生态修复监测范文

时间:2024-01-02 17:49:08

导语:如何才能写好一篇生态修复监测,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生态修复监测

篇1

【关键词】 水土流失;草原生恢复;生物量;预测

【摘 要】以扎鲁特旗生态修复试点工程监测成果为例,实施生态修复项目以后,封植被总盖度由基期的35.2%增加到 67.51%,提高了32.31%。产草量由治理前的960kg/hm2,增加到2218.63kg/hm2,每公顷产量增加1298.63kg,产量提高了2.6倍。

1. 项目及项目区概况

1.1项目概况

扎鲁特旗水土保持生态修复试点工程项目区位于本旗中部地区,位于乌力吉木仁河流域的一级支流巴彦塔拉河中上游,按行政区划隶属于通辽市扎鲁特旗太平山乡和格日朝鲁苏木境内。总面积21995hm2。工程建设期3年。该工程自2002年开始运作,2003年4月启动,2005年项目全部完成。项目总投资450万元。

1.2项目区概况

项目为扎鲁特旗水土保持生态修复试点工程,行政区划隶属于太平山乡和格日朝鲁苏木,地理坐标位东经120°10′22″至120°24′41″,北纬44°32′10″至44°39′19″。

项目区地貌类型属于浅山丘陵区,沟壑密度0.4km/km2。土壤以栗钙土为主,植被盖度为31.5%。水土流失类型以水蚀为主,水土流失面积为20985 hm2,土壤侵蚀模数2500t/km2·a。

项目区属中温带大陆性季风气候区,年均气温3.5℃,极端最高气温37.8℃,最低气温零下40℃。≥10℃的积温3100℃,无霜期为120天,多年平均降水量380毫米。

2. 项目区建设规模

项目区总建设规模21995hm2, 其中风禁治理面积20065 hm2,设置管护人员30人,建设监测站点33处,其中小气候观测站2处,植物观测点30处,径流观测站1处,人工辅助设施中,新打机电井6眼,建设灌草植物带250 hm2,山杏部植103 hm2,天然林的病虫害防治与管护面积500 hm2,为保障当地群众生产与生活需要,补助设置青贮窖1065座。

3. 项目区监测点布置

项目区进行了林草植被观测、径流泥沙观测、动物监测、经济与社会效益监测。

林草植被监测:项目区共设林草植被监测点30个,其中长期标准样方监测点22个,随机对照样方点8个。

径流泥沙观测:建设量水堰一座,进行径流泥沙观测,。

典型农户调查:从2002年末开始,项目区农户分4组,每组4户按好、中、差进行调查。

3.1林草植被监测结果分析

2004年1—7月降雨量为327.2mm,集中在6—7月,以集中降雨为主;2005年同期降雨量为183.8mm,各月分布均匀。植被盖度:封植被总盖度基期为35.2%,治理后植被盖度为56.4%,提高了21.2%,每公顷产草量提高91.25千克,封育区和对照区植物种类变化相同。因此扎旗在同期降雨保证率达到59%以上时,生态修复效果十分明显,效益显著。

3.1.1 植被类型及生长量监测

3.2土壤侵蚀模数与保土保水效率监测结果分析

据雨量与径流泥沙观测,根据卡口站以上集雨面积3.02平方公里一年的观测资料推算,汛期降雨量327mm,产流雨量162mm,削减地表径流57.4%。试点区内土壤侵蚀强度逐渐减轻,年土壤侵蚀量由基期的10784.23吨减到4658.53吨,减少土壤侵蚀 56.8%。

4. 主要生物量的预测结果及综合分析

土壤侵蚀模数由基期的3570.95 t/km2.a降为1542.56t/km2.a。试点区内土壤侵蚀强度逐渐减轻,年土壤侵蚀量由基期的10784.23吨减到4658.53吨,减少土壤侵蚀 56.8%。大面积中、轻度流失区变为轻度或无明显流失区,中度以上流失区相对减弱。

封植被总盖度由基期的35.2%增加到 67.51%,提高了32.31%。

篇2

我市水生态监测应包括对大范围生态系统的宏观监测,传统的监测技术不适应于大区域的生态监测,只有借助于现代高新技术,高效、快速地了解大区域生态环境的动态变化,为迅速制定治理、保护的方案和对策提供依据。遥感、地理信息系统与全球定位(统称3S集成)一体化的高新技术可以解决这个问题,在实际中通过建立生态环境动态监测与决策支持系统,有效获取生态环境信息,实时监测区域环境的动态变化,进而掌握该区域生态环境的现状、演变规律、特征与发展趋势,为管理者提供依据。

23S技术优势

3S技术是遥感技术(RS)、地理信息系统(GIS)和全球定位系统(GPS)的统称,是空间技术、传感器技术、卫星定位与导航技术和计算机技术、通讯技术相结合,多学科高度集成的对空间信息进行采集、处理、管理、分析、表达、传播和应用的现代信息技术。

2.1遥感技术(RS)。RS是指从高空或外层空间接收来自地球表层各类地物的电磁波信息,并通过对这些信息进行扫描、摄影、传输和处理,从而对地表各类地物和现象进行远距离控测和识别的现代综合技术。

2.2地理信息系统(GIS)。GIS就是一个专门管理地理信息的计算机软件系统,它不但能分门别类、分级分层地去管理各种地理信息;而且还能将它们进行各种组合、分析、再组合、再分析等;还能查询、检索、修改、输出、更新等。地理信息系统,还有一个特殊的“可视化”功能,就是通过计算机屏幕把所有的信息逼真地再现到地图上,成为信息可视化工具,清晰直观地表现出信息的规律和分析结果,同时还能在屏幕上动态地监测“信息”的变化。

2.3全球定位系统(GPS)。GPS是美国从20世纪70年代开始研制,于1994年全面建成,具有海、陆、空全方位实时三维导航与定位能力的新一代卫星导航与定位系统。GPS是由空间星座、地面控制和用户设备等三部分构成的。GPS测量技术能够快速、高效、准确地提供点、线、面要素的精确三维坐标以及其他相关信息。

33S技术在水生态监测中的应用

3.13S技术用于水生态监测本底数据调查。“3S”技术为生态监测信息管理动态化、综合化、宏观化提供了新的技术手段,为建立监测信息库,融合监测数据、实验分析数据、统计数据、文字数据、地图数据、图像数据等提供了良好而高效的平台;也是水生态健康分析与评估的基本工具。在编制我市水生态系统监本底数据资料及陆地卫星图像图件,并定期调查哈尔滨各种湿地的分布和类型。在收集历次地面调查有关资料及图件的基础上,进行对比分析研究,拟定湿地类型分类系统,然后对遥感图像的影像进行初步解译,建立影像解译标志,进行判读区划,并绘制湿地类型图班,经野外实地抽样调查验证、补充修改后,编制湿地类型分布图,经过分类量算面积统计,得到哈尔滨湿地各种分布类型及面积,绘制哈尔滨湿地类型电子分布图,为以后湿地保护建设监测奠定基础。

3.2建立由3S技术支持的指标体系。哈尔滨市水生态监测中心已经于2011年起开展了松花江哈尔滨段水生态监测工作,初步建立哈尔滨市水生态监测指标体系,包括:小流域常规监测评价指标体系;重要支流和干流常规监测评价指标体系;湿地常规监测评价指标体系。由于哈尔滨市水系均属松花江水系,水生态系统中每项生物指标的变化,与区域生态环境的水文、水生生物、水质等水生态要素变化有着密切的关系,并相互影响。为此,紧紧抓住影响我市水生态系统敏感因子,建立科学的水生态系统监测体系,尤为重要,特别是针对我市近几年来,以滩涂湿地保护与修复实践,建立以湿地为宏观监测评价单元的水生态系统监测指标体系,采取3S技术和地面监测相结合,宏观监测和河流断面微观监测相结合,定点网络监测的定性和定量分析有机结合,并建立水生态环境动态监测与决策支持系统,有效获取水生态环境信息,实时监测区域环境的动态变化,进而掌握区域水生态环境的现状、演变规律、特征与发展趋势,为迅速制定保护、修复方案和对策提供依据。

4结束语

篇3

摘要 我国目前土壤形势不容乐观。呈现多源,复合、量大、面广、持久、毒害等特征、对生态环境和食品安全构成重要威胁,影响经济社会可持续发展。本文分析了我国土壤污染防治工作的问题与挑战,总结了发达国家治理土壤污染的经验,并提出了深化我国土壤污染防治工作的建议。

关键词 土壤污染;污染防治;国际经验

有土斯有民,土地是人类赖以生存和发展的基础。开发、利用、保护好土壤关系国家和民族未来,是生态文明建设的前提和基础。根据2014年《全国土壤污染状况调查公报》的数据,全国16%的土壤环境超标,其中,一些地方土壤污染严重,工矿业废弃地和农业耕地土壤污染问题突出,重点区域类土地(重污染企业用地、工业废弃地、工业园区、固体废物集中处置地、采油区、采矿区、污水灌溉区和干线公路两侧)均有相当程度的污染,“毒土”“毒地”等事件在全国各地不断出现,威胁生态环境和食品安全,影响经济社会可持续发展。因此,加强我国土壤环境污染预防、控制和修复,意义重大、刻不容缓。本文旨在分析国内土壤污染成因,借鉴国际经验,探求国内土壤污染防治途径。我国土壤污染防治工作面临的问题与挑战

20世纪80年代以来,随着经济快速增长,我国土壤环境也迅速恶化,污染呈现多源、复合、量大、面广、持久、毒害六大特征,表现出由点到片,由城到乡,由单一到复合等发展态势。造成我国土壤环境恶化的原因和问题主要有以下几个方面。

一是土地资源禀赋低。我国土地资源具有绝对数量多、相对数量少且质量不高、环境压力大等特点。人均耕地面积仅为世界水平的43%,我国以世界上7%的耕地养活20%的人口。除东北平原、华北平原和长江、珠江中下游平原与汉江平原、成都平原外,耕地质量不高,无法耕种的中度、重度污染耕地有5000万亩,全国集中连片耕地后备资源主要分布在北方和西部干旱地区,后备资源开发存在生态难题。

二是土地污染源多面广量大。土壤是各类污染物的最终归属。我国30多年粗放的发展模式,使土地成为了一个“大垃圾箱”。工业“三废”排放,使污染物通过多种途径进入并积累于土壤。全国有11. 23万座矿山,1.2万座尾矿库,每年60万吨石油跑冒滴漏,固体废物堆放占地面积达200多万亩,有害废水污灌污染耕地3250多万亩,有害废气随雨水沉降到土壤中。农业生产存在“农药、化肥依赖症”,化肥产量和使用量占世界1/3以上,非降解农膜残留量达12万吨. “白色污染”严重,导致土质下降,危害人体健康。

三是土壤污染防治法律法规不健全。我国尚无针对土壤污染的专门法。2015年实施的新《环境保护法》虽对土壤环境保护提出了明确要求,但仍缺乏细则。虽然不少地方专门出台了土壤污染防治的规范性文件,但没有形成有效的土壤污染综合防治法律体系,约束力和系统性不够。

四是土壤污染防治标准体系不完善。我国有60类共3246种土壤,不同地区土壤有机质含量、年平均降雨量、地下水埋深等影响基准推导的重要参数具有较大的变异性。截至目前,我国已及正在修订的土壤质量标准有60多个,在数量上比较少,管理也不明晰,分属于10多个不同部门。此外, 《土壤环境质量标准》(GB 15618-1995)于1995年实施,2009年开始修订,至今仍在修订过程中,已不能适应形势发展。标准等级全国采用统一的标准值,没有区分土壤背景值的差异。此外,标准主要针对的是环境质量,从人体健康和生态风险的角度考虑不够;主要针对农业用地,对工业、商业和居住用地考虑不够。

五是土壤环境监测能力不足。我国土壤环境监测工作起步晚,技术落后,尚未形成全面的监测体系,部分地方能力有限,难以精准掌握各地区土壤污染的状况。

六是土壤污染防治技术薄弱。由于污染土壤面积大,污染程度深浅不一,自然条件复杂多变,对土壤污染防治技术和工艺要求极高。国内市场上现有的修复技术往往手段单一,科技含量低且修复成本非常高,修复设备与药剂大部分仍依赖进口。

七是土壤污染防治资金缺口大。国外的绿地建设中,土壤费占总投入的50%。我国“十二五”环境规划中仅有300亿元中央财政资金用于修复污染土壤,且主要是对城市投入,对农业生态环保投入不足,远远无法满足土壤污染防治资金需求。

八是土壤管理体制不顺。我国长期以来多部门分散治土,环保部门“统一监督管理”的职能在很大程度上被肢解和架空,造成权利义务失衡和权力横向分割的弊端。虽然2013年1月国务院出台的《近期土壤环境保护和综合治理工作安排》中提出: “建立由环境保护部牵头,国务院相关部门参加的部际协调机制,指导、协调和督促检查土壤环境保护和综合治理工作。”但仅靠部际协调机制难以解决多头管理的问题,常常会因部门利益影响工作效率。

