原位生态修复技术范文

时间:2024-01-02 17:51:20

导语:如何才能写好一篇原位生态修复技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

原位生态修复技术

篇1

关键词:底泥;原位修复技术;进展

1引言

当前,国民经济飞速发展,城市规模不断扩大,城镇人口急剧增加,但大多数地区的环境基础设施建设却严重滞后,导致排入河流及湖泊的工业废水、生活污水及固体废物大幅增加,引起河流湖泊水质严重恶化,其中甚至出现了季节性和常年性水体黑臭现象。研究表明进入河流湖泊的污染物中只有1%以下的污染物能溶解于水中,99%以上的污染物会沉积在河流湖泊的底泥中[1]。因而,底泥淤积了大量的耗氧性物质、重金属污染物、持久性有机污染物和N、P营养盐等并缓慢而持久的向水体、水生生物体释放[2],导致水体的二次污染,严重威胁水生生态环境及人类健康。因此,要从根本上解决河流湖泊的污染问题,不仅仅是要从源头上切断污染源,更重要的是要修复受污染底泥。

根据处理过程中是否需要移动底泥,可将底泥修复技术分为原位修复和异位修复两大类。由于异位修复技术需要挖掘出受污染的底泥并寻找场地进行堆放和处置,工程量巨大且花费不菲,而且很容易造成二次污染,所以底泥原位修复技术受到越来越多的重视[3]。本文对近年来受污染底泥原位修复技术的研究进展进行了简要综述。

2原位覆盖技术

原位覆盖技术不需要移动底泥,直接采用砂石、粉尘灰、炉灰渣、人工合成物等材料在底泥上方形成一层或多层覆盖物,从而阻止底泥与上覆水的接触,防止受污染底泥中的有害物质扩散到水体中。最早的底泥原位覆盖技术是美国于1978年首先使用[4],在流动性不大的水体中采用沙土覆盖的的方式,随后推广到其他国家。实验证明,原位覆盖技术能够有效阻止底泥中的耗氧性物质、重金属污染物、持久性有机污染物和NP营养盐等进入水体[5,6],对水质改善具有显著作用。原位覆盖技术适用于多种污染类型的底泥,成本低廉,便于施工,应用范围较广[7]。但原位覆盖技术也存在减小水体容量、改变河道及湖底坡度等缺陷,此外,水流速较快、水动力较强的区域也不适合使用原位覆盖技术[8]。

3原位生物修复技术

原位生物修复技术是近年发展起来的一种新型底泥修复技术。这种技术利用水生植物、微生物等的生命活动,对水体中的污染物进行吸附、转移、转化和降解作用,从而净化水体并重建水生生态系统[9]。在原位生物修复技术中,主要采用向底泥中加入具有降解污染物能力的微生物、转基因工程菌和栽种沉水植物[10,11]。这种技术不需要向水体投放化学试剂,工程造价相对较低,修复效果较好,有利于水体生物多样性的恢复,是底泥原位修复技术的一个重要发展方向[12]。

4原位化学修复技术

原位化学修复技术是向受污染的水体中投放多种化学药剂或酶制剂,通过化学反应消除底泥中的污染物或改变原有污染物的性状,为后续微生物降解作用提供有利条件。根据投放试剂的种类,可以将原位化学修复技术分为原位还原修复技术和原位氧化修复技术。原位还原修复技术是向底泥中加入还原剂,使底泥的氧化还原电位发生改变,营造适合微生物降解污染物的还原性环境;原位氧化修复技术是向底泥中加入氧化剂或向底泥上覆水充氧,使氧化还原电位提高从而降低污染物的毒性,这种方法费用低、见效快,目前应用较为广泛[13]。

5结语

目前,国内许多河流湖泊的污染程度都比较严重,污染物种类复杂,并且随着生态文明建设的大力推进,人们对于河流湖泊的治理又提出了新要求,不仅要改善水质,更要美化水体生态环境,从而给人们提供一个休闲的绿色空间,实现人与自然和谐发展。因而,在实际操作中单一的原位修复技术很难胜任,往往是将多种原位修复技术联合应用。对某一需要修复的水体,首先通过多点取样检测方法摸清楚不同区域底泥的污染情况,对于污染较为严重、难以修复区域的底泥可以采用原位覆盖技术进行隔离;其他的区域先使用原位化学修复技术进行处理,降低污染物浓度、改变污染物性状,再使用原位生物修复技术处理,恢复水生生态系统,最终达到美化水生生态环境的目的。

参考文献:

[1] 孙作登.受污染底泥原位修复技术研究[D].上海:上海海洋大学,2011.

[2] 毕磊,邱凌峰.污染底泥修复治理技术[J].中国环保产业,2011(11):32~35.

[3] 孙远军,李小平,黄廷林,等.受污染沉积物原位修复技术研究进展[J].水处理技术,2008,34(1):14~18.

[4] 唐艳,胡小贞,卢少勇.污染底泥原位覆盖技术综述[J].生态学杂志,2011,26(7):1125~1128.

[5] 朱兰保,盛蒂,葛友成.原位覆盖法控制底泥氮释放的研究[J].蚌埠学院学报,2013,2(3):29~31.

[6] 苏青青,胡志华,罗玉红,等.原位覆盖层厚度对污染底泥氮磷释放的影响[J].安徽农业科学,2012,40(27):13531~13532,13563.

[7] 祝凌燕,张子种,周启星.受污染沉积物原位覆盖材料研究进展[J].生态学杂志,2008,27(4):645~651.

[8] 朱兰保,盛蒂.污染底泥原位覆盖控制技术研究进展[J].重庆文理学院学报:自然科学版,2011,30(3):38~41,55.

[9] 王鹤霏.生物-生态技术对水体修复效果的研究[D].大连:大连理工大学,2013.

[10] 刘成.生物促生剂联合微生物菌剂修复城市黑臭河道底泥实验研究[D].南宁:广西大学,2012.

[11] 程士兵.生物-生态组合技术对黑臭河流原位修复的研究[D].重庆:重庆大学,2012.

篇2

从我国技术经济现状考虑,我国还不具备对污染场地进行大规模全面修复的技术力量和经济实力。污染场地修复工程技术经济评估工作对修复项目的技术选择以及立项和实施具有非常重要的作用。

1我国污染场地及修复工作状况

自20世纪50年代以来,随着工业化和现代化进程的开始,我国城市中逐渐出现了大量的被工商业污染的土地,其具体数量目前还没有全面的统计数据。当时,大多数工厂建在城市的周边地区,这些生产历史悠久、工艺设备相对落后的国营老企业,经营管理粗放,环保设施缺少或很不完善[1],因此,造成的土地污染状况十分严重。有些场地污染物含量非常高,有的超过有关监管标准的数百倍甚至更高,污染深度甚至达到地下十几米,有些有机污染物还以非水相液体的形式在地下土层中大量聚集,成为新的污染源,有些污染物甚至迁移至地下水并扩散导致更大范围的污染。按照主要污染物的类型来划分,我国城市工业污染土地大致可以分为以下几类:

1)重金属污染场地;

2)持续性有机污染物污染场地;

3)以有机污染为主的石油、化工、焦化等污染场地;

4)电子废弃物污染场地等。

由于土壤污染具有滞后性,而且过去在土壤污染物的识别和监测中还存在诸多困难,使得土地污染问题在过去受到关注较少[2-3]。工业企业搬迁遗留遗弃场地是近年来我国城市化进程加速的产物。污染企业搬迁在各大中城市得到了大力实施,如海河流域的北京和天津、东北老工业基地、长江三角洲和珠江三角洲。污染土地的环境问题已经成为土地再开发过程中的一个障碍。目前一些位于城市中的老工业区由于污染问题迟迟不能进行再开发。环境污染(包括地下水、土壤、危险废弃物和一般固体废弃物的持续倾倒)以及土地所有者与开发商的责任问题都成为原工业用地再开发及城市发展的障碍。城市中污染土地的遗弃及其延迟再开发,还会产生更为深远的社会影响,诸如生活环境差、就业机会减少甚至增加社会不稳定因素等等[4-6]。

我国土壤修复市场目前尚处于试验阶段和市场培育阶段。近年来,在政府财政支持下,我国开展了多个类型场地的修复技术设备研发与示范项目。尽管可以罗列的土壤及地下水污染的修复技术很多,但实际上,经济实用的修复技术很少。我国目前应用比较成熟的修复技术是以挖掘后异位处理处置为主,多种原位修复技术尚处于研究开发阶段。一些国内及国外环保企业积极开展土壤修复工程实践,并对土壤修复市场进行培育。发达国家开展土壤修复早于我国几十年。在污染土地修复治理方面,已经开发了多种较为成熟的技术,积累了大量宝贵经验,形成了一个产业[7-10]。

目前,我国行之有效的针对污染土地管理的制度和法规尚在逐步建立和完善过程中,仍有一些问题需要解决。开发适合我国实际,费用、效益好的修复技术仍然处于起步阶段[11]。我国应该充分利用世界先进的技术和设备,积极与土壤修复产业发达的国家开展技术合作,尽快推动土壤修复技术的进步与市场的完善。2010年4月26日,国家发改委牵头启动生态补偿条例的起草,意味着我国生态补偿制度在经历了漫长的讨论与摸索之后进入到立法准备阶段。

2技术经济评估方法

技术经济评价又可称为项目经济评价,是指在工程项目或设计方案投资决策过程中,采用现代分析方法对项目方案在计算期(包括建设期和生产期)内的经济效果所做的测算与分析。技术经济评价是可行性研究的核心内容,是项目方案投资决策的重要依据[12-13]。

在环境工程项目中,为了提高工程的经济效益,采用先进的技术,以节约工程建设的造价,降低运行成本和节约经常性的维护费用。但是,在某些情况下,采用先进的技术还必须与当地的客观条件相适应。例如,海水淡化技术是至今还在发展的新技术,就目前情况看,它的制水成本还较高。对于严重缺乏淡水资源的海岛和沿海地区来讲,就地采用淡化技术比从大陆输水还是经济的,但对于淡水资源丰富的地区,尽管海水淡化是一项新技术,却不会被采用[14]。又如,有些污水处理新土艺尽管处理效果很高,但需占用较多的土地,对于用地紧张的地区来说就无法采用。

污染场地修复工程项目投资巨大、社会影响巨大、环境价值突出、对经济的可持续发展意义重大,同时,该类项目监测难度大、维护成本高、见效缓慢、技术的长效合理性难以判断,因此,技术经济评估难度大,难以形成全面统一的标准。目前,我国尚未正式出台相应的技术经济评估规范性文件。对于该类项目,还只能参考现有类似规范进行评估。通过对该领域相关政策、法规、方法的研究分析,污染场地技术经济评估应该充分考虑以下方面:

1)对环境污染造成经济损失的估算必须进行;

2)根据具体项目情况,进行综合、长效的分析,选择最佳技术手段;

3)对于工程投资可采用恢复费用法进行估算;

4)通过建立环境经济补偿的长效机制进行后续保障。

2.1估算方法

估算环境污染造成的经济损失是环境经济学中重要的研究课题,是直接为环境决策中计算环境改善带来的效益服务的。目前我国有关课题研究均采用直接估算法。从实践来看,应用这种方法需要大量反映环境污染程度与环境功能损害两者之间关系的定量资料,而目前我国尚缺乏这方面较完整的数据,严重影响估算精度。此外,对于损失项目、估算参数和方法的选择也缺乏规范性。由于这些原因,造成不同作者的估算成果之间存在很大差异,有时非常悬殊。目前,环境污染估算常用方法有以下3种:

