高分子材料的光学性能范文

时间:2024-01-02 17:48:14

导语:如何才能写好一篇高分子材料的光学性能,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

高分子材料的光学性能

篇1

较详细地评述了高分子材料的研究方向和应用发展方向.

关键词:高分子材料 应用 现状 发展

高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。

高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。

高分子材料的结构决定其性能,对结构的控制和改性,可获得不同特性的高分子材料。高分子材料独特的结构和易改性、易加工特点,使其具有其他材料不可比拟、不可取代的优异性能,从而广泛用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等

目前,高分子材料的应用现状主要有以下几个方面:

1.传统产品

如纤维、橡胶、塑料等等

2.高分子分离膜

高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。

3.高分子磁性材料

高分子磁性材料,是人类在不断开拓磁与高分子聚合物(合成树脂、橡胶)的新应用领域的同时,而赋予磁与高分子的传统应用以新的涵义和内容的材料之一。早期磁性材料源于天然磁石,以后才利用磁铁矿(铁氧体)烧结或铸造成磁性体,现在工业常用的磁性材料有三种,即铁氧体磁铁、稀土类磁铁和铝镍钴合金磁铁等。它们的缺点是既硬且脆,加工性差。为了克服这些缺陷,将磁粉混炼于塑料或橡胶中制成的高分子磁性材料便应运而生了。这样制成的复合型高分子磁性材料,因具有比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等特点,而越来越受到人们的关高分子材料。

4.光功能高分子材料

所谓光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,主要包括光导材料、光记录材料、光加工材料、光学用塑料(如塑料透镜、接触眼镜等)、光转换系统材料、光显示用材料、光导电用材料、光合作用材料等。光功能高分子材料在整个社会材料对光的透射,可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种透镜、棱镜等;利用高分子材料曲线传播特性,又可以开发出非线性光学元件,此外,利用高分子材料的光化学反应,可以开发出在电子工业和印刷工业上得到广泛使用的感光树脂、光固化涂料及粘合剂;利用高分子材料的能量转换特性,可制成光导电材料和光致变色材料;利用某些高分子材料的折光率随机械应力而变化的特性,可开发出光弹材料,用于研究力结构材料内部的应力分布等。

5.高分子复合材料

高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。高分子复合材料最大优点是博各种材料之长,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质高分子结构复合材料包括两个组分:增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物;基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。

目前,我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上,重点发展以下方向:

1.工程塑料

全世界通用热塑性树脂约占97%,工程塑料的生产规模远不如通用塑料,但因市场的需求,近年来其发展的速度则远远高于通用塑料,年均增长率达7%~8%。近年来工程塑料的发展方向是研究开发工程塑料高分子合金、发展超韧尼龙、超韧聚甲醛、耐应力开裂聚碳、聚苯醚和聚矾等高性能合金研究开发特种工程塑料,如聚酞亚胺。

2.复合材料

复合材料合成一种新材料使之满足各种高要求的综合指标。复合材料的发展可以分为4个方面。一是以玻璃纤维增强为手段,对大品种塑料进行改性研究开发新的复合工艺;二是采用高性能增强剂如碳纤维等来增强耐高温等高性能树脂;三是开发新型热塑性树脂基体如热塑性聚酞亚胺;四是研究开发功能复合材料,如压电材料等。

3. 液晶高分子材料

液晶聚合物是介于固体结晶和液体之间的中间状态的聚合物 ,其分子排列的有序性虽不如固体晶体那样有序,但也不是液体那样的无序 ,而是具有一定的 一维或二维 有序性 ,当加工此种聚合物 ,如纺丝或注射成型时,其分子发生取向 这种分子取向一旦冷却即被固定下来,从而具有不寻常的物理和机械性能。

篇2

关键词:高分子材料;发展;应用

随着高分子材料应用范围的不断拓展,作为一名高中学生,还是应该对高分子材料的发展现状以及应用趋势有一定的了解,这样才能够对未来的生活与工作起到一定的铺垫作用。

一、高分子材料含义与发展现状

(一)高分子材料

高分子材料指的是多个重复单元共价连接,分子量很大一类的分子从而组成了相关的聚合物,并且还具有一定的粘弹性。现阶段,高分子材料正逐渐朝着高功能化、复合化、高性能化等方向不断发展。因此,我国高分子材料需要在通用性进一步开发的基础上,偏向于高分子材料品种、技术水平以及生产的重点发展,这样才能够促进市场的发展需求[1]。

(二)发展现状

为了满足汽车工业、家用电器、电子信息等多个领域的需求,高分子材料重点发展主要是:第一,高性能化,如耐热性、高机械性、耐腐蚀性以及耐久性等方面。第二,高功能化,如生物学、光学、力学等多种功能。第三,复合化。如复合材料,通常是基于高性能结构的材料作为基本的符合材料组成。第四,智能化,如材料本身拥有一定的生物功能预知性,如识别能力、修复能力、反应能力等。

二、高分子材料应用趋势

(一)具有记忆的高分子材料

1.热响应型

室温以上的变形,室温形态固定,同时可以进行长期的存放,当温度再一次提升到特定,温度,制件也可以迅速恢复到初始状态。针对这一能力,主要是在电子通讯、科学实验、汽车保险杠、油田封井器等领域之中使用,具体如医用器械、热缩连接紧固件、光信息、座垫、泡沫塑料等。热响应型形状的记忆高分子形变温度很容易控制,并且制作相对渐变,目前是记忆高分子研究之中开发最为活跃的一个领域。尤其是形状记忆纤维的开发利用,有利于纺织业发展的推动。

2.电/磁响应型

属于热响应形状记忆功能高分子材料同具有一定导电性能的金属粉末、导电炭黑以及导电高分子等复合材料。当电流产生热量之后,就会提升材料的温度,导致形状恢复,不但拥有导电性能,同时也具有一定的形状记忆功能。一般来说,在电子集束管、电磁屏蔽材料等电子通讯以及仪器仪表等领域之中得到广泛的应用[2]。

3.光响应型

指的是将某一部分光感应变色的基团引入到高分子的主链以及侧链之中,一旦有紫外光照射,PCG就会出现光异构化反应,这样就会改变分子链状态,导致其宏观形态也出现相应的变化;当停止光照之后,PCG光构化反应就可以逆行,分子链会恢复到原本的状态。主要用于光记录材料、药物缓释剂、印刷材料等。

4.化学感应型

材料的周边介质性质的变化就可以将材料的变形以及形状恢复激发出来。其条件主要是PH值扁你话、相变反应、平衡离子置换等。这一类型的物质,还存在部分的皂化聚乙烯醇、聚丙烯酰胺等。这一材料主要是在“化学发动机”、蛋白质或者是酶的分离膜中广泛使用。

(二)水溶性高分子化合物

主要包含了水溶性的树脂和聚合物。属于一种拥有较强亲水性的高分子材料,在水中可以溶解成为溶液。在分子结构之中包含了阳离子、阴离子,极性非离子等亲水基团,这样就可以让高分子材料拥有性、分散性以及减磨性等多种性能。其主要的种类包含了:

第一,淀粉、动植物胶以及纤维素等天然性的水溶高分析。第二,人工合成水溶高分析,主要包含了离子型、非离子型以及缩合类等。

其物理性能包含了分子量、溶解度、絮凝作用、分散作用、减阻作用等。

溶解度指的是每一分溶剂之中,溶质溶解的平均值。一般来说,溶液之中的溶解溶质要多于平均值,这个时候就称之为过饱和溶液。所以,水溶性就是最重要的特性之一。分子量作为水溶性高分子的一大特性,其平均值就直接决定了高分子材料本身的性能。同时分子量分布,也会对分子量产生一定的影响。

分散作用指的是两相界面之中分散剂有序的排列,这样就可以确保分散体系本身的稳定性。水溶性高分子属于良好的分散剂,其本身具有疏水基团和亲水基团,本身也拥有一定的表面活性能。

当存在一定量的电解质,就会降低微粒的物理稳定性,将其聚集成为絮状,但是在振摇之后又能够均匀的分散,这样的作用就可以称之为絮凝作用。水溶性高分子本身拥有极性基团,可以吸附水中的固体离子,这样就能够形成絮凝团。增稠剂本身属于流变助剂,能够让低稠度的水性涂料增加粘稠度。

将高分子聚合物注入到流体之中,能够降低流动阻力,这样使用于降低流体流动阻力的化学剂就可以将其称之为减阻剂。

三、结束语

总而言之,随着科学技术的不断发展,也带动了高分子材料加工行业的不断发展,虽然目前国内的高分子材料的研究与应用还与发达国家存在一定的差距,但是相信在广大研究人员的努力下,我国高分子技术必定会发展的越来越迅速。作为高中生的我们,从现在开始,能够认识其作用,相信在未来发展中,也可以贡献自己的一份力。

参考文献:

篇3

关键词: 光学胶; 超弹性; 黏弹性; 动态力学行为; 本构模型; 静态压缩; 落球试验

中图分类号: TQ433; TB115.1文献标志码: B

引言

随着消费电子产品功能的集成化、复杂化,大量的结构连接通过黏胶黏结实现.在当前最热的移动终端市场,智能手机、平板电脑等结构中均出现大量的黏胶.黏胶材料的动态力学行为对结构可靠性的影响也越来越大.因此,在结构仿真中,黏胶材料动态力学行为定义的准确性对结构仿真结果的影响变得越来越重要.

常见的黏胶为高分子材料,一方面高分子材料均具有非线性的弹和大变形特性——超弹性特性[1];另一方面,高分子材料的力学行为均表现出显著的时间相关性,即率相关性[2].高分子材料力学行为的复杂性,导致当前还不存在一个物理意义明确,既可以描述高分子材料超弹性,又可以准确描述率相关性的本构模型.当前,对高分子材料超弹性的描述应用比较广泛的是建立在唯象理论基础上的应变能密度函数模型[3].对材料力学行为的率相关性定义的方法通常有2种:(1)以不同应变率下的材料变形行为为基础,通过对不同应变率的力学行为进行插值,获得材料的率相关特性[4];(2)以特定与时间无关力学行为为基础,通过引入与时间相关的函数方法对基准力学行为进行与时间相关的缩放,从而实现材料力学行为的率相关性描述[5].