九是土壤保护意识淡薄。由于土壤污染更具隐蔽性、滞后性和难可逆性,是一种“看不见的污染”,公众土壤污染防治自觉性和积极性不高,往往将土地利用的功利性和经济性摆在第一位,忽略土地本身的生命支撑价值、生态价值、文化象征价值、历史价值。大部分农村居民对环境污染表现淡漠,也缺乏依法维权意识,只要环境污染没有直接影响到自身的生产生活,大多采取漠视的态度,增加了土壤环境保护的成本。国外土壤污染防治经验

建立综合防治的法律体系

西方国家普遍将土壤作为一个独立的环境要素来进行立法保护,形成了从基本法到综合性法律再到专项立法的三层法律体系,用以调整和规范各类生产、生活活动。

美国从危险废物管理着手开展立法,颁布《土壤保护法》《资源保护回收法》《综合环境反应、赔偿和责任法》(“超级基金法”)和《小企业责任免除和棕地复兴法案》(“棕色地块法”)等法律法规,在建立土壤环境保护区、农田保护、土地管理政策、土地利用、污染场地修复等方面作出了具体规定,同时加强对水、化学品等污染的控制和立法。德国制定《联邦土壤保护法》《区域规划法案》《建设条例》等,对土壤污染清除和修复、土地开发、限制绿色地带开发作出规定。日本通过《农用地土壤污染防止法》《土壤污染对策法》为农用地以及“城市型”土壤污染的治理提供了专门法律保障,而《大气污染防治法》《二?英类物质特别对策法》《水质污浊防止法》《废弃物处理法》《化学物质审查规制法》《肥料取缔法》《矿山保安法》等外围法则从不同途径为土壤切断了污染源。法国虽没有专门性的土壤污染防治法,但修改和完善现有的工业法、废物法和民法,规定土壤污染者的相关责任,达到土壤污染防治目的。

强化土壤污染风险预防

发达国家将土壤环境风险评估贯穿土壤环境管理全过程,指导污染土壤的环境调查与监测,确定土壤污染风险是否可以接受、是否值得关注。英国认为预防土壤风险与修复污染土壤同等重要,建立了污染土壤暴露风险评估导则,率先提出污染地块可持续修复管理框架。德国一方面重点排查了全国有污染嫌疑的土壤并进行了风险评估,另一方面制定方案并组织实施了重点污染土壤的治理和修复。

完善土壤环境质量标准

当前发达国家普遍基于风险评估,划分不同土地利用方式,并制定土壤的环境质量标准。美国颁布旨在保护生态受体安全的《土壤生态筛选导则》以及保护人体健康的《土壤筛选导则》,此外还制定污染土壤初始修复目标值,许多州据此制订各自的土壤质量标准。英国在考虑不同土地利用方式下以保护人体健康为原则制定土壤指标值。加拿大则以其保护生态土壤质量指导值和保护人体健康土壤质量指导值两者中的最低值作为最终土壤质量指导值。荷兰在《荷兰土壤质量法令》中设立了土壤修复的目标值、干预值及部分污染物造成土壤严重污染的指示值。日本在制订土壤环境标准时,特别设立浸出液标准。

全面准确开展土壤监测

西方国家普遍深入开展土壤调查,尤其是利用高光谱遥感与无线传感器网络等新技术进行土壤监测与评价,摸清底数,为开展土壤保护工作打下坚实基础。欧盟实施土壤环境评价监测项目,设计欧盟范围内可比的监测标准和指标体系,建立评价土壤现状的资料参考中心,对国家级土壤监测数据进行有效统一管理。德国根据土地用途对全国土壤实施监测,了解土壤特性变化,以评估治理措施是否有效,共设立监测点800多个,并建立污染土壤数据库进行动态管理。法国建立污染土地的数据库,信息包含现存的污染地和已被修复的污染地。美国相关部门向用户免费提供很多土壤基础信息,例如分辨率低于30米的遥感资料,从而为新技术的应用创造有利条件。

分类治理的防治措施

根据土壤的不同功能,西方国家坚持区别对待,积极推动土壤污染分类整治和管理。美国防治土壤污染关注范围从农业用地逐渐扩大到工业用地,通过一系列法律及修正案对“棕色地块”进行有效治理。建立危害分级系统,根据地下水、地表水、大气和土壤4种污染迁移途径来评估场地的污染状况,有针对性地治理。德国通过一套颜色指标体系明确土壤治理要求,分别用绿线、黄线和红线表示应采取预防恶化、发出警告或必须清理的措施。日本和韩国在土壤污染调查、整治责任承担、费用负担、管制方式等具体制度中,对“农业型”土壤污染和“城镇工矿型”土壤污染区别对待。俄罗斯在《关于安全使用化学杀虫除莠剂和农业化学制品法》中针对农业生产施用农药化肥等化学制剂的控制与监督管理做出详细规定。

采用先进的治理技术

国外土壤修复主要采用两大方法(原位及异位)和五类技术(工程措施、物理修复、化学/物化修复、农业生态修复和生物修复)。1982-2005年,美国超级基金一共进行了997个土壤修复项目,采用异位修复的项目约占53%,固化/稳定化及焚烧占异位修复项目的69%,土壤蒸汽抽提占原位修复项目的53%。欧洲各国因工业历史和污染类型不同,污染场地特征不同,土壤修复技术也存在明显差异,整体上采用原位及异位修复技术的比例相当。目前,绿色修复技术既可降低修复行动的环境足迹及经济上的负面影响,又使修复行为的净环境收益最大化,越来越受到重视。

“污染者付费”基础上的市场运作

在政府提供专项治理资金的同时,激励社会资本加大土壤治理投入。美国通过征收专业税,建立规模超过1000亿美元的土壤修复“超级基金”,由其兜底全国范围内污染场地的修复。英国污染场地修复资金实行等级责任制:最初向土地排污的企业、个人或知情并容许排污发生的人为第一级;当前土地所有者、业主为第二级;土壤污染治理责任由第一级承担,但无法找出原始污染者时由第二级承担。日本采用“原因者负担”和“受益者分担”双原则并设立专项基金治理污染土地。具体方式是:先对污染土地展开调查并制定治理方案,然后对该土地进行收购和治理,在治理完成后将土地卖给企业,最后按基金出资比例对获利的5%进行分配。对于无主土地的治理,德国采取政府先垫钱修复,后调查确定最终谁付费的治理方式;而对历史遗留的污染场地治理,政府给予补贴。

综合防治土壤污染的建议

通过分析发达国家土壤环境保护、可持续管理和修复的成本可以发现,三项成本的基本比例为1:10:100。借鉴国际经验,我国必须重视预防,并坚持防、控、治一体化,分类施策、分区防控,走市场化与专业化相结合的路子。

建立土壤污染防治联合机制

土壤污染情况复杂,涉及部门多,治理和协调难度大,需进一步明确地方政府、中央部门的责任及中央相关部门的职责。环保部作为土壤污染防治牵头部门,应加强综合协调,完善法规标准,建立部门联动机制;与农业部、国土资源部等成立“国家耕地面源和农村污染防治协调领导小组”,下设办公室,具体工作可由农业部承担;与工信部、住建部、国土资源部等成立“国家城镇和工业用地污染防治协调领导小组”,下设办公室,具体工作可由住建部、环保部共同承担。协调跨区域水土协同治理,统筹土壤、重金属和化学品、固废、危废污染防治工作。

建立健全法规和标准体系

尽快制定出台“土壤污染防治法”及其配套规章制度,加快土壤环境质量标准的修订。修订、完善与土壤污染相关的水、大气、固体废弃物等方面的法律、法规,强化土地管理、城乡规划、环境功能区划等关于土壤保护的内容,形成科学、合理、系统的土壤污染防治体系。严格法律责任,加大执法力度,加强对涉重金属企业废水、废气、废渣等处理情况的监督检查,规范危险废物的收集、贮存、转移、运输和处理处置活动,严控农药、化肥、农膜的乱用滥用问题,加大对造成污染后果行为的处罚力度。建立土壤污染责任终身追究机制,并依法追究刑事责任。

加强源头控制

坚持绿色化发展,大力推进清洁生产。严格项目准人,关闭、淘汰和搬迁小冶炼、小化工等企业。健全排污许可制度,改造环保设施,严格控制排污量和浓度。打击非法采矿,促进矿山集约化开采和废水、废渣集中排放和处理。划定生态红线,严格监管农田和重要农产品基地,严格控制污水灌溉,加强对农药、化肥及其包装物以及农膜的环境管理,提高农业补贴标准。实行保护性耕作和轮休耕作制度。完善政府绩效考核体系,强化土壤环保考核指标。积极推进生态文明建设党政同责制,明确地方党委及其部门在生态文明建设中的责任。

加强土壤监测

联合多部门共同建立长效土壤环境质量监测机制,开放监测市场。制定统一的监测规范,构建土壤环境质量例行监测、预警监测、应急监测网络,定期开展全国土壤环境污染状况监测,建立全国土壤环境监测数据库系统,为土壤污染防治提供可靠数据。

实施分类防治

对工业、农业和住宅用地分类施策;划定优先保护区域进行分区防控;按照受污染程度开展分级防治。启动“土壤环境保护工程”,推进土壤污染防治示范工程。完善“以奖促治”“以奖促保”政策。建立土壤修复技术默认清单制度。

加强科技支撑

搭建土壤环境的国际交流与合作平台,注重引进、吸收、消化适用于国情的国外先进技术。搭建土壤污染治理与资源可持续利用技术平台,自主研发关键技术、设备。

健全资金投入机制

借鉴重庆污染土壤治理模式,加快以土地经营、批租为支撑的财税、金融模式改革。继续探索生态补偿、排污权交易、污染责任险等经济措施。对严重污染的耕地,要调整种植结构,划定农产品禁止生产区并进行生态补偿;定点收购被污染粮食并补偿费用。建立相关的土壤污染防治与修复基金。对积极开展土壤污染保护和治理的地区,加大资金奖励支持力度。发展土壤修复相关产业,鼓励民间资本注入,开展PPP模式,推进第三方监测、治理。

加强土壤保护宣传教育

提高企业和公众土壤环境安全意识和土壤环境保护参与意识,进企业、进社区、进农村、进课堂宣传土壤环境保护知识,并为一线生产者提供专业培训。

国际合作和履约工作

篇4

论文摘要:阐述水利工程与水域生态的关系,介绍了生态水利规划的基本原则:工程安全性与经济性原则;提高河流形态的空间异质性原则;生态系统自设计与自我恢复原则;景观尺度与整体修复原则;反馈和调整设计原则。

1水利工程对河流生态系统的影响

在社会生产过程中水利工程对经济与社会有着巨大的作用,同时也要看到水利工程对河流生态系统造成了不同程度的影响。人类整治河道修筑堤坝等活动人为的改变了河流的多样性、连续性和流动性,使水域的流速、水深、水温、自水流边界、水文规律等自然条件发生重大改变。这些改变对河流生态系统造成的影响是不容忽视的。未来的水利工程在权衡社会经济需求与生态系统健康需求这二者关系方面,似应强调水利工程在满足人类社会需求的同时,兼顾水域生态系统的健康和可持续性。

2生态水利工程

从学科发展角度看,现在的水利工程学的学科基础主要是工程力学和水文学,水利工程规划设计主要对象是水文系统,往往忽视生命系统的现状和未来风险等问题。学科的进一步发展应吸收生态学理论及方法,促进水利工程学与生态学的交叉融合,用以改进和完善水利工程的规划及设计理论,形成水利工程学新的学科分支——生态水利工程学。生态水利工程学作为水利工程学的一个新的分支,是研究水利工程在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求的原理与技术方法的工程学。生态水利工程的内涵是:对于新建工程,是指进行传统水利建设的同时(如治河、防洪工程),兼顾河流生态修复的目标。对于已建工程,则是对于被严重干扰河流重点进行生态修复。生态水利工程将与传统治污技术、清洁生产(生态产业)及环境立法和资源管理一起,成为河流生态建设的主要手段之一。

3生态水利工程的规划设计原则

3.1工程安全性和经济性原则

生态水利工程是一项综合性工程,在河流综合治理中既要满足人的需求,包括防洪、灌溉、供水、发电、航运等需求,也要兼顾生态系统的可持续性。生态水利工程既要符合水利工程学原理,也要符合生态学原理。生态水利工程的工程设施必须符合水文学和工程力学的规律,以确保工程设施的安全、稳定和耐久性。工程设施必须在设计标准规定的范围内,能够承受洪水、侵蚀、风暴、冰冻、干旱等自然力荷载。按照河流地貌学原理进行河流纵、横断面设计时,必须充分考虑河流泥沙输移、淤积及河流侵蚀、冲刷等河流特征,动态地研究河势变化规律,保证河流修复工程的耐久性。