1)直接计算法。

此法是建立在污染区与清洁区有关指标的对比计算上。为此,应按有关指标选择与污染区非常相似,但具有不同的污染程度的区域作为对比区。一般来讲,应为每项损失选择相应的对比区。在估算人体健康损失时,对比区的选择应考虑居民的职业和年龄的构成、气候特点、生活习惯、卫生医疗设施水平等项条件。在估算市政设施损失时,应根据居民住房和公共设施水平,城市规模、人口和占地、公共交通、通讯和绿化等项条件,选择对比区。在估算农业损失时,首先应考虑企业规模、收入水平、动力装备程度、土壤类型、供水状况、牲畜种类和头数、农作物施肥等项条件。为了消除诸如企业经营管理水平等因素的影响,应在不同企业内选择对比区,再取其平均数。估算时应收集不同时期的多年数据为依据,以提高损失估算的精度。

在估算林业损失时,选择对比区应考虑土壤类型、施肥水平、地下水深度、湿度、地形地貌、经营条件、树木组成、年龄等级、森林密度等项条件。环境污染造成的经济损失(Y)由物质损失(Y物)、生产损失(Y生)和国民经济损失(Y国)组成即:Y=Y物+Y生+Y国。物质损失包括原材料、半成品和产品的散失。生产损失包括生产用房损失、机器磨损损失、减产损失和健康损失等。国民经济损失则包括农业和林业损失、住宅与公共事业损失、工业损失和人体健康损失,即:Y国=Y农、林+Y公+Y工+Y健。

各项损失估算的一般公式为:Y=Л×P。式中:Y为经济损失值;Л为损失指标;P为单位损失指标的货币价值。

一般来讲,物质损失和生产损失仅占总经济损失的8%~12%,而国民经济损失占88%~92%。每次应用直接估算法都需要重新收集国民经济各个部门的大量数据,为此需投入大量人力和时间,但是这种方法比较实用、简单,是分析计算法和经验估算法等其他估算方法的基础。

2)分析计算法。

此法依据多因素分析原理,建立环境污染数学模型,建模过程中要筛选影响环境污染的各项因素,要使观察点数超过十倍于影响因素。应用分析法估算环境污染造成的经济损失,必须具备各项损失与其影响的环境污染参数之间的因果关系资料,在此基础上建立环境污染损失估算体系。为此,必须开展定点监测试验研究。

3)经验估算法。

应用经验法估算环境污染损失的基础数据是各项污染承受项目和物体的单位损失(标准定额)。所谓单位损失(又称比损)系指按一定结构组合的污染物质给一定污染程度区域内各项国民经济部门和设施带来的经济损失。应用经验估算法之前,需根据实际监测资料绘制污染物含量等值线图,在含量等值区内计数承受物体的数量,在此基础上估算环境污染造成的经济损失。

2.2技术选择

污染场地修复技术的筛选是污染场地修复工程的关键环节,决定着场地修复的成败.场地污染物类别的复杂性决定了采用的修复技术的多样性.目前,污染场地修复技术的种类繁多,新型的修复技术时有出现,对污染场地修复技术进行系统分类,对于修复技术的推广应用与修复过程中的技术选择非常必要。在实际的场地修复过程中,修复技术的选择会受到政治、经济、社会等因素的影响,随着时间的推移,人们对同一技术的认识也会有所变化。因此,若想获得污染场地的最佳修复方案,必须对场地修复技术的筛选程序有深入的认识。

场地修复技术筛选应发生在场地修复项目的可行性研究阶段。应作为可研批复的先行条件,宏观上应综合考虑以下因素:①短期效果;②长期效果;③污染物毒性、迁移性和数量的减少程度;④可操作性;⑤成本;⑥符合应用与其他相关要求;⑦全面保护人体健康与环境;⑧政府接受程度;⑨公众接受程度。

2.3恢复费用法

由于环境经济损失评估是一项难于计算的工作,可以利用恢复费用法反算地质环境经济损失。即综合分析研究污染场地控制与修复措施,全面考虑清除污染源、处理工程、监测工程等各项费用,根据项目具体情况确定修复工程持续时间,按照现有造价体系进行投资估算。这种方法计算简单,便于操作,但项目范围和修复工程持续时间的确定非常重要,对项目的最终效应和总体投资影响巨大,需要多方面共同研究确认。

2.4生态补偿

为了更好、更全面的解决污染场地修复问题,全社会需要建立起生态补偿的意识与机制。在生态学上,生态补偿分为生态系统的内部补偿机制和外部补偿机制。其中,生态系统的内部补偿机制是指自然生态系统由于外界活动而遭干扰、破坏后的自我调节、自我恢复。生态系统的外部补偿机制是人类为了推进和加速生态系统的内部自我补偿机制,恢复与重建生态系统,所进行的生态建设活动的总称。生态补偿给恢复和重建生态系统的人带来一定的成本费用,表现为劳务和物质的付出,它的实质是实现经济价值补偿生态价值的过程。生态补偿是为了恢复和重建生态系统,使生态系统具有良好的物质、能量循环功能和自净功能,使生态系统保持高的能量转化率、物质积累率和最大的自净能力,这就是生态效益;而经济效益要求在保持良好的生态环境的基础上提高环境资源的利用率,使投入和产出最大化。所以生态补偿中,要用最大的投入换来最大的生态效益,用生态效益更好地为经济效益服务,同时良好的经济效益又能为生态补偿提供经济基础,这符合可持续发展的要求。所以,评判生态补偿机制的生态经济学原则应该是生态效益和经济效益相结合。

3污染场地修复技术

目前国内外对污染场地的修复通常包括污染土修复和含水层净化两个方面。污染土常见的处理技术目前大致可归纳为6类,即微生物修复技术、化学处理技术、物理分离技术、固化/安定化技术、高温处理技术、植物修复技术等。而污染地下水的修复方法主要有5项:注气法、原位微生物修复技术、两相蒸气提取法、原位氧化法、原位反应墙技术等。

3.1污染土的修复技术

传统的处理方法是把污染土挖出并运到其他地方作填土处理,其实这种处置方法并不能把污染土净化,只是把污染从一个地方转移到另外一个地方而已。目前新的污染土的处理方法很多,而且随着时间的推移,新的方法还不断涌现。据统计,目前大量用于实际和试验研究的主要有:

1)微生物的修复技术即利用微生物把污染土中的有机物进行降解。在处理过程中,微生物把其中的有机污染物作为食物源,处理的最终产物主要是水和二氧化碳。根据处理方式的差异,又进一步分为以下两个亚类:异地微生物修复技术和就地微生物修复技术。污染土壤的微生物修复技术主要用于有机污染土的处理,尤其是对于那些含有能被微生物降解的有机污染土的处理很有效。目前,国际上也有一些学者正在研究如何利用该技术处理重金属污染土。

2)化学方法主要通过氧化/还原反应把土中具有危害性的污染物转化为无毒或低毒的化合物或使之形成化学性质稳定更高,迁移性更弱的新的化合物。常用的氧化剂有臭氧、过氧化氢(双氧水)、次氯酸盐、氯气和二氧化氯高锰酸钾等。其中常见的两种氧化处理技术为:氰化物处理和脱氯作用。

3)物理技术分离即利用物理方式把污染物从土中转移出去。目前常用的有以下几种:就地水溶液冲洗;异地水溶液冲洗法;土壤中蒸气提取法;注入热气法;控制法修复油类污染物;溶剂提取法;热解吸法;电动力学技术。

4)植物修复技术即利用植物把壤中的污染物进行吸收、转移、聚集或降解。这包括了在植物的影响下(根茎范围内)所发生的有利于污染物质清除的一切生物作用、化学作用和物理作用。植物可把有毒的有机化合物进行矿化,还可把重金属元素和其他无机物从土壤中吸收并富集到地面上。目前该技术还处于试验研究阶段,主要用于污染程度为低—中等的、分布面积广、在其他处理方法都不经济的地段采用。该技术的最大优点是处理成本低,主要缺点是植物的落叶会引起二次污染。

5)固化/安定化处理技术。把污染物裹限在某种介质中(如土、玻璃、沥青、水泥块等建筑材料中)。处理后,需要对固化体进行强度和其中的有毒有害物质渗出的危险性进行测试。污染土的S/S的处理既可就地进行,也可开挖转移到异地进行。目前污染物的S/S处理技术主要有6大类:基于水泥的固化技术;基于石灰的固化技术;改性黏土技术;热塑技术;热固树脂技术;玻璃化技术。

6)高温处理方法。

①焚烧法:包括异地焚烧和就地焚烧两种,都是利用高温(970~1200℃)把污染物中的卤代化合物或其他难溶有机物热解焚毁(在氧气作用下)及挥发出去。只要操作恰当,利用该办法清除和焚毁污染物的效率可达到99.99%。其中多氯联苯(PCBs)等的去除率可达到99.9999%。

②等离子体高温进行金属回收:该技术属于热处理过程,已在商业上用于处理焚烧灰。操作时利用等离子体产生的热(1500~1600℃),把土壤中的污染物转化为含金属的烟尘或(和)有机气体的形式从土壤中清除出去。所转化形成的有机气体可作为燃料,而含金属的烟尘可进行回收利用。

3.2污染地下水的修复技术

地下水污染修复花费巨大,每个场地的花费约为10万至100万美元以上,而且传统的修复技术即抽水-处理技术,是把污染的地下水抽到地表进行处理,同时把干净的地表水注入含水层内。这种方法经常不能彻底地净化含水层。目前新的处理方法主要有:注气法、原位微生物修复技术、两相蒸气提取法、原位氧化法、原位反应墙技术等5项。

1)注气法即把空气或氧气注入含水层。喷射注入的气体转化为气泡后可把地下水中的挥发性污染物提取出来,然后利用土壤蒸气提取法中的提取孔和气体收集系统把逸出的气体收集,待作后期处理。

2)原位微生物修复技术通常与注气法配合,在操作时需要把微生物生长所需要的营养物质和氧气从井孔中注进含水层,以提高本地原有的微生物的活性,增强其降解有机污染物的能力。该技术也被称为注气微生物修复技术。其优点是:设备安装简单、历时短、注气量小、成本低、不需要把地下水抽出或向含水层注水。

3)两相蒸气提取法即采用真空设备把以液态形式存在的污染物(在饱和带中)和以气相形式存在的污染物(在非饱和带中)同时抽取出来。该技术的优点主要是:①处理时间短;②对场地的破坏程度减少到最低程度;③能应用于建筑物之下和其他不能开挖的场地;④能处理浮在地下水面上的污染物,且能与其他方法联合使用以缩短处理时间和提高处理效果。该技术的主要缺点是:①抽出的污染气体处理费用可能较昂贵;②油/水的分离费用以及所抽出的大量地下水的处理费可能很高;③操作时需要进行大量的检测和控制手段(包括气流速度检测、真空度监测、挥发性气体的温度检测、抽出气体中的氧气和二氧化碳的含量测定、采集气样等)。

