高分子材料应用前景范文

时间:2024-01-02 17:48:34

导语:如何才能写好一篇高分子材料应用前景,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高分子材料应用前景

篇1

【关键词】形状记忆;高分子材料;军事应用

1.形状记忆高分子材料简介

形状记忆高分子或形状记忆聚合物(SMP,Shape Memory Polymer)作为一种功能性高分子材料,是高分子材料研究、开发、应用的一个新分支。它是在一定条件下被赋予一定智能高分子材料的形状(起始态),当外部条件发生变化时,它可相应地改变形状,并将其固定(变形态)。如果外部环境发生变化,智能高分子材料能够对环境刺激产生应答,其中环境刺激因素有温度、pH值、离子、电场、溶剂、反以待定的方式和规律再一次发生变化,它便可逆地应物、光或紫外线、应力、识别和磁场等,对这些刺激恢复至起始态。至此,完成记忆起始态固定变形态恢复起始态的循环。

1989年 ,石田正雄认为 ,具有形状记忆性能的高分子可看作是两相结构 ,即由记忆起始形状的固定相和随温度变化能的可逆的固化和软化的可逆相组成。可逆相为物理铰链结构 ,而固定相可分为物理铰链结构和化学铰链结构,以物理铰链结构为固定相的称为热塑SMP,以化学铰链结构为固定相的称为热固性SMP。王诗任等认为 ,形状记忆高分子实际上是进行物理交联或化学交联的高分子,其形状记忆行为实质上是高分子的粘弹性力学行为。他们根据高分子粘弹性理论建立了一套形状记忆的数学模型。总结来说,形状记忆机理可分为:组织结构机理、橡胶弹性理论、粘弹性理论。

2.军事材料特殊性分析

未来战争是高技术条件下的战争。不仅战场环境变得更加恶劣复杂,各种类型的雷达,先进探测器以及精确制导武器的问世,对各类武器和装备构成了严重的威胁。因此,不仅军事装备的质量要求一定可靠,而且,军事装备的再生性和快速制造能力也被提到了新的高度。

军事装备系统的可靠性(The Reliability of Armaments system)是指军事装备系统在规定的时间内,预定的条件下,完成规定效能的能力。要求装备在特定的条件下长期存放和反复使用过程中,不出故障或少出故障,处于正常的使用状态,且能实现其预期效能。因此,军事材料必须拥有极强的性能和超长的工作寿命。军事装备的再生能力,指的是军事装备受到损坏后,能够迅速进行战场抢修的能力。战场再生能力是提高装备战斗力的重要组成部分。形状记忆高分子材料具有许多优异的性能,因此此类材料对于军事方面的贡献就十分明显。在前期制造方面,由于其快速恢复能力,可以在很短的时间内完成对零部件连接、整合,为战争赢得极宝贵先机时间。在对装备恢复方面,我们可以将记忆前的材料制造为较为规则,使用面积较小的部件,单一运输时可以减缩空间,从而提高运输效率,极大地提高了战场的再生能力。

3.形状记忆高分子材料在军事方面应用展望

目前,形状记忆高分子材料在军事方面的成熟应用主要体现在在战机的连接,加固,军事通讯设备,战争医疗设备等方面。

3.1战机接头连接

在军事战斗机上通常装有各种不同直径的管道, 对于一些异径管接头的连接, 形状记忆高分子材料可以大显身手。其大致工艺过程如下: 先将形状记忆高分子材料加工成所要求的管材, 然后对其加热使管材产生径向膨胀, 并快速冷却, 即可制得热收缩套管。应用时, 将此套管套在需要连接的两个管材的接头上,再用加热器将已膨胀的套管加热至其软化点以上(低于一次成形温度), 膨胀管便收缩到初始形状,紧紧包覆在管接头上。

3.2紧固销钉

在战斗机的制造工艺中, 需应用大量的连接件进行连接。采用形状记忆高分子材料制作紧固销钉,将是战斗机制造业中的一项崭新工艺技术。

(1)先将记忆材料成形为销钉的使用形状;(2)再将销钉加热变形为易于装配的形状并冷却定型;(3)将变形销钉插入欲铆合的两块板的孔洞中;(4)将销钉加热即可回复为一次成形时的形状, 即将两块板铆合固定。

3.3军事通讯设备

形状记忆高分子材料在军事通讯设备方面的应用同记忆合金比较相似。后者在航空航天领域内的应用有很多成功的范例。人造卫星上庞大的天线可以用记忆合金制作。发射人造卫星之前,将抛物面天线折叠起来装进卫星体内,火箭升空把人造卫星送到预定轨道后,只需加温,折叠的卫星天线因具有“记忆”功能而自然展开,恢复抛物面形状。而高分子材料通常具有很好的绝缘性能,因此在通讯设施中不需要导电的部件中,用形状记忆高分子材料代替,以获得我们预期的目标,从而提高部队的携带能力。

3.4军事医疗设备

在需要单兵作战的特殊场合,由于单兵的辎重,装备等携带能力的限制,需要在有限的或体积下携带比较充足的医疗设施,从而为军人的生命恢复提供必要的保障。利用低温形状记忆特性的聚合物聚氨酯、聚异戊二烯、聚降冰片烯等可以制备用作矫形外科器械或用作创伤部位的固定材料,比如用来代替传统的石膏绷带。方法有2种:一是将形状记忆聚合物加工成待固定或需矫形部位形状,用热水或热吹风使其软化,施加外力使其变形为易于装配的形状,冷却后装配到待固定或需矫形部位。再加热便可恢复原状起固定作用,同样加热软化后变形,取下也十分方便;二是将形状记忆聚合物加工成板材或片材,用热水或热吹风使其软化,施加外力变形为易于装配形状,在软化状态下装配到待固定或需矫形部位,冷却后起固定作用,拆卸时加热软化取下即可。形状记忆材料与传统的石膏绷带相比具有塑型快、拆卸方便、 透气舒适、干净卫生、热收缩温度低、可回复形变量大的特点,可望在矫形外科领域及骨折外固定领域得到广泛应用。

4.结束语

目前,对形状记忆材料的研究才刚刚开始,尚处于初级阶段。形形状记忆高分子材料虽然具有可恢复形变量大、记忆效应显著、感应温度低、加工成型容易、使用面广、价格便宜等优点,但尚存在着许多不足之处,如形变回复不完全、回复精度低等。因而,在形状记忆高分子材料的分子设计和复合材料研究等方面,还有待于进一步探索。另外,应根据现实需要开发新型的形状记忆高分子或对原有的形状记忆高分子有针对性地进行改性。因此, 在今后的研究工作中, 应充分运用分子设计技术及材料改性技术, 努力提高材料的形状记忆性能及综合性能, 开发新的材料品种, 以满足不同的应用需要。另外, 还应注重新材料的实际应用, 早日形成工业产量,为我国的军事建设及各项国民经济建设服务。

【参考文献】

[1]张福强.形状记忆高分子材料.高分子通报,1993,(1):34-37.