本文选择一种常见的光学胶为研究对象,基于Abaqus的超弹性和黏弹性材料模型,定义光学胶的动态力学性能,通过静态压缩和动态落球测试的仿真与试验对比,基于Abaqus超弹性和黏弹性理论模型,对光学胶动态力学行为定义的有效性和准确性进行探讨.

1试验方法

1.1静态压缩试验参数

测试设备为岛津AG50kNX万能试验机,压缩速度为0.1 mm/min,样品尺寸为10 mm×10 mm×1 mm.

1.2动态落球测试参数

动态落球测试在自制的落球测试系统内完成,动态落球测试系统示意见图1.

图 1动态落球测试系统示意

落球测试系统为三明治结构.光学胶由上、下2个垫块夹持,落球对上垫块施加一个冲击载荷,光学胶作为载体,在下垫块处产生一个冲击力,通过力传感器采集该动态冲击力信号.落球高度不同,则施加在光学胶上的冲击压缩速度不同,从而在光学胶上产生不同冲击压缩速率作用,实现光学胶在不同应变率下的变形工况.本文中具体动态落球测试参数见表1.表1动态落球测试参数落球质量/g130样品尺寸20 mm×20 mm×1 mm落球高度/mm5, 10, 15, 20

2仿真建模

2.1材料模型

本文选用的材料模型为Abaqus提供的超弹性和黏弹性理论模型.超弹性参数描述材料在静态变形过程中的非线性弹;黏弹性参数的引入,起到随应变率缩放的效应,从而实现材料力学性能与时间相关的率相关性.

Abaqus中对超弹性材料模型的定义存在多种应变能函数形式:MooneyRivlin,Odgen和多项式等.本文选择的模型为Marlow模型,直接采用测试数据定义即可.光学胶超弹性由单轴静态压缩数据进行定义.

2.2仿真模型

本文中静态压缩和动态落球仿真均采用Abaqus/Explicit分析.由于光学胶的大变形特性,选择的单元类型为C3D8R,用沙漏控制.

3结果与讨论

3.1静态压缩仿真与试验

采用Abaqus/Explicit分析进行光学胶静态压缩仿真,计算时间为20 ms.考虑到准静态分析的目的,在压缩仿真时不考虑材料力学性能率相关特性,因此,材料卡片的定义不包括黏弹性(率相关性).静态压缩仿真与试验结果对比见图2,可知,仿真结果与试验结果几乎完全重合,表明超弹性模型对该光学胶非线性力学行为的定义和描述非常准确.图 2静态压缩仿真与试验结果对比4.2动态落球仿真与试验对比

为验证光学胶动态力学行为定义的准确性,本文采用自制的动态落球系统进行实际测试和仿真对比验证.通过调整落球高度,实现光学胶在不同应变率下的冲击压缩工况.不同高度落球仿真与试验结果对比见图3,可知,随着跌落高度的增加,落球系统的接触反力峰值增加,冲击振动的周期减小;同时,在应力波的周期和峰值方面,仿真与试验结果均吻合较好.

另外,图3存在3个方面的小差异:(1)在落球高度较低时(5和10 mm),起始阶段仿真和试验的冲击波重合性很高,而在15和20 mm落球时,冲击波起始阶段存在一定差异;(2)峰值存在差异,仿真结果均大于试验结果;(3)应力波的下降阶段均存在偏差.对于第一个差异点,可能与仿真接触定义有关,上垫块与光学胶的刚度差异较大,而本文采用简单的通用接触,并未对其接触刚度约束进行详细的定义,接触阻尼等也没有考虑,因此在仿真结果中,冲击振动起始阶段存在一些微小偏差.对于第二个差异点,在整个落球试验仿真系统中,除黏胶引入黏弹性特性外,落球系统其他组成部分的材料阻尼、结构阻尼等没有被考虑,导致仿真结果与试验结果在峰值上存在一点差异.对于差异点三,应力波下降阶段在落球试验的过程中反映的是光学胶压缩中的回弹阶段,这个结果表明当前光学胶参数定义中其加载阶段比较准确,但是其卸载行为还存在一定的偏差,这主要是由于光学胶的非线性力学行为的复杂性引起的.在高分子材料的加载和卸载过程中,由于Mullins效应的存在,其加载路径和卸载路径并不重合.在Abaqus中对高分子材料Mullins效应的定义提供理论模型,但是由于其无法与率相关性(黏弹性)同时使用,本文没有引入.

在仿真与试验对比的基础上,给出在准静态压缩和动态落球时光学胶压缩变形的应变率分析结果,见图4.

图 4不同工况下光学胶变形应变率对比

在静态压缩过程中,光学胶压缩变形的应变率为0.001 67 s-1;在动态落球仿真分析中,随着落球高度的增加,光学胶的最大冲击应变率增加.当落球高度为5 mm时,光学胶的最大压缩应变率为18 s-1;当跌落高度为20 mm时,光学胶的压缩应变率最大值接近50 s-1,光学胶变形的应变率在10~50 s-1量级,该结果表明本文落球系统有效实现光学胶在高应变率下的变形.结合二者的应变率分析和仿真与试验对比分析,在准静态到高应变率变形范围内,基于Abaqus超弹性和黏弹性定义的光学胶力学参数,有效且准确地描述光学胶的动态力学行为,仿真与试验结果均吻合较好,充分说明基于Abaqus的超弹性和黏弹性模型的本构定义,可以准确地描述光学胶的动态力学行为——非线性和率相关性.

4结论

从仿真与试验对比的角度,分析基于Abaqus超弹性和黏弹性本构模型,对黏胶动态力学行为定义的准确性和可靠性,得到以下结论.

(1)Abaqus提供较完备的定义高分子材料非线性力学行为及其率相关性的方法,可以准确地描述高分子材料动态力学行为——非线性弹性和率相关性.

(2)给出一种简单、方便地验证黏胶材料高应变率力学行为的方法.

(3)在动态冲击系统仿真中,接触方式、阻尼等因素对结果存在一定影响,该部分工作还需进一步的研究.

参考文献:

[1]CHARTON D J, YANG J. A review of methods to characterize rubber elastic behavior for use in finite element analysis[J]. Rubber Chem & Technol, 1994, 67(3): 481483.

[2]XIE J R. Analysis of strain rate impact on make up of oil field premium casing connections[C]//SIMULIA Customer Conf, 2011: 110.

[3]AMIN A F M S, ALAM M S, OKUI Y. An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification[J]. Mech Mat, 2002, 34(2): 7595.

[4]KOLLING S, du BOIS P A, BENSON D J, et al. A tabulated formulation of hyperelasticity with rate effects and damage[J]. Comput Mech, 2007, 40(5): 885899.

篇4

关键词:构建原则;创新思维;能力培养;教学模式

职业学校的化学教学是为了提高学生的化学素质,为其他专业课程的学习打好基础。在教学中不能仅关心提高课程内容的理论水平,和化学学科知识技能的传授,更重要是培养学生化学的综合素质和创新意识,最终达到提高综合国力的目的。特别是目前化学与社会、化学与材料、化学与能源、化学与环境、化学与生命科学等的关系越来越密切。社会、生活、生产、科学技术的创新对化学的需要也越来越大。因此原来的职业学校的化学教学模式,已落后于化学的发展。本文对职业学校的化学教学的新模式做些粗浅的探讨。

一、化学教学模式的构建原则

在教学模式在构建过程中应该遵循下面的原则:

1.基础性原则。

职业学校的化学课程是其他专用课程的基础,决定了化学教学是一种基础性的课程,从构建教学模式上来说,主要以化学基本知识的普及为框架渗透有关化学与社会的内容。

2.社会价值原则。

职业学校的学生毕业就是社会的高素质的劳动者,所以在教学模式上“化学与社会”内容十分广泛,作为新的教学模式上应全程体现教学的社会价值。

3.实践性原则。

化学是门实践性比较强的课程,在教学模式构建中,要重视实验环节,使学生既掌握化学实验技术,又培养学生独立工作能力和科学研究与创新能力等,达到理论与实践的统一。

4.发展性原则。

由于新材料、新技术、新能源、环境等方面是知识不断出现,所以在教学模式上要体现现代课程意识,要不断将动态的具有较高价值的新成果引入教学过程。在教学模式上要不断改革。

二、化学教学新模式的类型

遵循上述原则,我们在课改实践中总结出以下基本教学模式

1.主题型教学模式。

“化学—人类进步的关键”这个是化学新课程的总主题,在整个化学教学过程中应该尽可能体现这一主题。在实际教学中我们根据知识体系的结构采取不同的分主题来实施教学。氮族元素结合生物圈中氮的循环,联系农业生产的氮肥,以氮肥为主题;化学反应与能量、原电池原理以开发新能源为主题;硅和硅酸盐工业、金属和合成材料以材料为主题;如糖类、蛋白质、油脂可以人类重要的营养物质为主题;烃以石油化工为主题。

主体型教学模式可以使学生认识到自己所学内容的社会价值及其实用性,有利于学生学习兴趣的激发和保持。

2.用途联系型模式。

在元素化合物教学中应该将现代最新的有价值的有关元素化合物用途纳入教学之中。如在卤素学习时,可联系海水化学资源的开发、利用和饮水与消毒化学;在学习NO的性质时,可联系医学新成就,介绍NO对人体某些疾病的治疗作用,然后提出问题:为什么大量NO吸入人体有害,而少量的NO吸入却能治疗某些疾病?在硅和硅酸盐学习时,可联系新型无机高分子材料等;在学习有机高分子材料时,可联系智能高分子材料、导点高分子材料、医用高分子材料、可降解高分子材料、高吸水性高分子材料等。