对于生态水利工程的经济合理性分析,应遵循风险最小和效益最大原则。由于对生态演替的过程和结果事先难以把握,生态水利工程往往带有一定程度的风险。这就需要在规划设计中进行方案比选,更要重视生态系统的长期定点监测和评估。另外,充分利用河流生态系统自我恢复规律,是力争以最小的投入获得最大产出的合理技术路线。

3.2提高河流形态的空间异质性原则

一个地区的生境空间异质性越高,就意味着创造了多样的小生境,能够允许更多的物种共存。反之,如果非生物环境变得单调,生物群落多样性必然会下降,生物群落的性质、密度和比例等都会发生变化,造成生态系统某种程度的退化。由于人类活动,特别是大规模治河工程的建设,造成自然河流的渠道化及河流非连续化,使河流生境在不同程度上单一化,引起河流生态系统的不同程度退化。生态水利工程的目标是恢复或提高生物群落的多样性,但是并不意味着主要靠人工直接种植岸边植被或者引进鱼类、鸟类和其他生物物种,生态水利工程的重点应该是尽可能提高河流形态的异质性,使其符合自然河流的地貌学原理,为生物群落多样性的恢复创造条件。

在确定河流生态修复目标以后,就应该对于河流进行生物调查、地貌历史和现状进行勘查和评估,建立河流地貌数据库和生物资源数据库。遥感技术和地理信息系统(GIS)是水文、河流地貌和生物调查的有力工具。关键的工作步骤是在以上两种调查工作的基础上,确定环境因子与生物因子的相关关系,必要时建立某种数学模型。河流环境因子包括河流河势、蜿蜒度、横断面形状及材料、流速、水位、水质、水温、泥沙、营养盐的迁移转化、水文周期变化等。研究的内容包括:调查单个生物因子的基本需求,评估各种生物因子的相互关系和制约条件,对于“关键种”或标志性生物的环境因子进行分类和评估。在众多的环境因子中,识别那些对于系统的结构和功能具有重要意义的环境因子,在此基础上进行河流地貌学设计和生物栖息地的设计。

3.3生态系统自设计、自我恢复原则

生态系统的自组织功能表现为生态系统的可持续性。自组织的机理是物种的自然选择,也就是说某些与生态系统友好的物种,能够经受自然选择的考验,寻找到相应的能源和合适的环境条件。

将自组织原理应用于生态水利工程时,生态工程设计与传统水工设计有本质的区别。像设计大坝这样的人工建筑物是一种确定性的设计,建筑物的几何特征、材料强度都是在人的控制之中,建筑物最终可以具备人们所期望的功能。河流修复工程设计与此不同,生态工程设计是一种“指导性”的设计,或者说是辅设计。依靠生态系统自设计、自组织功能,可以由自然界选择合适的物种,形成合理的结构,从而完成设计和实现设计。成功的生态工程经验表明,人工与自然力的贡献各占一半。

传统的水利工程设计的特征是对于自然河流实施控制。而设计生态水利工程时,要求工程师必须放弃控制自然界的动机,树立新的工程理念。因为依靠人力和技术控制自然界是不可能的。人们要善于利用生态系统自组织、自设计这个宝贵财富,实现人与自然的和谐。需要强调的是,地球上没有两条相同的河流,每一条河流的特点都是各不相同的。因此,每一项生态水利工程必须因地制宜,充分尊重每一条河流的自然属性和美学价值,寻求最佳的生态工程方案。

自设计理论的适用性还取决于具体条件。包括水量、水质、土壤、地貌、水文特征等生态因子,也取决于生物的种类、密度、生物生产力、群落稳定性等多种因素。在利用自设计理论时,需要注意充分利用乡土种。引进外来物种时要持慎重态度,防止生物入侵。

3.4景观尺度及整体性原则

河流生态修复规划和管理应该在大景观尺度、长期的和保持可持续性的基础上进行,而不是在小尺度、短时期和零星局部的范围内进行。在大景观尺度上开展的河流生态修复效率要高。小范围的生态修复不但效率低,而且成功率也低。整体性是指从生态系统的结构和功能出发,掌握生态系统各个要素间的交互作用,提出修复河流生态系统的整体、综合的系统方法,而不是仅仅考虑河道水文系统的修复问题,也不仅仅是修复单一动物或修复河岸植被。

景观则是指生态学中的景观尺度。景观尺度包括空间尺度和时间尺度。为什么在景观的大尺度上进行河流修复规划?首先,水域生态系统是一个大系统,其子系统包括生物系统、广义水文系统和人造工程设施系统。广义水文系统又与生物系统交织在一起,形成自然河流生态系统。而人类活动和工程设施作为生境的组成部分,形成对于水域生态系统的正负影响。水域生态系统受到胁迫时,需要对于各种胁迫因素之间的相互关系进行综合、整体研究。其次,必须重视水域生境的易变性、流动性和随机性的特点,这些特点决定了生物种群的基本生存条件。水域生态系统是随着降雨、水文变化及潮流等条件在时间与空间中扩展或收缩的动态系统。再者,河流生态系统是一个开放的系统,与周围生态系统随时进行能量传递和物质循环,一条河流的生态修复活动不可能是孤立的,还需要与相邻的流域的生态修复活动进行协调。最后,河流生态修复的时间尺度也十分重要。河流系统的演进是一个动态过程。每一个河流生态系统都有它自己的历史。河流生态修复是靠时间做工作的。有研究指出,湿地重建或修复需要大约15~20a的时间。因此对于河流生态修复项目要有长期准备,同时进行长期的监测和管理。

3.5反馈调整式设计原则

生态系统的成长是一个过程,河流修复工程需要时间。从长时间尺度看,自然生态系统的进化需要数百万年时间。进化的趋势是结构复杂性、生物群落多样性、系统有序性及内部稳定性都有所增加和提高,同时对外界干扰的抵抗力有所增强。从较短的时间尺度看,生态系统的演替,即一种类型的生态系统被另一种生态系统所代替也需要若干年的时间,期望河流修复能够短期奏效往往是不现实的。

生态水利工程规划设计主要是模仿成熟的河流生态系统的结构,力求最终形成一个健康、可持续的河流生态系统。在河流工程项目执行以后,就开始了一个自然生态演替的动态过程。这个过程并不一定按照设计预期的目标发展,可能出现多种可能性。

意识到生态系统和社会系统都不是静止的,在时间与空间上常具有不确定性。除了自然系统的演替以外,人类系统的变化及干扰也导致了生态系统的调整。这种不确定性使生态水利工程设计不同于传统工程的确定性设计方法,而是一种反馈调整式的设计方法。是按照“设计—执行(包括管理)—监测—评估—调整”这样一种流程以反复循环的方式进行的。在这个流程中,监测工作是基础。监测工作包括生物监测和水文观测。评估的内容是河流生态系统的结构与功能的状况及发展趋势。常用的方法是参照比较方法,一种是与自身河流系统的历史及项目初期状况比较,一种是与自然条件类似但未进行生态修复的河流比较。

在反馈调整式设计过程中,提倡科学家、管理者和当地居民及社会各界的广泛参与,通过对话、协商,以寻求共同利益。提倡多学科的交流和融合,提高设计的科学性。

参考文献

[1]董哲仁.水利工程对生态系统的胁迫[J].水利水电技术,2003,(7):1~5.

[2]董哲仁.生态水工学的理论框架[J].水利学报,2003,(1):1~6.

[3]董哲仁.河流形态多样性与生物群落多样性[J].水利学报,2003,(11):1~7.

[4]Mitsch W.J.,Jorgensen S E..Ecological Engineering and EcosystemRestoration[M].Published by John Wiley&Sons,Inc.,Hoboken,NewJersey,2004:134~137.

[5]董哲仁.荷兰围垦区生态重建的启示[J].中国水利,2003,(11A):45~47.

[6]O’Neill R.V.,D.L.DeAngelis,J.B.Waide,et al.A Hierarchical Con-cept of Ecosystems[M].Princeton University Press,Princeton,NJ.1986:153.

[7]Gosselink J.G.Landscape Conservation in a forested Wetland Water-shed[J].Bioscience,1990,40:588~600.

篇5

在社会生产过程中水利工程对经济与社会有着巨大的作用,同时也要看到水利工程对河流生态系统造成了不同程度的影响。人类整治河道修筑堤坝等活动人为的改变了河流的多样性、连续性和流动性,使水域的流速、水深、水温、自水流边界、水文规律等自然条件发生重大改变。这些改变对河流生态系统造成的影响是不容忽视的。未来的水利工程在权衡社会经济需求与生态系统健康需求这二者关系方面,似应强调水利工程在满足人类社会需求的同时,兼顾水域生态系统的健康和可持续性。

2生态水利工程

从学科发展角度看,现在的水利工程学的学科基础主要是工程力学和水文学,水利工程规划设计主要对象是水文系统,往往忽视生命系统的现状和未来风险等问题。学科的进一步发展应吸收生态学理论及方法,促进水利工程学与生态学的交叉融合,用以改进和完善水利工程的规划及设计理论,形成水利工程学新的学科分支——生态水利工程学。生态水利工程学作为水利工程学的一个新的分支,是研究水利工程在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求的原理与技术方法的工程学。生态水利工程的内涵是:对于新建工程,是指进行传统水利建设的同时(如治河、防洪工程),兼顾河流生态修复的目标。对于已建工程,则是对于被严重干扰河流重点进行生态修复。生态水利工程将与传统治污技术、清洁生产(生态产业)及环境立法和资源管理一起,成为河流生态建设的主要手段之一。

3生态水利工程的规划设计原则

3.1工程安全性和经济性原则

生态水利工程是一项综合性工程,在河流综合治理中既要满足人的需求,包括防洪、灌溉、供水、发电、航运等需求,也要兼顾生态系统的可持续性。生态水利工程既要符合水利工程学原理,也要符合生态学原理。生态水利工程的工程设施必须符合水文学和工程力学的规律,以确保工程设施的安全、稳定和耐久性。工程设施必须在设计标准规定的范围内,能够承受洪水、侵蚀、风暴、冰冻、干旱等自然力荷载。按照河流地貌学原理进行河流纵、横断面设计时,必须充分考虑河流泥沙输移、淤积及河流侵蚀、冲刷等河流特征,动态地研究河势变化规律,保证河流修复工程的耐久性。

对于生态水利工程的经济合理性分析,应遵循风险最小和效益最大原则。由于对生态演替的过程和结果事先难以把握,生态水利工程往往带有一定程度的风险。这就需要在规划设计中进行方案比选,更要重视生态系统的长期定点监测和评估。另外,充分利用河流生态系统自我恢复规律,是力争以最小的投入获得最大产出的合理技术路线。

3.2提高河流形态的空间异质性原则

一个地区的生境空间异质性越高,就意味着创造了多样的小生境,能够允许更多的物种共存。反之,如果非生物环境变得单调,生物群落多样性必然会下降,生物群落的性质、密度和比例等都会发生变化,造成生态系统某种程度的退化。由于人类活动,特别是大规模治河工程的建设,造成自然河流的渠道化及河流非连续化,使河流生境在不同程度上单一化,引起河流生态系统的不同程度退化。生态水利工程的目标是恢复或提高生物群落的多样性,但是并不意味着主要靠人工直接种植岸边植被或者引进鱼类、鸟类和其他生物物种,生态水利工程的重点应该是尽可能提高河流形态的异质性,使其符合自然河流的地貌学原理,为生物群落多样性的恢复创造条件。

在确定河流生态修复目标以后,就应该对于河流进行生物调查、地貌历史和现状进行勘查和评估,建立河流地貌数据库和生物资源数据库。遥感技术和地理信息系统(GIS)是水文、河流地貌和生物调查的有力工具。关键的工作步骤是在以上两种调查工作的基础上,确定环境因子与生物因子的相关关系,必要时建立某种数学模型。河流环境因子包括河流河势、蜿蜒度、横断面形状及材料、流速、水位、水质、水温、泥沙、营养盐的迁移转化、水文周期变化等。研究的内容包括:调查单个生物因子的基本需求,评估各种生物因子的相互关系和制约条件,对于“关键种”或标志性生物的环境因子进行分类和评估。在众多的环境因子中,识别那些对于系统的结构和功能具有重要意义的环境因子,在此基础上进行河流地貌学设计和生物栖息地的设计。

3.3生态系统自设计、自我恢复原则

生态系统的自组织功能表现为生态系统的可持续性。自组织的机理是物种的自然选择,也就是说某些与生态系统友好的物种,能够经受自然选择的考验,寻找到相应的能源和合适的环境条件。

将自组织原理应用于生态水利工程时,生态工程设计与传统水工设计有本质的区别。像设计大坝这样的人工建筑物是一种确定性的设计,建筑物的几何特征、材料强度都是在人的控制之中,建筑物最终可以具备人们所期望的功能。河流修复工程设计与此不同,生态工程设计是一种“指导性”的设计,或者说是辅设计。依靠生态系统自设计、自组织功能,可以由自然界选择合适的物种,形成合理的结构,从而完成设计和实现设计。成功的生态工程经验表明,人工与自然力的贡献各占一半。

