnol,2016, 16(1):58.

[27] LI H, FUJIMOTO N, SASAKAWA N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9[J]. Stem Cell Reports,2015,4:1-12.

[28] NIU X, HE W, SONG B, et al. Combining single-strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells[J].J Biol Chem,2016,291(32):16576-16585.

[29] OU Z,NIU X,HE W,et al. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice[J]. Sci Rep,2016,6:32463.

[30] SONG B, FAN Y, HE W, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system[J]. Stem Cells Dev,2015,24(9):1053-1065.

[31] SHECHNER D, HACISULEYMAN E, YOUNGER S, et al. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display[J]. Nat Methods,2015,12(7):664-670.

[32] YOSHIMI K, KUNIHIRO Y, KANEKO T, et al. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes[J]. Nat Commun,2016,7:10431.

[33] HESS G, FRéSARD L, HAN K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods,2016,DOI:10.1038/nmeth.4038.

[34] WEST J, GILL W. Genome Editing in Large Animals[J]. J Equine Vet Sci,2016,41:1-6.

[35] SU Y, LIN T, Huang C, et al. Construction of a CRISPR-Cas9 system for pig genome targeting[J].Anim Biotechnol,2015, 26(4):279-288.

[36] WANG X, ZHOU J, CAO C, et al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs[J]. Sci Rep,2015,5:13348.

[37] HE Z, SHI X, DU B. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection[J]. J Biotechnol,2015,214:69-74.

[38] 墙鹎啵梅 瑰,刘志国,等.应用SSA 报告载体提高ZFN和 CRISPR/Cas9对猪IGF2基因的打靶效率[J].遗传,2015,37(1): 55-62.

[39] KWON J, NAMGOONG S, KIM N. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development [J]. PLoS One,2015,10(3):e0120501.

[40] LAI S, S WEI, B ZHAO, et al. Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering[J]. PLoS One,2016,11(1):e0146562.

[41] CRISPO M, MULET A, TESSON L, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One,2015, 10(8): e0136690.

[42] CYRANOSKI D. Super-muscly pigs created by small genetic tweak[J]. Nature,2015,523:13-14.

[43] WANG K, OUYANG H, XIE Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep,2015,5:16623..

[44] 张冬杰,刘 娣,张 旭,等.利用CRISPR-Cas9系统定点突变猪MSTN基因的研究[J].畜牧兽医学报,2016,47(1):207-212.

[45] BI Y, HUA Z, LIU X, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Sci Rep,2016, 6:31729.

[46] RUAN J, LI H, XU K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Sci Rep,2015,5:14253.

[47] WHITWORTH K, ROWLAND R, EWEN C, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol,2014,34(1):20-22.

[48] HAI T, TENG F, GUO R, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res,2014,24:372-375.

[49] ZHOU X, XIN J, FAN N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J].Cellular and Molecular Life Sciences,2015,72(6):1175-1184.

[50] LEI S, RYU J, WEN K, Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency[J]. Sci Rep,2016,6: 25222.

[51] YU H, ZHAO H, QING Y, et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy[J]. Int J Mol Sci,2016,17(10):1668.

[52] PENG J, WANG Y, JIANG J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep,2015,5:16705.

[53] JEONG Y, KIM Y, KIM E, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination[J]. Zygote,2015,22:1-15.

[54] CLETO S,JENSEN J V,WENDISCH V F, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)[J]. ACS Synth Biol,2016,5(5):375-385.

[55] COOPER D,EKSER B, RAMSOONDAR J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol,2016,238(2):288-299.

[56] YANG L, G?BELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015,350(6264):1101-1104.

[57] SATO M, MIYOSHI K, NAGAO Y, et al. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the a-1,3-galactosyltransferase gene in porcine embryonic fibroblasts[J]. Xenotransplantation,2014,21:291-300.

[58] LI P, ESTRADA J, BURLAK C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation,2015,22(1):20-31.

[59] ESTRADA J, MARTENS G, LI P. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J].Xenotransplantation,2015, 22(3):194-202.

[60] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O ,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system[J]. Cell,2015,163(3):759-771.

[61] GAO F, SHEN X, JIANG F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nat Biotechnol,2016,34(7):768-773.