[2]石田正雄.形状记忆树脂[J].配管技术,1989,31(8):110-112.

[3]王诗任,吕智,赵维岩,等.热致形状记忆高分子的研究进展[J].高分子材料科学与工程,2000,16(1):1-4.

篇2

关键词:高分子材料;生物医学领域;人体功能替代或修复

中图分类号:R318 文献标识码:A 文章编号:1671-2064(2017)01-0214-01

上世纪50年代,我国展开了对人工器官的研究,并经过50多年的发展取得了很大成就。聚乙烯、聚丙烯、硅橡胶等都是医用高分子中常用的材料,而常见的医用高分子大约有1000多个品种规格,其制品主要包括医用高分子、医疗器械制品和人工器官三大类。另外,医用高分子材料在医学生有着独特的功效,因而受到学者们的广泛关注和重视,发展前景十分广阔,并迅速成为当前发展较快的新型材料之一。

医用高分子材料用于医学领域中的主要包括:药用高分子材料、人体功能替代或修复高分子材料和高分子医疗器材及制品等。下面我们详细的介绍一下高分子材料在人体功能替代或修复中的作用,并对医用高分子材料在未来的发展趋势与发展状况进行一定的研究、探讨。

1 高分子材料在人体功能替代或修复中的运用

高分子材料运用到人体功能替代或修复中的主要目的是替代、修复人体内受损的组织或器官,从而恢复其原有的功能。其中用到高分子材料的主要包括部分功能修复材料、人工器官材料、组织工程材料等。

1.1 部分功能修复材料

在对人体缺少的一部分功能的器官或组织进行修复,如为了恢复听觉功能,制造的人工耳朵;在矫正视力的过程中,制造的人工角膜、人工晶体等;还有假肢、人工等都需要用到高分子材料。另外,部分功能修复材料一般都有利于改善患者的生活质量,并不会危害到人的生命健康。另外,不同的组织或器官所使用的高分子材料也不同,如隐形眼镜所采用的材料一般包括聚甲基丙烯酸8一羟乙酯一甲基丙烯酸戊酯、聚甲基丙烯酸B一羟乙酯等;人工角膜则包括聚甲基丙烯酸酯类、硅橡胶等;而人工晶状体则包括可用聚甲基丙烯酸酯类等。

1.2 人工器官材料

为了治疗病患,我们需要对人体的一些组织或器官进行替代性治疗,并将人工脏器引入人体系统,从而发挥原有器官的功能,促进人体系统功能的正常运行。植入人体内的永久性人工脏器主要包括人工气管、人工血管、人工食道等。另外,手术过程中还还有一些暂时性的人工脏器,如人工心脏、人工肝脏和人工肾脏等,起到替代使用的作用。通过不断的提高高分子材料制作过程中的血液相容性、抗细菌粘附性和抗凝血性等,确保制造出来的人工心脏瓣膜、人工血管等能够很好的接触血液,减少感染现象的发生。

1.3 组织工程材料

高分子材料在组织工程材料中的应用,有利于改善、维持或恢复研制生物代用品的功能,加强对正常和病理的哺乳类组织的结构-功能关系的了解。通过对生命科学规律的了解和运用,充分发挥组织工程的作用,开发新型智能修复材料,主动激发、诱导人体组织器官再生修复的功能。在设计该材料的过程中,需要有机结合人工材料和活体组织,确保组织细胞表面的特殊位点能够与配合基发生作用,进一步提升组织细胞分裂和生长的速度,从而促进周围组织细胞生长为预想功能,达到修复人体组织和器官的功能的目标。

2 对医用高分子材料未来的发展方向的展望

高分子材料在医学领域内广泛的应用,并取得了很大的成就。但目前的技术还无法满足人们的需求,还无法提高人工脏器替换病变脏器的成功率,所以我们需要对医用高分子材料的发展方向进行一下详细的研究。

首先,高分子材料会广泛应用于药物中。随着人们生活质量的不断提高,人们对药品质量也有了更高的要求,如要求药品稳定、高效、毒副作用小等。高分子材料一般具备无毒、无副作用、水溶性好、不会产生异变等特点。因此,我们需要将高分子材料应用到现代药物中,如制作缓释药物的载体、高分子材料的药物等。另外,高分子药物相比低分药物而言,几乎没有副作用,并且可以缓释药物的浓度,具体治疗人w制定的部位。所以,高分子材料在药物这一行业中具有很大的发展前景,其作用不可替代。其次,高分子材料将会广泛的应用于医疗器械中。高分子材料中的聚酯、硅橡胶等都具有一定的矫形作用,在假肢制造、整形外科等领域中都发挥着很大的作用。最后,未来的医用高分子材料应用范围将进一步扩大,其发展趋势将以聚氨酯、聚硅氧烷、聚烯烃为主,开发满足生物相容性和血液相容性的材料,发展便携带的小型化人工器官装置以及开发医疗器械、人工脏器和控制生育所用的材料等。

3 结语

医用高分子材料的广泛应用,有利于促进医疗水平的进步,不断的完善医用材料,充分发挥其在医学领域中的作用。综上所述,我们可以发现,加快对医用高分子材料的开发和研究是目前医学领域中最重要的任务之一。

参考文献:

[1]陈志祥,张政委,田华,等.生物降解高分子材料在医药领域中的应用[J].化学推进剂与高分子材料,2005, 3(1):31-34.