4)原位氧化法即利用氧化剂把溶解于地下水中的有机污染物迅速氧化。常用的氧化剂为高锰酸钾。该技术的主要优点是:可处理含水层中不能溶解的污染物质,而传统方法即抽出-处理只能处理溶解态的有机物。

5)原位反应墙技术即在含水层中(垂直于水流方向上)建筑一个或多个具有渗透性的、含有去污物质的墙体,一旦地下水流经该墙,其中的污染物质就会与墙内的物质发生化学反应而被净化除掉。例如利用铁屑和砂充填的反应墙,可净化流经它的卤代烃化合物。

4建议与结论

1)污染场地的处理方法很多,使用时需根据具体的场地条件、污染物的类型和含量来选择恰当的方法。不同的处理方法,成本往往相差很大,使用时需要慎重考虑。无论是选择哪一种技术,场地的修复费用均不低,因此防止污染才是上上策。往往在处理污染土时,也同时对其孔隙中的地下水进行了处理,这时的水处理和土处理难以区分。因此没有必要分清该技术是用于处理污染土的还是用于处理污染地下水的。我国在污染场地的修复方面的研究和应用目前还很欠缺,建议加大这方面的资金投入。

2)目前,我国关于污染场地环境修复的政策、法规和技术框架还不够完善,污染场地的修复依然面临诸多挑战。要实现污染场地的有效管理,必须尽快完善土壤环境标准体系,污染场地管理体系和污染场地修复技术体系的三元结构,亟待开展的有以下几方面工作:

①加速完善中国的环境标准体系;

②加快构建中国污染场地管理体系;

③推动环境污染损害鉴定评估机构的全面建设;

篇3

关键词:石油污染;场地;土壤;修复技术;工程化;应用;分析

Abstract: this article with the oil pollution sites as the research object, the oil pollution sites technical analysis and soil bioremediation oil pollution sites repair technology engineering application analysis soil these two aspects, oil pollution sites around the soil bioremediation technology and engineering application of this center through more detailed analysis and explained, focuses on how the microorganism remediation, the phytoremediation, plant-microbial joint repair technology in several aspects engineering application example analysis and research, and then demonstrates the repair technology in solving more oil pollution sites soil environmental degradation and the optimization model of the oil industry development process as crucial role and significance.

Keywords: oil pollution; Court; Soil; Repair technology; Engineering; Application; analysis

中图分类号:[TE991]文献标识码:A文章编号:

在全球经济一体化建设进程不断加剧与城市化建设规模持续扩大的推动作用下,石油行业在整个国民经济建设发展中所占据的地位日益关键。可以说,石油行业的建设发展程度将直接关系着整个经济社会的建设发展程度。相关统计资料数据显示:对于石油污染场地土壤而言,大量的油类物质往往集中在深度为0cm~40cm范围之内的土层当中,并且土层含油率参数会随着土层深度的增加而呈现出一定比例的下降趋势。实践结果向我们证实了一个方面的问题:受到石油污染的土壤自身使用功能会遭到严重破坏,土壤结构与性质也会发生显著的改变,进而引发植物破坏与生态变异。本文着眼于这一实际情况,针对石油污染场地土壤修复技术及工程化应用展开详细分析与探讨。

一、石油污染场地土壤修复技术分析

一般情况下,依照土壤修复原理的不同,针对石油污染场地土壤所展开的修复技术可以分为物理修复技术、化学修复技术以及生物修复技术三种。其中,生物修复技术在土壤修复过程当中所表现出的经济性、环境性效应显著,有着极为深远的研究价值,强化生物修复技术同物理修复技术以及化学修复技术之间的融合,是下一步工作的研究重点。笔者现从以上三个方面选取几种比较有代表性的石油污染场地土壤修复技术,对其做详细分析与说明。

(一)物理修复技术——热脱附法。从理论上来说,热脱附法的关键在于以热能的激发将土壤中大量的石油污染有害物质转化为气体形式,在空气污染控制装置的作用之下对土壤所排放的这类气体进行收集与处理。

(二)化学修复技术——光催化氧化法。对整个光催化氧化法加以概括:催化剂的制备应当以半导体材料为主。此种催化剂在紫外光光线的直接照射作用之下会生产反应活性表现性质的自由基,而此种自由基恰好能够对土壤当中的有机污染物进行氧化。在氧化反应的作用之下,石油污染场地土壤中的各种有害性有机物能够还原为包括CO2以及H2O在内的多种无机物质,达到土壤修复目的。

(三)生物修复技术——微生物修复法。对于石油污染场地土壤修复而言,污染土壤中的微生物修复主要包括异位与原位两大类型。两种微生物修复方式的共同点在于其均以石油烃为碳源,在微生物代谢作用之下对土壤当中的石油类污染元素进行降解作用,其中,异位修复技术着重于强调土壤修复中的工程设计,对于工艺参数的协同调控予以了系统关注;而原位修复技术则侧重于强调土壤修复中自然过程的属性控制,对于修复进行中各类型生态因子的优化特别关注。

二、石油污染场地土壤修复技术工程化应用分析

(一)微生物修复技术工程化应用分析。对于微生物修复技术中的异位修复而言,相关研究人员已通过添加调理剂以及有机肥肥料或是搭建温室大棚的方式实现了对油田含油污泥的修复,生物修复稳定性高。工程应用实例数据表明:在对该石油污染场地土壤的异位修复下,200d的周期性修复使得该区域土壤中油和脂含量得到了28%~47%的显著控制,修复效益显著;对于微生物修复技术中的原位修复而言,以1989年EXXON公司所发生的5万吨原油泄漏污染事故为例,美国借助高效微生物菌剂成功对长达1700km左右的海岸污染进行了有效控制,污染土壤修复效益显著。

(二)植物修复技术工程化应用分析。相关研究学者经过对不同植物植株的栽种以及对加氮磷肥料的施加对面积在2000㎡以上的石油污染场地进行了有效的修复。试验研究结果向我们证实:大豆、苜蓿以及高羊毛这三类型植物的栽种 能够极为有效的促进油泥中油成分的降解反应,加速修复速率。其中,大豆的修复效应作为显著,应当作为未来植物修复技术的重点研究对象。

(三)植物-微生物联合修复技术工程化应用分析。有关研究学者曾针对炼油厂由污泥不合理处置引发的石油污染场地土壤修复问题进行了试验研究,在植物根系促生菌的作用之下对植物修复性能进行强化。其中尤以黑麦草以及高羊茅植物植株的生长作为显著。以1年为周期进行评定,此种植物根系促生菌对石油污染长度土壤中石油烃物质的修复效果最为显著,有效降低了50%左右的石油烃含量,值得进一步研究与应用。

三、结束语

伴随着现代科学技术的蓬勃发展与经济社会现代化建设进程日益完善,社会大众持续增长的物质文化与精神文化需求同时对新时期的环境保护事业提出了更为全面与系统的发展要求。在城市建设工业化发展持续推进背景作用下,石油行业在整个经济社会建设发展中所占据的地位日益关键。以上背景致使石油行业建设发展与环境保护存在一定的制约矛盾,如何顺应环境保护发展方向,实现石油行业的生态可持续发展,已成为现阶段相关工作人员最亟待解决的问题之一。本文针对石油污染场地土壤修复技术与工程化应用这一中心问题做出了简要分析与说明,希望能够为今后相关研究与实践工作的开展提供一定的参考与帮助。

参考文献:

[1] 张胜.陈立.崔晓梅等.陕北黄土区石油污染土壤原位微生态修复试验研究. [J].农业环境科学学报.2008.27.(06).2200-2205.

篇4

关键词:土壤污染、生物修复、研究进展

前言

土壤重金属污染是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。加之重金属离子难移动性,长期滞留性和不可分解性的特点,对土壤生态环境造成了极大破坏,同时食物通过食物链最终进入人体,严重危害人体健康,已成为不可忽视的环境问题。随着我国人民生活水平的提高,生态环境保护日趋受到重视,国家对污染土壤治理和修复的人力,物力的投入逐年增加,土壤污染物的去除以及修复问题,已成为土壤环境研究领域的重要课题。而生物修复技术是近20年发展起来的一项用于污染土壤治理的新技术,同传统处理技术相比具有明显优势,例如其处理成本低,只为焚烧法的1/2-1/3,处理效果好,生化处理后污染物残留量可达到很低水平;对环境影响小,无二次污染,最终产物CO2、H2O和脂肪酸对人体无害,可以就地处理,避免了集输过程的二次污染,节省了处理费用,因而该技术成为最有发展潜力和市场前景的修复技术。

1.污染土壤生物修复的基本原理和特点

土壤生物修复的基本原理是利用土壤中天然的微生物资源或人为投加目的菌株,甚至用构建的特异降解功能菌投加到各污染土壤中,将滞留的污染物快速降解和转化成无害的物质,使土壤恢复其天然功能。由于自然的生物修复过程一般较慢,难于实际应用,因而生物修复技术是工程化在人为促进条件下的生物修复,利用微生物的降解作用,去除土壤中石油烃类及各种有毒有害的有机污染物,降解过程可以通过改变土壤理化条件(温度、湿度、pH值、通气及营养添加等)来完成,也可接种经特殊驯化与构建的工程微生物提高降解速率。

2.污染土壤生物修复技术的种类

目前,微生物修复技术方法主要有3种:原位修复技术、异位修复技术和原位-异位修复技术。

2.1原位修复技术:

原位修复技术是在不破坏土壤基本结构的情况下的微生物修复技术。有投菌法、生物培养法和生物通气法等,主要用于被有机污染物污染的土壤修复。投菌法是直接向受到污染的土壤中接入外源污染物降解菌,同时投加微生物生长所需的营养物质,通过微生物对污染物的降解和代谢达到去除污染物的目的。生物培养法是定期向土壤中投加过氧化氢和营养物,过氧化氢则在代谢过程中作为电子受体,以满足土壤微生物代谢,将污染物彻底分解为CO2和H2O。生物通气法是一种加压氧化的生物降解方法,它是在污染的土壤上打上几眼深井,安装鼓风机和抽真空机,将空气强行排入土壤中,然后抽出,土壤中的挥发性有机物也随之去除。在通入空气时,加入一定量的氨气,可为土壤中的降解菌提供所需要的氮源,提高微生物的活性,增加去除效率。

2.2异位修复技术:

异位修复处理污染土壤时,需要对污染的土壤进行大范围的扰动,主要技术包括预制床技术、生物反应器技术、厌氧处理和常规的堆肥法。预制床技术是在平台上铺上砂子和石子,再铺上15-30cm厚的污染土壤,加入营养液和水,必要时加入表面活性剂,定期翻动充氧,以满足土壤微生物对氧的需要,处理过程中流出的渗滤液,即时回灌于土层,以彻底清除污染物。生物反应器技术是把污染的土壤移到生物反应器,加水混合成泥浆,调节适宣的pH值,同时加入一定量的营养物质和表面活性剂,底部鼓入空气充氧,满足微生物所需氧气的同时,使微生物与污染物充分接触,加速污染物的降解,降解完成后,过滤脱水这种方法处理效果好、速度快,但仅仅适宜于小范围的污染治理。厌氧处理技术适于高浓度有机污染的土壤处理,但处理条件难于控制。常规堆肥法是传统堆肥和生物治理技术的结合,向土壤中掺入枯枝落叶或粪肥,加入石灰调节pH值,人工充氧,依靠其自然存在的微生物使有机物向稳定的腐殖质转化,是一种有机物高温降解的固相过程。上述方法要想获得高的污染去除效率,关键是菌种的驯化和筛选。由于几乎每一种有机污染物或重金属都能找到多种有益的降解微生物。因此,寻找高效污染物降解菌是生物修复技术研究的热点。