用途联系型模式使学生理解学习化学的重要性,激发学生学好化学的社会责任感。

3.情境渗透型模式。

对某些与中学基础知识有密切关系的新的应用型成果可采取情境渗透型模式。例如,进行晶体类型与性质学习时,可以设定情境:将晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等有重要影响,如许多过渡金属氧化物中的价态可以变化并形成非整比化合物,从而使晶体具有特意色彩等光学性质,甚至具有半导性或超导性。讨论具有NaCl型结构的NiO晶体发生晶体缺陷形成的非整比化合物NiXO的结构特征等。

情境渗透型模式,增加了学生学习的亲和力,促进了知识间的联系,培养学生创新意识和创新能力。

4.实验探究式模式。

化学是以实验探究为基本特征的,因此,化学教学也应体现这一特征,并将其作为化学教学的主模式。探究的内容有物质的组成、结构、性质、变化规律以及物质的实用性等。在教学中,可把一些演示实验改为边讲边实验,将验证性实验改为探索性实验。如:联系生物实验“空气中SO2含量的测定”,可让学生联系化学知识设计反应原理,根据具体操作,提出问题:为什么抽拉活塞时不能过快也不能过慢?设计“HCO3-结合H+容易还是CO32-结合H+容易”等探索性实验。

实验探究式模式,发挥学生的积极性和主动性,激发学生的求知欲,进而引导学生去探索化学知识的价值活动。

5.调查研究型模式。

对于某些与社会联系紧密的、具有开放性的问题可采用“调查研究型”策略。如:调查食品添加剂的用途、种类;调查合成洗涤剂的成分、性能、种类、价格;调查各种电源的组成、性能、价格、使用寿命等;调查工业污染的现状并提出合理的建议等。

调查研究型模式,通过接触社会、接触生活的方式,进一步使学生认识到化学在社会生活中的应用。

6.专题探究型模式。

化学与能源、材料、环境、人体健康、军事等社会问题领域有着密切的联系,教学中,可以将上述领域内容作为专题组织学生进行交流讨论。教师和学生可以通过查阅图书资料、上网进行充分的讨论前准备。

专题探究型模式,既拓宽了学生对化学的视野,又培养了学生多渠道获取信息的能力,同时也很好的体现了教学的民主性。

综上所述,面对知识经济的挑战,联系当前社会发展的实际,是构建化学教学模式一种科学方法。职业学校里的化学教育,无论是从理论还是从实践的角度来看,都是一个大型的系统工程。在教学中应该根据教学内容的不同合理的选择不同的教学模式。

参考文献

篇5

作为开创了手性大分子全新领域的手性导电高分子聚合物,对科学研究者产生了极大的吸引力。手性导电高分子聚合物的优点在于:1、导电性能佳;2、在溶液里,能提现其良好的承受PH值发生转变的能力;3、在溶液里,具有出色的氧化还原性;4、良好的手性选择性;5、优秀的分子识别能力。这些能力使其将来会在电化学开关、手性色谱、手性化学传感器、膜层析技术及表面修饰电极等领域得到广泛发展。手性分子在自然界中存在广泛,天然氨基酸、简单糖类等很多重要的生物药剂,都是手性分子,最引人重视的是某种旋光对映异构体,是它们唯一存在的结构。手型结构广泛存在与生物大分子中,在生命系统中兼具着十分重要的职能,例如普遍存在于重要生物聚合物(DNA、核苷酸、蛋白质)等螺旋状的手性,手性控制更是药物试验中一个是关键的要素,针对手性药物的设计和合成,在近几十年来都采取了大量的研究。这里重点介绍新一类手性大分子,就是手性导电高分子聚合物。

当作为手性基质或手性电极材料对具备手性的导电有机高分子聚合物进行使用时,后者一些诸如独特的力学、电学和电化学特性会在使用过程中被表现出来。利用能被聚合物骨架官能团吸附的特性,微粒、动植物体内的薄膜与纳米纤维等都可以运用它们制作,应用这些功能,可以在特定分子的识别、提纯开展上开拓更广阔的空间。

二、手性导电高分子聚合物的发展

Baughman等在1985年就提出,具有单一旋光性的纯取代基或并到聚合物链上的手性掺杂阴离子可以诱导共轭导电聚合物的π-π*吸收带上的光学活性。前一种路径主要应用在合成一系列的手性聚吡咯及手性聚噻吩上,后者对于合成手性聚苯胺有很高的成功率。随着对手性导电高分子聚合物研究的进一步加深,更多的有效的手性导电高分子聚合物合成路径被研究者们报道出来。这些路径在手性导电高分子聚合物合成领域做出极大的贡献。

1.手性聚苯胺

手性聚苯胺作为一种特殊的导电聚合物,在电化学不对称合成、手性拆分和电磁功能材料等方面有着良好的应用前景。

合成手性聚苯胺的方法中,日常应用比较广的有电化学聚合法及二次掺杂法。

二次掺杂法合成手性聚苯胺的原理是基于手性掺杂离子的加入来增长聚苯胺链或预合成聚苯胺链。此类方法不能够用于合成聚吡咯及聚噻吩。

电化学聚合法的作用机理是通过电极形成的电位差作为引发和反应聚合反应的驱动力,在适当的电化学条件下,苯胺在阳极上发生氧化聚合反应,聚苯胺粉末就会粘附在电极表面薄膜或者沉积在电极表面,利用这种方式,就可以获得聚苯胺。研究发现,调节电极电位可以令手性聚苯胺的旋光性产生变化,调整反应温度还可以改变聚苯胺主链构型。

要生成单一螺旋链构型的导电聚苯胺膜必须在左(或右)旋樟脑磺酸根离子存在的环境下对映体选择电聚合。此薄膜出现强烈的圆二色性,左旋、右旋偏振光的吸收系数差值在445nm时达到0.16mol/c㎡。原子空间排列的稳定剂,可以使用聚苯乙烯磺酸来充当,同时掺杂右(或左)旋樟脑磺酸,电化学聚合法可以用于手性聚苯胺胶体的制备,而且采取恒电位法也是适用的。同时,在掺杂过程里,为了诱导聚苯胺主链对映体选择重排,可以利用手性樟脑磺酸采取单一螺旋构型的方式,使得聚苯胺胶体具有旋光性。

手性聚苯胺的结构及性能对于电化学聚合过程电位的高低很敏感。聚苯胺链和对映体选择掺杂剂间的静电力和氢键作用使得聚合物链优先采取单向螺旋构型,因此,手性诱导剂樟脑磺酸的浓度是决定螺旋构型成长速率的关键。

此外,不同电极上苯胺聚合的初始氧化电位不同,假如电位定于初始氧化电位低时,在电聚合前就有一个明显的孵化期,电位越低,孵化期越长,低聚物于孵化期慢慢生成。导电基底不同,孵化时间亦不同。减少或消除孵化期,可以通过调整电位进行。

利用电化学聚合法合成手性聚苯胺过程中,温度的改变也促使聚苯胺主链螺旋型构型的变化,所以,电化学沉积温度对PANI·(+)-HCSA的手性具有中有影响。

手性导电聚苯胺具备很多优秀独特的性能,除了催化性能、电性能、电致显色性能、电磁屏蔽以及吸波等,还具有旋光性。独特的掺杂可逆特性让手性导电聚苯胺在生物传感器、手性识别等方面具有很大的潜在应用前景。手性导电聚苯胺扩展了聚苯胺的应用,磁屏蔽及吸波性能等,让手性导电聚苯胺有望在制备电磁低损耗、质轻、宽频的吸波材料上得到很好的应用。

2.手性聚吡咯

手性吡咯高分子聚合物被Baughman等在1985年通过聚吡咯单体的电聚合首次将手性取代基工价结合到吡咯的氮上而诞生,在波摊点机上沉积的稳定聚吡咯,它的循环二色谱特征很明显。随后运用电聚合,研究者们成功的合成了3-取代吡咯环单体。新合成的取代吡咯聚合物对比于未取代的来说,导电性较低。取代基体积过大,致使聚合物链扭曲,可能是导致其导电性的主因。

手性聚吡咯可用于生物、离子检测、超电容及防静电材料及光电化学电池的修饰电极、蓄电池的电极材料。此外,还可以作为电磁屏蔽材料和气体分离膜材料,用于电解电容、电催化、导电聚合物复合材料等,应用范围很广。

3.手性聚噻吩

类似芳香环的结构令手性聚噻吩具有很好的环境稳定性,合成方便,掺杂后拥有很高的导电性和发光性,这些都使它备受人们关注。作为高分子材料,聚噻吩尺寸极小,具有丰富的潜在功能,导电能力调控范围包括绝缘到接近金属内,而且,经过加工后还可以让材料获得电学、光学和力学等特性。

单体的化学、电化学的氧化是合成具有光学活性的手性聚噻吩的最常用方法,这次单体都是噻吩环3位取代手性产物。噻吩不溶于水的特性,令其氧化反应多在溶液中发生。近来手性晶体排列的聚噻吩很多都是利用在胆固醇结构晶体排列的溶剂中非手性噻吩的电化学合成的,或者利用带有晶体排列的侧基的聚合合成。生物聚合和金属离子作侧链的聚噻吩的络合也是被应用的。

参考文献

[1]杨丰科,曹伟丽,李金芝,手性导电高分子聚合物的研究进展,材料导报,2011(25)