篇3

关键词:高分子材料;水土保持;应用

一、高分子材料在水土保持中起到的作用

1、有机高分子材料是一种水处理絮凝剂产品的聚合物,可以吸附水中的悬浮颗粒,在颗粒之间起链接架桥作用,使细颗粒形成比较大的絮团,并且加快了沉淀的速度。这一过程称之为絮凝,因其中良好的絮凝效果PAM作为水处理的絮凝剂并且被广泛用于污水处理。

2、在光照下能降解为二氧化碳、水和硝酸铵,对植物和封没有任何危害和污染,可很好的应用于水土保持与农业、林业领域,具有抗旱保苗、增产增收、改良土壤、防风固沙多种功能而受到广泛重视。

二、我国水土保持工作面临的严峻形势

我国是世界上水土流失最为严重的国家之一,据统计,我国水土流失面积356平方公里,占国土总面积的40%以上,严重的水土流失给社会发展和国家生态安全带来严重危害。

1、耕地减少,土地退化严重。我国每五十年因水土流失毁掉耕地4000至6000万亩,土地退化、削弱地力,加剧旱情发展。

2、泥沙淤积,堵塞河道。水土流失不可避免地造成泥沙淤积,堵塞河道和水库,降低了河道行洪和水库调蓄能力以及综合能力的利用,加剧了洪涝灾害,增加了防洪难度,影响航运和交通安全。

三、高分子材料在水土保持方面的应用

我国于80年代引进高分子材料技术和产品的,在90年代中期开始广泛应用于水土保持方面,同时,在农业、林业、水利等领域发挥搞旱保苗、增产增收、改良土壤、防风固沙等多种功能而受到重视。

1、改良土壤。胶质分子上的负电荷吸附悬浮微粒,形成团粒结构,不仅能固定表土,稳定了封结构,保护了耕层,还可以改善封的透气性、输水性、提高了水的入渗性,减少土壤的板结,减少了化肥农药流失,提高了化肥和农药的利用率,从而提高了作物产量。在与土壤发生作用时,高分子材料主要是做为一种土壤板桔的调理剂,以防止土壤侵蚀、结壳,封翻耕也会更容易。可防止土壤侵蚀、结壳、变硬、盐渍倾,土壤翻耕更为容易;有坡土壤灌溉表土流失率可降低95%,封水入渗性提高35%以上;氮磷淋溶损失减少80%。在干旱情况下,可提高种子出苗率及树苗成活率,农田灌溉中使用高分子可磊大降低灌溉驾照水中的泥少含量,减少化肥和农药流失,减轻了对河流水系的污染,将微量的聚丙烯酰胺加入封中,可以大大降低降雨过程中的水土流失,用聚丙烯酰胺制成膨胀截流代是一种使用简便、快捷、节省人力和物力的新型防洪抢险和围捻截流高分子材料。

2、抗旱节水。用高分子材料对农作物进行包衣处理,在干旱情况下可提高种子出苗率;据介绍,国内生产的一种高分子材料可使旱地水分率提高20%至30%。在大旱情况下,经播种试验后,包衣作物种子成活率达到64%,未包衣的农作物种子成活率40%。

3、控制灌溉过程,发挥水土保持作用。农田灌溉中使用高分子材料,可大大降低灌溉回归水中的泥沙含量,减少化肥和农药损失,减轻了化肥农药对河流水系的污染,减少了河道的疏浚工作量。在农田灌溉研究实验中,泥沙含量降低了30%,水变清澈而更容易渗入土壤,水中农药的含量明显减少。

4、保肥。在减少土壤侵蚀量的同时,相对的减少了因土壤流失而引起的土壤养分流失。所以,处理后高分子材料在与土壤、水相遇时,产生的有机质、碱解氮、速改磷和速效钾等含量会得到明显的提高。

5、集雨。中等分子质量的高分子材料可降水入渗、减小地表径流,但高分子质量的材料在增加剂量的情况下因所形成的分子链比较长,因而会堵塞土壤颗粒间孔隙,可减少土壤水份入渗,增加地表径流,具有极好的集雨效果。用量越大,集雨效果越好,从而为干旱、半干旱地区集雨发挥了不可替代的作用。由于施用高分子材料的突出作用,从某种方面来讲,也大大降低了河流水体中生物化学含氧量。

四、高分子材料在应用中遇到的问题

1、虽然高分子材料具有良好的水土保持效应,但实际应用中,影响其实际的因素确较多。即使有良好的水土保持效益,还需考虑其如地形特殊、土壤质地以及使用时机和方法。一些沟谷密谋为2.03至3.38km/km2,土壤有砂土、壤土等多种质地,土壤质量与坡度的差异给其高作用的发挥带来了很大的困难。

2、高分子材料由于易挥发的特性,在昼夜温差较大的地区和降水范围较大的地区,选用高分子材料的时机和方法应斟酌起见。因此,在实际应用高分子材料前,应在试验区进行具体自然状况的多项试验,在水土保持及水土流失治理过程中,仍会出问诸多问题,如由于施用量、施用方法和土壤质量等不同特点,有时会提高土壤水分入渗率,有时则会降低土壤入渗率,在高分子材料应用过程中,需要辩证看待,以寻找到使用高分子材料后各种因素所发生的变化,以提供重要的理论与实践依据为要。

3、在旱作农业区要建立不同降雨量、作物产值和高分子成本条件下的经济效益函数关系,保证其应用在经济发展中的可行性。同时,也要加大新型高分子材料的研究,克服传统高分子应用过程中的一些问题,提高其耐盐碱强度,提高吸水倍数,降低成本。

五、高分子材料合成发展趋势及建议

1、高分子材料的利用,对发展旱地农田水利、水土保持、减少水土流失,改善环境,以及我国经济保持持续发展都具有重大的现实意义和深影响。高分子材料在水土保持中的应用前景十分广阔。由于我国存在水资源紧缺和时空颁布不匀双重问题,不仅北方旱区缺水,南沙很多地区存在季节性缺水。加上我国水肥农药利用率低,保持水土,植树造林是解决荒漠化的唯一出路,而在雨季旱季充分利用高分子材料进行吸水、放水作用的发挥,是解决干旱少雨地区成功水土保持的有效方法之一。