3.影响污染土壤生物修复的主要因子

3.1污染物的性质:

重金属污染物在土壤中常以多种形态贮存,不同的化学形态对植物的有效性不同。某种生物可能对某种单一重金属具有较强的修复作用。此外,重金属污染的方式(单一污染或复合污染),污染物浓度的高低也是影响修复效果的重要因素。有机污染物的结构不同,其在土壤中的降解差异也较大。

3.2环境因子:

了解和掌握土壤的水分、营养等供给状况,拟订合适的施肥、灌水、通气等管理方案,补充微生物和植物在对污染物修复过程中的养分和水分消耗,可提高生物修复的效率。一般来说土壤盐度、酸碱度和氧化还原条件与重金属化学形态、生物可利用性及生物活性有密切关系,也是影响生物对重金属污染土壤修复效率的重要环境条件。

3.3生物体本身:

微生物的种类和活性直接影响修复的效果。由于微生物的生物体很小,吸收的金属量较少,难以后续处理,限制了利用微生物进行大面积现场修复的应用,

植物体由于生物量大且易于后续处理,利用植物对金属污染位点进行修复成为解决环境中重金属污染问题的一个很有前景的选择。但由于超积累重金属植物一般生长缓慢,且对重金属存在选择作用,不适于多种重金属复合污染土壤的修复。因此,在选择修复技术时,应根据污染物性质、土壤条件、污染程度、预期修复目标、时间限制、成本及修复技术的适用范围等因素加以综合考虑。

4.发展中存在的问题:

生物修复技术作为近20年发展起来的一项用于污染土壤治理的新技术,虽取得很大进步和成功,但处于实验室或模拟实验阶段的研究结果较多,商业性应用还待开发。此外,由于生物修复效果受到如共存的有毒物质(Co-toxicants)(如重金属)对生物降解作用的抑制;电子受体(营养物)释放的物理;物理因子(如低温)引起的低反应速率;污染物的生物不可利用性;污染物被转化成有毒的代谢产物;污染物分布的不均一性;缺乏具有降解污染物生物化学能力的微生物等因素制约。因此,目前经生物修复处理的污染土壤,其污染物含量还不能完全达到指标的浓度要求。

5.应用前景及建议:

随着生物技术和基因工程技术的发展,土壤生物修复技术研究与应用将不断深入并走向成熟,特别是微生物修复技术、植物生物修复技术和菌根技术的综合运用将为有毒、难降解、有机物污染土壤的修复带来希望。为此,建议今后在生物修复技术的研究和开发方面加强做好以下几项工作:

(1)进一步深入研究植物超积累重金属的机理,超积累效率与土壤中重金属元素的价态、形态及环境因素的关系。(2)加强微生物分解污染物的代谢过程、植物-微生物共存体系的研究以及植物-微生物联合修复对污染物的修复作用与植物种类具有密切关系。

(3)应用现代分子生物学与基因工程技术,使超积累植物的生物学性状(个体大小、生物量、生长速率、生长周期等)进一步改善与提高,培养筛选专一或广谱性的微生物种群(类),并构建高效降解污染物的微生物基因工程菌,提高植物与微生物对污染土壤生物修复的效率。

(4)创造良好的土壤环境,协调土著微生物和外来微生物的关系,使微生物的修复效果达到最佳,并充分发挥生物修复与其他修复技术(如化学修复)的联合修复作用。

(5)尽快建立生物修复过程中污染物的生态化学过程量化数学模型、生态风险及安全评价、监测和管理指标体系。

结论

综上所述,我们不难发现由于土壤重金属来源复杂,土壤中重金属不同形态、不同重金属之间及与其它污染物的相互作用产生各种复合污染物的复杂性增加了对土壤重金属治理和修复难度,且重金属对动植物和人体的危害具有长期性、潜在性和不可逆性,同时进一步恶化了土壤条件,严重制约了我国农业生产的加速发展,所以要更好的防治土壤重金属污染还需要广大科研工作者不懈的努力,研发出更好的效率更高的修复治理技术,同时我们还不应该忘记必须加强企业自身的环保意识,提高企业自我约束能力,始终将防治污染积极治理作为企业工作的头等大事来抓,把企业对环境的污染程度降到最低限度,形成全社会都来重视土壤污染问题的良好环保氛围,逐步改善我们的土壤生态环境。

参考文献:

[1]钱暑强,刘铮.污染土壤修复技术介绍[J].化工进展,2000(4):10-12,20.

[2]陈玉成.土壤污染的生物修复[J].环境科学动态,

1999,(2):7-11.

[3]李凯峰,温青,石汕.污染土壤的生物修复[J].化学工程师,2002,93(6):52-53.

[4]杨国栋.污染土壤微生物修复技术主要研究内容和方法

[5]张春桂,许华夏,姜晴楠.污染土壤生物恢复技术[J].生态学杂志,1997,18(4):52-58.

[6]李法云,臧树良,罗义.污染土壤生物修复枝木研究[J].生态学杂志,2003,22(1):35-39.

[7]滕应,黄昌勇.重金属污染土壤的微生物生态效应及修复研究进展[J].土壤与环境,2002,11(1):85-89.

[8]沈德中.污染环境的生物修复(第一版)[M].北京:化学工业出版社,2001:14,311.

篇5

生态修复去除氨氮的净化机理

自然界氮素包括有机氮化合物、无机氮化合物(氨氮、亚硝酸盐氮和硝酸盐氮)。尽管分子氮和有机氮数量多,但植物不能直接利用,只能利用无机氮。在微生物、植物和动物三者的协同作用下将三种形态的氮相互转化,构成氮循环,其中微生物起主导作。河流中氮的的去除机制包括:植物和其他生物的吸收、氨化作用、硝化作用、反硝化作用、氨的挥发作用、NH4+的阳离子交换作用等。通常条件下,有机氮易被微生物分解、转化,因此人们更关注氨氮的去除。

水生植物根毛的输氧及传递特性,使根系周围连续分布好氧、缺氧和厌氧状态,相当于许多串联或并联的处理单元,使硝化与反硝化作用能够在湿地系统中同时进行:再如在植物一砾石床潜流湿地中,植物的根区效应与砾石的多孔性是影响氨氮去除效果的主要因素。微生物硝化、反硝化作用是人工湿地的主要脱氮方式,此外,同时也能被湿地植物直接摄取,合成蛋白质和有机氮,再通过对植物的收割,达到去除氨氮的目的。影响人工湿地脱氮的主要因素包括:温度、溶解氧、微生物可利用的硝态氮和有机碳、PH值、氧化还原电位、停留时间〕。

目前河道生态修复去除氨氮的技术

1原位生态修复

原位生态修复是直接在河道中对受损河道进行综合整治和修复方法的统称。主要是通过生物修复结合物理修复和化学修复的一个过程。

1.1底泥生态处理技术

河道底泥生态系统是由底泥的化学组分和生物区系共同构成的。底泥具有一定的缓冲能力,其对河道水质稳定性具有重要影响。目前较为常见的河道底泥处理技术就是底泥疏浚。钟继承等发现底泥疏浚能有效的削减沉积物中N、P等营养物,重金属和持久性污染物等污染物的含量,但疏浚过程中会引起污染物大量向水体释放,并对底栖生物和微生物胞外酶活性产生危害。有学者指出城市河道底泥物理疏浚方法效果明显,但工程量大,投入大,而生物一生态修复投入低,处理量大,不易产生二次污染。近几年来底泥生态修复的技术不断发展,出现了包括底泥植物修复、底泥生物氧化、底泥固定化等方法。童昌华等将水生植物修复底泥与物理包被底泥进行了比较,发现经水生植物处理的底泥中氨态氮没有出现明显的释放高峰,且始终保持低水平,其中狐尾草的效果优于凤眼莲。冯奇秀等厂将底泥生物氧化配方和方法应用于黑臭河涌治理,在上游不断流入污水的情况下,N’H4+一N去除率达到30%。

1.2水生植物修复技术

水生植物可通过自身的生长代谢吸收水中的营养物质,有效的控制水中N的含量。春、夏、秋三季主要种植凤眼莲、水浮莲、浮萍等喜温水生植物,冬季种植耐寒性水生植物,如西洋菜、小浮萍、殖草等。受污河道经凤眼莲为主的浮水植物处理,经5个月,NH4十一N、TN分别下降21.8%和49.7%。种植芦苇、菱白、香蒲草,N’H4+一N的去除分别为79.5%、72.7%、59.4%[17。南京莫愁湖种植莲藕,生产莲藕为25x104kg/a,带出N达到60t[18]。4.1.3生态浮床技术.生态浮床技术是根据生态学原理发展起来的集水环境治理和生态修复一体的实用技术。生态浮床又称生态浮岛。自20年前德国BESTMAN公司开发出第一个生态浮床之后,以日本为代表的国家和地区成功地将生态浮床应用于地表水体的污染治理和生态修复。浮床植物选择原则有四点:(I)尽可能选择来源方便且适应能力较好的本地土著种类;(2)生长量大,繁殖能力强;(3)根系发达;(4)具有一定的经济价值或观赏价值。近年来,我国生态浮床技术进入快速发展期,大量学者进行了相关的研究。郑种仁2例等利用水芹处理模拟氨氮类富营养水体,在HRT=6d时,亚硝酸细菌数为27.OX104个/g水、硝酸细菌数为1.SXIO4个/g水、N’H4十一N平均去除率达到35%;而当HRT=2天时,亚硝酸细菌数为1.3X104个/g水、硝酸细菌数为0.2x104个/g水、N’H4十一N平均去除率仅为6%。徐玉荣等建立梯级生态浮床系统对黑臭河道进行净化,N’H4+一N的去除率平均达到71.9%,其中挺水(香菇草)、浮叶(睡莲)和沉水植物(轮叶狐尾藻)各单元对氨氮的去除率分别为36.1%,22.3%,13.5%。

1.4生态护岸技术

生态护岸是为结合护岸工程与环境生态的要求提出的,既能满足河道护岸功能,又有利于河流生态系统的恢复,其建设过程融合了水利工程学、生态学、环境科学、生物科学等多个学科。1965年,EmstBittmann在莱茵河两岸种植柳树和芦苇。陈杨辉〔25等利用三种形式的生态护砌去除N’H4+一N的效果分别达到83.6%、83.4%、88.1%。由此可见,生态护砌对水体中氨氮污染物去除效果的影响显著。

2异位生态修复

对于受污染河流,尤其是水量较大或者污染严重的河流,在河流中设计引流装置,将受污河水引入河道旁的污水处理设施中,对其进行集中处理后,再将其排入原河流中。此方法能够有效去除河道中污染物,并防止污染物向下游扩散。

河道旁建设的通常是污水处理厂。19世纪,英国在泰晤士河两岸建设了一系列污水处理厂。20世纪,联邦德国在莱茵河两岸建造了100多座污水处理厂。然而其高昂的建设、运行费用限制这种方法在我国河道整治中的应用。因此,找到合适的处理方法代替传统方法成为关键。人工湿地、氧化塘等处理技术建设费用低,近年来得到研究人员的关注,并在许多地方得到实际应用。

