数学建模思想的作用范文

时间:2024-01-02 17:44:56

导语:如何才能写好一篇数学建模思想的作用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模思想的作用

篇1

【关键词】数学建模 原则 应用

一、数学模型的定义

现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。今天,数学在许多领域上起着十分关键的作用,数学建模被时代赋予更为重要的意义。

二、数学建模的方法和步骤

1.模型准备

要了解问题的实际背景,明确建模目的,尽量弄清对象的特征。

2.模型假设

根据对象的特征和建模目的,对问题进行必要地、合理地简化,用精确的语言做出假设,是建模至关重要的一步,高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,使问题简单化。

3.模型构成

根据所做的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其他数学结构。

4.模型求解

可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的数学方法,对问题进行合理地验证。

5.模型分析

对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果做出细致精当地分析,决定了你的模型能否达到更高的档次。

三、数学建模案例分析

在教学过程中,为了让学生认识到学习数学的重要性,了解数学在实际生产、生活中的应用,用数学建模来解决实际问题就是数学在生活中的重要应用,这里以一个数学案例来说明数学建模思想

例:码头工人以每天30吨的速度往一艘轮船上卸载货物,卸载完毕恰好用8天时间:

(1)轮船到达目的地后开始卸货,卸货速度与卸货时间之间有怎样的函数关系?

(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸载多少吨货物?

对于问题(1)我设计如下问题:①这艘轮船上装有多少货物?

②轮船到达目的地后,卸下的货物是多少吨?变量和常量是什么?

设计这些问题的目的是让学生明白,货物重量是240吨,是一个常量,变量时卸货速度和卸货时间。

③若设卸货的速度是V,时间为t,那么V与t之间有什么函数关系呢?

设计意图是通过对问题的抽象,应用“工作量=工作速度×工作时间”,建立V与t之间的数学模型(反比例函数)。

对于(2)设计问题如下:①如果用5天时间卸完240吨货物,那么每天卸货多少吨?

②当变量t的取值小于5时,对应的函数V的值比48大还是小?

③当t的值不超过5时,对应的函数V的值是大于48还是小于48?

设计意图是让学生明白,t的取值越小,V的值越大。

四、数学建模教学应遵循的几个原则

应该如何培养学生在掌握数学的同时又能解决实际问题、提高学生数学建模能力?通过教学实践,我认为主要应该把握好以下几点:

1.要解决数学建模能力中的核心层――数学化

学生解决“应用”问题,有两个“拦路虎”,首先就是学生不会将实际问题转化为数学问题,即数学化过程。这里需要解决学生怎样通过阅读理解将文字语言转化为数学符号语言,这一点恰恰是教学的一个盲点,学生不能对应用问题进行有效的阅读理解。日常教学中,我们要注意指导学生在阅读中形成阅读想象、阅读联想、阅读思维、阅读情感等稳定的阅读心理要素,持之以恒地训练,使学生形成良好的阅读理解能力。其次,应加强学生的运算(特别是近似计算)能力培养,应鼓励学生使用计算机、计算器等工具。

2.要突出学生的主体地位

学生主体地位是指学生应是教学活动的中心,教师、教材以及一切的教学手段,都应为学生的学习服务,让学生应积极参与到教学活动中去,充当教学活动的主角。教师要鼓励学生大胆尝试,鼓励学生不怕挫折失败,鼓励学生动口表述、动手操作、动脑思考。鼓励学生要多想、多读、多议、多讲、多练、多听,让学生始终处于主动参与、主动探索的积极状态。如在“打包问题”教学中,可让学生自己制作模型,自己测量有关数据,自己动手摆列模型,有助于学生深入思考问题的实质,教师要在讲解过程中不断渗透建模的思想,由师生共同探讨得到数学建模的结果。

3.要把握适应性原则

数学建模的设计应与课堂教学内容相配套,体现数学建模的思想方法。设计所涉及的数学知识可有所拓宽,但课堂教学中建模问题要与教学目标和课堂教学进度相适应,不可任意地拓宽和加深,以免加重学生学习负担。选题时可以结合教学内容构造实际模型。