篇6

从前述国内外相关领域的研究进展,我们可以看到,干细胞由于其活细胞及动态的特点,使其具有化学药品无法完成的“神奇疗效”,从单一靶点的药物转变为多靶点的系统治疗,为未来医学发展的方向打开了一扇新的大门,也为许多身患难治性疾病的患者与家庭带来了新生的希望。但同时,正是由于干细胞的活细胞特性,也使得干细胞的临床转化成为常规医疗实践的途径更具有挑战性,细胞来源的个体差异,细胞传代的表观遗传学变化,免疫原性,冻存和复苏等都会成为影响其治疗效果的可能因素。据此,干细胞治疗临床转化的关键在于构建与其活细胞特性相匹配的管理法规与临床转化路径,而不是套用现行的化学药品的法规框架与商业模式。首先界定干细胞治疗临床转化的边界。界定的关键要素主要包括干细胞的伦理考量,某类干细胞的科学研究进展,与之配套的管理法规及转化路径。以目前干细胞研究和临床前实验开展的最充分的间质干细胞(mesen-chymal stem cell,MSC)为例,应先行明确MSC在我国进行临床转化研究的合法性地位,进一步根据伦理,科学,法规及商业等方面制定细则来评价和规范其转化路径,推动干细胞治疗的分层、有序管理,成熟一个转化一个。间质干细胞管理规范与质量标准制定通道,管理法规与质量标准:包括有硬件设备、软性流程、人员资质,并设立第三方的检测机构。最低门槛:根据供者筛查方面的最新能达到的检测手段,及实际实施的可能性,保证安全、有效及可控的前提,制定准入门槛性标准。这是必须要达到的,具有强制性,应由卫生行政主管部门制定。行业标准:为行业学会(如中国细胞生物学会干细胞生物学分会等)根据目前国际发展趋势,建立的质量标准与管理规范,相对于现行门槛标准要高,为提升我国在该领域国际竞争力而进行的质量管理标准升级而进行的前期准备与探索。行业规范与标准不具有强制性,但代表着该领域未来管理法规与质量标准升级、改进与完善的方向。产业标准:为提升中国干细胞产业在国际中的竞争力,中国干细胞产业中的龙头企业或产业联盟(如国家干细胞与再生医学产业技术创新战略联盟等)须根据国际干细胞的研究进展,结合临床应用经验与数据积累,产业国际发展趋势而制定更高的质量标准与管理规范。产业标准应着眼于未来的国际竞争而先人一步的进行研究探索,既为干细胞产业联盟的首要责任,亦是其永续经营的必由之路。通过在龙头企业内运行通过,输出为行业标准,再经过行业协会内更多企业的运行,最终形成法定标准的升级换代。这也是我国目前制定中国干细胞产业化管理规范与质量标准的产出通道,即龙头企业标准—行业协会标准—通行的国家标准。