2.1人工湿地处理技术

人工湿地是人工建造与监督控制的、与沼泽表面类似的处理系统,其设计、建造思想来源于对湿地自然生态系统中的物理、化学和生物作用系统研究

。人工湿地是20世纪70年代兴起的一种水体污染生态治理技术,因其建设、运行费用低,能耗少,维护方便,且具有一定的景观作用等优点,该技术越来越受到人们的重视。2006年,吴建强等在江苏省新沂河河漫滩上构建了一个表面流人工湿地系统(SurfaeeFlowConstruetedWetland,SFW),人工湿地的进水N’H4+一N浓度为1.37一20.18mg/L,四种不同种植植物对其去除效率分别为64.27%、70.49%、66.78%、58.52%。

2.2稳定塘处理技术

稳定塘,又称氧化塘或生物塘,是一种利用天然池塘的自然净化能力对污水进行处理的构筑物的总称。通常是改造废弃鱼塘或者将土地进行适当休整,建成池塘,并设置围堤和防渗层,依靠塘内生长的微生物处理污水。稳定塘污水处理系统能有效去除污水中的有机和病原菌、无需污泥处理。城市黑臭河道治理中,对于暂时无法截污的城郊河道,利用废弃池塘改造成氧化塘,对上游污水进行预处理仁。

研究表明,在污水进水量为432Ot/d以内(污水停留时间1.4d以上,容积负荷为CODer:0.1一kg/(d•m3)以下),氧气为15.6kg/h的增氧曝气条件下,NLH4+一N去除率在40%以上。由此可见,利用稳定塘处理系统对上游污水进行预处理,对于NH4+一N的去除起到了重要作用。

篇6

关键词:危害 重金属污染 土壤修复

土壤是地球表面的疏松表层,它是人类赖以生存的重要自然资源,并且在生态环境中占有重要地位。而近年来,随着工业的快速发展和乡镇城市化,土壤重金属污染日益严重,由此会破坏人类生态环境,从而影响人们的健康,因此,土壤重金属污染的修复技术已成为一个研究热点。

一、土壤重金属污染的危害

随着工农业的快速发展,多种工业如采矿、冶炼、电镀、废电池处理、金属加工等的排放以及农业中各种农药,化肥的施用均是土壤重金属污染的来源。据报道,全世界平均每年排放Hg约1.5万吨,Cu 340万吨,Mn 1500万吨,Pb 500万吨,Ni 100万吨[1]。土壤重金属污染具有污染面积达、积累时间长、不易被微生物降解、有明显的生物富集作用等特点,被重金属污染的土壤会严重影响到农作物的生长和发育,从而导致农作物的减产并污染农作物。安志装等人[2]研究发现镉与巯基氨基酸和蛋白质的结合会引起氨基酸蛋白质的失活,甚至使植物死亡。另外,土壤中的重金属会被农作物吸收并在农作物体内富集,通过食物链进入人体,从而严重危害人体健康。

二、土壤重金污染修复技术

1.物理化学修复技术

1.1化学固化

化学固化法指的是通过在土壤中加入土壤固化剂来改变土壤的有机质含量、矿物组成、pH值和Eh值等理化性质,再经重金属的吸附或共沉淀作用来调节其在土壤中的移动性,从而降低其共生物有效性。固化剂将污染土壤中的重金属固定后,不仅可以减少重金属通过径流和淋洗作用对地表水和地下水的污染,而且被污染的土壤还有可能重建植被[3]。虽然化学固化法可以固化土壤中的重金属,但固化剂只是改变重金属在土壤中的存在形态,重金属仍留在土壤中,因而该方法还有待进一步的研究探讨。

1.2电动修复

电动修复是近年来快速发展的技术,其作用机理是将电极对插入被污染的土壤中,在通入微弱电流形成电场,使土壤中的重金属在电场形成的各种电动力学效应下定向移动,在电极区附近富集,从而将重金属处理或分离。

对于低渗透的粘土和淤泥土的修复,电动修复是常用的技术。郑喜坤等人[4]研究了电动修复技术对沙土中Pb2+、Cu3+等重金属离子的去除效果,结果表明,重金属离子的去除率达99%以上。电动修复技术是一种原位修复技术,它可以有效的去除土壤中的重金属离子,并且经济效益好,是一种可行的修复技术。

1.3土壤淋洗

土壤淋洗是一种适用于治理大面积重废污染土壤的方法。所谓淋洗,是指利用提取剂(包括有机或无机酸、碱、盐、表面活性剂和聚合剂等)将土壤中的固相重金属转化为液相,土壤在经水淋洗处理后可归回原位利用,而对于富含重金属的废水也可进行回收处理,从而达到修复土壤的目的[5]。吴华龙等人[6]研究了被铜污染土壤修复的有机调控机理,研究结果表明,外加EDTA对降低红壤对铜的吸收率与加入的EDTA量的对数量显著负相关。土壤淋洗法虽然处理量大,处理效率高,但会造成二次污染,因此,寻找一种既能提取各种形态重金属又不破坏土壤结构的提取剂将成为土壤淋洗法的研究热点。

2.植物修复

植物修复是指在被重金属污染的土壤中,种植某种特定的植物,利用该植物对重金属的耐性和超富集作用将重金属移出土壤,使土壤中的重金属降低到可接受的浓度,达到重金属污染修复的目的。

根据其修复过程和作用机理可将植物修复技术分为4种:①植物萃取技术,即利用超富集植物将重金属从土壤提取出来,并将其转移,贮存到地上部分,然后通过植物收割来对重金属进行集中处理的过程[7]。韦朝阳等人[8]研究发现了一种大叶井口草,它对As的富集有明显的效果,其地上部分最大含量可达694mg/Kg。②植物固化技术,即利用耐金属植物及其根系微生物的一些生物化学作用降低重金属的活性,使其固化,从而减少对土壤的危害。该方法主要适用于有机质含量的矿区污染土壤的修复。③根圈生物技术,即利用植物根际分泌物和根际脱落物刺激细菌和真菌的生长,通过细菌和真菌对重金属的吸附固定作用,是重金属矿化的过程。④植物挥发技术,即利用植物根系的吸收、积累和挥发作用减少土壤中一些挥发性污染物,及植物将污染物吸收到体内后将其转化为气态物质释放到大气中[9]。

3.工程措施

工程措施是比较经典和传统的修复土壤重金属污染的方法,主要包括客土、换土及深耕翻土等方法。通过客土、换土或者将深耕翻土与污土混合,使土壤中重金属的含量降低,减少重金属对土壤植物的毒害,从而使农产品达到食品卫生标准[10]。

客土法是将干净的土壤覆盖在已受污染的土壤上混匀,从而降低土壤中污染物的浓度;换土法是用干净的土壤代替受污染的的土壤,对于换出的土壤应进行处理,防止二次污染的发生;深耕翻土是将表层已受到污染的土壤翻至深层,从而使土壤中污染物的浓度降低。

三、结语

目前运用于修复土壤重金属污染的技术有很多,但每种修复技术对于土壤重金属污染修复均有一定的弊端,并且对于不同类型的土壤受重金属的污染的程度的不同,单一的使用某种技术并不能达到理想的效果,因此,在实际应用中,应综合多种修复技术的优点,互取优势,研究出新型的具有高效,低耗的修复技术。

参考文献

[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.

[2]安志装,王校常.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-296.

[3]Vangronsveld J F. Asschc V and Clijsters H.1995.Reclamation of a bare industrial area contaminated by norrferrous metals: In situ metal immobilization and revegetation. Environ Poll ,87:51-59.

[4]郑喜坤,鲁安怀,等. 土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.

[5]龙新宪,杨肖娥,倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.

[6]吴龙华,骆永明,黄焕忠. 铜污染土壤修复的有机调控研究I.可溶性有机物和EDTA对污染红壤的释放作用[J].土壤,2000,(2):62-66.

[7]丁华,吴景贵. 土壤重金属污染及修复研究现状[J].安徽农业科学。2011.39(13):7665-7666,7756.

[8]韦朝阳,陈同斌,黄泽春,等. 大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.

篇7

关键词:湖泊;富营养化;危害;必要性;修复技术

中图分类号: K928.43 文献标识码: A 文章编号:

湖泊是重要的国土资源,具有多种功能:调节河川径流,提供农业灌溉、工业生产用水和饮用水水源,繁衍水生生物,沟通航运,改善区域生态环境以及开发矿产等,在国民经济的发展中发挥着重要作用,同时,湖泊及其流域是人类赖以生存的重要场所。但是,随着滇池、太湖、巢湖等爆发蓝藻危机,我国的湖泊富营养化问题日益严重,已到达不容小视的程度,中国环境保护部最新公布的《2010年中国环境状况公报》显示,我国湖泊(水库)富营养化问题突出,26个国控重点湖泊(水库)中,营养状态为重度富营养的1个,中度富营养的2个,轻度富营养的11个,富营养化已经成为普遍的水环境污染问题,严重影响到居民饮水、工农业生产和生态循环。

1 湖泊富营养化的危害

湖泊富营养化是由于水体中过量的营养物质积累,从而导致过高的生物生产力,同时伴随水质恶化、水体的生态变化,逐渐将水体转化为湿地、沼泽,进而丧失湖泊原有的功能,改变湖区的生态环境[1]。自然条件下湖泊富营养化是一个缓慢的过程,正是人类的活动加剧了该过程的发展,一旦发生湖泊富营养化,其造成的危害是严重且深远的。

1.1 危害水体生态系统

湖泊(水库)藻类的过度繁殖降低了水体的透明度,阻挡光线到达更深水层,导致水体深层的植物大量死亡,底层生物量锐减,同时,藻类在光合作用过程中,消耗大量二氧化碳,造成水体pH异常升高,严重影响水体中其他生物的生理活动,导致生物群落结构的改变。

藻类大量死亡分解,水体溶解氧被大量消耗,水体形成还原状态,生物分解产生大量甲烷、硫化氢等有害气体,系统内部环境恶化。

许多藻类生物分泌的藻毒素及死亡分解产生的有毒物质可使水生动物生理失调或者死亡。密集的藻类及其胞外物质可堵塞鱼、虾、贝及许多小型水生动物的呼吸和滤食器官,导致机械性窒息死亡。富营养化植物还竞争性消耗水体中的营养物质,并分泌一些抑制其他生物生长的化学信息素,造成水体中生物量增加,种类数量减少,系统内部的自我调节能力减弱。

由于富营养化生物的大量生长和繁殖,加速了水体中有机残骸、排泄物及其它悬浮颗粒的沉积;水体变浅,功能衰退,加快了湖泊的消亡和水体沼泽化、陆地化的进程,破坏了特定地区的生态平衡[1-3]。

1.2 造成水体恶化,增加饮用水处理的难度,威胁人体健康

在富营养化的湖泊,藻类大量繁殖,造成水质恶化,给城市净水工艺带了许多难度,进而影响了饮用水水质,对人体的健康构成了一定的威胁。

含藻水的pH值偏高,不利于混凝剂脱稳[4]。大量藻类和水生微生物的孳生繁殖容易造成滤池堵塞,破坏正常生产运行,而且微生物还会穿透滤池,在配水系统中繁殖造成配水系统不畅和堵塞,而且,藻类产生的微量有机物容易引起水中嗅味异常,这是常规水处理工艺难以去除的,迫使水厂进行升级改造,提高了净水成本[5]。