传统的水利工程设计的特征是对于自然河流实施控制。而设计生态水利工程时,要求工程师必须放弃控制自然界的动机,树立新的工程理念。因为依靠人力和技术控制自然界是不可能的。人们要善于利用生态系统自组织、自设计这个宝贵财富,实现人与自然的和谐。需要强调的是,地球上没有两条相同的河流,每一条河流的特点都是各不相同的。因此,每一项生态水利工程必须因地制宜,充分尊重每一条河流的自然属性和美学价值,寻求最佳的生态工程方案。

自设计理论的适用性还取决于具体条件。包括水量、水质、土壤、地貌、水文特征等生态因子,也取决于生物的种类、密度、生物生产力、群落稳定性等多种因素。在利用自设计理论时,需要注意充分利用乡土种。引进外来物种时要持慎重态度,防止生物入侵。

3.4景观尺度及整体性原则

河流生态修复规划和管理应该在大景观尺度、长期的和保持可持续性的基础上进行,而不是在小尺度、短时期和零星局部的范围内进行。在大景观尺度上开展的河流生态修复效率要高。小范围的生态修复不但效率低,而且成功率也低。整体性是指从生态系统的结构和功能出发,掌握生态系统各个要素间的交互作用,提出修复河流生态系统的整体、综合的系统方法,而不是仅仅考虑河道水文系统的修复问题,也不仅仅是修复单一动物或修复河岸植被。

景观则是指生态学中的景观尺度。景观尺度包括空间尺度和时间尺度。为什么在景观的大尺度上进行河流修复规划?首先,水域生态系统是一个大系统,其子系统包括生物系统、广义水文系统和人造工程设施系统。广义水文系统又与生物系统交织在一起,形成自然河流生态系统。而人类活动和工程设施作为生境的组成部分,形成对于水域生态系统的正负影响。水域生态系统受到胁迫时,需要对于各种胁迫因素之间的相互关系进行综合、整体研究。其次,必须重视水域生境的易变性、流动性和随机性的特点,这些特点决定了生物种群的基本生存条件。水域生态系统是随着降雨、水文变化及潮流等条件在时间与空间中扩展或收缩的动态系统。再者,河流生态系统是一个开放的系统,与周围生态系统随时进行能量传递和物质循环,一条河流的生态修复活动不可能是孤立的,还需要与相邻的流域的生态修复活动进行协调。最后,河流生态修复的时间尺度也十分重要。河流系统的演进是一个动态过程。每一个河流生态系统都有它自己的历史。河流生态修复是靠时间做工作的。有研究指出,湿地重建或修复需要大约15~20a的时间。因此对于河流生态修复项目要有长期准备,同时进行长期的监测和管理。

3.5反馈调整式设计原则

生态系统的成长是一个过程,河流修复工程需要时间。从长时间尺度看,自然生态系统的进化需要数百万年时间。进化的趋势是结构复杂性、生物群落多样性、系统有序性及内部稳定性都有所增加和提高,同时对外界干扰的抵抗力有所增强。从较短的时间尺度看,生态系统的演替,即一种类型的生态系统被另一种生态系统所代替也需要若干年的时间,期望河流修复能够短期奏效往往是不现实的。

生态水利工程规划设计主要是模仿成熟的河流生态系统的结构,力求最终形成一个健康、可持续的河流生态系统。在河流工程项目执行以后,就开始了一个自然生态演替的动态过程。这个过程并不一定按照设计预期的目标发展,可能出现多种可能性。

篇6

(1.农业部渔业环境及水产品质量监督检验测试中心(天津),天津 300221;2.天津渤海水产研究所,天津 300457)

摘要:为了掌握人工鱼礁建设对海洋生物资源和海洋生态环境的作用效果,在汉沽示范区已投放人工鱼礁海域进行了跟踪监测与研究。研究结果表明:投放1年的礁体表面90%以上被生物覆盖,附着厚度10~15 cm,附着生物以长牡蛎、密鳞牡蛎为主要优势种,单位面积附着量6.25 kg/m2。实验数据显示附着的牡蛎及其它生物生长良好。从浮游生物、底栖生物、鱼卵、仔稚鱼密度分布以及礁体生物附着状况来看,人工鱼礁区良好的生态效应已初步显现。在礁区周围的海底出现了以礁体为中心的高生物量区向四周扩散的趋势。从生物多样性和总生物量的角度来看,汉沽示范区人工鱼礁对改造局部区域的海洋生态环境起到了良好作用。

关键词 :人工鱼礁;监测与研究;效果评价

基金项目:农业部蓬莱溢油生物资源养护与渔业生态修复——渤海生态修复汉沽示范区项目。

作者简介:孙万胜(1963.10-),男,本科,高级工程师,主要从事渔业环境及水产品质量安全监测与研究。sunwansheng@126.com

DOI:10.3969/j.issn.1004-6755.2015.06.002

渤海湾天津海域历史上渔业资源丰富,是渤海最重要的鱼虾贝产卵场、索饵场。由于不断增强的开发活动和日益加剧的环境污染,破坏了渤海生态系统的结构,使生物群落生产力下降,渔业资源日益衰退。为逐步修复和改善海洋生态环境,在农业部的统一部署下,天津市水产局组织承担了蓬莱溢油生物资源养护与渔业生态修复项目,在天津建设渤海生态修复汉沽示范区,实施人工鱼礁建设及生态环境修复工程。为了掌握人工鱼礁建设对海洋生物资源和海洋生态环境的作用效果,笔者在天津汉沽示范区已投放人工鱼礁海域进行了跟踪监测与研究,旨在进一步了解人工鱼礁对海洋生物资源的修复效果,为渤海生物资源养护与渔业生态修复提供技术参考。

1材料与方法

1.1人工鱼礁示范区的位置及建设规模

示范区位于天津汉沽大神堂近海,离岸距离10 km。与“大神堂牡蛎礁国家级海洋特别保护区”及“天津市海洋牧场汉沽示范区”临近。示范区面积为427.1561 hm2,在示范区内完成16个礁群建设,投放人工鱼礁2 804个(9 463.5空 m3)。

1.2人工鱼礁礁体的选型及投放布局

礁体的材料以钢筋混凝土为主,技术要求参照《混凝土结构设计规范》GBJ10-89、《港口及航道护岸工程设计与施工规范》JTJ300-2000。对于海水环境中的混凝土,设计年限为50年,强度等级达到C35。参照《水工混凝土结构设计规范》DL/T5057,抗渗设计采用等级S8。

礁体的设计主要有2种,一种为大窗箱型礁,另一种为大小窗箱型礁。设计参数见表1,礁体的示意图如图1、图2所示。

2012年、2013年共投放2种类型的礁体1 904个(6 426空m3),形成礁区面积153.772 hm2,鱼礁投放布局如图3所示。

1.3监测时间及站位布设

在汉沽示范区面积为427.156 hm2范围内设立5个监测站位,在示范区以外设立监测对照站位4个。

1.4监测内容与监测重点

1.4.1海洋生物监测主要包括浮游植物、浮游动物、底栖生物、鱼卵仔鱼及游泳生物的种类组成、多样性特征、密度及生物量等。

1.4.2人工鱼礁附着生物调查提取已投放1年的人工鱼礁,调查生物附着状况,主要指标包括生物附着率、附着厚度、附着量以及附着生物的种类组成等。

1.5调查与分析方法

各项调查与分析方法均按照《海洋监测规范》(GB17378-2007)和《海洋调查规范》(GB12763-2007)中的有关规定执行。

2研究结果

2.1示范区人工鱼礁礁体生物附着效果

2014年7月5日,租用天津航通潜水工程有限公司打捞船对2013年投放的人工鱼礁进行了打捞作业,打捞区域坐标为:39°07.358′N、118°00.482″E和39°07.350′N、118°00.486″E。现场打捞两块回字形礁体,礁体长、宽各1.5 m,其中单面中空面长、宽各0.60 m,单面附着面积为1?89 m2,每个礁体共计11个附着面(除去朝下接触海底一面)。经现场测量计算,2013年投放的人工鱼礁(投放期1年)礁体表面90%以上被生物覆盖,附着厚度10~15 cm,附着生物以长牡蛎、密鳞牡蛎为主要优势种。单面生物附着量11.8 kg,每个礁体平均生物附着量为129.8 kg,按照2013年已投放1 904块人工鱼礁计算,2013-2014年1年内礁体生物总附着量约为247 t,单位面积附着量6.25 kg/m2,人工鱼礁投放前后照片对照如图4。现场采集部分礁体生物带回实验室鉴定,发现大量软体动物、节肢动物、环节动物、棘皮动物、脊索动物、腔肠动物,详见表2,图5。在实验室随机抽取35个牡蛎样本进行了生物学测定,牡蛎壳长范围57~77 mm,壳宽范围33~69 mm,平均个体重26.2 g,可食部分4.8 g,出肉率17.7%,实验数据显示附着的牡蛎及其它生物生长良好。

2.2人工鱼礁对周围海洋基础生物的影响变化

2.2.1浮游植物项目实施后与实施前相比,浮游植物多样性指数提高了58.9%;浮游植物密度由项目实施前的293.12×104个/m3增加到项目实施后的394.9×104个/m3,增加了34.7%。见表3。

项目实施后示范区与周边对照区相比,示范区浮游植物的种类数、密度及生物多样性均高于对照区,见浮游植物密度等值线分布图(图6)。

2.2.2浮游动物项目实施后与实施前相比,浮游动物的密度、生物量、多样性指数、丰富度有不同程度升高,其中密度、生物量升高幅度较大,分别升高19.9倍和88.4倍;浮游动物的均匀度有所下降,下降19.4%。见表4。

项目实施后示范区浮游动物的密度、生物量、多样性指数、均匀度均高于对照区。从浮游动物密度等值线分布图显示,示范区内浮游动物密度明显高于周边对照区域,而且浮游动物密度呈现由周边区域向示范区逐步升高的趋势。见图7。

2.2.3底栖生物项目实施后与实施前相比,底栖生物密度略有降低,降低26.8%,但底栖生物的生物量有所升高,升高13.0%;底栖生物多样性、均匀性、丰富度均有所提高,分别升高28?9%、11.0%、29.2%。见表5。

项目实施后示范区底栖生物的密度、生物量、多样性指数、均匀性、丰富度均高于对照区。从底栖生物密度及生物量等值线分布图显示,示范区底栖生物的密度和生物量明显高于周边对照区域,而且底栖生物密度和生物量呈现由周边区域向示范区逐步升高的趋势。见图8、图9。

2.3人工鱼礁对周围渔业资源的影响变化

2.3.1鱼卵、仔稚鱼项目实施后与实施前相比,仔稚鱼平均密度为4.04尾/m3,比项目实施前本底值略有降低,降低14%,鱼卵平均密度为3.54粒/m3,比项目实施前本底值明显增加,增加98%。

示范区与对照区相比,示范区鱼卵和仔稚鱼密度均高于周围对照区,分别高于2.3倍和75.7%。

2.3.2游泳动物项目实施后示范区游泳动物平均生物量为22.43 kg/网·h,比项目实施前增加了14.0%,比对照区略有降低,降了4.5%;示范区游泳动物平均密度为2 460尾/网·h,比项目实施前增加了15.2%,比对照区略有降低,降低2.4%。示范区游泳动物密度、生物量略低于对照区,有可能由于在示范区海底一定区域存在人工鱼礁礁体,不便于拖网作业所致。

3结论与建议

3.1小结

汉沽示范区从2012-2014年共完成16个礁群建设,投放人工鱼礁2 804个(9 463.5空 m3),形成礁区面积189.582 hm2,完成示范区建设427.156 hm2。汉沽示范区人工鱼礁建设,在一定海域内创造了一个良好的人工生态系统,为海洋经济品种提供了避敌栖息和索饵的场所,从浮游生物、底栖生物、鱼卵、仔稚鱼密度分布以及礁体生物附着状况来看,礁区良好的生态效应已初步显现。在礁区周围的海底出现了以礁体为中心的高生物量区向四周扩散的趋势。

无论从生物多样性和总生物量的角度来看,汉沽示范区人工鱼礁对改造局部区域的海洋生态环境起到了良好作用,为渤海湾天津近海的渔业资源恢复和生态环境修复起到了示范作用。

3.2建议

在人工鱼礁投放区周围设立航标灯塔,禁止船舶进入和一切捕捞活动。在加强监督管理的同时,开展公众宣传,普及生态保护知识,提高海洋生态环境保护意识。

为进一步了解和掌握人工鱼礁对海洋生物资源及生态环境的作用效果,建立环境与资源监测常态机制,为开展海洋生物资源修复提供基础数据。

加强人工鱼礁自然沉降及海底泥沙淤积的监测与研究,综合考虑天津沿海海流、潮汐的水动力学特点,科学选择礁区位置,优化人工鱼礁的单体组合方式,确定生态鱼礁区的布局方式,构建生态复合型鱼礁群,实现生物附着和栖息环境功能改善的最大化。