间质干细胞临床转化的产业链及关键质控点

间质干细胞临床转化产业链包括了细胞的采集,细胞的处理与制备,细胞的运输,细胞的应用。干细胞从源头采集到终点临床治疗中整个产业链中,要达到安全、有效及可控的干细胞疗法,需要从如下几个环节进行质量控制。(1)干细胞采集—来源可控:间质干细胞广泛地存在于人体的许多组织中,如骨髓、新生儿的脐带组织、羊膜、胎盘、牙髓、脂肪等。供体的筛查主要包括以下几个方面:伦理考量:用途告知;采集方法及采集方法可能并行的风险告知(如是骨髓来源的,采集骨髓可能会引起伤口感染等等告知);供者可能的隐私尊重与保密条款(因需要进行传染病,遗传病,家族史,血清病毒学等筛查,供者相关信息的保存以供追溯细胞质量等等);供者知情同意等等;科学方面:当前的科学研究最新进展所掌握的手段,对供者筛查包括:家族史、传染病、血清病毒学、遗传病、外源性感染等等,以及每项检测指标排除的最佳时间窗;管理法规:公共健康安全法案(FDA:Public Health Safety Act,Sec-tion 361;良好组织规范(Current Good Tissue Practice,CGTP);行业认证:AABB、ISO9000、FACT等等。(2)干细胞制备:主要是控制干细胞的纯度(细胞的特异表面标记),安全(细菌、病毒等检测),潜能(多向分化潜能),免疫原性,冻存与复苏。参照规范FDA的公共安全法案和良好组织规范。制备处理操作流程的标准化:SOP从采集入库—处理制备—冻存—复苏—发放—运输—医院(临床应用),及供追溯查阅的文件,至少保存10年可供追溯;传代代数的标准化;培养液的标准化,并且界定是否有动物来源的培养液,如果用小牛血清,则其来源必须为没有发生疯牛病的国家等等;无血清培养体系的建立;细胞的鉴定检测,表面标记,活细胞的数量,纯度,及功能鉴定。ISCT对MSCs的鉴定标准;冻存、保存及复苏:操作流程的固化;运输(GDP:Good Distribution Practice):温度,时间(最大限度保持干细胞。生物活性运输的时间及患者治疗最佳时间窗),运输液,包装器皿(冷冻袋)等。(3)干细胞的临床应用:到达临床的干细胞需要配备表明干细胞“身份”的质量说明书,供临床医生检测该份干细胞是否合格的清单;临床应用,标准临床诊疗路径,包括:①适合应用间质干细胞治疗适应症的纳入/排除标准;②患者知情;③疗效判定指标/治疗无效的指标;④发生副反应的处理预案(抢救设备,抢救流程等);⑤临床应用数据的收集整理,并向干细胞制备机构沟通反馈。4.基于干细胞治疗的上述活细胞特性,干细胞治疗的商业化流通完全不同于现行制药工业的商业流通模式。化学药品成份的稳定性,使得其采取的是现行的从生产地发往世界各地的商业物流模式。但间质干细胞由于其活细胞的特点,其鉴定“身份”特质的细胞表面标记会受到组织来源、分离方法、制备方法、培养液、冻存方法、复苏方法、保存温度、运输温度、传代数及复苏后时间等变量的影响。故而需要一个完全不同于现代制药工业的商业物流模式,最大程度地保证干细胞发挥疗效的活细胞的生物学活性。

结语

篇7

关键词:子宫内膜异位症;加味当归芍药散;治疗观察

子宫内膜异位症(内异症)是指有生长功能的子宫内膜组织(腺体和间质)出现在子宫腔被覆内膜以外的其他部位。为妇科常见病之一,属终身性疾病,早期诊断是关键。近年来发病率有明显增高的趋势,常见于生育年龄的妇女,以25~45岁多见,发病率为10%~15%,不孕发生率为30%~50%,自然流产发生率约40%[1]。内异症病灶随卵巢激素水平的变化发生周期性出血和缓慢吸收,引起盆腔内组织粘连,异位囊破裂可导致广泛炎症反应,伴有卵细胞功能及排卵功能异常、黄体功能障碍、高泌乳素血症等内分泌紊乱,部分内异内膜被作为“异物”从而刺激机体产生免疫反应,导致盆腹腔微环境异常,有学者认为该病是“炎症性和自身免疫性”疾病[2]。主要临床表现为痛经、不孕、月经不调、痛、盆腔包块、子宫直肠窝触痛,严重影响女性身心健康。内异症引起疼痛的机制尚未明确,近年来研究认为:内异症疼痛是神经源性疼痛,炎症是引起内脏疼痛的主要机制,机械牵拉在内异症疼痛中亦占一席之地。西医以手术治疗为主但复发异位症难以解决,辅以激素药口服又存在激素副作用及疗效差的弊端。中医药对治疗子宫内膜异位症效果肯定,综合报道内异症各项指标变化者较少。我们应用中药加味当归芍药散治疗内异症100例,报道如下。

1 资料与方法

1.1一般资料 100例患者均为我院2012~2013年门诊患者,年龄18~50岁,平均年龄38岁,病程6个月~10年,平均5.3年,病程

1.2西医诊断标准 内异症是一种渐进性发展的疾病,病变部位、病变范围决定临床表现。早期症状不显,任何无创性检查对诊断无帮助,此期腹腔镜是诊断手段。痛经为其主要临床表现,深部痛、不孕、盆腔包块、后穹窿结节、骶子宫韧带及阴道直肠隔触痛性结节是典型症状体征,超声和MRI为主要无创诊断方法,血清CA125检测为重要生化指标。临床分型采用“子宫内膜异位症和子宫腺肌病姚氏分型”[3]。