2、近些年来,高分子材料的应用在干旱地区推广应用面积逐年增加,同时也收到显著效果。目前,世界上有机高分子材料的研究正在不断地加强和深入。一方面,对重要的通用有机高分子材料继续进行改进和推广,使它们的性能不断提高,应用范围不断扩大。例如,塑料一般作为绝缘材料被广泛使用,但是近年来,为满足电子工业需求又研制出具有优良导电性能的导电塑料。导电塑料已用于制造电池等,并可望在工业上获得更广泛的应用。另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强,并且取得了一定的进展,如仿生高分子材料、高分子智能材料等。这类高分子材料在宇航、建筑、机器人、仿生和医药领域已显示出潜在的应用前景。总之,有机高分子材料的应用范围正在逐渐扩展,高分子材料必将对人们的生产和生活产生越来越大的影响

篇4

关键词:高分子材料 生物质 加工改性

一、生物质高分子材料PHA的概述

近年来,我国对生物可降解高分子材料进行了深入地研究和开发,尤其是聚羟基脂肪酸酯PHA颇受关注。聚羟基脂肪酸酯是细菌胞内合成的一种高分子化合物,在营养不平衡的环境下,细菌把多余的物质转换为探源和能源的储备物,同时将水溶性小分子转换为水不溶性的大分子PHA。PHA因具有某些合成塑料如聚丙烯、聚乙烯的物化特性,又具有独特的生物可降解行、光学活性、生物兼容性、气体相隔性以及压电性等被认为是可替代传统的由石油合成的、不可降解的塑料,PHA被称为新型的生物可降解塑料。

PHA结构多样,且因其自身结构变化拥有较多的新材料性能,所以应用前途比较广泛。在食品包装材料、卫生材料、纸涂层材料、光学材料、电子工程材料以及一些一次性用品,如高档包装材料、新型医学材料骨钉、骨板等方面广泛应用。

PHA由具有光学活性的R构型降级脂肪酸单体组成,是一种线性可降解聚酯,其单体组成对自身的物理性质起决定性作用,常见的PHA材料主要有以下几种:聚β-羟基丁酸酯(PHB)、聚-3-羟基丁酸-3-羟基戊酸之(PHBV)、聚-3-羟基丁酸-3-羟基己酸酯(PHBHHX)、聚-3-羟基丁酸-4-羟基丁酸酯(P3/4HB)等。

二、聚合物的加工改性

经过高分子材料科学成熟的发展,通过共混、共聚和表面改性等手段对高分子材料进行化学改性或物理改性以此达到提高聚合物某些性能引起了人们广泛的重视。将不同的聚合物混合,或者将种类相同但相对分子质量不同的聚合物进行混合,或者把聚合物和其他物料相互混合形成新的共混聚合物,通过以上的手段都可以实现聚合物的共混改性,聚合物共混改性后不单单是改变了聚合物的性能,更是开发了新型聚合物材料的崭新功能,因此,聚合物的共混改性已经发展为当今世界高分子材料工程科学中最为活跃的领域之一。PHB作为PHA中最具代表性的生物塑料,在生活的各个领域都有着广泛的应用前景,下面以PHB为例,探究一下生物质材料的加工改性。

三、PHB的加工改性研究

1.制备聚合物

1.1制备单端枪击聚羟基丁酸酯(PHB-OH)

用甲醇打断大的PHB分子链,对PHB片段封端,从而可以制的只有一端含羟基的PHB片段(PHB-OH)。制备方法如下:氯仿作为溶剂,硫酸作为催化剂,将15gPHB溶于150ml的氯仿中,75°C回流30min后,取2.5nl浓硫酸溶于50ml甲醇中,冰浴冷却之后逐滴地滴加到上述的回流流体中,根据自己需要可以控制回流时间,至设定时间后冷却至室温,然后大量蒸馏水洗涤、分液、静置分层后弃去水层,有机层洗涤两次后,用无水硫酸镁干燥过夜,过滤,滤液使用无水甲醇沉淀,减压过滤,将产物放在40°C的真空烘箱里面干燥48小时以上,即成。

1.2制备不饱和端基低聚物

取1.5g干燥的PHB-OH放在事先干燥好的四口瓶中,加入50ml除水的二氯甲烷和0.2ml的三乙胺,30°C油浴中磁子搅拌,完全溶解后,低价溶有0.3ml的丙烯酰氯的二氯甲烷30ml,继续反应3小时,过滤沉淀,滤液使用适量饱和的碳酸氢钠洗涤两次,使用蒸馏水洗涤三次,然后用无水硫酸镁干燥过夜,过滤之后的滤液使用甲醇沉淀,减压过滤,最后产物常温真空干燥,即成。

2.运用傅里叶变换红外光谱仪对聚合物材料进行定性表征

对于已经提纯过的待测样品,将其配置成10mg/ml的氯仿溶液,然后滴3滴在KBr镜片上面,在红外灯的照射下干燥形成薄膜。之后用Nicolet IR200幸好傅里叶变化红外光谱仪对其进行32次的扫描,(该仪器分辨力为1cm-1)。观察得到的红外图谱,可以确定待测物中的基因。

3.材料热学性能测试

聚合材料的热学性能测试,取少量样品,通过热失重分析仪或者示差扫描量热仪对样品温度曲线进行分析。

4.材料的力学性能测试

取少量待测样品,将其裁剪成哑铃型样条,使用CMT4000型号微机控制电子万能试验机,移动千分尺,岑亮样条的宽度、厚度、起始标距,待位移回零之后,在室温下仪5mm/min进行拉伸,用计算机记录材料的应力-应变曲线,通过实验,得到材料弹性模量、拉伸强度以及断裂伸长率等参数。

5. PHB物理改性研究

使用增塑剂DOS,形成PHB/DOS共混体系。经实验验证,共混体系随着增塑剂DOS的含量增加,材料的拉伸强度和杨氏模量降低,断裂的伸长率不明显,当共混体系中DOS含量达到35%时,共混体系的机械性最好,但对于共混体系来说,DOS的增塑效果并不明显,因此,DOS常作为辅助增塑剂。