篇6

我国发展支持节能减排的化工新材料,主要是发展以下3类:高性能化、功能化通用聚合物材料,节约能源提高能效的化工新材料以及利用可再生能源的新材料。1.发展高性能化和功能化通用聚合物材料发展支持节能减排的化工新材料,首先是要发展高性能化、功能化通用聚合物材料,提高通用聚合物材料的性能,实现材料使用减量化,延长材料使用寿命。例如有机高分子材料就是一种高能量密度材料,其中通用聚合物材料产量大,应用面广。2011年,我国仅聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、丙烯-丁二烯-苯二烯(ABS)等合成树脂的产量达到4798万t。提高材料的性能和功能化水平,对材料使用合理化、减量化、延长使用寿命有重要作用,可以明显减少凝结在材料中的资源和能源消耗,如现代农业中使用地膜通过提高强度减薄一半,大棚膜寿命延长一倍,其节材节能效果就高达50%。通用聚合物材料高性能化、功能化的技术路线主要有以下4种:①增加或改变共聚单体或调整共聚单体的比例。如气相法或溶液法聚乙烯用丁烯-1做共聚单体改变成用己烯或辛烯共聚;丙烯与丁烯共聚生产高透明丙-丁共聚聚丙烯;调节醋酸乙烯含量,生产各种比例乙烯-醋酸乙烯共聚物。②开发新催化体系或改进现有的催化体系。如开发新外给电子体与氢气和共聚单体共同调节聚丙烯的分子结构,生产新牌号聚丙烯材料;采用茂金属催化体系取代齐格勒-纳塔催化体系,生产新牌号聚乙烯、聚丙烯产品。③开发新聚合工艺与反应器实现传统合成材料的高性能化。如双反应器或多反应器串联工艺,生产双峰分布的性能更优异的聚烯烃产品;采用气相法带预聚合的卧式反应器串联工艺以更低的能耗生产均聚、无规共聚、共聚聚丙烯,尤其共聚产品分子链中允许有更高的橡胶相含量,因此有更高的抗冲击性能;开发溶液聚合工艺生产具有优异耐热性、强度、韧性的聚丁烯-1;采用溶液聚合工艺生产的丁苯橡胶也是一种适合生产节能环保轮胎的新胶种。④共混或接枝改性提升通用聚合物合成材料的性能。如2种或多种聚合物共混改性;纳米材料共混改性;聚合物接枝改性。2.发展节约能源提高能效的化工新材料我国单位GDP的能源消耗与国外先进水平有明显差距(见表3)。这与我国产业结构中第三产业比例低有关,更和我国能源使用效率低有关。为此,发展节约能源提高能效的化工材料应该受到重视,主要包括:提高汽车能效的化工新材料、建筑物节能材料和低能耗照明灯具材料。(1)提高汽车能效的化工新材料提高汽车能效的化工新材料有:汽车轻量化的化工新材料、高性能用材料和绿色轮胎用合成橡胶材料。①汽车轻量化的化工新材料包括低成本碳纤维及其热固性和热塑性复合材料,塑料油箱专用的聚乙烯、EVOH(乙烯/乙烯醇共聚物),替代挡风玻璃的高透光、高强、高韧聚合物,汽车专用聚丙烯等各种合成树脂材料。②高性能用材料包括聚-烯烃类、茂金属聚-烯烃、烷基萘等基础油,以及改进油粘度指数、耐磨性、氧化安定性等性能的各类添加剂。③绿色轮胎用合成橡胶材料包括可降低轮胎滚动阻力、提高耐磨性和抗湿滑性的绿色轮胎用合成橡胶材料,包括溶聚丁苯橡胶、稀土异戊橡胶、丁二烯、异戊二烯、苯乙烯共聚的集成橡胶等。(2)建筑物节能材料建筑物节能材料包括:适合建筑物隔热保温的聚氨酯、聚苯乙烯、聚乙烯、聚丙烯等基材;无公害阻燃技术生产的聚合物发泡墙体材料;长寿命隔热隔音建筑物门窗结构材料、密封材料。(3)低能耗照明灯具材料低能耗照明灯具材料包括:白色发光二极管(LED)材料、有机光半导体(OLED)材料。①白光LED材料在LED材料中,与太阳光一致的白光LED用途最广泛。白光LED用荧光粉用绿、蓝、红三色荧光粉混配而成。要求开发具备高辉度、高演色性、温度消光特性和良好的色彩再现性的三色荧光粉。②OLED材料OLED材料主要包括:OLED照明用耐老化底衬薄膜、有机发光材料、高透光耐老化面层薄膜。3.发展利用可再生能源的新材料利用可再生能源的新材料主要包括:太阳能热发电用材料、太阳能光伏电池材料、风力发电用材料和储能材料。(1)太阳能热发电用材料太阳能热发电用材料包括:可替代玻璃的耐老化、高强度、高韧性聚合物基材,涂敷用反射层材料。(2)太阳能光伏电池材料太阳能光伏电池材料包括:电池效率更高(>20%)的晶硅材料;长寿命的组件材料,如可以替代玻璃或金属的更低成本的轻量化、耐老化聚合物材料;有机薄膜太阳能材料,如耐光热老化的背板薄膜材料,有机光电转换材料,耐老化光学薄膜和封装材料等。(3)风力发电用材料目前,风力发电呈现出了发电机功率越来越大、海上风电场快速发展、叶片长度不断增加(已达120m)以及材料从玻璃纤维向碳纤维转化等特点。适应风电发展,要开发以下化工新材料:复合材料用新型树脂材料,如环氧树脂聚双环戊二烯树脂;风力发电机用高性能绝缘材料、材料、密封材料;海上风电机组防腐涂层材料。(4)储能材料由于太阳能发电和风力发电的突出问题——电力输出不稳定,对电网的安全可靠运行影响大,所以发展分散式电能储存装备是一项可行措施。钠硫电池、全钒电池、锂电池是适合不稳定电能储存的3种主要的分散式储能装置,电池材料包括电解液、负极材料、正极材料、隔膜材料。为了适合储能或动力性要求,电池要不断提升能量密度、缩短充放电时间、提高循环寿命、改善安全性,因此必须不断改善材料性能,开发新材料和新体系电池,如锂硫电池、锂空电池等。

二、发展服务环境保护的化工新材料

我国发展服务环境保护的化工新材料,主要是要发展用于废气处理的新材料,发展用于污水深度处理实现污水回用的膜材料和脱除污水中难降解有机物和重金属的材料,以及发展生物基可降解的高分子材料。1.发展用于废气处理的新材料我国在治理大气污染的过程中,必须高度重视工业过程排放气中烟尘、SO2、NOx、微量有机物的深度脱除。2012年我国消费煤炭35.15亿t,其中发电用煤占49%,其余大部分用于工业窑炉。目前,全国500多万台工业窑炉中95%使用煤炭做燃料,煤炭燃烧产生的烟气中有一定量颗粒污染物、SO2、NOx,因此,烟气深度除尘、脱硫、脱硝是治理大气污染的最重要措施。此外,一些工业过程也会产生含尘尾气,必须进行除尘处理;一些工业过程还会有含有微量有机物的尾气排放。汽车尾气中会有微量没有充分燃烧的烃类和一氧化碳。(1)重视开发过滤除尘材料为了满足工业过程排放气体除尘的要求,必须要重视开发和发展适合不同温度环境的过滤除尘材料,如芳纶、芳砜纶、聚酰亚胺纤维,以及与纤维织物复合的多孔聚四氟乙烯薄膜。(2)重视开发新型脱硝催化材料为了实现工业过程尾气的深度脱硝,要重视新型脱硝催化材料的开发与生产,包括适合不同温度尤其是低温条件下具有高活性的脱NOx催化剂、高效脱NOx催化剂的低阻力降载体。(3)重视开发工业过程排放气及汽车尾气净化材料工业过程排放气中有机污染物及汽车尾气净化材料,包括:催化燃烧法脱除工业排放气中微量有机物的高活性催化剂,尤其在低温下具有良好活性的催化剂;能满足第5阶段、第6阶段汽车尾气排放要求和低贵金属含量的汽车尾气高效转化催化剂及载体。2.发展污水处理材料我国淡水资源总量为28000亿m3,仅占全球6%,人均占有2200m3,为世界平均水平的1/4,美国的1/5,列世界第109位。我国水资源的时间空间分布又很不均匀,北方地区淡水资源只有南方的1/4,全国有45%的国土面积年降水量小于400mm,且降水集中在6~9月,属干旱缺水地区,全国669个大中城市有400多个城市常年淡水不足,严重缺水城市有108个,北京人均占有水资源量仅为世界人均的1/13,还不如一些干旱的阿拉伯国家。我国不仅水资源十分贫乏,而且还有大量的工业污水、养殖业污水和生活污水。为此,我国要针对自身水体污染的现状、实现污水深度处理回用的要求,发展用于水处理化工新材料。诸如,我国要开发用于污水深度处理、实现污水回用的膜材料,发展脱除污水中难降解有机物和重金属的材料。(1)水处理膜材料水处理膜材料,包括提高污水处理效率的膜生物反应器用膜材料、污水深度处理用膜材料。在污水的深度处理方面,超滤与反渗透结合可以对污水深度处理,实现污水回用;另外,要发展高通量、高选择性的超滤膜、反渗透膜,包括膜用材料(如醋酸纤维素、芳香族聚酰胺)和膜的骨架织物材料、膜组件材料。(2)脱除污水中难降解有机物和重金属的材料脱除污水中难降解有机物和重金属的材料,包括可见光条件下催化分解废水中有机物的石墨烯基催化材料(石墨烯-ZnFe2O4)、可脱除水中重金属和有机小分子的纳米纤维亲和膜。3.发展可降解生物基材料通用塑料的使用带来了白色污染,而开发生物基可降解高分子材料是消除白色污染的重要途径。生物基可降解高分子材料主要有以下3类:(1)聚乳酸聚乳酸是利用生物质生产的可降解聚合物中生物碳利用率最高的高分子材料,被称为21世纪最有发展前景的高分子材料。但是,聚乳酸存在玻璃化温度低、加工过程容易降解、热性能差等缺点。近年的研究已发现,在聚L-乳酸中掺入少量聚D-乳酸可以解决热性能差的缺陷,提高聚乳酸的使用性能。(2)聚丁二酸丁二醇酯(PBS)、聚丁二酸对苯二甲酸丁二酯(PBTS)利用生物质生产丁二酸,丁二酸加氢生成丁二醇,利用丁二酸、丁二醇和PTA作为单体生产的PBS、PBTS,是使用性能较好的生物基高分子材料。(3)其他除了以上2类可降解生物基材料,还有利用生物质或部分利用生物质资源的新型可降解高分子材料,如聚羟基脂肪酸酯(PHA),CO2和环氧丙烷、环氧乙烷共聚得到的脂肪族聚碳酸酯、聚-己内酯(PCL),PCL改性聚合物。

三、我国化工新材料发展中存在的问题与对策

篇7

摘要:

采用自制的特种炸药利用爆轰法合成粒径为50nm的纳米CeO2。将纳米CeO2以一定比例与环氧树脂(EP)混合,采用浇铸的方法制备纳米CeO2改性的EP薄膜。利用设计的紫外老化试验箱对制备的薄膜进行了21d加速老化试验,对比测试纯EP和改性EP老化前后薄膜的质量和力学性能变化规律。结果表明:纳米CeO2对紫外线表现出较强的屏蔽作用。当纳米CeO2在EP中的质量分数为0.8%时,改性EP薄膜对波长为254nm的紫外吸光度最大,EP薄膜的力学性能有所提高。相比纯EP薄膜,添加纳米CeO2后在紫外线条件下的使用寿命增加62%,对抗拉强度的保持率提高35%。

关键词:

纳米氧化铈;紫外屏蔽;环氧树脂;改性;老化

紫外辐射不仅对人类自身有伤害,还使一些高分子材料在使用过程中发生老化,导致其失去本来的利用价值,所带来的危害越来越受到人们的重视。国内外研究表明[12],在高分子材料中添加紫外吸收剂可有效抵御紫外线对它的破坏作用,提高抗老化性能。传统的紫外吸收剂通常为有机类化合物,如水杨酸酯类、苯酮类和受阻胺类等[3]。但传统类紫外线吸收剂存在的缺点是本身为有机物,容易受紫外线破坏,影响其使用的持久性[4]。而且对紫外线的吸收具有选择性,并对人体有一定毒害作用。纳米CeO2是一种新型的无机紫外吸收剂,不仅对紫外线具有较好的屏蔽作用,而且对可见光具有较好的透过性,是一种宽波长的紫外屏蔽材料[5]。而且本身是无机物,在紫外线下的生存周期长,不易受侵害。本文作者采用炸药爆轰合成的纳米CeO2,通过改性环氧树脂(EP),以EP的质量和力学性能(拉伸强度)的改变情况来表征纳米CeO2对紫外线的屏蔽作用。

1实验

1.1纳米CeO2的爆轰法合成以Ce(NO3)3•6H2O、NH3NO3和蜡为原料制备得到具有雷管感度的炸药。将该炸药置于密闭爆炸容器中起爆,收集爆轰产物。将产物进行提纯,利用马弗炉600℃高温煅烧60min。采用布鲁克D8Advance型X射线衍射仪(XRD)分析爆灰的晶型,结果谱图如图1所示。利用软件MDIJade对图谱进行处理分析,按衍射曲线上4个最强峰所对应的2θ角查PDF卡片,确定产物成分是CeO2。利用Scherrer公式:D=Kλ/(βcosθ),计算纳米CeO2粒径。式中:D为平均颗粒粒径;K为形状因子,为0.89;λ为铜靶波长,为1.54060Å;β为半高宽,为0.157°;θ为衍射峰对应的半衍射角度。取图1中2θ=28.592º处特征峰(111)半高宽代入公式中,计算纳米CeO2的晶体粒径,为51.7nm。利用JEM2100型透射电子显微镜(TEM)观察纳米CeO2的尺寸,如图2所示。颗粒粒径在50nm左右,这与Scherrer公式计算结果一致。

1.2纳米CeO2紫外屏蔽性能试验将0.04%(质量分数)纳米CeO2分散在去离子水中,加适量分散剂,超声分散20min。利用Evolution220型紫外可见分光光度计(UV-Vis),测试其在波长为190~400nm对紫外线的屏蔽作用。

1.3改性环氧树脂抗老化试验

1.3.1薄膜制备按照GB/T25672008[6]的规定,样品采用浇铸的方法制备。首先将CeO2分散在适量无水乙醇中,采用PS20A型桌面型超声波清洗机超声分散30min。在环氧树脂中添加适量无水乙醇使其充分溶解,每100gEP中添加0、0.2、0.4、0.6、0.8、1.0和1.2gCeO2,搅拌15min后添加EP固化剂。在50℃条件下,高速搅拌加热蒸发多余无水乙醇。超声消泡后浇铸到180mm×180mm见方,深度为1mm的模具中,室温固化48h后脱模,在40℃加热条件下放置72h。利用UV-Vis测试薄膜对紫外线的屏蔽作用,挑选紫外线波长为254nm吸光度A最大的做抗老化试验。

1.3.2抗老化试验参照GB/T164222006[7],设计一个紫外老化试验箱。老化条件为温度60℃、254nm紫外线照射下加速老化21d。在温度和紫外线的作用下,薄膜的性能发生变化:质量减少和力学性能(拉伸强度)降低。质量减少用质量损失率ηm表示。按照GB/T25672008在CMT4254型微机控制电子万能(拉力)试验机进行拉伸试验。研究CeO2对EP薄膜抗紫外老化的影响,影响结果以拉伸强度(TS)随断裂伸张率的变化来评定。

2结果与分析

2.1纳米CeO2紫外屏蔽性能分析图3所示为纳米CeO2悬浮液的紫外吸收光谱图。从图3中可以看到,纳米CeO2在浓度很低的情况下,在紫外线波长220~350nm范围内依旧存在较强的屏蔽作用,其最高吸收峰的吸光度A为0.69,而对大于400nm的可见光表现出较好的透过性。有研究表明[8],CeO2电子结构由充满电子的价电子带(O2p)和无电子空轨道形成的导带(Ce4f)构成,存在禁带宽度Eg=3.1eV[9]。当一定能量的光线入射到CeO2粒子上时,比禁带宽度能量大的光子被吸收,价电子带的电子跃迁至导带[10],使CeO2具有吸收紫外线的能力。根据公式λg(nm)=1240/Eg(eV),计算得出电子跃迁的临界波长λg=400nm。所以,当入射光波长λ<400nm时,CeO2电子结构发生电子能级跃迁,使CeO2在190~400nm波段表现出强烈吸收紫外线的能力。且由于纳米CeO2颗粒小,比表面积大,对紫外线具有较强的光散射和反射作用。

2.2纳米CeO2改性环氧树脂对紫外线的屏蔽特性老化试验采用的紫外线波长为254nm,光能量为470kJ/mol,大于C—C的离键能(413kJ/mol)和C—H的离键能(347kJ/mol)[11]。当EP薄膜暴露在紫外线下,紫外线的能量使材料中的C—C和C—H等共价键断裂,引起薄膜中成膜物质分子链发生断裂,形成活性游离基[12]。游离基能进一步加速起成膜作用的分子链发生降解,且材料处在60℃较高温条件下使聚合物发生热降解,最终导致薄膜老化[13]。为防止紫外线对EP薄膜的上述裂解破坏产生,在薄膜中添加纳米CeO2来提高EP的抗紫外线性能,将紫外线通过物理转化为热能或其他波长光的形式来分散大部分能量,降低紫外线对材料的老化程度。以改性EP薄膜在紫外线波长为254nm的吸光度A与添加纳米CeO2含量之间的关系作图(见图4)。由图4可知,吸光度A随着纳米CeO2含量的增加而增大,当纳米氧化铈的含量为0.8%时,吸光度A达到最大值。当CeO2继续增加时,A反而减小。这是由于纳米CeO2颗粒的紫外吸收效果受颗粒本身分散效果的影响,分散性越好,紫外吸收越强。CeO2的量不断增加,加剧了纳米颗粒的团聚作用,导致在EP中分散效果下降。过多的颗粒发生团聚,CeO2对紫外线的接触面减少,导致A下降。

2.3抗老化试验

2.3.1EP质量减少分析根据试验结果,取多次试验平均值,得到薄膜在60℃加热、254nm紫外线条件下不同老化时间的质量损失率ηm。将质量损失率ηm与老化时间t作图,并线性拟合,其结果如图5所示。式(2)和(3)分别为两者的拟合曲线方程,纯EP拟合曲线的相关系数为0.9971,EP-CeO2拟合曲线的相关系数为0.9928。通过图5可以直观的看到,纯EP和EP-CeO2两个样品在老化过程中质量减少。纯EP拟合曲线的增长趋势明显大于EP-CeO2拟合曲线的。为了更加清楚地比较两者之间的差别,利用理论寿命来分析。根据GB/T110262012电气绝缘材料试验判断标准的选择[14]中规定,当ηm=3.0时,EP材料失效。将ηm=3.0代入式(2)和(3)中,分别求得t2=1291h,t3=2102h。这表明,EP经纳米CeO2改性处理后,在设定的紫外老化环境中,抗老化能力得到了提高,理论推测寿命增加了62.82%。

2.3.2EP力学性能改变分析纯EP薄膜以及EP-CeO2的老化前后拉伸强度随断裂伸张率的变化情况如图6所示。图6(a)为老化前EP-CeO2和纯EP的曲线图。从图6(a)中可以看到,添加纳米CeO2后,EP的拉伸强度和断裂伸长率均有所提高。图6(b)为老化后EP-CeO2和纯EP的曲线图。与图6(a)中曲线1和2相比,经过老化之后,两者的拉伸性能和断裂伸长率均有所下降。为了更好地体现两者老化前后的差距,利用式(4)计算拉伸强度保持率。老化前后相比得出,EP-CeO2的保持率E=67.17%,纯EP的E=31.92%。可知,添加CeO2后,EP对于抗拉强度的保持率提高了35.25%。从中可以得出结论,在EP薄膜中添加纳米CeO2后,提高了EP的抗紫外老化性能。纳米颗粒由于表面配位不足,存在大量的悬空键,表现出强烈的表面效应,易与高分子树脂中的氧起键合作用[15]。纳米粒子与高分子通过表面作用力提高彼此间的键力,构成一个由共价键连接而成的界面层,实现无机纳米粒子同有机高分子材料间的有效连接[16]。纳米CeO2与EP基体形成结合良好的柔性过渡层,当环氧树脂基体受外力拉伸时,可以转移和分散应力,使分子间不易分离,起到强化作用[17]。同时,由于纳米氧化铈的粒径小,超大的比表面积使氧化铈在树脂体系中具有很大的接触面积。当材料受外力作用时会产生比一般填料存在时更多的微裂纹,耗散更多的力,可以阻止和钝化裂纹的进一步扩展,达到增韧的目的。

3结论

1)利用炸药爆轰合成粒径为50nm的纳米CeO2,此纳米CeO2在220~350nm波段表现出较强的紫外屏蔽作用。EP薄膜中添加0.8%的纳米CeO2,薄膜对254nm的紫外线吸光度达到最大值,拉伸强度和断裂伸长率均有所提高。2)在温度为60℃、254nm紫外线的条件下老化21d。对比发现,添加纳米CeO2后EP薄膜的使用寿命增加62%,对抗拉强度的保持率提高35%。由此得出,纳米CeO2具有较强的紫外屏蔽作用,提高了EP对紫外线的抗老化能力。

参考文献

[1]何小芳,杨南南,贺超峰,王爽,王运霞.纳米TiO2在聚合物抗紫外光老化中的研究进展[J].材料导报,2013,27(8):5053.HEXiao-fang,YANGNan-nan,HEChao-feng,WANGShuang,WANGYun-xia.Researchprogressonnano-TiO2forenhancingUVagingresistanceofpolymer[J].MaterialsReview,2013,27(8):5053.