篇7

关键词:生态 水利 工程 设计 原则

水利工程对经济与社会发展的巨大作用勿庸置疑。但是也必须看到水利工程对河流生态系统造成了不同程度的干扰【1】。水利工程对于河流生态系统的胁 迫主要表现在两方面:一是自然河流的渠道化。包括平面布置上的河流形态直线化,即将蜿蜒曲折的天然河流改造成直线或折线型的人工河流。包括河道横断面几何 规则化,即把自然河流的复杂形状变成梯形、矩形及弧形等规则几何断面。还包括河床和边坡材料的硬质化,即渠道的边坡及河床采用混凝土、砌石等硬质材料。二 是指自然河流的非连续化。筑坝是顺水流方向的河流非连续化,流动的河流生态系统变成了相对静止的人工湖,流速、水深、水温及水流边界条件都发生了重大变 化。库区内原来的森林、草地或农田统统淹没水底。陆生动物被迫迁徙。水库形成后也改变了原来河流营养盐输移转化的规律。由于水库截留河流的营养物质,气温 较高时,促使藻类在水体表层大量繁殖,产生水华现象。藻类蔓延遮盖住大植物的生长使之萎缩,而死亡的藻类沉入水底,在那里腐烂的同时还消耗氧气。溶解氧含 量低的水体会使水生生物“窒息而死”。由于水库的水深高于河流,在深水处阳光微弱,光合作用也弱,导致水库的生态系统比河流的生物生产量低,相对要脆弱, 自我恢复能力弱。河流泥沙在水库淤积,而坝下清水下泄又加剧了对河道的冲蚀,这些变化都大幅度改变了生境。由于靠水库进行人工径流调节,改变了自然河流年 内丰枯的水文周期规律,即改变了原来随水文周期变化形成脉冲式河流走廊生态系统的基本状况。最后,众所周知,不设鱼道的大坝对于洄游鱼类是致命的屏障。另 一类非连续化是由于河流两岸建设的防洪堤造成的侧向水流的非连续性。堤防妨碍了汛期主流与岔流之间的沟通,阻止了水流的横向扩展。堤防把干流与滩地和洪泛 区隔离,使岸边地带和洪泛区的栖息地发生改变。原来可能扩散到滩地和洪泛区的水、泥沙和营养物质,被限制在堤防以内的河道内,植被面积明显减少。鱼类无法 进入滩地产卵和觅食,也失去了避难所。鱼类、无脊椎动物等会减少,导致滩区和洪泛区的生态功能退化。

概况地讲,被改造过的河流生 态系统是由三个子系统组成。即:由动物、植物和微生物组成的生命系统,这是生态系统的主体。广义的水文系统,包括地表和地下水体、土地、气候系统等。再有 就是工程设施系统,这是人类改造河流的结果。后面两个子系统组成生境,是生命支持系统。由于水利工程系统改变了河流形态,水库调度运行又改变了原有的水文 规律,造成河流生态系统的生境变化,其结果可能造成河流生态系统生物群落多样性的下降,使生态系统退化。

对于水利工程对河流生态系统的胁迫,应该采取正视而不是回避的态度。传统意义上的水利工程学作为一门重要的工程学科,以建设水工建筑物为手段,目的是改造和控制河流,以满足人们 防洪和水资源利用等多种需求。现代科学发展使我们认识到,传统意义上的水利工程学在力图满足人的需求时,却在不同程度上忽视了河流生态系统本身的需求。而 河流生态系统的功能退化,也会给人们的长远利益带来损害。未来的水利工程在权衡社会经济需求与生态系统健康需求这二者关系方面,似应强调水利工程在满足人 类社会需求的同时,兼顾水域生态系统的健康和可持续性。从学科发展角度看,现在的水利工程学的学科基础主要是工程力学和水文学,水利工程规划设计主要对象 是水文系统,往往忽视生命系统的现状和未来风险等问题。学科的进一步发展应吸收生态学的理论及方法,促进水利工程学与生态学的交叉融合,用以改进和完善水 利工程的规划及设计理论,形成水利工程学的新的学科分支-生态水利工程学(Eco-Hydraulic Engineering)。生态 水利工程学作为水利工程学的一个新的分支,是研究水利工程在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求的原理与技术方法的工程学【2】 【3】。生态水利工程的内涵是:对于新建工程,是指进行传统水利建设的同时(如治河、防洪工程),兼顾河流生态修复的目标。对于已建工程,则是对于被严 重干扰河流重点进行生态修复。

生态水利工程将与传统治污技术、清洁生产(生态产业)以及环境立法和资源管理一起,成为河流生态建 设的主要手段之一。图1表示了生态水利工程在河流生态建设中的地位。图中右侧表示人类活动对自然河流生态系统的干扰过程,左侧表示人类活动对扰的河流 生态系统的修复过程。

这里讨论的生态水利工程学的基本原则也是生态水利工程规划设计的基本原则,笔者试归纳为以下五项内容。

1.工程安全性和经济性原则

生态水利工程是一种综合性工程,在河流综合治理中既要满足人的需求,包括防洪、灌溉、供水、发电、航运以及旅游等需求,也要兼顾生态系统可持续性的需求。 生态水利工程既要符合水利工程学原理,也要符合生态学原理。生态水利工程的工程设施必须符合水文学和工程力学的规律,以确保工程设施的安全、稳定和耐久 性。工程设施必须在设计标准规定的范围内,能够承受洪水、侵蚀、风暴、冰冻、干旱等自然力荷载。按照河流地貌学原理进行河流纵、横断面设计时,必须充分考 虑河流泥沙输移、淤积及河流侵蚀、冲刷等河流特征,动态地研究河势变化规律,保证河流修复工程的耐久性。

对于生态水利工程的经济 合理性分析,应遵循风险最小和效益最大原则。由于对生态演替的过程和结果事先难以把握,生态水利工程往往带有一定程度的风险。这就需要在规划设计中需要进 行方案比选,更要重视生态系统的长期定点监测和评估。另外,充分利用河流生态系统自我恢复规律,是力争以最小的投入获得最大产出的合理技术路线。

2.提高河流形态的空间异质性原则

有关生物群落研究的大量资料表明,生物群落多样性与非生物环境的空间异质性(spacial heterogeneity)存在正相关 关系。这里所说的“生物群落”是指在特定的空间和特定的生境下,由一定生物种类组成,与环境之间相互影响、相互作用,具有一定结构和特定功能的生物集合 体。一般所说的“生物群落多样性”指生物群落的结构与功能的多样性。实际上,生物群落多样性问题是在物种水平上的生物多样性。

非生物环境的空间异质性与生物群落多样性的关系反映了非生命系统与生命系统之间的依存和耦合关系。一个地区的生境空间异质性越高,就意味着创造了多样的小生 境,能够允许更多的物种共存。反之,如果非生物环境变得单调,生物群落多样性必然会下降,生物群落的性质、密度和比例等都会发生变化,造成生态系统的某种 程度的退化。

河流生态系统生境的主要特点是:水-陆两相和水-气两相的联系紧密性;上中下游的生境异质性;河流纵向的蜿蜒性;河 流横断面形状的多样性;河床材料的透水性等。水-陆两相和水-气两相的紧密关系,形成了较为开放的生境条件;上中下游的生境异质性,造就了丰富的流域生境 多样化条件;河流纵向的蜿蜒性形成了急流与缓流相间;河流的横断面形状多样性,表现为深潭与浅滩交错;河床材料的透水性为生物提供了栖息所。由于河流形 态异质性形成了在流速、流量、水深、水温、水质、水文脉冲变化、河床材料构成等多种生态因子的异质性,造就了丰富的生境多样性,形成了丰富的河流生物群落 多样性。所以说,提高河流形态异质性是提高生物群落多样性的重要前提之一【4】。

由于人类活动,特别是大规模治河工程的建设,造 成自然河流的渠道化及河流非连续化,使河流生境在不同程度上单一化,引起河流生态系统的不同程度的退化。生态水利工程的目标是恢复或提高生物群落的多样 性,但是并不意味着主要靠人工直接种植岸边植被或者引进鱼类、鸟类和其它生物物种,生态水利工程的重点应该是尽可能提高河流形态的异质性,使其符合自然河 流的地貌学原理,为生物群落多样性的恢复创造条件。

在确定河流生态修复目标以后,就应该对于河流地貌历史和现状进行勘查和评估。 包括河流与相关湿地、湖泊的形状与构成、水下地形勘测、水位变化幅度、河流平面弯曲度、河流横断面形状及河床材料、急流与深潭比例、河床的稳定性及淤积及 侵蚀状况等,建立河流地貌数据库。河流生物调查,包括植物、鱼类、鸟类、两栖动物和无脊椎动物等的物种分布地图以及规模和存量,建立生物资源数据库。遥感 技术和地理信息系统(GIS)是水文、河流地貌和生物调查的有力工具。

关键的工作步骤是在以上两种调查工作的基础上,确定环境因 子与生物因子的相关关系,必要时建立某种数学模型。河流环境因子包括河流河势、蜿蜒度、横断面形状及材料、流速、水位、水质、水温、泥沙、营养盐的迁移转 化、水文周期变化等。研究的内容包括:调查单个生物因子的基本需求,评估各种生物因子的相互关系和制约条件,对于“关键种”或标志性生物的环境因子进行分 类和评估。需要强调的是,在众多的环境因子中,识别那些对于系统的结构和功能具有重要意义的环境因子,在此基础上进行河流地貌学设计和生物栖息地设计。

3.生态系统自设计、自我恢复原则

有关生态系统的自组织功能的讨论始于上世纪60年代,以后有不同学科的众多学者涉足这个领域。以各种不同形式构成的自组织功能,是自然生态系统的重要特征。

生态学用自组织功能来解释物种分布的丰富性现象,也用来说明食物网随时间的发展过程。生态系统的自组织功能表现为生态系统的可持续性。自组织的机理是物种 的自然选择,也就是说某些与生态系统友好的物种,能够经受自然选择的考验,寻找到相应的能源和合适的环境条件。在这种情况下,生境就可以支持一个能具有足 够数量并能进行繁殖的种群。自组织功能原理与达尔文的进化论有相似之处,只是研究的尺度不同而已。达尔文的进化论研究是在地球生物圈所有种群的尺度上进行 的,而自组织功能是在生态系统中种群之间发生的。

生态系统的自组织功能对于生态工程学的意义是什么呢?& nbspH.T.Odum认为:“生态工程的本质是对自组织功能实施管理。”(1989)【5】。Mitsch认为:“所谓自组织也就是自设计” (2004)【6】。将自组织原理应用于生态水利工程时,生态工程设计与传统水工设计有本质的区别。像设计大坝这样的人工建筑物是一种确定性的设计,建 筑物的几何特征、材料强度都是在人的控制之中,建筑物最终可以具备人们所期望的功能。河流修复工程设计与此不同,生态工程设计是一种“指导性”的设计,或 者说是辅设计。依靠生态系统自设计、自组织功能,可以由自然界选择合适的物种,形成合理的结构,从而完成设计和实现设计。成功的生态工程经验表明,人 工与自然力的贡献各占一半【7】。

我国古代传统哲学注重人与自然的和谐相处,老子主张:“人法地,地法天,天法道,道法自然”。 反映了一种崇尚自然,遵循自然规律的哲学观。在建筑理念方面,提倡“工不曰人而曰天,务全其自然之势”(《管氏地理指蒙》),“虽由人作,宛自天开” (《园冶》),都提倡一种效法自然,依靠自然的思想。国际生态学界一些学者认为,系统生态学的哲学理念应该追溯到公元前11世纪中国的周代。其中“阴阳五 行”、万物竞争共存和相生相克等哲学思想,体现了促进与抑制,成长与腐朽,合成与异化之间的平衡与转化,这些正是现代生态学的哲学基础。

传统的水利工程设计的特征是对于自然河流实施控制。而设计生态水利工程时,要求工程师必须放弃控制自然界的动机,树立新的工程理念。因为依靠人力和技术控 制自然界是不可能的,这种一厢情愿的企图最终往往归于失败。人们要善于利用生态系统自组织、自设计这个宝贵财富,实现人与自然的和谐。需要强调的是,地球 上没有两条相同的河流,每一条河流的特点都是各不相同的。因此,每一项生态水利工程必须因地制宜,充分尊重每一条河流的自然属性和美学价值,寻求最佳的生 态工程方案。

自设计理论的适用性还取决于具体条件。包括水量、水质、土壤、地貌、水文特征等生态因子,也取决于生物的种类、密度、生物生产力、群落稳定性等多种因素。在利用自设计理论时,需要注意充分利用乡土种。引进外来物种时要持慎重态度,防止生物入侵。