使用乙酰柠檬酸三丁酯(ATBC)增塑PHB体系,和DOS对比,ATBC增塑效果较明显,因为ATBC自身的机型和分子量相对比较小,能很好的茶道PHB的链段之间,增加PHB链间的距离,减小高分子链间产生的相对滑移摩擦力,从而达到较好的增速效果。

四、结语

PHB作为生物质高分子材料PHA的一类,有其显著的缺点,PHB比较脆,但通过对PHB的加工改性,可以弥补其缺点,更好地发挥它的优势。本文通过制备共混材料、测试其热学性和力学性,选取增塑剂材料来改善PHB的热学性能,以及使用物理方法加工改性材料,上述一系列的加工改性方法表明了,我们可以通过物理的、化学的加工改性方法提高PHA类材料的综合性能,赋予PHA材料新的使用性能,使其拥有更美好的发展前景。

参考文献

篇5

关键词:分子材料;医疗器械制造;应用

0引言

分子材料对疾病的治疗和健康保健领域的发展起着重要的推动作用。本文主要从生物惰性高分子材料和可降解性高分子材料中阐述分子材料在医疗器械制造中的应用。

1惰性分子材料

惰性分子材料是指能长期存在于体内的材料,主要指硅橡胶、聚氨酯、PVC、聚酯等。下面我们就以聚氨酯和硅橡胶材料在医疗器械制造中的应用进行简单说明。

1.1聚氨酯弹性体

聚氨酯弹性体具有一定的拉伸度和硬度,能够和生物相融合,和血液的融合性也较好。这种弹性体在医疗制造中已经得到了广泛的应用,并且因其优越的性能,应用前景很广阔。聚氨酯弹性体在医疗中主要应用于植入体内的制品和导管类的制品、膜类制品和其他类制品等。植入类制品主要有人工心脏、输精管栓塞、人工心脏瓣膜、人造血管、人造颅骨等。导管类制品主要是导入体内的一些物质,主要包括J型和微型导管、血液透析中的插管、胃肠、肝胆等的养护作用的导管。膜类制品顾名思义就是指一些医用的手套、防护服、血浆袋等膜质的用品。随着现代医学的进步,高分子材料也在不断被研制成新的产品,聚氨酯弹性体在医疗器械中的应用将会越来越广泛。

1.2医用硅橡胶

硅橡胶是在酸或者碱的腐蚀作用下,二甲机硅氧烷单体和其他有机硅单体结合形成的一种高聚合物质。橡胶硅的生物特性很显著,具体特征表现为:无毒、抗老化、生理惰性等,根据其特性,当植入人体后,硅橡胶对人体器官和组织不会产生副作用,其周围的组织也不会出现感染或者其他不良反应,在理论上对人体不会产生危害。硅橡胶的使用寿命随着温度条件的变化而发生改变,一般在20℃下能够长期工作,120℃左右的温度下可以使用10年,150℃温度下使用5年,到260℃的高温条件下,仅能使用三个月。硅橡胶作为医学界的重要医疗材料,在理论和临床上都取得了重大的成就,获得了医学界的一致肯定,其制成品已经达到上百种之多,在医学各个领域应用广泛。例如导管制品、消化系统、泌尿系统制品、心脑和颅脑外科制品等等。其中导管制品的用途最广,发展速度更快,像我们常见的体外各类泵管、连接各种器械的导管,用于输液的输液管等,还包括各类体内的插管、导管和引流管等,都有硅橡胶制品。消化系统使用的制品大多数是一次性产品,例如胃管、十二指肠导管、胃造瘘管、洗胃和灌肠的导管等等。颅脑外科制品主要包括各种脑器官的人工制品,人工颅骨、脑膜导管等,脑积水的引流管、脑室引流管等等。心外科制品主要包括体外循环机泵管,人工肺硅胶膜和胸腔隔离膜、人工心脏尖瓣等。耳鼻喉科使用的制品有各种人工鼻梁、耳朵、上下颌骨、鼻腔止血气囊、治疗中耳炎导管、鼻孔治疗架等等。泌尿和生殖系统的制品使用硅橡胶材料非常多,例如皮埋装置避孕设备、子宫预热治疗器材、前列腺治疗仪、假体、膀胱造瘘管、导尿管等。腹外科制品只要包括各种引流设备,引流管、腹膜透析管等各种类型的导管。另外,硅橡胶材料在皮肤科中用于皮肤的扩张器、人工假体、人工关节等医疗设备中也得到了应用。在医疗美容事业的发展下,人工假体的用量也呈现出逐年上升的趋势。

2可降解高分子材料

二十世纪六十年代晚期,人工合成能够进行分解的高分子材料开始应用在临床中。随着生物医学技术的进步和药物工程的发展以及基因技术在医学上的广泛应用,促进了医学再生技术和生物纳米技术的发展和完善,这些新型医疗技术和科研成果促进了可降解高分子材料的发展。以下就以聚乙交酯和聚乳酸作为典型代表,分析其在医疗器械中的应用。

2.1聚乙交酯

聚乙交酯是利用水解达到降解的目的。通常一到两个月,其力学特性会有一定程度的下降。半年到一年,其质量会受到一定程度的损害。聚乙交酯在体内会被分解成甘氨酸,随着尿液被排出,同时转变成二氧化碳和水。在医学上比较实用的是缝合线的使用,因为其能够被降解,所以患者也不会再受到拆线的痛苦。无纺布的支架材料也在临床上开始使用。

2.2聚乳酸

这是一种半结晶体,聚合物呈现无规则性。这种材料拉伸的强度和弹性较大,广泛应用于医学上的承重材料中,例如固定骨头的设备方面。

3结语

本文主要分析了分子材料在医疗器械制造中的应用,通过分析可知,分子材料的应用很广泛,具有众多的优势,我们要正确发挥其优势,认识其不足,更好促进我国医疗器械的进步。

参考文献:

[1]孔庆香.高分子医疗器械的发展对人类生命质量的提高[J].中国高新技术企业,2013(11)

[2]刘亚军,黄华.医用高分子材料在医疗领域的应用及前景[J].医疗卫生装备,2012(6).