[2]EL-FEKYOM,HASSANEA,FADELSM,HASSANML.UseofZnOnanoparticlesforprotectingoilpaintingsonpapersupportagainstdirt,fungalattack,andUVaging[J].JournalofCulturalHeritage,2014,15(2):165172.

[3]FRANÇOISED,FABIENNEF,VIRGINIEM.TheinfluenceofUVagingofastyrene/butadiene/styrenemodifiedbitumen:Comparisonbetweenlaboratoryandonsiteaging[J].Fuel,2007,86(10/11):14461451.

[4]万静,何茗.超细氧化铈结晶度和粒径对抗紫外性能影响研究[J].西南民族大学学报(自然科学版),2012,38(1):106112.WANJing,HEMing.TheinfluenceofthecrystallinityandparticlesizeontheultravioletabsorptionofCeO2powder[J].JournalofSouthwestUniversityforNationalities(NaturalScienceEdition),2012,38(1):106112.

[5]史艳丽,张金生,李丽华,李秀萍.Ti4+掺杂纳米CeO2的制备及其抗紫外性能[J].稀土,2012,33(3):6063.SHIYan-li,ZHANGJin-sheng,LILi-hua,LIXiu-ping.PreparationofTi4+dopednano-CeO2anditsanti-ultravioletpeformance[J].ChineseRareEarths,2012,33(3):6063.

[6]GB/T25672008.树脂浇铸体性能试验方法[S].GB/T25672008.Testmethodsforpropertiesofresincastingboby[S].

[7]GB/T164222006.塑料实验室光源暴露试验方法[S].GB/T164222006.Plasticsmethodsoftheexposuretolaboratorylightsources[S].

[8]朱兆武,龙志奇,崔大立,张顺利,张国成.超细CeO2粉体的制备及其紫外线吸收性能[J].中国有色金属学报,2005,15(3):435440.ZHUZhao-wu,LONGZhi-qi,CUIDa-li,ZHANGShun-li,ZHANGGuo-cheng.Preparationofultra-fineparticle-sizedCeO2powderanditsUVabsorbance[J].TheChineseJournalofNonferrousMetals,2005,15(3):435440.

[9]戴艳,侯永可,龙志奇,黄小卫,崔大立.掺杂纳米氧化铈紫外屏蔽材料的表征与性能[J].中国稀土学报,2011,29(2):195200.DAIYan,HOUYong-ke,LONGZhi-qi,HUANGXiao-wei,CUIDa-li.CharacterizationandUV-shieldingpropertiesofdopedceriananoparticles[J].JournaloftheChineseRareEarthSociety,2011,29(2):195200.

[10]郭刚,杨定明,熊玉竹,段小平,黄婉霞,涂铭旌.纳米TiO2和纳米ZnO的紫外光学特性及其在聚丙烯抗老化改性中的应用研究[J].功能材料,2004,35(z1):183187.GUOGang,YANGDing-ming,XIONGYu-zhu,DUANXiao-ping,HUANGWan-xia,TUMing-jing.Studyonopticalpropertiesandapplicationinpolypropyleneageingresistanceofnano-TiO2andnano-ZnO[J].JournalofFunctionalMaterialsContents,2004,35(z1):183187.

[11]汪斌华.半导体无机纳米材料的光学特性及其应用研究[D].成都:四川大学,2003.WANGBin-hua.Opticalpropertiesofnano-semiconducto-materialandtheirapplications[D].Chengdu:SichuanUniversity,2003.

[12]HUJW,LIXG,JING,ZHAOQL.UVagingcharacterizationofepoxyvarnishcoatedsteeluponexposuretoartificialweatheringenvironment[J].MaterialsandDesign,2009,30(5):15421547.

[13]张书第,文松林,杨国生,赵春英.纳米TiO2+SiO2复合粉体改性外墙乳胶漆的研究[J].沈阳理工大学学报,2011,30(1):9094.ZHANGShu-di,WENSon-lin,YANGGuo-sheng,ZHAOChun-ying.Researchofnano-TiO2+SiO2powdermodifiedexteriorwalllatexcoating[J].TransactionsofShenyangLigongUniversity,2011,30(1):9094.

[14]GB/T110262012.电气绝缘材料:耐热性[S].GB/T110262012.Electricalinsulatingmaterials:Thermalenduranceproperties[S].

[15]PRASHANTG,MADHUB.Developmentofsiliconizedepoxyresinsandtheirapplicationasanticorrosivecoatings[J].AdvancesinChemicalEngineeringandScience,2011,1(3):133139.

[16]吴炬,程先华.稀性剂处理对芳纶/环氧复合材料层间剪切强度的影响[J].稀有金属材料与工程,2005,34(12):19171920.WUJu,CHENGXian-hua.Effectofrareearthmodifiertreatmentoninterlaminarshearstrengthofaramid/epoxycomposites[J].RareMetalMaterialsandEngineering,2005,34(1):19171920.

篇8

关键词:纳米 陶瓷膜

一、前言

陶瓷材料作为全球材料业的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是由于存在脆性(裂纹)、均匀性差、可靠性低、韧性、强度较差等的缺陷,因而使其应用受到了一定的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,它克服了陶瓷材料的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响,为陶瓷材料的应用开拓了新领域使陶瓷材料跨入了一个新的历史时期。

纳米陶瓷膜便是纳米陶瓷材料的大家庭中的一种,其产生于21世纪初,具有分离效率高、效果稳定、化学稳定性好、耐酸碱、耐有机溶剂、耐菌、耐高温、抗污染、机械强度高、膜再生性能好、分离过程简单、能耗低、操作维护简便、膜使用寿命长等众多优势,并且对GPS信号无任何屏蔽作用。纳米陶瓷隔热膜是21世纪的航天领域高科技产品,该产品起先应用于美国军事、航空、航天领域。

二、正文

1.纳米陶瓷膜简介及研发历史

陶瓷膜技术是膜技术中的翘楚,但20世纪80年达国家已在广泛应用时,中国在此领域却还是一片空白。十几年过去了,依靠自主创新,中国陶瓷膜技术从无到有,不仅打破了国外的封锁与垄断,还达到了国际领先水平。膜是一种高分子化学材料,它有无数个只能用微米甚至纳米计算的小孔,既有分离、浓缩、净化和脱盐功能,又有高效、节能、环保、分子级过滤等特征。膜技术发明之后便广泛运用于食品加工、水质净化、环境治理、制药工业、化工与石油化工等领域,用来实现产品的净化分离。陶瓷膜就是由经过高温烧结的陶瓷材料制成的分离膜。由于具有独特的耐性,其一进入市场便成为膜领域发展最为迅速、也最有发展前景的品种之一。

到1989年底,南京工业大学徐南平院士才开始了在陶瓷膜领域的艰难探索。经过二十多年的不懈奋斗与努力,中国在陶瓷膜领域不仅打破了西方的封锁与垄断,而且依靠自主创新达到了国际先进水平。

2.纳米陶瓷膜特征与原理

相较于传统聚合物分离膜材料,陶瓷膜具有化学稳定性好,能耐酸、耐碱、耐有机溶剂;机械强度大,可反向冲洗;抗微生物能力强;耐高温;孔径分布窄、分离效率高等优点,在食品工业、生物工程、环境工程、化学工业、石油化工、冶金工业等领域得到了广泛的应用,其市场销售额以30%的年增长率发展着。陶瓷膜的不足之处在于造价较高、无机材料脆性大、弹性小、给膜的成型加工及组件装备带来一定的困难。

陶瓷膜分离工艺是一种“错流过滤”形式的流体分离过程:原料液在膜管内高速流动,在压力驱动下含小分子组分的澄清渗透液沿与之垂直方向向外透过膜,含大分子组分的混浊浓缩液被膜截留,从而使流体达到分离、浓缩、纯化的目的。

陶瓷膜是由孔隙率30%~50%、孔径50nm~15μm的陶瓷载体,采用溶胶-凝胶法或其它工艺制作而成的非对称复合膜。用于分离的陶瓷膜的结构通常为三明治式的:支撑层(又称载体层)、过渡层(又称中间层)、膜层(又称分离层)。其中支撑层的孔径一般为1~20μm,孔隙率为30%~65%,其作用是增加膜的机械强度;中间层的孔径比支撑层的孔径小,其作用是防止膜层制备过程中颗粒向多孔支撑层的渗透,厚度约为20~60μm,孔隙率为30%~40%;膜层具有分离功能,孔径从0.8nm~1μm不等,厚度约为3~10μm,孔隙率为40%~55%。整个膜的孔径分布由支撑层到膜层逐渐减小,形成不对称的结构分布。

陶瓷膜根据孔径可分为微滤(孔径大于50nm)、超滤(孔径2~50nm)、纳滤(孔径小于2nm)等种类。进行分离时,在外力的作用下,小分子物质透过膜,大分子物质被膜截留,从而达到分离、浓缩、纯化、去杂、除菌等目的。