要区分两类扰的河流生态系统。一类是未超过本身生态承载力的生态系统,是可逆的。当去除外界干扰即卸荷以后,有可能靠自然演替实现自我恢复的目标。另 一类是被严重干扰的生态系统,它是不可逆的。在去除干扰即卸荷后,还需要辅助以人工措施创造生境条件,再靠发挥自然修复功能,有可能使生态系统实现某种程 度的修复。这就意味着,运用生态系统自设计、自我恢复原则,并不排除工程师和科学家采用工程措施、生物措施和管理措施的主观能动性。转贴于 4.景观尺度及整体性原则

河流生态修复规划和管理应该在大景观尺度、长期的和保持可持续性的基础上进行,而不是在小尺度、短时期和零星局部的范围内进行。在大景观尺度上开展的河流生态修复效率要高。小范围的生态修复不但效率低,而且成功率也低。

所谓“整体性”是指从生态系统的结构和功能出发,掌握生态系统各个要素间的交互作用,提出修复河流生态系统的整体、综合的系统方法,而不是仅仅考虑河道水文系统的修复问题,也不仅仅是修复单一动物或修复河岸植被。

这里说的“景观”(landscape)是指生态学中的景观尺度。关于生态学的尺度问题,O’Neill,认为:“生态学不可能建立在单一的时空尺度 上,它应该适应所有尺度的调查研究。”(1986)【8】。按照这种观点,尺度和层次成为生态学发展的关键。目前生态学理论把生物圈划分为11个层次, 依次是生物圈、生物群系、景观、生态系统、群落、种群、个体、组织、细胞、基因和分子。景观的尺度如何掌握?景观尺度包括空间尺度和时间尺度。

为什么在景观的大尺度上进行河流修复规划?首先,水域生态系统是一个大系统,其子系统包括生物系统、广义水文系统和人造工程设施系统。一条河流的广义水文 系统包括从发源地直到河口的上中下游地带的地下水与地表水系统,流域中由河流串联起来的湖泊、湿地、水塘、沼泽和洪泛区。广义水文系统又与生物系统交织在 一起,形成自然河流生态系统。而人类活动和工程设施作为生境的组成部分,形成对于水域生态系统的正负影响。水域生态系统受到胁迫时,需要对于各种胁迫因素 之间的相互关系进行综合、整体研究。如果仅仅考虑河道本身的生态修复问题,显然是把复杂系统简单割裂开了。

其次,必须重视水域生 境的易变性、流动性和随机性的特点,表现为流量、水位和水量的水文周期变化和随机变化,也表现为河流淤积与侵蚀的交替变化造成河势的摆动。这些变化决定了 生物种群的基本生存条件。水域生态系统是随着降雨、水文变化及潮流等条件在时间与空间中扩展或收缩的动态系统。生态系统的变化范围从生境受到限制时期的高 度临界状态到生境扩张时期的冗余状态。

再者,要考虑生境边界的动态扩展问题。由于动物迁徙和植物的随机扩散,生境边界也随之发生 动态变动。Gosselink(1990)在研究水域生态系统物种管理的尺度问题时认为,对于给定需要修复的物种,考虑的范围应是这个物种的分布区 【9】。举例来说,为便于理解,可以借用“流域”这个概念,比如一个地区野鸭的种群也有一个“鸭域”。所谓“鸭域”的范围应该包括物种个体在恶劣的条件下 迁徙到的任何地方以及支持此物种的生态系统。这个范围的边界,应划定在某特定物种经常利用的一个很大的空间内。如果进一步扩展,还应该包括所谓“临时生 境”,指在自然界对于物种产生胁迫的时期,成为该物种的避难所的地区。如果这个地区有若干种标志性动物,那么物种管理的范围边界将是这些物种“域”的包络 图。另外,还要考虑流域之间的协调问题。考虑到河流生态系统是一个开放的系统,与周围生态系统随时进行能量传递和物质循环,一条河流的生态修复活动不可能 是孤立的,还需要与相邻的流域的生态修复活动进行协调,

最后,河流生态修复的时间尺度也十分重要。河流系统的演进是一个动态过 程。每一个河流生态系统都有它自己的历史。需要对历史资料进行收集、整理,以掌握长时间尺度的河流变化过程与生态现状的关系。河流生态修复是靠时间作工作 的。有研究指出,湿地重建或修复需要大约15到20年的时间。因此对于河流生态修复项目要有长期准备,同时进行长期的监测和管理。

需要说明的是,对于规划、评估、监测这些不同的任务,工作对象的空间尺度可能是不同的。监测工作应该在尽可能大的尺度内进行。比如修复一块湿地以吸引鸟 类,经过一年或者更长的时间均告失败。这就需要考虑是否有质量更好的生境吸引了候鸟而改变了它们的迁徙路线,监测工作可能在大陆的范围内开展。而评估工作 可能在跨流域的尺度上进行。规划工作的尺度可能是流域或河流廊道。所谓“河流廊道”(River corridor)泛指河流及其两岸与 生物栖息地相关的土地,也有定义其范围为河流与对应某一洪水频率的洪泛区。至于河流修复工程项目的实施,一般在关键的重点河段内进行。

5.反馈调整式设计原则

生态系统的成长是一个过程,河流修复工程需要时间。从长时间尺度看,自然生态系统的进化需要数百万年时间。进化的趋势是结构复杂性、生物群落多样性、系统 有序性及内部稳定性都有所增加和提高,同时对外界干扰的抵抗力有所增强。从较短的时间尺度看,生态系统的演替,即一种类型的生态系统被另一种生态系统所代 替也需要若干年的时间,期望河流修复能够短期奏效往往是不现实的。

生态水利工程设计主要是模仿成熟的河流生态系统的结构,力求 最终形成一个健康、可持续的河流生态系统【10】【11】。在河流工程项目执行以后,就开始了一个自然生态演替的动态过程。这个过程并不一定按照设计预期 的目标发展,可能出现多种可能性。最顶层的理想状态应是没有外界胁迫的自然生态演进状态。在河流生态修复工程中,恢复到未受人类干扰的河流原始状态往往是 不可能的,可以理解这种原始状态是自然生态演进的极限状态上限。如果没有生态修复工程,在人类活动的胁迫下生态系统的进一步恶化,这种状态则是极限状态的 下限。在这两种极限状态之间,生态修复存在着多种可能性。针对具体一项生态修复工程实施以后,一种理想的可能是:监测到的各生态变量是现有科学水平可能达 到的最优值,表示生态演进的趋势是理想的。另一种差的情况是,监测到的各生态变量是人们可接受的最低值。在这两种极端状态之间,形成了一个包络图。一项生 态修复工程实施后的实际状态都落在这个包络图中间。

意识到生态系统和社会系统都不是静止的,在时间与空间上常具有不确定性。除了 自然系统的演替以外,人类系统的变化及干扰也导致了生态系统的调整。这种不确定性使生态水利工程设计不同于传统工程的确定性设计方法,而是一种反馈调整式 的设计方法。是按照“设计-执行(包括管理)-监测-评估-调整”这样一种流程以反复循环的方式进行的。在这个流程中,监测工作是基础。监测工作包括生物 监测和水文观测。这就需要在项目初期建立完善的监测系统,进行长期观测。依靠完整的历史资料和监测数据,进行阶段性的评估。评估的内容是河流生态系统的结 构与功能的状况及发展趋势。常用的方法是参照比较方法,一种是与自身河流系统的历史及项目初期状况比较,一种是与自然条件类似但未进行生态修复的河流比 较。评估的结果不外乎有几种可能:1)生态系统大体按照预定目标演进,不需要设计变更;2)需要局部调整设计,适应新的状况;3)原来制定的目标需要重大调整,相应进行设计。

在反馈调整式设计过程中,提倡科学家、管理者和当地居民及社会各界的广泛参与,通过对话、协商,以寻求共同利益。提倡多学科的交流和融合,提高设计的科学性。

Design Principles of Eco-hydraulics Engineering

Abstract :The concept of eco-hydraulic engineering is proposed.

It integrates the technology of hydraulic engineering with ecology.

Based on the analysis of stress of hydraulic engineering on river

ecosystem the requirements for ensuring healthy ecosystem and

sustainable development for river are suggested.These requirements

include the principles in five scopes: engineering safety and

economy, spatial heterogeneity of river morphology, self-design

and self-restoration of ecosystem, landscape scale and integrated

river ecosystems restoration and design methodology process based

on feedback and adjustment.

参考文献

【1】董哲仁,水利工程对生态系统的胁迫[J],水利水电技术,2003年7期,

P1-5

【2】 ASCE River Restoration Subcommittee& nbspon Urban Stream Restoration,

Urban stream Restoration[J],Journal of Hydraulic Engineering ASCE,

July 2003, pp 491-493

【3】董哲仁,生态水工学的理论框架[J],水利学报, 2003年第1期P1-6

【4】董哲仁,河流形态多样性与生物群落多样性[J],水利学报,2003年第11期,

P1-7

【5】Odum, H. T. 1989. Ecological engineering and self-organization[D].

Pages 79-101. In: W. J. Mitsch and S. E. Jorgensen, eds., Ecological

Engineering: An Introduction to Ecotechnology. Wiley, New York.

【6】 Mitsch W. J.& Jorgensen S E., Ecological Engineering and Ecosystem

Restoration[M]. PP 134-137, Published by John Wiley& Sons, Inc.,

Hoboken, New Jersey, 2004

【7】董哲仁,荷兰围垦区生态重建的启示[J].中国水利,2003年11A期,P45-47

【8】O’Neill, R.V., D.L.DeAngelis, J.B. Waide, and T.F.H.Allen. 1986.

A Hierarchical Concept of Ecosystems[M]. Princeton University Press,

Princeton, NJ.153pp

【9】Gosselink,J.G., 1990, Landscape Conservation in a forested Wetland

Watershed[J]. Bioscience 40:588-600

【10】 Mitsch, W.J. and J.G.Gosselink. 2000. Wetland[M], 3rd ed. Wiley,

New York.920pp.

【11】董哲仁河流生态恢复的目标[J].中国水利,2004年第10期,P1-5

【12】董哲仁美国基西米河生态恢复工程的启示,水利水电技术,2004年第9期,

篇8

一、总体要求

以生态文明思想为指导,按照中央和省、市推进净土行动的部署要求,深入推动实施《中华人民共和国土壤污染防治法》,以改善土壤环境质量为核心,以保障农产品质量安全和人居环境安全为目标,严格落实“党政同责、一岗双责”、“属地负责、部门有责”,坚决完成国家、省及市关于打赢土壤污染防治攻坚战的各项工作任务,扎实有效推进净土保卫战。

二、主要目标

按照省和市统一安排部署,完成全县重点行业企业用地土壤污染状况调查和耕地土壤环境质量类别划定,建立全县污染地块清单和优先管控名录以及耕地质量分类清单;强化农用地、建设用地土壤环境风险管控,全县受污染耕地、再开发利用的污染地块,全部实现安全利用;严格落实重金属污染物排放总量控制制度,完成上级下达我县减少重点行业重点重金属污染物排放量任务。

三、重点任务

(一)强化土壤环境调查监测

1.推进重点行业企业用地土壤污染状况调查。2020年底前,全面完成重点行业企业用地的布点采样、分析测试、数据上报、成果集成等工作,全面掌握重点行业在产企业和关闭搬迁企业用地土壤污染状况及分布,建立污染地块清单和优先管控名录。(责任单位:县生态环境分局、县自然资源和规划局等;各乡(镇)政府、平安街道办、经济开发区负责落实,以下不再逐一列出)

2.优化土壤生态环境质量监测体系。完善全县土壤环境监测体系,配合国家和省、市开展土壤环境质量国控、省控点位例行监测。按照年度监测计划,组织对土壤环境重点监管单位、工业园区和污水集中处理设施、固体废物处置设施周边土壤开展监督性监测,2020年10月底前,监测结果上报省生态环境厅,纳入全国土壤环境信息化管理平台统一管理使用。对监测发现的土壤超标情况,进一步开展溯源排查,查明并及时阻断污染源。(责任单位:县生态环境分局等)

3.加强重点区域耕地土壤环境监测。对农产品污染物含量超标、污水灌溉等区域农用地地块进行重点监测,及时掌握土壤环境质量状况和污染范围、风险水平等。对产出农产品污染物含量超标的耕地,发现污染物含量超过土壤污染风险管控标准的,配合上级部门开展土壤污染风险评估,根据评估结论实施分类管理。加强农田灌溉水水质监测和监督检查,防止未经处理或达不到农田灌溉水质标准的废(污)水进入农田灌溉系统。(责任单位:县农业农村局、县生态环境分局、县自然资源和规划局等)