[3]柏保东.医用PVC非邻苯化在国内市场的推进[J].中小企业管理与科技(上旬刊),2015(6).

篇6

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.

[2]张淑琴,抗静电剂,化工百科全书,第1版,化学工业出版社,1995(4):667.

[3]陈湘宁、王天文,用于最佳静电防护的本征导电聚合物的最新进展[J].化工新型材料,2002,30(11):4750.

[论文关键词]高分子材料抗静电研究

篇7

1 红外光谱法(IR)的应用—— 对高分子絮凝剂进行官能团认证

红外光谱法通常是作为分析各种高分子聚合物材料的最佳选择。到目前为止,红外光谱仪可分为三代,第一代是用棱镜作为分光元件,缺点是分辨率较低,且对仪器的操作环境要求较高;第二代是用衍射光栅作为分光元件,不仅分辨率得到了提高,而且价格较便宜、对操作环境的要求也不高;第三代是傅立叶变换红外光谱仪,具有光通量高、噪音低、测量速度快、分辨率高、波数准确度高、光谱范围宽等优点。

上述三代红外光谱技术一般都是指透射红外光谱技术,由于透射红外光谱技术存在如下缺点:

(1)利用固体压片或液膜法采集样品,制作样品操作繁琐,且光程难以控制一致,导致测量结果出现误差。

(2)由于大多数物质都有自己独特的红外吸收光谱,当样品中存在多个组分时,导致谱峰重叠。

因此,采用透射红外光谱技术对某些样品进行测试仍有较大的局限性。随着光谱分析技术的迅速发展,漫反射、衰减全反射等硬件以及差谱等软件技术的出现,弥补了透射红外光谱技术的缺陷,大大扩展了红外光谱技术的应用领域。尤其是傅立叶变换红外光谱(FT-IR)技术更成为对高分子聚合物进行定性、定量分析的有力工具。

对于某一未知高分子材料,首先根据样品的外观特性、来源、用途以及物理性质进行初步分析,然后根据判定结果选择适当的方法进行分离。对于一些组成较简单、主要组分含量又特别高的高分子材料,也可不分离直接测定。

1.1 样品制备

分析某一高分子材料,首先必须预处理样品,目的是尽可能分离各组分。通常采用的方法是溶剂萃取法,该方法是根据在不同溶剂中的不同溶解性能从而将不同的高分子材料分离出来。不同的高分子絮凝剂所用的添加剂各不相同,选择适当的萃取剂是非常必要的。选择依据是尽量选择那些对聚合物溶解度小而对添加剂溶解度大的溶剂。

1.2 谱图分析

将样品分离以后,即可作红外光谱分析。一般从红外光谱图中仅能得到分子的结构及相应的官能团信息,并不能知道该物质具体是什么。因此,在解析红外谱图时,应更多的了解样品的物理化学性质、不饱和度、元素分析等信息。

得到红外谱图之后,一般从该谱图中的强吸收谱带开始分析,通过分析这些强吸收谱带,即可得到对应于化合物的主要官能团信息,从而得到未知化合物的主要分子结构;然后依次分析其它较弱的吸收谱带。

1.3 比对验证

通过以上初步分析,再将谱图与“萨特勒”(Sadlter)标准红外光谱集进行比对。通过对比验证可以得到化合物的名称、分子式、结构式等相关信息。在比对验证过程中,首先可根据样品的分子式及可能的结构式并结合物理常数查阅。若样品谱图与标准谱图完全符合,即可确定此样品。如果是新化合物,查不到其标准图谱,则可结合其它分析方法如元素分析、核磁共振、质谱等来确定其分子结构。

2 核磁共振法(NMR)的应用

对高分子聚合物作各种表征时主要利用核磁共振法:均聚物立规性分析;异构体的鉴别;共混及三元共聚物的定性定量分析;官能团鉴别;端基表征;序列分布及等规度的分析等。采用核磁共振技术分析研究高分子聚合物的方法是:选用合适的溶剂、提高温度或采用高场仪器的液体高分辨率技术;或是利用固体高分辨核磁共振光谱仪,采用魔角旋转等技术。

3 扫描电镜(SEM)的应用

扫描电镜是利用高能电子束对样品表面作光栅扫描,从而得到反映样品表面性质的图像。样品的质量决定了成像的质量,良好的样品应是导电、干燥的固体样品。若导电性不好可以在表面喷镀一层均匀、连续的重金属膜。

4 透射电镜(TEM)的应用

透射电镜是利用能量的损失及其方向的改变来测量样品的厚度。在操作时,将液体样品滴到有支持膜的铜网上,再用滤纸吸去多余的液体,晾干后放入电镜内即可。

该文介绍了以上几种大型仪器在高分子絮凝剂的结构分析表征以及絮凝性能方面的应用。可以看出,现代仪器分析技术在研究高分子絮凝剂的性能,并使之应用到废水处理当中具有很好的发展前景,值得深入探讨。

参考文献

薛奇编.高分子结构研究中的光谱方法.北京:高等教育出版社,1995.

张雪芹,潘远江,李杨.核磁共振方法在高分子聚合物方面的应用.现代科学仪器,2001(6):22,29-33.

赵华章,高宝玉,岳钦艳,等.二甲基二烯丙基氯化铵的合成及分析.油田化学,2000,17(2):184-187.