1.3纳入标准 所有患者符合子宫内膜异位症诊断标准[4]。内异症无手术指征、患者不同意或目前不适宜手术治疗及口服西药者,签署知情同意书。排除妇科恶性病变者,及严重心、肝、肾及其他系统器质性疾患者,精神病患者。

1.4方法 纳入病例开始治疗前查血尿常规、肝肾功能,入组前1个月内的妇科超声诊断、盆腹腔MRI诊断、CA125指标结果予以认定。中药汤剂加味当归芍药散药物组成:柴胡、枳壳、当归、川芎、白芍、茯苓、白术、泽泻、香附、浙贝母、元胡、川牛膝、益母草、薏米、败酱草、公英、丹参、砂仁、檀香、甘草。水煎服,1剂/d,我院制剂室统一煎制,每剂煎取300ml,早晚餐后1h温服。21d为一疗程,月经期停服,6个疗程判定结果。疗程结束复查血尿常规、肝肾功能。

1.5疗效标准 所有病例治疗前后均按疼痛积分判定。采用VAS评分系统[5](疼痛视觉模拟评分表0~10分标准):0分无疼痛;

2 结果

治疗前评分:3分以下16例,4~6分17例,7分以上7例。治疗后评分:0分10例,3分以下19例,4~6分9例,7分以上2例,见表 1。

3 讨论

子宫内膜异位症的特点是子宫内膜腺体和间质呈浸润性生长,可形成囊性肿块或结节样病灶,常见异位点有子宫肌肉间、卵巢、骶子宫韧带、 阴道直肠隔等,且常合并慢性盆腔炎性疾病[7],是一类非常复杂难以治愈的良性疾病。属中医“痛经”、“月经不调”、“Y瘕”、“无子”等范畴。本组病例,中医辨证属肝郁脾虚者68例、肝郁脾虚夹血瘀痰浊56例、肝郁脾虚夹下焦湿热12例、胞宫虚寒8例、肝肾阴虚夹痰瘀互结4例。揭示肝郁脾虚是本病的主要病理基础及病机特点;肝郁脾虚夹血瘀痰浊是主要病理类型,属本虚标实证。

中医认为“女子以肝为先天、肝肾同源、脾为后天之本”。肝主藏血,肾主藏精主生殖,精血同源互生互化;肝主疏泄、以调节周身气血及肾精藏泄,调节情志精神;脾主运化,人体升清降浊、气血生化、水液代谢等重要功能均属于脾;肝之疏泄是脾功能正常运转的重要调节器。

组方由当归芍药散和四逆散加香附元胡浙贝母川牛膝益母草公英败酱草薏米而成。当归芍药散出自张仲景《金匮要略》“妇人病”篇:“妇人腹中诸疾,当归芍药散主之;妇人腹中绞痛,当归芍药散主之”,是中医调理肝脾治疗妇人病第一方。方中:白术、薏米、泽泻健脾祛痰浊,公英、败酱草、清湿热解毒抗炎,当归、川芎、白芍、香附、元胡入肝经调气血止痛,配方精当直中“内异症”病机,能有效缓解内异症痛经、腰腹酸痛坠胀等。本研究还发现加味当归芍药散可降低CA125指标,缩小内异症结节大小及包块范围,调经促孕,疗效确切。

参考文献:

[1]白翠红,双婷,王敏,等.子宫内膜异位症和子宫腺肌病患者的生育问题[J].中国实用妇科与产科杂志,2013,29(7):524-527.

[2]王水英,黄荷凤.子宫内膜异位症不孕与盆腔内环境及表观遗传学的关系[J].中国实用妇科与产科杂志,2013,29(7):545.

[3]姚书忠.子宫内膜异位症和子宫腺肌病的诊断与分型[J].中国实用妇科与产科杂志,2013, 29(7):541-544

[4]全国妇产科专题学术研讨会会议纪要[J].实用妇产科杂志,1993,9(6):286.

[5]Spies JB,Ccyne K,Guaou-Guaou N,et al.The UFS-QOL,a new disease-specific symp-tom and health-related quality of life ques-tionnaire for leiomyonata[J] .Curr Opin Obstet Gynecol ,2002,99(2):290-300.