4.推进土壤污染状况详查成果应用。根据省、市统一安排部署,集成分析、综合运用农用地土壤污染状况详查成果,开展高风险区域农用地土壤污染状况深度调查和周边污染源溯源排查。开展污染成因分析,对污染源进行溯源排查,6月30日前,建立重点污染源管控和整治清单,纳入限期治理计划,严厉打击非法排污,有效切断污染物进入农田的传输途径,切实防止边治理边污染。根据全县重点行业企业用地土壤污染状况调查采样分析结果,按程序及时通报有关乡(镇),为加强建设用地土壤污染风险管控提供基础信息。(责任单位:县生态环境分局、县农业农村局、自然资源和规划局等)

(二)实施农用地分类管理

5.划定农用地土壤环境质量类别。加快推进全县耕地土壤环境质量类别划分,全部完成划定工作,建立全县耕地土壤环境质量档案和分类清单。划分结果,报请县政府审核后提交市农业农村局。未利用地、复垦土地等拟开垦为耕地的,应当进行土壤污染状况调查,依法进行分类管理。(责任单位:县农业农村局、县生态环境分局、县自然资源和规划局等)

6.加强优先保护类耕地建设管理。将符合条件的优先保护类耕地划为永久基本农田或纳入永久基本农田整备区,在优先保护类耕地分区域、按年度、按计划推进高标准农田建设。在永久基本农田集中区域,不得新建可能造成土壤污染的建设项目,已建成的,2020年6月底前关闭拆除。统筹矿产资源开发与永久基本农田调整划定的关系,确需对重金属等污染威胁的永久基本农田进行调整的,按照相关要求进行补划。依法加强对未污染土壤的保护,对未利用地不得污染和破坏。(责任单位:县自然资源和规划局、县农业农村局、县生态环境分局、县行政审批局等)

7.严格落实耕地风险防范措施。2020年5月20日前,各乡镇组织完成辖区受污染耕地安全利用和严格管控工作方案制定、报备。对安全利用类耕地,应结合当地主要作物品种和种植习惯,采取农艺调控、低积累品种替代、轮作间作等措施,降低农产品超标风险;对严格管控类耕地,依法划定特定农产品禁止生产区域,鼓励采取调整种植结构、退耕还林还草、退耕还湿、轮作休耕等风险管控措施。10月底前,全县所有受污染耕地全部实现安全利用和风险管控。(责任部门:县农业农村局、县自然资源和规划局、县生态环境分局等)

(三)严格建设用地土壤污染风险管控

8.组织开展建设用地风险调查排查。对有土壤污染风险的建设用地地块,土地使用权人要开展土壤污染状况调查;用途变更为住宅、公共管理与公共服务用地的,变更前应当进行土壤污染状况调查。2020年6月底前,组织对未经土壤污染状况调查,已开发利用为住宅、公共管理与公共服务用地的地块进行摸底调查,采取有效措施,确保人居环境安全。(责任部门:县生态环境分局、县自然资源和规划局等)

9.强化污染地块土壤环境联动监管。完善疑似污染地块名单、污染地块名录、建设用地土壤污染风险管控和修复名录。强化生态环境、自然资源和规划等部门的污染地块信息共享和联动监管机制。强化关闭搬迁企业腾退土地土壤污染风险管控,以有色金属冶炼、石油加工、化工、焦化、电镀、制革等行业企业为重点,严格企业拆除活动的环境监管。对违反《土壤污染防治法》有关规定的行为,依法对相关企业、土地使用权人或土壤污染责任人进行严肃查处。(责任单位:县生态环境分局、县自然资源和规划局、县科技和工业化信息局等)

10.科学合理规划土地用途。编制国土空间规划要充分考虑土壤污染风险,合理确定土地用途。污染地块再开发利用必须符合规划用途的土壤环境质量要求。在居民区和学校、医院、疗养院等单位周边,不得规划布局有色金属冶炼、焦化等可能造成土壤污染的建设项目。2020年底前,推进疑似污染地块、污染地块空间信息与国土空间规划的“一张图”汇总;已上传全国污染地块土壤环境管理系统的疑似污染地块及污染地块实现“一张图”管理。(责任部门:县自然资源和规划局、县生态环境分局等)

11.严格建设用地准入管理。列入建设用地土壤污染风险管控和修复名录的地块,不得作为住宅、公共管理与公共服务用地;未达到土壤污染风险管控、修复目标的地块,禁止开工建设任何与风险管控、修复无关的项目,不得批准环境影响评价技术文件、建设工程规划许可证等事项。涉及成片污染地块分期分批开发或周边土地开发的,要科学设定开发时序,防止受污染土壤及其后续风险管控和修复措施对周边人群产生影响。对开发建设过程中剥离的表土,要单独收集和存放,符合条件的优先用于土地复垦、土壤改良、造地和绿化等。(责任部门:县自然资源和规划局、县生态环境分局、县行政审批局等)

12.加强污染地块风险管控及修复。对暂不开发利用的污染地块,要采取风险管控措施,开展土壤及地下水污染状况监测。需要治理与修复的污染地块,土地使用权人要编制修复方案。加强治理与修复施工的环境监理,防止造成二次污染。按要求将达到治理与修复目标要求,且可以安全利用的地块移出建设用地土壤污染风险管控和修复名录。(责任部门:县生态环境分局、县自然资源和规划局等)

(四)加强农业面源污染整治

13.减量使用化肥农药。加强农药、肥料、农膜等农业投入品使用管理,禁止生产、使用国家明令禁止的农业投入品,规范兽药、饲料添加剂的生产和使用,推进农业投入品包装废弃物回收及无害化处理。2020年,主要农作物绿色防控覆盖率达到31%以上,主要农作物统防统治覆盖率达到40%以上,农药利用率达到40%以上,测土配方施肥技术推广覆盖率达到90%以上,化肥利用率提高到40%,主要农作物化肥农药使用量实现零增长。(责任单位:县农业农村局、县自然资源和规划局等)

14.加强废弃农膜回收利用。指导农业生产者合理使用农膜,严厉打击违法生产和销售不符合国家标准农膜的行为。积极推进废弃农膜回收,开展废旧农膜回收利用试点示范,完善废旧农膜回收网络,开展农膜使用及残留监测评价。2020年,全县农膜回收率达到80%以上,农田残膜“白色污染”得到有效控制。(责任单位:农业农村局、市场监督管理局等)

15.强化畜禽养殖污染防治和资源化利用。加强畜禽粪污资源化利用,2020年底前,全县畜禽规模养殖场粪污处理设施装备配套率达到100%,畜禽粪污综合利用率达到75%以上。(责任单位:县农业农村局、县生态环境分局等)

(五)强化重点领域污染防控

16.强化涉重金属行业污染防控。严格落实总量控制制度,减少重金属污染物排放。新、改、扩建涉重金属重点行业建设项目,污染物排放实施等量或减量替换。加大减排项目督导力度,确保项目按期实施。继续推进涉重金属行业企业排查整治,列入污染源整治清单的企业,年底前完成综合整治任务。(责任单位:县生态环境分局、县行政审批局)

17.加强重点企业土壤环境监管。加强对有色金属冶炼、石油加工、化工、焦化等行业企业土壤环境监管,制定土壤污染重点监管单位名录,将土壤污染防治相关责任和义务纳入排污许可管理。土壤污染重点监管单位要严格控制有毒有害物质排放,落实土壤污染隐患排查和自行监测制度。2020年10月底前,重点行业企业用地调查统一部署,开展土壤环境自行监测,编制土壤环境质量状况报告。土壤污染重点监管单位拆除设施、设备或者建筑物、构筑物,要制定土壤污染防治方案,防止污染土壤和地下水。(责任部门:县生态环境分局、县科技和工业信息化局等)

(六)加强固体废物污染管控

18.强化矿产资源开发污染监管。加大矿山地质环境和生态修复力度,新建和生产矿山严格按照审批通过的开发利用方案和矿山生态环境恢复治理方案,边开采、边治理、边恢复。加快推进责任主体灭失矿山迹地综合治理。加强尾矿库安全监管,运营、管理单位要开展土壤污染状况监测和环境风险评估,建立环境风险管理档案,防止发生安全事故造成土壤污染。(责任部门:县自然资源和规划局、县应急管理局、县生态环境分局等)

19.规范固体废物利用处置。加强工业固体废物堆存场所环境整治,完善防扬散、防流失、防渗漏等设施。推动工业固废综合利用,促进工业固废减量化、资源化。推行生态环境保护综合执法,加强塑料废弃物回收、利用、处置等环节的环境监管,依法查处违法排污等行为。(责任部门:县生态环境分局、县科技和工业信息化局、县发展和改革局等)

20.强化危险废物监管。严格危险废物经营许可审批,加强危险废物处置单位规范化管理核查。统筹区域危险废物利用处置能力建设,加快补齐利用处置设施短板。积极推进重点监管源智能监控体系建设,加大危险废物产生、贮存、转运、利用、处置全流程监管力度。规范和完善医疗废物分类收集处置体系,2020年底前,全县医疗废物集中收集和集中处置率达到100%。持续保持高压态势,严厉打击危险废物非法转移、倾倒和处理处置等违法犯罪行为。(责任部门:县生态环境分局、县卫生健康局、县公安局等)

21.健全垃圾处理处置体系。推进生活垃圾无害化处理和资源化利用,完成非正规垃圾堆放点排查整治工作,全面清理现有无序堆存的生活垃圾。加快国家确定的我市生活垃圾强制分类试点工作。2020年,建设完成符合要求的城市生活垃圾、餐厨垃圾、建筑垃圾处理设施,建成区生活垃圾无害化处理率达到100%,县城达到98%以上。(责任部门:县城市管理综合行政执法局、县农业农村局、县水利局等)

(七)充分发挥典型示范引领作用

22.抓好土壤污染治理与修复技术应用试点项目。加快推进庄上——连泉一带农用地土壤污染治理修复技术应用试点项目评估验收工作,总结试点成效、经验,为全县农用地土壤污染治理修复提供经济适用、可参考、可复制的实用技术模式,持续巩固庄上-连泉一带土壤污染修复项目治理成果。(责任单位:县生态环境分局、县农业农村局等)

23.开展土壤污染防治工作成效评估。在市统一安排部署下,自行对我县土壤污染防治工作成效进行综合评估,全面掌握土壤污染防治目标任务完成、政策体系制度创新、土壤污染风险管控体系与能力建设等情况。(责任单位:县生态环境分局等)

四、保障措施

一是落实属地管理责任。各乡(镇)政府对本行政区域内的生态环境保护和土壤环境质量改善负总责,严格落实属地管理责任,加强工作推进落实的组织调度和监督落实,依法履行监督管理职责,制定责任清单,层层压实责任,建立长效管理机制,确保完成土壤污染防治目标任务。

二是加强部门联动监管。完善土壤信息化管理平台建设,强化大数据在土壤污染防治和环境管理工作中的应用。加强生态环境、自然资源和规划、农业农村等有关部门沟通协调,打通共享渠道,充分利用全国土壤环境信息管理平台,及时共享土壤污染防治相关信息。根据全县土壤污染防治工作开展情况,不定期召开调度会议,督促各有关部门切实落实土壤污染防治职责,层层抓好落实,确保圆满完成国家和省、市各项目标任务。

篇9

【关键词】农药污染;微生物监测;微生物多样性

土壤微生物是农田生态系统的重要组成部分对土壤功能、生态系统的稳定和自然界元素循环等具有重要的意义,保持微生物的多样性对于人类农业生产具有重要意义。我国是一个农业大国,更是一个农药生产和使用大国,因此农药对土壤的污染是一个严重问题。据有关资料表明,我国受农药污染的土壤面积可达1600hm2 主要农产品的农药残留量超标率高达16%-18%[1]。农药污染 会破坏土壤功能影响土壤生态系统的稳定进而威胁到微生物多样性并可最终通过食物链影响人体健康。

1 农药对土壤的污染

农药是防治农业病虫害和控制杂草的化学药品,也是控制某些疾病的病媒昆虫(如蚊、蝇等)的重要药剂。但由于农药种类多,用量大,农药污染已成为环境污染的一个重要方面。农药药对土壤的污染是指人类向土壤环境中投入或排入超过其自净能力的农药而导致土壤环境质量降低以至影响土壤生产力和危害环境生物安全的现象。农药对土壤的污染与施用农药的理化性质、农药在土壤环境中的行为及施药地区自然环境条件密切相关使土壤颗粒与土壤溶液界面上的农药浓度大于土壤本体中农药浓度的现象。吸附会降低农药的活性影响药效的发挥,同时也阻滞了农药在土壤中的迁移和挥发。土壤的有机污染作为影响土壤环境的主要污染物已成为国际上关注的热点有毒、有害的有机化合物在环境中不断积累到一定时间或在一定条件下有可能给整个生态系统带来灾难性的后果,即所谓的“化学定时炸弹”。其他土壤有机污染物还包括氨基甲酸酯类、有机氮类杀虫剂和磺酰脲类除草剂,这些种类的农药毒性较低,但因使用范围扩大,其对土壤造成的污染亦不容忽视。