篇8

[关键词]聚乳酸、聚丁二酸丁二醇酯、聚己二酸/对苯二甲酸丁二酯、淀粉基塑料

中图分类号:TQ320.7 文献标识码:A 文章编号:1009-914X(2016)16-0274-01

传统塑料主要来自石化资源,因其不易降解和回收利用,给环境造成极大污染,并造成对石化资源的严重浪费,寻找非石油基环境友好的材料迫在眉睫,生物可降解塑料是解决这个问题的有效途径。目前研究最广泛的可降解塑料有聚乳酸、聚丁二酸丁二醇酯、聚己二酸/对苯二甲酸丁二酯、淀粉基可降解塑料等。

一、聚乳酸(PLA)生物可降解材料

聚乳酸(PLA)是以乳酸为原料制备的高分子材料,具有无毒、无刺激性、强度高、易加工成型和生物相容性好等特点,制品在使用后可完全降解。按单体不同,PLA分为PLLA、PDLA和PDLLA。当前国内外PLA生产企业主要以生产不同规格的PLLA为主。PLLA单独使用具有熔点低、结晶慢、耐热性差等缺点,通过与PDLA共混,可形成立构复合体,改善成核、结晶速度,提高材料耐热性。PLA可用于一次性饭盒以及其他各种食品、饮料外包装材料;可用于纤维和非织造物等,包括服装、建筑、农业、林业、造纸、医用等领域。

聚乳酸是以乳酸单体为原料经过聚合等工艺制备得到的高分子聚合物,制备方法分为一步法和两步法,一步法难以制备得到高分子量的聚合物,基本无应用价值,目前国内外厂家主要通过两步法工艺生产聚乳酸。两步法工艺需经历中间体丙交酯阶段。

聚乳酸主要生产企业:

二、聚丁二酸丁二醇酯 (PBS)生物降解塑料

PBS是以丁二酸与丁二醇为原料制备得到的高分子材料,具有良好的生物相容性和生物可吸收性,易被自然界的多种微生物或动植物体内的酶分解代谢,是典型的可完全生物降解材料。但PBS的加工温度较低、黏度低、熔体强度差,难以采用吹塑和流延的方式进行加工。另外PBS制品往往呈一定脆性,应用受限。PbS主要用于包装、餐具、容器、一次性医疗用品、农业、生物医用高分子材料等领域。

PBS的聚合前体主要原料为丁二酸;丁二酸的生产主要是通过石化法合成, 目前丁二酸的生物制造技术是国际竞争热点, PBS(聚丁二酸丁二醇酯)是以丁二酸与丁二醇为原料经过聚合制备得到的高分子聚合物。

PBS主要生产企业:

三、聚己二酸/对苯二甲酸丁二酯(PBAT)生物可降解材料

PBAT是对苯二甲酸丁二酯和己二酸丁二酯的共聚酯。作为一种新型的生物可降解共聚酯,PBAT兼具了芳香族聚酯和脂肪族聚酯的优点,既具有很好的热性能、机械性能,又具有生物可降解性和加工性,可以用它与脂肪族聚酯 PLA 等共混,来改善脂肪族聚酯的机械和力学性能。PBAT的加工性能与LDPE非常相似,可用LDPE的加工设备吹膜。PBAT主要用作农用地膜、垃圾袋、保鲜膜、堆肥袋、淋膜和餐盒、餐盘、杯子等。

PBAT主要生产企业:

四、淀粉基可降解塑料

淀粉基生物降解塑料是淀粉经过改性、接枝反应后与其他聚合物共混加工而成的一种塑料产品,具有生产成本低、投资少、使用方便、可生物降解的特点。淀粉基热塑复合材料不仅具备一般高分子材料所共有的基本特性,而且具有完全可降解性,可替代当前广泛使用的塑料材料。

淀粉基生物降解塑料已有3O年的研发历史,具有研发历史久、技术成熟、产业化规模大、市场占有率高、价格较低的特点。淀粉基生物降解材料主要用作包装材料、防震材料、垃圾袋、地膜、保鲜膜、食品容器、一次性餐具、玩具等。

淀粉基可降解塑料主要生产企业:

五、总结

目前各种生物可降解材料前景较好,但市场开拓、产品成熟度、产品性能开拓、产品应用等方面,需要时间开拓;当前石油价格低、石油基塑料产品价格优势明显,生物可降解材料同石油基材料竞争,目前还不具备条件;生物可降解材料的发展,还需要政府政策、税收优惠、市场等方面的支持;随着国内外对环保的要求越来越高,可降解材料的相关政策将会越来越好;同时随着可降解材料生产技术的提升,可降解材料的成本将越来越低。

参考文献

篇9

关键词:磁性微球 水处理 检测

磁性微球是指通过适当的方法使有机高分子化学与无机磁性物质结合起来形成的具有一定磁性及特殊结构的复合材料。制备磁性高分子微球通常应用的磁性物质有:纯铁粉、羰基铁、磁铁矿、正铁酸盐、铁钴合金等,尤以Fe3O4磁流体居多。与磁性材料结合的高分子材料中天然高分子材料有壳聚糖、明胶、纤维素、淀粉等,合成高分子材料有聚丙烯酰胺、聚乙烯醇、聚丙烯酸、聚苯乙烯等。其中天然高分子材料因具有价廉易得、生物相容性好、可被生物降解等优点,得到了广泛的研究和应用。

一、磁性微球在水处理中的应用

1.天然生物高分子功能化的磁性微球在水处理中的应用

(1)磁性微球固定化酶在水处理中的应用

固定化微生物技术主要是固定化酶或细胞,其技术目前在应用上还存在一些问题,如载体的性能、固定酶/细胞操作、酶活力收率不理想、寿命不长等。针对这些问题,磁性载体固定化酶放入磁场稳定的流动床反应器中,可以减少反应体系中的操作,适合大规模连续化生产,利用外部磁场可以控制磁性材料固定酶的运动方式和方向,替代传统的机械搅拌,提高固定化酶的催化效率。在炼油、油化工、木材加工和煤气与炼焦等工业生产过程中常排放出含酚污水,含酚污水具有污染范围广,危害程度大等特点,对其进行有效的治理是非常必要的。

(2)壳聚糖磁性微球在水处理中的应用

壳聚糖是自然界存在的唯一碱性多糖,它的胺基极易形成四级胺正离子,有弱碱性阴离子交换作用,由于游离氨基的存在,壳聚糖类在酸性溶液中具有阳离子型聚电介质的性质,可作为凝聚剂,但在酸性溶液中会溶解,稳定性差。因此,将壳聚糖制成如磁性微球,对提高壳聚糖的应用价值是十分有意义的,其在污水处理中主要用作絮凝剂和重金属吸附剂。