在富营养化水中,藻类、有机物和氨氮大量存在,使得混凝剂和消毒剂用量大大增加,提高了制水成本[6],更增加了水体中消毒副产物的含量,饮用水安全性降低。

1.3 损害湖泊的美学价值和经济价值

水体富营养化的形成,使水体浑浊,透明度下降,水中带有霉臭味,水体丧失了应有的美学价值,随之,水体的旅游价值、游泳价值和观赏价值消失[3, 6, 7]。在富营养化水体中,藻类植物通过前面已述的危害生态系统方式,对渔业生态环境产生了长期的不利影响,使得渔业资源破坏,珍贵物种消失,水产品质量下降,对渔业造成了巨大经济损失[3]。

2 富营养化湖泊的水体修复技术

根据手段的不同,湖泊富营养化的修复技术分为三大类:物理修复技术、化学修复技术和生物-生态修复技术[8-10]。

2.1 物理修复技术

物理修复技术包括截污、人工曝气、底泥疏浚、稀释冲刷和机械捞藻等,这些措施可以单独使用,也可以作为生物修复技术等的前置处理技术。

2.1.1 深水曝气

深水曝气的目的通常有三个:一是能够达到不改变水体分层的状态下提高溶解氧浓度,二是改善冷水鱼类的生长环境和增加食物供给,三是通过改变底泥界面厌氧环境为好氧状态来降低内源性磷的负荷,其他附带的目的包括降低氨氮、铁、锰等离子性物质的浓度。

从种类上来说,深水曝气设备有三种:机械搅拌、注入纯氧和注入空气。

2.1.2 底泥疏浚

污染底泥是水体污染的潜在污染源,在水体环境发生变化时,底泥中的营养盐会重新释放出来进入水体中,对于宽浅型湖体,底泥更是不可忽视的重要污染源。因此,要解决湖泊富营养化问题,底泥疏浚是改善底泥营养物质含量高的一种有效手段。

2.1.3 稀释冲刷

稀释和冲刷是湖泊修复较为常用和普遍的治理方法,稀释冲刷的机理相当于一个流动的或者连续的培养系统,当含低浓度营养元素的水被注入系统中时,导致系统营养物质浓度降低,相应,藻类生物量也会随之开始下降;同时,营养元素和藻类能够以更加快的速度被置换或者冲洗出水体。就局部而言,稀释冲刷是解决水体富营养化相对简单、易行和代价较低的方法,如杭州西湖自钱塘江引水后对延缓水体富营养化发挥了一定的作用[11]。

2.2 化学修复技术

化学修复技术主要包括凝聚沉淀和化学杀藻两种方法。对于凝聚沉淀,通过投加化学试剂使得营养物质生成沉淀而降解,如投加铁盐或者铝盐促进磷的沉淀。使用化学杀藻剂杀藻效果较好,但是成本较高,会受时效、大水域、水体流动性的局限,而且藻类被杀死后,水藻腐烂分解仍旧释放出磷,易造成二次污染,尤其是大规模人工合成物的使用可能会给环境带来负面影响,应慎重使用。对于杀死的藻类应及时捞出,或者再投加适当的化学药剂,将藻类腐烂分解释放的磷酸盐沉降[12]。

2.3 生物-生态修复技术

生物-生态修复技术主要从微生物、水生植物和生态系统三个层次对水体进行修复。国内外关于湖泊富营养化的生物-生态修复技术包括生物膜处理技术、微生物制剂技术、人工浮岛技术、人工湿地处理、生物操纵修复等[8-11, 13, 14]。生物修复技术具有原位修复的特点,在人工参与的条件下,恢复水体中的水生生态结构和增加水体的自净能力。

3 展望

对于湖泊富营养化问题,修复措施往往是物理、化学和生物-生态等修复技术的组合。减少温室气体排放、原位修复、无二次污染、成本低廉、节能高效、简单方便、易于普及是修复技术的主要发展方向。

化学修复技术可以作为一种应急方案,但是,目前的杀藻剂存在着广谱与专一、长效与残留的矛盾,如何解决这些矛盾,研制出高效、广谱、持久、低毒的杀藻剂是富营养化治理工作的主要课题之一。

目前,人工浮岛技术基本处于水质改善和景观建设阶段,缺乏传统水利、生态系统栖息地和景观的有机结合。修复途径多元化、运营可持续化和整体智能化是其未来的发展方向。

生物操纵修复技术,是一项有前景的生物修复技术,但是还需要进行深入研究:浮游食物网内的营养级相互作用;不同食物链等级的鱼群比例关系;底栖鱼类的作用;附着藻对营养物质的竞争;微生物在养分循环中的地位;针对不同的富营养化湖泊,如何使用生物操纵修复技术获取成功并长期维持,是研究者和管理者共同需要解决的问题。

参考文献

金根东. 我国湖泊富营养化研究现状[J]. 现代农业科技,2008,(16):334~336

汤卫华,宋虎堂,范志华. 水体富营养化的原因、危害及防治[J]. 天津职业院校联合学报,2006,2(8):52~54

陈汉春. 水库水体富营养化及其控制政策[J]. 今日科技,2004,(3):9~11

刘勇,黄志宇,陆屹,等. 水体富营养化及其防治措施研究进展[J]. 玉溪师范学院学报,2004,20(8):39~41

王占生,刘文君. 微污染水源饮用水处理[M]. 北京:中国建筑工业出版社,1999

罗世田,毛艳丽. 水体富营养化的危害及综合防治对策[J]. 平顶山师专学报,2003,18(5):46~48

谢有奎,俞栋,高殿森,等. 水体富营养化危害、成因及防治[J]. 后勤工程学院学报,2004,(3):27~29

夏章菊,高殿森,谢有奎. 富营养化水体修复技术的研究现状[J]. 后勤工程学院学报,2006,(3):69~72

董镇,唐俊芳. 富营养化水体的生态危害及防治措施与修复技术[J]. 江西化工,2005,(2):22~26

杨清海. 中国富营养化水体修复技术进展[J]. 辽东学院学报(自然科学版),2008,15(2):71~77

朱联东,李兆华,李中强,等. 富营养化湖泊生态恢复关键技术[J]. 水科学与工程技术,2009,(5):1~4

王淑芳. 水体富营养化及其防治[J]. 环境科学与管理,2005,30(6):63~65

篇8

关键词:分子生物技术;微生物领域;环境

微生物技术是在多种学科上面相互紧密交叉的一门应用学科,对环境污染修复技术方面的发展具有重要的推动作用。本文主要介绍目前常用的分子生物技术,分析分子生物技术在水、土壤、恶臭等方面的应用,明确分子生物技术在环境工程微生物修复治理工作中的重要性,为在下一步的分子生物技术的研究提供一个良好的契机,也为在环境工程的工作取得良好的效果而做好各项准备工作。

1与环境工程相关的分子微生物技术

1.1PCR核酸技术

PCR是一种利用脱氧核糖核酸半保留复制的原理,在体外扩增位于两段已知序列之间的DNA区段,从而得到大量复制的生物技术,其应用在整个行业中最为广泛。PCR技术主要分为以下三种:PCR-SSCP技术、PCR-DGGE技术以及PCR-RFLP技术。(1)PCR-SSCP技术主要通过利用银染法以及荧光的检测技术等,对SSCP凝胶DNA谱带进行详细的分析,应用这种技术进行分析,能够简化测试的试验步骤,比较方便且精准;(2)PCR-DGGE技术是按照一定顺序检测生命物质碱基,获得变性试剂解链不同的内容物质反映,对样本进行检测,从而达到研究目的;(3)PCR-RFLP技术主要是利用限制性核酸内切酶的特性进行样本分析,在基因组上寻找多态性位点,从而揭示个体或群体间遗传变异或评估种间亲缘性关系的一种分子标记技术。

1.2荧光原位杂交技术

荧光原位杂交技术是目前单个细胞水平上分析微生物群落结构的常用分子生态学方法,根据目前已公布的、定位在不同分类等级的rDNA分子的特定位置,设计以rDNA为靶点的寡核苷酸探针,然后用荧光标记探针,用于原位鉴定单个细胞.目前可利用此方法,使用一整套特异的寡核苷酸探针可进行单个细胞的快速分类。

1.3基因重组技术此技术

是利用DNA体外扩增或重组技术把需要的基因或DN段从供体生物基因组中抽取分离,或通过人工合成的方法获取基因,并经过一系列的切割、加工、修饰、连接反应产生重组的DNA分子,再将其导入适合的受体细胞,从而获得基因表达的过程。

2分子生物技术的应用

工业的高速发展极大地促进了我国经济的增长。然而,工业污染已对我们正常的生活环境及个人健康造成了不可忽视的影响。分子生物技术应用对环境污染的修复和治理成为现今行业的关注热点。

2.1水处理中的应用

微生物絮凝剂是由微生物菌体内外分泌的生物大分子,并带有电荷。相关的研究表明,微生物絮凝剂对生活污水及工业废水的COD及SS的去除率可分别达到68%和91%。相比铁盐、铝盐等化学药剂,微生物絮凝剂对活性污泥所产生的絮凝作用更高效,其产生的沉淀也更易过滤,且絮凝后的残渣可生物降解,不会造成二次污染。由此可见,微生物絮凝剂具有高效、无毒的优点。

2.2土壤修复中的应用

由于土壤生物修复技术具有环境友好、成本低、可原位处理等优点,因此成为了目前的一个研究热点。有益微生物可通过自身代谢分解土壤中的有机污染,其分泌的有机酸、铁载体等物质能使重金属转变为无害的螯合态。此外,根际微生物还能协助植物生长,促进超富集植物对土壤的修复效果。通过分子生物技术筛选具有高效代谢能力的菌种,并观察分析微生物在修复过程中的群落动态变化,可进一步了解土壤生物修复的机理,建立土壤功能微生物资料库,促进土壤生物技术在实际应用中的优化。

2.3臭气处理中的应用

微生物的代谢作用可把臭气分解成硫酸盐、CO2、H2O等无害无味物质,特别适用于堆肥厂、污水处理厂、垃圾填埋场等环境卫生处理设施的臭气治理。目前常用的生物除臭工艺包括过滤除臭、滴滤除臭、曝气式除臭以及洗涤式除臭。分子生物技术已广泛用于分析臭气处理设备中微生物代谢功能及群落的变化。通过扩增除臭细菌某基因的可变区,并结合相关的分子生物技术,观察除臭生物装置中的微生物的多样性、丰度及代谢功能在不同pH、碳源或其他制约条件下的变化,可筛选出最有利的菌种。因此,分子生物技术的应用对臭气治理具有非常重要的意义。

2.4对石油降解方面进行分析研究

石油的成分复杂,包括一些对微生物有毒害的物质。因此,如何鉴定、筛选、培养具有高效降解能力的菌种成为石油污染物生物处理技术的关键。为了更好的解决石油的污染问题,需要相关研究人员在分子生物与石油污染进行深入细致的研究,并积极寻找有效可行的治理方法。分子生物技术在环境工程方面,主要具有环境治理效果好、无副作用、成本较低等优点。由于分子生物技术的众多好处,得到了各方面的广泛认可,使得这项技术在我们行业的发展上起到了重要的作用。

3结语

我国现今所面临的难题是,如何降低对环境的污染,如何能够进一步改善我们现在的生活环境。环境工程生物修复技术作为目前行业的热点,而分子生物技术俨然已成为环境工程微生物不可或缺的研究手段,这同时也在另一个层面让我们充分的认识、理解到分子生物技术在环境工程中的重要性。分子生物技术的研发与应用是我们在环境保护中的前沿阵地,我们在不断的分子生物研究中进行发掘和创新,为我们的环境工程事业做好有力的技术支持,同时也为我国在环境保护方面做出重要的贡献。

参考文献

[1]石琛,王璐.环境微生物领域分子生物技术的应用进展[J].中国科技信息,2013,16,135+139.