3.纳米陶瓷膜的优势

陶瓷隔热膜系是由导电性物质氮氧化物组成,具有独特的分子结构,是一种性能独特并持久耐用的复合陶瓷膜结构。因而其具有阻隔红外线、分离效率高、效果稳定、化学稳定性好、耐酸碱、耐有机溶剂、耐菌、耐高温、抗污染、机械强度高、膜再生性能好、分离过程简单、能耗低、操作维护简便、膜使用寿命长、隔热性能好,质量稳定等众多优势,并且对GPS信号无任何屏蔽作用。能够保持最高的可见光透射率的同时,又能提供最高的红外线和远红外线的反射。

4.纳米陶瓷膜的研究现状

纳米陶瓷膜目前主要采用纳米材料淀积技术,与PET表面涂布纳米陶瓷有所不同,它是将纳米陶瓷材料混合到PET基材颗粒,从而提高产品性能,使其达到前所未有的稳定。在金属膜的技术上通过纳米陶瓷技术,采用先进的真空磁控溅射工艺,用精微的纳米状陶瓷物质来制造,从而使产品对光进行智能滤光筛选,最大限度阻隔热量,性能大大优于单纯金属薄膜。此外,纳米陶瓷膜的生产还采用了高隔热低反光技术,一方面可以使薄膜有效隔热率超过90%,提高室内舒适度和节省能源;另一方面却没有增加薄膜的反光。通常提高隔热能力的同时,总是要加强隔热膜的反光,这样会使得室内可见光大量损失,并且使得通信信号大幅减弱;强烈的内反光极易干扰视线,引起视觉疲劳。

5.纳米陶瓷膜的应用前景

随着现代科学技术的发展和生活水平的提高,人们越来越重视节能和环。建筑物门窗玻璃、顶棚玻璃、汽车玻璃和船舰玻璃对可见光的透过性有较高的要求,但在满足采光需要而使可见光透过的同时,太阳光的热量也随之传递。因此,对室内温度和空调制冷能耗产生一定程度的影响。在夏季这种影响特别显著,透过玻璃窗进入室内的太阳能量加大的了空调的载荷。通常空调的设定温度与负荷具有如下关系:设定的制冷温度提高2℃,制冷电力负荷将减少约20%;设定的制热温度调低2℃,制热电力负荷将减少约30%。为了节约能源,人们采用了金属镀膜热反射玻璃和各种热反射贴膜,用以反射部分太阳光中的能量,从而达到隔热降温的目的。但是,这种做法对产品的应用构成影响,要么达不到预定的效果,要么加大了制作工艺成本。纳米陶瓷膜出现,为透明隔热问题的解决提供了新的途径,具有广阔的应用前景及市场价值。目前在国内,研发应用此产品已经引起了不少公司的关注。

三、结论

近几十年来,陶瓷材料的应用及发展是非常迅速的,陶瓷材料作为继金属材料、高分子材料后最有潜力的发展材料之一,它在各方面的综合性能明显优于现在使用的金属材料和高分子材料。陶瓷材料的应用前景还是相当广阔的,尤其是能源、信息、空间技术和计算机技术的快速发展,更加拉动了具有特殊性能材料的应用。相信在不久的将来,陶瓷材料会有更好、更快的发展,展示出其重要的应用价值,为人类的文明发展做出重要贡献。

参考文献 :

篇9

关键词:光散射;面散射;体散射;共混;共聚

光散射材料是指能够使光通过而又能有效的散射光的材料。透光率和雾度是评定光散射材料的两项主要指标。透光率是指透过试样的光通量和射到试样上的光通量之比。它是表征透明高分子材料透明程度的一个重要性能指标。雾度,又称浊度,是透过试样而偏离入射光方向的散射光与透射光通量之比,是材料内部或表面上的不连续性或不规则性所造成。通常用雾度的大小来表征材料的光散射强弱。

光散射材料能将点、线光源转化成线、面光源,可以作为面光源材料应用指示标牌、广告招牌、展示橱窗、投影背墙以及壁挂式均匀照明光源等,也可以作为背光源材料应用于液晶显示,还可以与液晶元件复合制备高分子分散型散射元件。

1光散射产生的机理

如果媒质的均匀性遭到破坏,即尺度达到波长数量级的邻近媒质小块之间在光学性质上(如折射率)有较大差异,在光波作用下,它们将成为强度差别较大的次波源,而且从它们到空间各点已有不可忽略的光程差,这些次波相干叠加的结果,光场中的强度分布将与上述均匀媒质情形有所不同,这时,除了按几何光学规律传播的光线外,其他方向或多或少也有光线存在,这就是散射光,即产生了散射。对于不均匀形态较大的媒质,光散射也可看作是反射和折射的综合结果。

散射光强除了与入射光的波长、散射角有关外,还与散射体材料的折射率(N)和机体材料的折射率有关。目前,关于散射光强的计算理论,发展还不十分完善。

计算散射光强,最简单的近似理论为Rayleigh-Gans-Debye(RGD)理论。对于半径较大或折射率较大的粒子,要用Mie理论来计算光强。如果粒子达到Mie理论不适用时,就要用传统的射线光学来处理。下面的公式可以用于聚合物光散射材料散射光强的近似计算:

Iv=KI0R3π3λ0-4(n2B-n2)[1+(8/3)2R2υ2sin2(θ/2)]-2

式中,K为常数,υ=2π/λ,λ为光在介质中的波长,λ0为光在真空中的波长,θ为光散射角,n是介质的平均折射率:n=nAVA+nBVB。

2光散射材料的分类

根据散射机理的不同可以将光散射材料分为:面散射材料和体散射材料。

传统的光散射材料大多为面散射材料,采用面散射机理,即将透明板材或其它形状制品的一个表面(一般为内表面)打磨,涂层或将其成型模具的相应面做喷砂或刻痕处理,利用它们粗糙的表面来产生光散射。这种材料的一个显著缺点是:它不能较好地兼顾材料的光散射性和透明性,综合性能较差。因而大大限制了它的应用范围。

体散射材料多为分散有光散射体的透明合成材料,起散射作用的散射体的尺寸等于或大于可见光波长。这种材料应用了整体散射机理:即材料的内部与表面均起散射作用,能够很好地克服面散射所固有的弱点,制品具有高的光散射性,较好的透明性及优异的综合性能。目前,它已成为一种新型的背光源材料,逐渐在许多领域取代了传统光散射材料,并进一步扩展了新的应用领域如液晶显示等。

另外,还有一种体-面散射材料,由产生体散射的基板和涂覆在基板上的能够产生面散射的表面组成,即将消光颗粒与涂料共混,涂覆在基板表面,利用涂层的收缩形成表面微结构,同时消光颗粒导致了涂层的光学非均一性,产生光散射。

3光散射材料的制备

3.1面散射材料的制备方法

通过对透明的基体材料表面进行磨砂处理,或利用特殊的成型模具或浮雕辊得到浮雕或喷砂效果的表面,利用材料表面的粗糙度得到散射效果;也有以表面凸凹起伏的高分子材料制备,巧妙设计表面的波纹实现材料的散射效应。面散射材料的制备方法存在着显著的缺点:一方面,散射光的量取决于刻痕和划痕等的数量及分布,使散射发生的不均匀,另一方面折射率和透光率不易控制。

3.2体散射材料的制备方法

体散射材料的制备方法大致分为两种:聚合法和共混法。

3.2.1聚合法

利用折光率有一定差异、相容性不太好的聚合物单体共聚合或采用分段聚合来制备光散射材料。具体又可分为以下几种情况:

①将一种单体混合分散于透明的基体中,使单体聚合,生成的聚合物作为散射体,其折射率不同于透明基体的折射率,因而入射光产生光散射。

②将一种单体混合分散于一种透明材料中,使单体聚合,生成的聚合物作为基体,其折射率不同于透明材料,进而材料产生光散射。

③散射体材料是无机粒子或有机粒子,将散射体粒子分散于基体单体中,使单体聚合生成聚合物基体。

ISHIHARADAM等人以玻璃转化温度低于室温的弹性体橡胶为基体材料,以折射率不同于基体的透明材料(可以是无机粒子或有机物)为散射体,通过聚合法制备了一种光散射材料,广泛应用于照明装置,也可以作为灯箱广告牌的面光源,还可以与透光管和光波导管联用。由于基体的玻璃转化温度低于室温,所以材料在室温下即可操作加工。华南理工大学高峰等人,以不同分子量的聚苯乙烯作为散射材料,将其溶解在甲基丙烯酸甲酯中,通过原位聚合法制备了光散射材料,研究发现PS作为散射体分布在基体PMMA中能够产生散射,PS的分子量要高于临界分子量43900。当聚苯乙烯分子量大于43900,且其质量分数为0.20%-0.3%时散射板性能最优,透光率为73.0%,雾度为74.7%。

近年来,纳米粒子掺杂有机玻璃制备新型复合材料广受关注。张启卫等人通过原位聚合和同步溶胶-凝胶过程制备了PMMA/SiO2杂化材料,研究表明该材料有机/无机两相间的相容性好,材料的透明性好,透光率可达80%左右。清华大学钱志勇等人以纳米Al2O3、SiO2和CaO颗粒,采用三种不同粒度的纳米颗粒利用在位分散法制备了以PMMA为基体的复合光散射材料,成功用于平板显示。其研究指出:由于微粒的散射和纳米粒子的结构特点,随着纳米粒子粒度的减小,复合材料样品板亮度增加,视角变大,整体光学性能变得优异。中国专利03127636.9提供了一种纳米硅改性有机玻璃光散射材料及制备方法。该方法先将纳米SiO2粉末通过高频超声波震荡混入MMA单体中,使其呈乳白色半透明状,加入引发剂及其他组分真空脱气后在90℃预聚合,冷却灌浆入模后在25-100℃处理24-72小时即可得到光散射材料。材料的光谱透过曲线与本体材料相近,光散射分布均匀,可用作照明显示器件。