篇8

关键词:建构主义教学理论;医学生物学;教学方法改革

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2015)17-0125-02

随着现代科学技术和医学事业的迅猛发展,医学生物学已成为发展最快、前景广阔的众多学科之一,在医学教育中起着极其重要的作用。为了更好地适应中医药现代化发展的大趋势,多元化培养中医院校学生,医学生物学教学起了重要的作用。医学生物学是中医院校学生的第一门基础课程,其教学内容包括了细胞生物学、遗传学、生殖医学、发育医学、分子生物学等方面,理论性强,知识更新快[1],如何让学生认识到在中医院校中学习医学生物学的必要性,如何让学生感兴趣学起来不吃力,提高学生运用生物学知识进行科研的水平,尤其是中西医结合专业学生的临床科研水平,成为我们教学方法探索的重点。基于此,本文就建构主义教学理论在医学生物学教学过程的应用的可行性及效果进行分析,以提高医学生物学的教学质量。

一、目前医学生物学的教学现状

1.教学内容较多,重视程度不够。我们总结医学生物学的教学内容有两个特点:一是教学内容较多,涉及的范围较广,包括各个层面的内容:细胞水平的内容、基因水平的内容及整体水平的内容。而且目前中医院校课程设计中,医学生物学虽然是必修课程,但是普遍存在一个现象就是学时较少。传统的教学方法是根据教学大纲的内容进行教学,在学时少、内容多的情况下,教师多采用“填鸭式”教学,每堂课把教学任务完成就好,没有时间改善学生的学习兴趣和学习效果,课堂教学效果较差。二是中医院校招生的学生大多是理科生,理科生在高中阶段多经过生物学的学习。入学后看到医学生物学课程立刻会想起高中阶段的生物学课程,尽管医学生物学课程的教学内容较高中时的课程要广和深,但是给学生的第一印象就是我们已经学过生物学了,对该门课的重视程度不足,严重影响了医学生物学的教学质量。

2.进展知识介绍不足。医学生物学是一门进展的学科,发展变化快,教材中的内容基础知识和概念基本不变,但很多内容是随着科研的发展而变化的,比如基因组测序成功后确定功能基因有3.5万个,其余的成为垃圾基因,但近年来发现这些垃圾基因在表观调控中起着重要的作用。学生们对这些进展知识具有浓厚的兴趣,但是由于课堂时间有限,课堂内容较多,教师很难在有限的时间内介绍这些进展知识,而这些知识对学生学习兴趣和科研兴趣的培养具有重要的促进作用。

二、建构主义教学理论简介

“建构主义”(constructivism)也称为结构主义,是瑞士哲学家、心理学家皮亚杰(J Piaget)最早提出来的[2]。建构主义教学理论反对以教师为中心的传统的教学方式,提倡以学生为中心的教学方式,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构,知识的学习和传授重点在于个体的转换、加工和处理,而非“输入”或“灌输”[3,4]。建构主义教学理论认为学习是由学生的内部动机,包括好奇心、进步的需要、自居作用和同伴间相互驱动的积极主动的知识建构过程,即知识不是通过教师传授获得的,是学习者在一定的情境即社会文化背景下,借助于其他人包括教师和学习伙伴的帮助,利用必要的学习资源,通过意义建构的方式获得的[3,4]。由此可见,建构主义教学理论主要强调学生自主学习能力和学生协作能力,教师主要提供学习情境和指导作用,这能充分发挥学生的主观能动性,提高学生学习的兴趣和解决问题的能力。因此,我们提出在我校医学生物学教学过程中进行建构主义教学理论的探索和应用,以促进学生学习医学生物学及其他相关基础课程的兴趣。