(3)处理含酚废水

采用反相悬浮交联法,以草酸铁为磁核制备了壳聚糖磁性微球并用来处理含酚污水。可得出用ZnFe2O4/壳聚糖核壳磁性微球处理苯酚废水的工艺条件为:pH为7左右,搅拌速率120r/min,吸附时间大于l h,静置时间为10min,对苯酚去除率可达到64%左右。明显优于其他药剂的净水效果。

(4)染料污水处理

一般染料污水的处理方法是采用物理化学方法-絮凝沉淀及活性吸附与生化处理相结合的方法进行的。其中活性吸附不仅能有效地去除染料物质,还能进一步提高污水的可生化性,达到综合治理的目的。常用的吸附剂如:活性炭和活性硅藻土等,虽然具有良好的吸附性能,但再生困难,使用成本高,不易普及。壳聚糖分子链上具有大量的活性基团,对染料物质具有良好的吸附性能,特别是赋予壳聚糖颗粒磁性后,使得其还具有良好的分离性能,这无疑为其回收再生提供了便利条件。

2.合成高分子功能化磁性微球在水处理中的应用

在流化床废水处理技术中,一般认为载体应具有良好的生物亲和性、优良的传质特性、化学稳定性好、载体表面粗糙、比表面积大、孔径分布合理、价廉并且密度较低,易于流态化等。而磁性高分子微球因其制备方法多样,具有生物亲和性,可以吸附大量的微生物。因此,可根据需要制备出多孔结构、粒径合适且分布均匀的磁性微球作为生物流化床的载体。在磁流体存在的情况下,采用改进了的乳液聚合法及分散聚合法制备出粒径分布均匀、磁响应性强的磁性多孔聚苯乙烯微球,经测定,合成的磁性多孔聚苯乙烯微球的骨架密度及表观密度比活性炭轻,因而更易于流化,可在处理废水中悬浮,能够保证载体与处理水的充分接触,有利于微生物迅速发挥处理作用;虽孔度略小于活性炭,但该微球的孔容明显较活性炭大,而且具有很大的比表面积,更有利于微生物的吸附;具有较小的膨胀率,说明该载体用于流动水处理时能够保持足够的稳定性;磁性多孔聚苯乙烯微球具有磁响应性,当其置于磁性流化床反应器中,可根据外加磁场强度的大小及间歇性变化进行定向的运动。

3.废水中微量有机物的检测

利用磁性微球分离效率很高的特点,将微球应用于废水定组分的分离、检测,可以有效地减少工作量,缩短工作时间。检测方法可以用电化学检测法、发光检测法或电化学石英晶体微天平等方法。用含酰肼基团的磁性微球吸收富集水中的微量甲醛,在弱酸性环境中,磁性微球上的酰肼基团和甲醛反应生成具有电活性的物质腙。在测定时,磁性微球聚集在磁性电极的表面,电活性物质在-1.04V被还原,利用还原峰电流值可以测量甲醛的含量。用这种方法测定环境水样中甲醛的含量,其检测下限为0.2 mg/L,检测灵敏度要比常规的光度法、色谱法、电化学法等检测方法高。其它具有能够和磁球偶联的活性基团且有电活性的物质,如含有醛基、羰基、氨基等的有机物都能用这种方法检测。

二、结语

综上所述,磁性微球作为一种新的功能材料在水处理方面有着广泛的应用前景,特别是随着电化学湿法氧化处理废水技术与磁性微球材料的结合,使得关于磁性微球在水处理方面的研究必将受到人们极大的关注。

参考文献:

篇10

金属材料工程

本专业培养具备金属材料科学与工程等方面的知识,能在冶金、材料结构研究与分析、金属材料及复合材料制备、金属材料成型等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。

主要课程:金属学、材料工程基础、材料热力学、材料力学性能、金属工艺学、金属热处理、材料固态相变、材料分析技术、金相技术、金属材料学、金属学实验等。

就业方向:从事金属材料及其他在机械、能源、汽车、冶金和航空航天等领域中的应用研发工作,或者材料的生产及经营、技术管理和材料的检测、失效分析等技术工作。

专业点评:未来几年,我国将在国产大飞机、航空母舰、航空发动机等领域投入巨资,本专业人才将迎来更大的发展机遇。相关企业主要分布在东北、陕西、河北等地。由于此专业工科性质很强,男生较好就业(女生可以选择材料研究方向)。

推荐院校:哈尔滨工业大学、燕山大学、西安工业大学、辽宁科技大学、南昌航空大学、河南科技大学、江西理工大学应用科学学院。

无机非金属材料工程

本专业与金属材料工程研究范围有所交叉,但重点培养具备无机非金属材料及其复合材料科学与工程方面的知识,并且使学生掌握各类土木工程材料在建筑工程中的应用技术、测试方法和开发能力。

主要课程:材料力学、工程制图与CAD、无机化学、有机化学、粉体工程、材料制备原理、热工过程与设备、无机材料工艺学、材料工艺性能实验、建筑施工技术与组织、工程测量等。

就业方向:在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域,从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作。

专业点评:本专业分混凝土、陶瓷、新材料等多个研究方向。混凝土的研究已经很成熟,人才需求大,本科学历就足以找到好工作;陶瓷研究近几年才兴起,生物陶瓷、特种陶瓷等研究前景广阔,就业或考研皆宜;高性能、多功能无机非金属新材料在发展现代武器装备中起到十分重要的作用,这方面的高水平人才在我国尤为紧缺。

推荐院校:华南理工大学、武汉理工大学、陕西科技大学、河北联合大学、洛阳理工学院、景德镇陶瓷学院(国家品牌特色专业)、巢湖学院。

高分子材料与工程

与金属材料工程、无机非金属材料工程专业研究对象有所区别,高分子材料与工程专业的研究对象是高分子材料。作为发展最为迅速的三大材料之一,本专业面向传统和新兴的诸如塑料、橡胶、纤维、涂料、石油化工、生物医学、新能源、海洋、国防等各类行业,培养具有理工交叉特点的人才。

主要课程:高分子化学、高分子物理、高分子工程、高等有机化学、物质结构、材料科学基础、聚合物成型加工与应用、功能高分子材料、特种复合材料等。

就业方向:主要在日化、石化、汽车、家电、航空航天等领域的相关企业、科研部门,从事设计、新产品开发、生产管理、市场营销工作。