[2]张凤.在环境工程微生物领域中分子生物技术的应用[J].绿色科技,2013,08,192-194.

篇9

关键词:黑臭污染;微生物高效菌剂;生物修复

随着人们生活水平的不断提高,环保意识得到加强,对于自然生态保护的意愿愈加强烈,对于美好生活环境的需求也越来越高。河道作为水资源的主要载体,对城市经济、社会与环境之间的协调发展具有重要意义[1]。相对于发达国家而言,我国的处理技术还处于相对落后的局面,在国家出台相关黑臭河道的治理文件中都体现了治理的刻不容缓。因此,在形势严峻的今天,对黑臭河流治理方法的研究是迫切需要且具有重要意义的。底泥生物修复是通过靶向给药技术直接将药物或微生物注射到河道底泥表面,利用微生物、各种电子受体、共代谢底物等生物氧化组合技术,对河道黑臭底泥进行生物氧化,可有效降低底泥有机物含量和耗氧速率,提高底泥对上覆水体的生物降解能力,促进底泥微量营养释放和藻类生长[2]。

1项目背景

茫溪河属岷江支流,西源头位于井研县大佛乡大力村宋家坡,东源头位于仁寿县松峰乡双河口,全长95公里,其中井研县段75公里,经井研县王村镇舒金滩进入五通桥区,最终汇入岷江。河宽30到50米,年径流总量4900万立方米,流域面积667.4平方公里。井研县现有城市生活污水处理厂一座,处理规模为1.2万立方米每天,目前市政污水管网收纳污水量为1.4万立方米每天,县城第二污水处理厂尚未建成投运,井研县城市生活污水处理厂超负荷运行也不能完全处理城区生活污水,部分生活污水从望峨桥、等多个排口直接溢流进入茫溪河;新区部分约5000人的生活污水现通过管网收集到霁虹桥底,由于县城第二污水处理厂在建,污水管网尚未完全接通,污水不能进入市政污水厂进行处理,污水直接排入茫溪河。同时研城水坝至蚕宝滩水坝段部分河道正在进行边坡治理,从研城水坝至蚕宝滩水坝河道已实行截流(截留总长度约4.5km),河道流量较小,使该段河道的自净能力和环境容量减小,导致进入该段河道的生活污水不能在短时间内降解,需通过外力协助其降解[3]。目前该部分污水对河道水体造成了严重污染,同时也对当地居民的日常生活造成了不便,迫切需要解决该断面存在的黑臭问题。

2项目介绍

本项目选取井研茫溪河段受污染严重部分区段作为生态修复试验段,在污水溢流排放严重的河道部分选取三个区段,即茫溪河生态修复试验段一(望峨大桥下)、试验段二(龙家坝大桥上游50米处)和试验段三(县天然气公司外面)。茫溪河生态修复试验段全长约155米,治理河道全长约2.2千米,试验段内有城市生活污水直排放口7处,工业污水排放口(意龙科纺集团)1处,城市生活污水处理厂排放口1处(达标排放城市生活污水1.2万方/日)。河道近6个月水质监测数据显示,水体水质指标为劣V类,波动较大。项目段水质三方监测背景数据如表1所示。本次工程的总体治理目标是使水体中悬浮物(SS)削减率高于50%,氨氮(NH3-N)、总磷(TP)、化学需氧量(COD)削减率高于20%,感观无黑臭。

3实验材料与设备实验材料

生物反应池(土坝堆砌覆膜,规格为10m×10m×1m),扎带,悬浮填料(丙纶含硬丝,自漂型),阀门,套管,电缆,钢丝绳,PVC管,竹片,底泥消解增强复合菌剂。实验设备曝气机及附属设备,电控柜,菌液储存桶,菌种投加曝气船。

4实验方法

通过实地调查,对试验段的污染现状、纳污能力和排污情况有了较为全面的了解,在实地调研的基础上,开展了一系列的实验室研究,得到了大量可靠的数据。确定了以微生物为主的微生物强化修复工艺,本工程采用微生物强化修复技术对河流进行生物多功能组合原位修复,通过曝气复氧、投加悬浮填料、投加高效微生物菌剂等技术的组合应用,结合必要的物理措施,对技术修复效果进行检验,从而为此技术在整条河流的修复的运用提供技术保障。

5实验内容

5.1曝气充氧

试验段道采用潜流曝气机曝气,整个装置包括电动机、通电电缆以及潜流曝气机,全段共8个曝气机盘。试验段长度为60m,曝气机安装位置位于河岸外侧,曝气段全长50m,采用4×2的方式安装,潜流曝气机安装间距分别为10m与4m。

5.2悬浮填料投加

在黑臭河道治理过程中,通过投加微生物菌剂能使得水体污染物得到科学的处理,达到一定的治理目标。针对目前每日污水超过2000m³的溢流量,水量较大,冲击负荷过大,不宜直接投加菌剂。通过在反应池内安装生物填料及曝气设备,能够减少水量冲击,特别是在生物膜法中微生物固着生长,能够和介质中的有机物浓度形成动态平衡,且生物膜形成后污泥产生量少,管理方便。悬浮填料采用自浮型人工水草,长度为0.5m,通过固定于竹片进行投放,竹片长度为2m,10根人工水草固定为1组,每组间距为1m,填料投加量为100m³。

5.3复合菌剂投加

井研茫溪河段水体污染主要表现为氮磷等营养物质和有机物的污染,使得河道底泥淤积,水体感官呈现发黑发臭。本研究针对目前河道存在的黑臭污染问题,采用对生活污水有强效降解能力的生物菌种进行河道治理试点。生物强化技术的优势主要体现在以下几方面:(1)提高对目标污染物的去除效果;(2)提高环境中有益微生物的量,提高水系的自净能力以及抗冲击能力;(3)提高生物菌体网捕、吸附、搭桥、絮凝等物理化学性能,提高菌胶团的生物絮凝、吸附、降解等能力。针对市政生活污水的特性和相应区段的水质检测情况,实验室条件下筛选出强效降解污染物的菌种,并按照一定比例复配出针对性较强的生物强化菌剂,辅以土著微生物系统,经实验室小试中式达到降解目标后应用于生物处理池区段,通过投加复合菌剂使得该水域自净能力得到相当的强化。本试验计划投加高效复合菌剂ML3,该复合菌主要包括酵母菌、放线菌、乳酸菌、光合菌四大类菌种,几种菌按照一定比例进行配比复合而成。菌剂浓度不低于107CFU/ML。复合菌剂用2吨聚乙烯罐运送至实验现场后存储备用,通过人工投放的方式加入城区实验段中,投加点布置位于实验进水口,投加量为0.05%。每天投加一次,一个月为一周期,根据效果适当调节加菌量。

6污染物降解效果分析

在反应池内安装生物填料以及曝气装置,安装完毕之后再引入溢流废水。在反应池内投加高效微生物菌剂ML3,通过微生物的作用,将溢流废水应急处置后再排入主河道[4]。投加复合微生物菌剂后,水质得到改善,污染物质的降解速率得到明显提高。试验得出试验段一水体中悬浮物(SS)削减率为56.72%,化学需氧量削减率为25.64%,总磷削减率为33.33%,氨氮削减率为32.78%;试验段二水体中悬浮物(SS)削减率为54.93%,化学需氧量削减率为35.37%,总磷削减率为27.16%,氨氮削减率为23.77%;试验段三水体中悬浮物(SS)削减率为54.93%,化学需氧量削减率为27.59%,总磷削减率为27.16%,氨氮削减率为23.77%。总体对比,基本达到污染物降解目标[5]。

7结论及建议

7.1结论

本文通过茫溪河城区段进行试验,使用微生物强化技术,通过“曝气充氧+悬浮填料+投加微生物菌剂”的方式,使得污染水体水质得到明显改善,水体污染物得到有效降解。水体中悬浮物(SS)削减率高于50%,氨氮(NH3-N)、总磷(TP)、化学需氧量(COD)削减率高于20%,感观无黑臭,整体试验目标达成,可推广于茫溪河河道水质提升治理。

7.2建议

黑臭河道的形态有很多,且黑臭形成原因也不尽相同,本文研究选取用于生态修复试验段为污水排放及溢流段,用于生态修复的复合微生物菌剂也是针对于试验区段复配而成的,只具备一定的代表性。茫溪河受污染段黑臭情况不一,河流流态也不一,针对复杂局面下的微生物强化技术的黑臭应用,需要选取相关生态影响因子,并进行生态因子对水体黑臭相关性的研究,构建茫溪河生态因子-黑臭情况-微生物的实验模型,针对整个茫溪河水体水质情况选出最适参数,通过科学的方法使茫溪河水体水质得到最优化的改善。

参考文献:

[1]黄民生,陈振楼.城市内河污染治理与生态修复[M].科学出版社,2010.

[2]王海,张甲耀,魏明宝.生物强化技术在生物修复中的应用[J].广州环境科学,2003,18(4):1-4.

[3]傅翔宇,李亚峰,王群.城市黑臭河道治理方法的研究与应用现状[J].建筑与预算,2016(04):37-41.

[4]钱嫦萍,陈振楼,刘杰.长江三角洲河流污染现状及变化趋势[J].环境科学研究,2002,(6):24-27.