三、建构主义在医学生物学教学过程中的应用

1.教学改革的对象。目前我校设置了中西医结合专业的八年制招生,这个专业的特点是临床和科研相结合,培养具有综合素质的高水平人才,以促进现代中医药的发展。首先我们对该专业学生特点进行分析,目的是对我校医学生物学的教学方法进行改革和探索。我校中西医结合专业七年制的学生具有如下特点:(1)入学之前均为理科生,在高中学习过生物学的基本理论知识。如果我们课堂上只讲解基本理论、基本概念,会使他们觉得大学的医学生物学和高中的没有多大区别,学习该门课程的兴趣不大。(2)均为中西医结合专业,该专业培养能运用中医诊疗思维与技能和一定西医学知识,掌握必要的现代生命科学理论和研究技能,从事中西医结合医疗、预防、保健、康复以及基础和临床医学研究、教学等工作的高级中医临床专业人才。这就要求必须掌握生物学的基本理论和实验技能,并能将生物学很好的和中医药相结合。(3)均为硕士毕业,要求培养具有较高发现问题、分析问题和解决问题的科学研究能力,要求具有一定的科研素质和创新能力。

2.建构主义教学理论在教学中的应用。针对以上对医学生物学教学现状、建构主义教学理论及中西医结合专业八年制学生特点的综合分析,以中西医结合专业八年制学生为建构主义教学理论的研究对象,其他专业的学生为研究对照,以基于教材基本知识教学为指导,结合学生自主课堂、知识竞赛等方法,进行医学生物学构建主义教学理论的探索和应用。具体实施过程如下:(1)课程设计及安排:根据建构主义教学理论进行医学生物学教学大纲的改革,将医学生物学中教学内容进行调整,其中基本知识、基本概念进行课堂教学;教师进行讨论,将每个教学章节中与临床密切相关的内容挑选出来,作为建构主义教学的“学习情境”,如在“细胞膜基本特性”一节中提出“细胞膜的基本特性如果出现问题细胞会怎样”,“有机体会有如何的改变”等问题,然后请大家去查阅相关的一些文献,看看何种过程改变会对细胞及机体造成哪些影响。(2)学生自主和协作学习过程:给学生两周的时间,自由分组,每组6个人,分成5组,利用图书馆的文献、期刊和网络资源去查阅相关资料,就其中自己感兴趣的一个或几个问题,将自己查到的有关资料进行整理、总结,进行分组讨论,完成自主和协作学习过程。(3)学生自主课堂过程:每次课堂教学过程中抽出15分钟的时间,进行学生讲解、提问及归纳总结。然后学生从不角度进行评分包括:讲解的过程、讲解的内容以及资料的前沿性等方面。(4)知识竞赛:学生自己就课堂所学内容及自主学习获得的知识进行总结归纳后,每组出一份知识竞赛题目,教师进行监督管理,组织知识竞赛。经过两个学期的教学探索,我们发现运用这样的教学方法,学生学习的兴趣很大,不仅锻炼了学生主动学习的能力,而且了改变了他们思考科学问题的方式,很多同学因此申请了大学生科研课题,并取得了较好的成果。

3.建构主义教学理论教学改革的效果。建构主义教学理论应用到医学生物学教学后,课堂效果较好,实验班级的学生课堂积极性较高,随时会有同学举手提问,在老师回答问题的基础上,学生们也会从不同角度回答问题,并接着提出问题及质疑,有不同意见时,课后学生会主动查询相关文献解决问题,课堂气氛及学习气氛较好。此外,学生问卷调查结果显示90%以上学生认为该教学方法可以扩展他们的知识面,在文献检索、获得前沿知识的能力以及增加对中医药治疗疾病的了解等方面有很大的进步,在有效地提高学生学习的积极性和主动性的同时,促进学生及时了解目前生物学发展的动态,主动抓住前沿知识,培养其科研兴趣。

四、结语

由上可知,该教学改革可有效地改善传统教学过程中存在的问题,即学生上课听课、下课就忘的无趣状态;同时,有效地调动了学生学习医学生物学这门基础课的积极性和主动性;有效地提高了学生的学习效率和教学质量,为其他医学基础课提供借鉴。教师在进行建构主义教学理论教学改革的同时,发现“教”和“学”的过程相辅相成,教师在这个过程中不仅“教”而且也“学”到了很多,也得到了学生的认可。

参考文献:

[1]傅松滨.医学生物学第七版[M].北京:人民卫生出版社,2008.

[2]郭赫男.建构主义理论观照下的《传播学》教学改革研究[J].东南传播,2009,(9):72.