3.2.2共混法

共混法是通过透明的聚合物基体材料和散射体粒子的共混制备光散射材料的方法。

在共混法中,散射体粒子的制备至关重要。欧洲专利EP0634445报道了一种核壳结构的复合散射粒子,这种光散射复合物以类橡胶的乙烯基聚合物为核,具有一层或多层壳,散射体粒子中含有至少15%的烷基丙烯酸或烷基甲基丙烯酸。日本专利JP04161448中介绍的光散射材料,使用一种粉末状的TiO2,外层涂有交联球形环己顺丁烯-二酰亚胺-苯乙烯共聚物作为散射体粒子,但是成本很高。美国专利Pat.Nos.5237004和5346954中使用了一种具有橡胶核热塑壳的散射体粒子,能够很好的分散于基体中,而基体的抗冲性能和物理性质不受影响,而且核内聚合物的折射率可以调节,也保证了基体良好的透光率。目前,大多数新型光散射材料是采用共混法生产的。因为这种方法与一般聚合物掺混的工艺过程非常类似,特别是对于用量最大的光散射板材,它能够连续化生产,生产率较高。但是共混法制备光散射材料经常会遇到一些问题,例如:粒子与基体材料的相容性差,不易分散于基体材料中;分散相粒子在基体中的分散性能差导致基体材料的透光率下降以及物理性能老化;材料的折光率不易调节,导致光学性质不易调节;分散相粒子坚硬导致材料的抗冲击性能变差等。如何行之有效地克服这些问题,将是今后共混法研究的方向。

4光散射材料的发展方向

目前,光散射材料在照明领域和显示领域得到了广泛的应用,随着光散射材料性能的不断提高和完备,其应用领域将进一步扩大。一些具备特殊功能的光散射材料将会不断被开发出来,例如热可逆记录材料和表面具有自清洁功能的光散射材料等。由于纳米技术的飞速发展,无机掺杂聚合物制备复合光散射材料也将成为研究的一个热点。

参考文献

[1]IshiharadaMinoru,TanumaItsuo,NaitoKazuo.Lightscatteringmaterial[P].US5744534.1998-04-28.

[2]孙氏彧,等.高散射材料的透光率和雾度[J].轻工标准与质量,2000.

[3]魏鹏.超细聚硅氧烷类微球的制备及其在显示硬屏中的应用[D].上海:华东理工大学,2004.

[4]Oda,Masaharu,Chiba,Issei,Hayashi,Yasuko.Surfacelightsourcedevice,andliquidcrystaldisplaydevice,signdisplayapparatusandtrafficsigndisplayapparatususingthesurfacelightsourcedevice[P].US6332691.2001-12-25.

篇10

关键词:通用飞机;风挡玻璃;低成本制作

引言

随着中国低空空域不断放开的政策引导下,使得中国通用飞机市场成为全世界通用航空业者最垂涎的“蛋糕”。庞巴迪、湾流、塞斯纳、豪客比奇等世界知名通用飞机制造商纷纷展开在国内合作项目。在国家及地方政策大力扶持下,各地正新建数十个航空产业地基。中国通航产业市场正在步入高速发展阶段。在未来几年中,国内通用飞机持有量即制造数量将呈几何级数增长。

风挡玻璃作为通用飞机的一项不可或缺的关键零件,因其独特的加工工艺技术及零件薄、尺寸大、外形复杂、批产量大、低制造成本的产品特点,使国内通用飞机风挡玻璃制造技术及制造产业相对空白。面对国内通用飞机市场巨大的需求,加速完善国内通用飞机产业链条,抢占市场先机。有必要大力发展飞机风挡玻璃低成本制作技术。

1 通用飞机风挡玻璃产品介绍

小型通用飞机风挡普遍采用单块铸造丙稀酸脂有机玻璃,其设计尺寸大,无中央隔框,平面投影面积约2m×1m,厚度约3-5mm。在保证飞机气动性能的同时,给内部乘员提供良好的视界,还能使飞机外观时尚美观。

2 风挡玻璃材料选择

座舱盖透明件材料要求具有良好的光学性能,透光度应在90%以上,能为飞行员提供清晰的视界,同时又要具有一定的综合力学性能,可以承受一定载荷作用。目前用于座舱盖透明件的材料有两大类,一类为丙稀酸脂材料,另一类为聚碳酸脂材料。

聚碳酸脂材料优点是韧性好,疲劳强度和抗冲击强度高,缺点是硬度低,使用中易磨损和划伤,需要在表面涂一层耐磨油脂,另外透光度(88-91%)比丙稀酸脂材料(91%)略低。但由于透光度难以达到要求,聚碳酸脂材料使用并不普遍。

丙稀酸脂材料优点是透光度高,具有一定的硬度,缺点是比较脆。目前飞机座舱盖透明件普遍采用丙稀酸脂材料。丙稀酸脂又分为拉伸丙稀酸脂(也称定向有机玻璃)和铸造丙稀酸脂(也称非定向有机玻璃)两种,拉伸丙稀酸脂与铸造丙稀酸脂相比,韧性好、疲劳强度和抗冲击强度高,由于拉伸丙稀酸脂需要吹塑成形,其成形技术难度高、制造成本高。对于通用飞机风挡外形太复杂、制造成本低的原因,只能选用铸造丙稀酸脂材料。

3 某型飞机风挡加工过程介绍

3.1 典型工艺流程图(见图1)

3.2 典型工艺流程

(1)原材料储存

原材料尺寸36"×72",室温下储存,湿度不高于70%,环境无大量灰尘。

(2)原材料检验

去除保护纸并检验材料厚度及表面质量,是否存在划伤、气泡、杂质、裂痕等质量缺陷。

(3)成型前的准备

检查成型工装胎面是否洁净,成型工装胎面须在成型4-6架份后,在胎面上重新均匀撒婴儿爽身粉(中性)。成型工装胎面每两年更换毡布。然后将材料悬挂至滑轨上,使用中性肥皂水对玻璃两面进行清洗。

(4)材料加热

将材料悬挂至烘箱滑轨,并送至烘箱内加热。升温至160±5℃,并保温14min。

(5)零件成型

零件出炉时,工人应迅速、动作协调一致,将零件取下。材料需在5秒钟内放到工装胎面上。两名工人端起风挡材料应同时置于工装胎面上,不允许将零件离开胎面重新调整,并且材料两端余量应相当。

然后迅速将成型工装上盖板扣下,并进行人工压紧。在材料冷却10分钟后,对材料表面按零件边缘线进行标记,最后取下。

如果零件成型后出现折皱等质量缺陷,可将玻璃回炉重新加热成型。经验表明重新成型次数不能超过3次。

(6)光学检验

成型后的零件在暗室中对着光栅检验零件的光学性能。对出现的质量缺陷进行打磨返修或者回炉返工。

(7)零件回火

零件在70±5℃的封闭洁净空间内,回火12-20小时。以便消除零件成型时产生的内部应力。

(8)喷涂胶衣

为防止在储存、周转、装配的过程中零件表面受到划伤,对零件表面喷涂保护胶衣。

(9)切割零件

将零件放至铣切工装上,按铣切工装托架边缘铣切零件外形,并去除锐边及毛刺。铣切工具选择转速为20000转/分钟的高速手持铣枪。切割时应注意铣刀与零件表面尽量成垂直状态,避免铣到零件边缘线内。

(10)终检打包

对零件进行最终检验,并贴零件标示后进行包装周转。

4 设备配备

4.1 烘箱

设备工作温度160℃,炉温均匀性±5℃。采用热风循环加热方式,循环方式采用上下流动形式,加热空气有过滤装置,保证加热空气相对洁净。烘箱带有上挂式滑道。有温度自动记录系统及报警系统。烘箱内腔尺寸不小于2.5m(长)×1.2m(宽)×2m(高),有效加热面积不小于2m(长)×1.5m(高)。

4.2 回火加热设备

可将40m2封闭区域加热至70℃,炉温均匀性±5℃。采用热风循环加热方式,加热空气有过滤装置,保证加热空气相对洁净。有温度自动记录系统及报警系统。

4.3 工具

4.4 工装

5 常见的质量问题

(1)雾气:透过玻璃观察,存在雾气般的模糊。

产生原因:使用不当的清洁剂(如酒精等)。

解决措施:可通过对玻璃表面进行抛光消除。

(2)细纹:玻璃内部有裂痕,出现银纹现象。

产生原因:玻璃在成型、回火、切割工序中由于内部应力释放不均产生的。

解决措施:无

(3)划伤:玻璃表面不同程度的凹陷。

产生原因:玻璃表面保护不当,在制造、周转等工序中对零件表面产生的划伤。

解决措施:测量划伤深度及面积。对于一定程度的划伤可通过打磨和抛光进行消除。

(4)畸变:玻璃的光学性能发生变形。

产生原因:由于对玻璃表面进行打磨、抛光不均匀,产生的视觉差异。

解决措施:通过光栅检验,划定畸变区域,进行进一步的打磨、抛光,直至完全消除。

6 结束语

通用飞机风挡玻璃成型工艺及工艺参数经过试验应证,不仅效率高,而且合格率高。实践证明上述成型工艺技术可行,而且满足产量大、低成本制造的要求。

参考文献

[1]肖亮.飞机风挡动力响应的MCA方法分析[D].沈阳理工大学,2006.

[2]毛坤.某飞机座舱罩结构强度分析与设计优化[D].西北工业大学,2007.

[3]颜鸣皋.中国航空材料手册(第5册)[M].北京:中国标准出版社,1988.

[4]岳锡华,张维佳,赵屹.飞机座舱有机玻璃透明导电膜的制备及透光和微波散射性能[J].航空学报,1995,16(5):545-551.

[5]吴志恩.国外飞机有机玻璃件成形中的质量保证[J].航空工程与维修,1999(1):40-42.

[6]陶公德.飞机透明件及其制造技术的发展[J].西飞科技,1991(4):33-36.

[7]史伟琪.F-16飞机的透明件技术[J].航空制造工程,1997(5):3-5.

[8]冯力军,尹志华,干苏,等.聚甲基丙烯酸甲酯疲劳裂纹扩展的研究[J].高分子材料科学与工程,2000,16(6):121-123.