篇10

土壤中砷的形态分布

砷的常见价态包括0(单质砷)、+III(三价)和+V(五价)。砷的化合物包括有机态砷化合物和无机态砷化合物。有机态砷化合物常见的有甲基砷、二甲基砷等;常见的无机态砷化合物包括三氧化二砷(As2O3)、五氧化二砷(As2O5)、亚砷酸(H3AsO3)及亚砷酸盐(AsO3-3)、砷酸(H3AsO4)及砷酸盐(AsO3-4)[9]。砷对生物的有效性及毒性与其赋存形态有紧密的关系。无机态砷的毒性大于有机态砷,而三价砷的毒性则远远大于五价砷,是其毒性的60倍[10]。在土壤环境中,砷的存在形态以无机态为主,其中又以五价砷的化合物为主。土壤中砷的赋存形态一般分为三类:水溶性砷、吸附性砷和难溶性砷,其中水溶性砷和吸附性砷又被合称为有效态砷或可给态砷[11]。目前,确定土壤中砷的生物可给性一般利用体内试验或体外试验。体外试验方法(如PBET,SBET,IVG)结果快速准确、操作简便可控、成本低廉,因此,正逐步成为世界上很多国家认可并采用的方法[12]。中国研究人员也在使用这类方法研究国内砷污染土壤的生物可给性。崔岩山等[13]比较了体外试验的三种不同方法(PBET,SBET,IVG)在测定浙江上虞某污染土壤中砷的生物可给性上的差异,结果发现,由于模拟胃肠液成分和pH值不同以及土壤性质的变化,3种方法的结果有明显差异。

砷对人体的危害

土壤中的砷能够通过种植的农作物富集进入食物链,从而危害人体健康。同时,土壤中的砷还能够渗入地下水,造成地下水的砷污染问题,而该问题是威胁全球人类饮用水安全的主要问题之一。目前,全球超过一亿人口在饮用被砷污染的地下水,地下水砷污染的高危地区包括孟加拉国、印度、美国、中国等,南亚的一些国家是全世界地下水砷污染最严重的地区[14]。人体砷中毒的轻微症状表现为食欲不振、眩晕恶心,严重症状包括肝肿大、脾肿大、肝腹水等[15,16]。短期接触无机态砷会造成全身或手掌皮肤色素沉积(广泛性黑色素沉积症)和皮肤角质化[16]。长期接触无机态砷会对人体的心血管系统造成严重危害,引起一种独有的黑脚病,这是一种末梢血管疾病,症状包括干性坏疽、自发截肢等严重后果[17]。除了对人体心血管系统的严重危害,砷还是一种致癌物质,能够导致膀胱癌、肺癌、肝癌等疾病。最近,一组美国科学家在对美国密歇根州的74万居民和9000多口水井将近30年的长期调研观察后发现,长期的砷接触还会导致糖尿病、肾功能损害和脑血管疾病[18]。而另一组美国科学家则通过对孟加拉国某地区的201位10岁儿童的观察研究发现,长期的砷接触对于儿童的智力发育有明显的抑制作用[19]。

土壤砷污染治理修复技术

目前,对于砷污染土壤的修复治理方法主要有物理化学、生物方法几大类,而常见的物理化学方法包括原位化学固定、土壤淋洗等,生物方法包括植物修复和微生物修复技术等。

化学及植物修复

原位化学固定是向污染土壤中施加化学固定剂,改变砷元素在土壤中的迁移转化过程,使之稳定化[20]。常见的砷的化学固定剂包括铁氧化物以及铝、锰氧化物等。研究人员还发现,氧化钙、氧化镁、硫酸亚铁等添加剂对于土壤中砷的固定有一定效果[21]。在原位化学固定处理过程中,土壤pH值的控制十分关键,砷酸根离子在pH较低的土壤中比较稳定,因此,要考虑化学固定剂对于土壤pH值的影响[21]。植物修复利用超富集植物清除土壤中存在的砷,是近年来土壤污染修复的热点之一[22]。陈同斌等[23]2001年在中国湖南发现了第一株砷的超富集植物:蜈蚣草。之后,国内外研究人员针对蜈蚣草对砷的富集特征、砷在蜈蚣草体内的形态及转化特征、各种肥料对于蜈蚣草吸收砷的影响等方面都进行了深入的研究[24,25]。同时,研究人员还尝试以蜈蚣草为修复基础构建一个修复砷污染的人工生态系统,利用蜈蚣草和五节芒等砷超富集植物,在人工生态系统中种植砷耐性植物,既去除了土壤中的砷,又保证了土壤的正常生理功能[26]。除了蜈蚣草之外,研究人员还积极寻找其他的砷超富集植物[27]。

微生物修复

由于传统的治理方法大都具有高成本、高消耗、产生二次污染等问题,微生物修复技术以其绿色、环保、与环境相协调的优势逐步成为环境污染治理领域的研究重点,具有极大的发展潜力。微生物对于土壤中的砷的修复原理一般通过氧化还原、吸附、甲基化、沉淀等作用影响砷的生物有效性,进而达到降低土壤中砷的毒害作用的目的[28]。微生物在砷的地球化学循环过程中起着重要的作用,微生物通过氧化还原、甲基化/去甲基化等过程影响和改变着砷的赋存形态和迁移转化[29]。科学家们发现,很多不同属的细菌都具有耐受高浓度砷的基因片段(arsRDABC),这些基因片段不仅存在于质粒中,也普遍存在于染色体中[30]。这说明对于砷的耐受及解毒行为广泛存在于细菌界。但不同细菌(和真菌)耐受高浓度砷的机理也不尽相同,某些细菌和真菌能通过自身细胞壁或代谢产物吸附砷[31];而某些微生物(以真菌为主)能够将砷甲基化而使砷挥发[32];还有些细菌能够将砷作为自身的能量来源,利用砷促进自身生长[33]。具体说来,微生物修复/去除土壤中的砷的反应机理大致包括:1.将As(III)氧化成为As(V),从而降低其毒性;2.细胞壁吸附固定;3.通过生成铁锰氧化物而将砷吸附固定在铁锰氧化物中。

As(III)As(V)的氧化反应

As(III)化合物(arsenite)是毒性最大的无机砷化合物。As(III)能够与氢硫基相结合,从而影响人体内许多蛋白质的功能;此外,它还能通过与硫醇相结合而影响人体的呼吸系统;在pH小于9.2的条件下,As(III)能够直接通过细胞壁的水-甘油通道进入细胞内部[34]。而As(V)化合物通常带负电荷,在很多环境中容易与钙离子和铁离子形成不溶化合物(表现类似磷酸根)[35],或者极易吸附在矿石氧化物表面,因此在水中和土壤中相对比较稳定固化,迁移转化行为较弱,毒性显著减小。因此,利用微生物作用将As(III)氧化成为As(V)就成为了微生物修复砷污染的一个重要研究方向。自上世纪初,研究人员就已经开始分离得到具有该氧化能力的细菌菌种,之后,越来越多的菌种逐渐被发现,为利用细菌菌种修复砷污染提供了更多可能。1918年研究人员首次在南非发现了能够氧化As(III)的细菌[36],之后各国的研究人员在全球不同的自然环境中发现了具有这种能力的细菌。Turner[37,38]在澳大利亚分离出15株氧化As(III)的细菌菌株,并重点研究了其中一株菌株:Pseudomonasarsenoxydans-quinque;Os-borne[39]和Phillips[40]此后又分别在土壤环境和生污泥中分离出了Alcaligenesfaecalis菌株。但是以上的三组科学家们都是利用含有有机质的培养条件来分离菌株,这些分离得到的菌株在没有有机质能源的条件下均无法生长,即这些菌株都属于化能有机异养细菌。对于这些菌株而言,氧化As(III)的行为并不能为自身提供能量,因此一般认为细菌的这种氧化能力是细菌自身的一种去毒机制[39]。Santini等[41]在澳大利亚的一处金矿内分离出了一株能够氧化As(III)的细菌菌株(NT-26),与之前所发现的细菌菌株不同,这株NT-26是化能无机自养细菌,即该菌株能够在不添加有机质的培养条件下生存。研究人员通过实验发现,该菌株能够从氧化As(III)的化学过程中获得能量,这株菌株属于α-Proteobacteria中的Agrobacterium/Rhi-zobium分支。研究人员还发现某些细菌菌株是兼性细菌,即它们既可以在有机质存在的条件下进行化能有机异养方式的生存,又可以在没有有机质存在的条件下进行化能无机自养方式的生存,利用As(III)作为能量来源[42]。而Oremland等人[43]从美国加州的莫诺湖底部发现了能够氧化As(III)的厌氧细菌,该菌株能够利用硝酸根(而非氧气)作为其电子受体,是化能自养细菌,属于γ-Proteobacteria的Ec-tothiorhodospira属。具有氧化As(III)能力的细菌分布非常广泛,并能够耐受和生存在某些极端环境,如高温或酸性环境中。研究发现某些嗜热细菌也具有氧化As(III)的能力。研究人员[44]发现两株在美国黄石国家公园内的几处热泉水中分离出的细菌菌株Thermusaquaticus和Thermusthermophilus具有氧化As(III)的能力,这两株菌株分别能在40-79℃和47-85℃的温度范围内生存,并且它们氧化As(III)的过程非常迅速。由于这两种菌株在自然界分布极为广泛,科学家们推测它们在砷的地球化学循环中起着重要的但一直被忽视的作用。除了高温环境,某些在酸性环境中生存的细菌也具有氧化As(III)的能力,Casiot等人[45]在法国的某处尾矿区域分离得到了能够氧化As(III)的细菌,该尾矿库所排放的酸性矿井水的pH值达到了2.73-3.37,并含有高浓度的溶解砷和铁。研究人员发现,废水中的砷和铁经过30m的排放距离后,含量降低了20-60%,而这一结果归结于水中分离出的同时具有氧化As(III)和Fe(II)能力的三株菌株。

细胞壁吸附

细菌、藻类、真菌等多类微生物的细胞壁都具有与金属离子结合的能力,生物吸附技术也逐渐成为重金属污染修复领域的一个研究重点。真菌是对自然界生态系统以及人类具有重大意义的一大类生物,真菌在自然界分布极其广泛,适应几乎所有的生存环境,在很多土壤类型,尤其是低pH值条件中真菌都是占主导地位的生物体[46],因此对生态系统的影响深远而复杂。真菌的生长特征使得它们与重金属的大规模密切接触成为可能,大部分真菌具有数目庞大的菌丝,生长至各个方向[46],独特的生长方式使得真菌无论是在土壤中还是水中都能够具有与重金属接触的巨大比表面积(表面积/质量),因此,真菌对于土壤中重金属离子的吸附是土壤重金属污染微生物修复的重要组成部分。Visoottiviseth等[47]从泰国一处砷污染的区域中分离得到了近四十种真菌菌种,在对这些菌种吸附砷的实验中,研究人员得到了一株对于As(III)和As(V)都具有良好吸附效果的菌株,该菌株经鉴定属于Penicilliumsp.。Loukidou等[48]利用真菌菌株来吸附废水中的As(V),真菌菌体经过表面活化剂的预处理之后,对于As(V)具有良好的吸附处理效果。除了真菌之外,藻类也具有吸附重金属离子的能力,藻类吸附过程一般比较迅速并具有专一性[49]。小球藻是一种常见的藻类,研究发现小球藻具有较好的吸附As(III)的能力,在合适的条件下,吸附效率能达到50%以上[50]。

铁氧化物吸附

在自然界中,很多微生物(多为细菌)都具有调节Fe(II)的氧化反应而生成铁氧化物的能力[51]。在微生物调控作用下生成的铁氧化物具有疏松多孔、晶体结构不规则、比表面积大等特性,是优良的吸附材料。铁氧化物的吸附在修复治理砷污染领域里也起着重要的作用。铁氧化细菌在含有砷的培养基中培养一段时间后,培养基里的砷浓度明显下降,表明铁氧化细菌生成的铁氧化物对砷有良好的吸附作用,有研究表明,这种吸附作用是一种表面络合反应[52]。研究人员还发现,一些铁氧化细菌还同时能够氧化As(III),更加促进了砷在铁氧化物上的吸附效果[51]。铁氧化物对砷的吸附在治理水体砷污染领域有一定的应用。Joshi[53]等利用表面是铁氧化物涂层的沙石来去除地下水体中的砷化合物。Katsoyiannis[54]等制成表面是铁氧化物涂层的聚合物,这种材料对于去除水体中的砷化合物也有较好的效果。此外,含有铁氧化物的柱撑粘土也被证实是一种优良的吸附水体中砷的基体[55]。