篇9

[关键词] 精神分裂症;同型半胱氨酸;高同型半胱氨酸血症

[中图分类号] R749.3 [文献标识码] A [文章编号] 1673-7210(2014)07(c)-0028-03

同型半胱氨酸(homocysteine,Hcy)是一种含硫氨基酸,是蛋氨酸和半胱氨酸代谢过程中的重要中间产物。一般认为,高同型半胱氨酸血症是体内叶酸和维生素B12缺乏的敏感指标,是心血管疾病的独立危险因素。近年来,随着测定技术方法的改进,已经能够对正常人血液中以各种形式存在的Hcy进行测定,又相继发现其他几种参与Hcy代谢的酶或辅酶改变所引起的代谢紊乱。有研究指出,精神分裂症的认知功能障碍可能与高Hcy有关[1-5]。但国内有关研究报道较少,为此,本研究对803例住院精神分裂症患者的血清Hcy水平进行测定,以探讨血清Hcy水平在精神分裂症发病中的可能意义,现将结果报道如下:

1 对象与方法

1.1 对象

选择2013年8月1~31日北京市昌平区中西医结合医院(以下简称“我院”)精神分院收治的符合国际疾病分类(International Classification of Diseases,ICD)精神分裂症诊断标准的患者803例作为观察组,男417例,女386例;年龄15~87岁,平均(51.4±3.3)岁。纳入标准:无蛋氨酸饮食等特殊饮食史,无精神发育迟滞,无癫痫、脑炎、心脑血管疾病等神经系统疾病史,无糖尿病等内分泌代谢障碍病史,无烟酒嗜好者。选择我院同期正常体检的人群共289名作为对照组,男170名,女119名;年龄18~82岁,平均(55.1±4.5)岁。两组在年龄、性别等一般资料方面比较,差异无统计学意义(P > 0.05),具有可比性。本研究经我院伦理委员会通过,患者及家属知情同意并签署知情同意书。

1.2 血清同型半胱氨酸水平检测方法

清晨抽取入组者空腹静脉血3 mL,置于含有促凝剂真空采血试管中。采血1 h内于离心半径8 cm离心机中3000 r/min离心10 min,分离血清置贝克曼全自动生化分析仪检测血清Hcy水平。试剂校准品均使用九强生物技术股份有限公司提供的试剂盒,质控品采用九强和伯乐两家公司提供的低中高三种水平质控物。Hcy>15.0 μmol/L定义为高同型半胱氨酸血症。

1.3 统计学方法

采用SPSS 11.5统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,两组间比较采用t检验;计数资料用率表示,组间比较采用χ2检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 两组高同型半胱氨酸血症发生率比较

观察组高同型半胱氨酸血症发生率高于对照组,差异有高度统计学意义(P < 0.01)。见表1。

2.2 两组血清同型半胱氨酸水平比较

观察组患者血清Hcy水平明显高于对照组,差异有高度统计学意义(P < 0.01);观察组男、女患者血清Hcy水平均明显高于对照组,差异均有高度统计学意义(均P < 0.01)。见表2。

3 讨论

高Hcy水平是心血管疾病及中风的危险因素,Hcy水平过高不仅能引起高血压、脑卒中等心脑血管疾病,还与乳腺癌、结肠癌、白血病等一些癌症的发生有明显的相关性。降低Hcy水平可把患癌危险降低约30%。此外,血液Hcy水平超过10 μmol/L的老人,患老年性痴呆的危险成倍增加。Hcy主要经由体内S-腺苷蛋氨酸循环产生。Hcy产生后主要经三个途径被代谢:①在四氢叶酸、胆碱及维生素B12作用下,生成蛋氨酸;②在胱硫醚裂合酶、胱硫醚β化酶、维生素B6、维生素B2以及锌的作用下,转变成谷胱甘肽;③在甲基转移酶、亚甲基四氢叶酸还原酶(MTHFR)、叶酸、维生素B12、维生素B2、锌及三甲基甘氨酸(TMG)的作用下,生成S-腺苷同型半胱氨酸。由此可见,在Hcy代谢过程中,维生素B2、维生素B6、维生素B12、叶酸、TMG和锌起着十分重要的作用,这些物质缺乏被认为是导致血Hcy升高的重要原因之一。同时,给予这些物质也是防治Hcy升高的重要措施。另外,人体99%的Hcy在肾脏代谢,70%经肾脏清除。Hcy是蛋氨酸代谢产物之一,参与体内去甲肾上腺素(NE)、DNA、蛋白质等重要物质的甲基化反应,同时还发现Hcy具有促进神经细胞凋亡的神经毒性作用,故有学者认为,Hcy具备影响神经递质代谢及神经发育的生物学特性,与精神分裂症的“神经递质代谢异常”假说及“神经发育障碍”假说有相吻之处,推测其可能与精神分裂症密切关系[1]。本研究通过对我院精神分院收治的803例精神分裂症患者进行血清Hcy水平测定,结果证实观察组患者血清Hcy水平显著高于对照组(P < 0.01);但血清Hcy水平与精神分裂症的严重程度关系有待进一步研究。