现有大量科学研究表明,农药污染也已经严重威胁了食品安全和人畜健康。2012年,浙江省农业科学院农产品质量标准研究所和农业部农药残留检测重点实验室等单位对浙江省蔬菜生产中主要使用的78种农药(主要为低毒农药)进行残留检测,发现大量农药残留,主要的残留农药就有28种。而环境中拟除虫菊酯类杀虫剂的残留会导致哺乳动物免疫系统、荷尔蒙、生殖系统疾病,甚至诱发癌症,有机氯农药暴露可能与乳腺癌、阿尔茨海默病、帕金森氏病的发生有关。

2 农药污染对土壤微生物多样性的影响

农药污染通过改变微生物群落结构、影响微生物在农田生态系统物质循环、破坏生态系统稳定等方面最终影响微生物生态多样性。微生物群落是指由一定种类的微生物在一定的生境条件下所构成的有机整体,土壤中包含有四种比较重要的微生物类群:细菌、真菌、放线菌和藻类。土壤受到农药污染后,会扰乱微生物类群的正常秩序,主要表现在微生物生物量、群落结构、群落的物种多样性等方面的影响。微生物群落结构是指群落内各种微生物在时间和空间上的配置状况,优化的配置能增加群落的稳定性,表现为良性发展。但是由于农药污染,就会影响这种良性发展,对群落的结构产生破坏影响。微生物是土壤酶的形成与积累的主要动力,在微生物的生命活动过程中,向土壤分泌大量的胞外酶,在其死亡后,由于细胞的自溶作用把胞内酶也释放到土壤中,因而在土壤生态系统中发挥至关重要的中心作用。土壤微生物的组成和土壤酶活性可以作为污染的重要指标,土壤受到污染后,土壤微生物组成发生变化,土壤酶活性受到抑制,进而影响微生物在物质循环中的功能。

农药污染影响土壤微生物物种多样性,其影响常常表现有直接的或间接的、抑制的或促进的、暂时的或持久的等多种类型。低量施用杀虫剂或除草剂对土壤微生物多样性的影响不大,但是如果大量施用,则会抑制甚至消灭某些敏感微生物,从而对微生物群落的组成起到选择作用。低浓度甲基对硫磷对土壤微生物数量影响不大,添加100和500mg/L甲基对硫磷能明显增加土壤细菌的数量,甲基对硫磷通过抑制或者杀灭某些种类土壤细菌,大大促进土壤生态系统中部分种类细菌的增殖[2]。土壤中结合态甲磺 隆残留物对土壤细菌、真菌具有明显的刺激作用,而对土 壤放线菌有强烈的抑制作用[3]。苯噻草胺能促使好氧细菌数量的增加,但不利于真菌和放线菌的生长[4]。

3 利用农药污染对土壤微生物多样性进行监测

以土壤微生物的种群数量和群落结构的动态变化为主要的观察指标,明确生物多样性与土壤环境质量之间的响应关系,达到环境监测的目的。与此同时,筛选和鉴别具有污染修复功能的微生物种类,将其应用到土壤农药污染的治理当中。在具体的研究过程中,如进行微生物的选择时,不仅包括常规研究较多的细菌、真菌、放线菌种类,还包括了土壤动物――线虫的研究,增加了生物监测结果的可靠性和说服力。在对敏感物种进行鉴定时,不仅应用到常规的形态学方法,还将应用分子生物学鉴定方法,加快了鉴定速度,增加了准确性,可以体现出研究方法的先进性。对污染修复研究中,不仅要关注污染物的修复效果和经济成本,还要对应用过程中的安全性进评价,充分体现出以人为本的理念和注重环境效益、经济效益和社会效益相统一的思想。

综上所述,农药污染可以影响土壤微生物的多样性。通过对农药污染影响土壤微生物多样性的研究,可以尽量减少或者避免农药污染对环境的影响,保持微生物的多样性,从而为农业耕作和农业生产提供科学依据。

4 生物监测的应用前景

生物监测是环境监测领域的新兴技术,主要是利用生物个体、种群或群落对环境污染或变化所产生的反应,从生物学的角度对环境污染状况进行监测和评价。生物监测技术的发展最早可追溯到20世纪初,Koikwitz和Marsson提出的“污水生物系统”,50年代后,该技术逐渐被少数国家用于水质和大气环境污染监测。生物监测技术依靠区别于传统物理化学监测方法的独特优势,如监测的敏感性、长期性、连续性、经济性、非破坏性、综合性等特点,近年来发展迅速。而我国在这方面的研究起步晚,上世纪80年代才开始将该技术应用于环境监测,迄今为止,相关体系仍不标准、不健全,尤其在土壤环境质量的评价和监测中的应用,更是少之又少。利用土壤微生物的种群数量和群落结构的动态变化为主要的观察指标,明确生物多样性与土壤环境质量之间的响应关系,达到环境监测的目的,将为环境污染监测和环境污染物的有效治理提供理论基础。

【参考文献】

[1]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004.

[2]曹慧,崔中利,周育,等.甲基对硫磷对红壤地区土壤微生物数量的影响土壤[J].2004,36(6):654-657.

篇10

【关键词】:水利工程;生态水利;设计原则;环境;系统

Abstract: Earth's population surge, the water dropped significantly, human disturbance of the soil underlying surface trend of enhancement, the impact of the global water cycle by artificial collateral obvious uneven allocation of water resources. Through the introduced the role of ecological water conservancy project in solving environmental problems, which leads to the design principles of ecological water conservancy project and related points to make in the future design to rule-based, rational accordingKey words: hydraulic; ecological water; design principles; environment; system

中图分类号:TV5文献标识码:A 文章编号:

前言

水利工程是人类干扰下垫面环境中最重要的内容之一。水利工程是用于控制和调配自然界的地表水和地下水,达到除害兴利目的而修建的工程。也称水工程。只有修建水利工程,才能控制水流,防止洪涝灾害,并进行水量的调节和分配,从而满足人民生活和生产对水资源的需要。但是与此同时,种种水利工程的出现,引发了严重危及区域经济社会发展和生态环境问题的不断出现,人们在以可持续发展道路为基准的水利工程上又相继提出了生态水利工程的议题。

1.生态水利的定义

生态水利是按照生态学原理,遵循生态平衡的法则和要求,从生态的角度出发进行水利工程建设,建立满足良性循环和可持续利用的水利体系,从而达到可持续发展以及人与自然和谐相处。从宏观上讲,生态水利就是研究:水利与生态系统的关系;水资源的开发与利用对生态环境的影响、水利工程建设与生态系统演变的关系;水资源开发、利用、保护和配置中,在提高水资源的有效利用水平、节约用水的条件下,保证生态系统的自我恢复和良性发展的途径和措施。因此,生态水利是把人和水体作为整个生态系统的要素来考虑,照顾到人和自然对水利的共同需求,通过建立有利于促进生态水利工程规划、设计、施工和维护的运作机制,达到水生态系统改善优化、人与自然和谐、水资源可持续利用、社会可持续发展的目的。要实现人与自然的和谐共处,必须尊重生态法则,将生态用水列入水资源开发、利用和配置方案中,抢救和保护湿地生态系统,逐步恢复湿地生物多样性。

2.生态水利工程的设计

1要与环境工程设计有机结合原则

生态水利工程的设计应当与环境科学与工程的技术和理论体系进行充分的结合,从而达到水质与水量同步配置的科学分配目的。由于水利工程作用的水量会因为季节性的变化发生较大的改变,使生态水利工程的设计与施工过程存在较大的阻力与挑战,尤其是在与水污染防治工程进行有机结合的过程中,该现象更为严重。如牛栏江滇池补水工程,在连续进行了几年补水后,仍然出现了湿地水域中底栖生物的明显减少,少量物种消失,部分迁徙水禽不在此地停留的奇怪现象,究其原因就是由于水质不符合湿地水质的要求。为了减少排水时夹带泥沙或污染物进入湖泊或湿地而导致的危害,通常可以在进入湿地或湖泊的过渡带设计生态处理沟渠或氧化塘。在缺水的地区进行作物种植,可以进行水质净化和水量高效利用为基准的生态水利工程设计。因此,水污染控制工程与生态水利工程相结合的设计方法是生态水利工程的一个重要的发展方向。

2注意景观尺度及整体性原则

在对河流生态修复管理和修复的解决上,要避免小尺度、零星局部和短时期的范围内进行,加强在长期的、保持可持续性的基础和大景观尺度上的作业。因为在大景观尺度上开展的河流生态修复效率要高,相反地,小范围的生态修复不仅效率低,而且成功率也低。

我们谈到的“整体性”,就是指从生态系统的功能和结构出发,掌握生态系统各个要素间的相互作用,然后提出的用来修复河流生态系统综合和整体的一套方法。该方法不仅能够用来修复单一的动物和河岸的植被,还考虑到了对河道水文系统的修复问题。

进行大尺度的景观操作,首先要考虑河流生态修复的时间尺度问题,河流系统是一个动态的、长期演变的过程,每一个河流都有自己的历史,河流生态修复是需要靠时间做工作的,因此要做好长期监测和管理的河流生态修复的准备;其次是要重视水域的随机性、流动性和易变性的特点,它主要表现在水位水量、流量、水温随机和周期变化上,也体现在河流侵蚀与淤积的河势上。最后是要考虑生境边界的动态扩展问题。因为植物的扩散和动物的迁徙的变动,生境边界也随之发生了动态变动。考虑到河流生态系统是一个开放的系统,一条河流不可能孤立的进行生态修复活动,还需要与相邻的流域进行协调的修复,在与周围生态系统进行物质循环和能量传递的时候,开放性就体现了出来。

2.3反馈调整式设计原则

河流修复工程需要时间,因此生态系统的成长过程就是一个漫长的进化过程。从短时间尺度看,寄希望于短期的河流修复,即一种类型生态系统取代另一种生态系统往往是不现实的。所以应当采取长时间尺度,这样既增加和提高了生物群落的多样性、结构复杂性、系统有序性,又稳定了生态系统的内部结构。生态系统与社会系统一样都是运动的,这就产生了时间与空间上的不确定性,这种不确定性使得生态水利工程设计不同于传统工程的设计方法,需要采取反馈调整式的方式进行,该方式是按照“设计―执行―监测―评估―调整”的过程往复循环的。在这个过程中,监测工作是基础,在监测的基础上进行评估,常采用的评估方法通常为参照比较法,一种是与未进行生态修复的与自然条件类似的河流比较,一种是与自身河流系统的初期情况和历史情况的比较。

2.4生态水文学与工程水文学设计相结合原则

以生态水位学与工程水文学作为工程实际的基础,进行水文过程的计算与分析。重点考虑工程水文学与生态水文学的结合,这样才能为生态水利工程的设计提供基础。其原因是,生态水利工程的服务对象往往比较广,涉及到农业、湿地、草原、江河湖泊、畜牧业和林业等生态用水和生活用水,所以只有将生态目标的水资源要求规律摸清楚,才能在科学的基础上解决生态水利工程的设计。

2.5生态系统自设计、自我恢复原则

早在上个世纪60年代,关于生态系统的自我组织及恢复能力的探讨就悄然展开了。所谓自我组织能力,就是以多种不同形式构成的、用来解释物种分布复杂性的能力,同时也可以用来表明食物网络随时间发展而发展的过程。自我组织的原理就是指一些与生态系统有好的物种,通过自然界的选择,找到一种与之相适应的能源和合适的环境,从而支持他们进行物种种群的繁殖和生长。这就好似我们理解上的"物竞天择,适者生存"的生物进化论一样,只是变换的理解的范围和角度。

2.6提高河流形态的空间异质性原则

生物群落的多样性与非生物环境的空间异质性存在着正相关的关系,一般我们了解的“生物群落多样性”指的就是生物群落的功能和结构的多样性。非生物环境的空间异质性与生物多样性具有相互藕合和依存的关系。反映在空间异质性越高,创造的小生境多样性就越多。反之,生物群落的数量也会随着非生物环境的单调而变得下降,从而造成生物群落的比例、密度、性质都发生实质的变化,造成生态系统的退化。河流生态系统生境的特点主要表现在,河流横断面形状的多样性;上中下游的生境异质性;水陆空的联系紧密性;河床材料的透水性等方面。这样丰富的多样化条件,造就了河流形态在水温、水温脉冲变化、水深、流速、流量、河床材料上的生态因子异质性,形成了丰富的河流生物群落多样性。所以提高生物群落多样性的一个重要前提就是提高河流形态的异质性。

3 结束语:

我国的环境保护形势不容乐观,尤其以经济高速发展状态下的河流水域破坏最为严重。如果一味的采用传统的水资源开发利用模式,不仅会加重水资源问题的严重性,更会加重环境的负担。只有采用生态水利工程建设,才能正确合理的利用和开发水资源,保护和尊重自然生态环境,促进社会的健康和谐发展。

参考文献:

【1】刘正茂,赵庆良 浓江流域湿地水文站设计方案研究 《水利发展研究》