近年来,我国神经精神疾病的发病呈上升和年轻化的趋势。精神分裂症是一种患病率高、容易复发和致残的慢性精神疾病,迄今为止其发生机制尚未完全阐明,但是有研究提示,Hcy代谢异常可能是精神分裂症发病的重要危险因素[3]。一方面Hcy作为神经毒性物质可能参与了精神分裂症的致病过程。有专家认为Hcy作为神经毒性物质可能通过影响中枢神经发育,参与了精神分裂症的致病。另一方面,Hcy代谢过程为DNA甲基化提供了甲基基团,其代谢异常可能造成DNA甲基化异常。DNA甲基化异常从表观遗传学的角度来看会影响精神分裂症的发病风险[4]。本研究结果显示,观察组803例精神分裂症患者中血清Hcy水平高于正常范围的有570例,高同型半胱氨酸血症的发生率为70.98%;而对照组289例体检人群中血清Hcy水平高于正常范围的有107例,高同型半胱氨酸血症的发生率为37.02%;可见精神分裂症患者高同型半胱氨酸血症发生率高于对照组。不论是观察组还是对照组,均发现男性Hcy水平高于女性。同时,本研究发现,Hcy水平在总体或根据性别比较,观察组均高于对照组,差异有高度统计学意义(P < 0.01)。提示精神分裂症患者中存在有明显的Hcy代谢异常,该结果和国内外的研究一致[9]。Hcy代谢失衡与精神分裂症关系的研究仍有许多缺陷,尚缺少有关的研究资料,但其对经典理论的整合也许会带来许多新的启示,对今后的研究有重要的指导意义,从而为精神分裂症的预防和治疗提供新的依据。

[参考文献]

[1] 胡国艳,刘学军.精神分裂症与血清同型半胱氨酸水平关系的研究[J].现代医院,2011,11(6):20-21

[2] 张文跃,林宏,赵合庆,等.首发精神分裂症的认知功能及其与血清同型半胱氨酸的关系[J].中国神经精神疾病杂志,2007,33(11):652.

[3] 张晨,禹顺英,谢斌.同型半胱氨酸与精神分裂症的研究进展[J].上海精神医学,2010,22(3):175-176.

[4] 张文跃,祁小飞.同型半胱氨酸代谢失衡与精神分裂症[J].精神医学杂志,2007,20(3):185-187.

[5] 刘玲玲,董振芳,车至香.精神分裂症患者血清总同型半胱氨酸水平测定[J].检验医学,2005,20(5):413,416.

[6] 史健.精神分裂症患者血清同型半胱氨酸测定的意义[J].医学理论与实践,2011,24(16):1893-1895.

[7] 张晨,禹顺英,谢斌.同型半胱氨酸与精神分裂症的研究进展[J].上海精神医学,2010,22(3):175-176.

[8] Adler Nevo G,Meged S,Sela BA,et al. Homocysteine levels in adolescent schizophrenia patients[J].Eur Neuropsychopharmacol,2006,16(8):588-591.

[9] Akanji AO,Ohaeri JU,Ai-Shammri SA,et al. Associations of bloodhomocystcinc concentrations in Arab schizophrenic pafients [J]. Clin Biochem,2007,40(13-14):1026-1031.

[10] 纪孝伟,焦志安,赵贵芳,等.精神分裂症患者血清同型半胱氨酸水平的研究[J].中国神经精神疾病杂志,2005, 31(4):302-303

[11] 杨梅玉,廖联明.福州地区同型半胱氨酸在健康人群中的分布特点[J].检验医学与临床,2011,8(14):1696.