比如函数、不等式等问题,可以从教材的例题和习题中改造而成。如:《抛物线》中有一道例题,“抛物线形拱桥如图所示,当拱顶离水面2.5m时,水面宽4.5m。如果水面上升0.5m,水面宽多少(精确到0.01m)?”(此处图略)稍加改变就可以形成一系列从应用到建模的问题:(1)一辆货车要通过跨度为8m,拱高为4m的单行抛物线形隧道(从正中通过),为保证安全,车顶离隧道顶部至少要有0.5m的距离,若货车宽为2m,则货车的限高应为多少(精确到0.01m)?(2)一条隧道顶部是抛物拱形,在(1)中将单行道改为双行道,即货车必须由隧道中线的右侧通过,那么货车的限高应是多少?(3)一辆货车高3m,宽2m,要通过高为4m的单行抛物线形隧道,为安全起见,车离隧道顶部至少要有05m的距离,那么拱口宽应是多少米(精确到0.01m)?(4)将上题中的单行道改成双行道,再回答上面的问题;(5)将(1)中的抛物线拱改为圆拱,再解问题(1);(6)将(2)、(3)、(4)中的抛物线拱改为圆拱,重解这三题;(7)如果开口向下的抛物线下的面积可以用公式s=2ab/2计 算(其中2a是抛物线开口宽度,b是抛物线高度),问分别开凿满足问题(1),(5)等长的公路隧道,哪一种拱线的土方工程量更小?(8)请你设计一条抛物线拱,它满足(4)中双行要求,且拱曲线下的面积最小,从而开凿的土方量最小。

另外也可以联系实际生活,引导学生建立一些简单的数学模型。日常生活是应用问题的源泉之一,现实生活中有很多问题可以通过建立数学模型加以解决。如购房问题,市场经济中涉及如成本、利润、储蓄等方面的问题是数学建模的好素材,适当选取后融入教学活动中,让学生“跳一跳可以把果子摘下来”即可。

4.要注重渗透数学思想方法

数学思想方法是数学知识的精髓,是知识、技能转化为能力的桥梁。建模过程应该是渗透数学思想方法的过程。比如化归的思想,函数的思想,方程的思想,数形结合的思想,等价转化思想,消元法、换元法、待定系数法、配方法、反证法、解析法等数学方法。教学中注重全方位渗透数学思想方法,才有可能让学生从本质上理解数学建模的思想。

五、数学建模思想的应用

1.在数学概念教学中应用数学建模思想

在数学概念的教学中,运用数学建模思想也能取得较好的实效。比如,在讲授“轴对称”概念时,可以给出“奶站”模型,让学生熟知此类问题的实际应用。对于不同的模型,一旦抛开其实际意义,可以单纯地从数学结构上来看待,能让学生体验到数学的魅力。

2.在作业布置中应用数学建模思想

现行的教材,涉及应用方面的问题很少,这对于培养学生的创新能力是十分不利的。为尽量弥补这一缺憾,可补充一些数学建模的素材到习题之中,这样不但能够丰富教学的内容,而且又能让学生体验到学习数学建模的全过程。

3.在考试考核中应用数学建模思想

数学考核的方法正在从单一的闭卷考试转变为多样化形式,可见,客观公正、尊重个体能力及差异变得更加重要,而创新意识的培养则是数学建模学习的宗旨之一。因此,在考核中,要充分展现学生各方面的创新能力。

总之,数学建模思想的应用,对于数学教学改革具有非常重要的意义。将数学建模思想引入数学教学,其目的是更好地促进学生的数学学习,提高他们运用数学思想分析问题、解决问题及抽象思维的能力。教师要通过数学建模思想的应用,使学生初步掌握从实际问题中概括数学内涵的方法,激发学生的数学学习兴趣,并为将来学生的专业课学习奠定坚实的数学基础。

六、总结

数学以高度的抽象性、严密的逻辑性以及广泛的应用性,渗透于科学技术及实际生产生活的各个领域。建模能力是解题者对各种能力的综合应用,它涉及文字理解能力,对相关知识的掌握程度,良好的心理素质,创新精神和创造能力,以及观察、分析、综合、比较、概括等各种科学思维方法的综合应用。数学建模教学在以上适度的原则下也不应该拘泥于形式,受缚于教条,我们应密切关注生活,结合课本,改变原体,将知识重新分解组合,使之成为立意高、情境新、设问巧、并赋予时代气息的问题,这对培养学生思维的灵活性、敏捷性、深刻性、广阔性、创造性是大有益处的。数学建模是一种新的学习方式,顺应了社会发展及教育改革的需要,有助于培养学生学习的兴趣,也可以增强学生应用数学的意识。

【参考文献】

[1]白其峥.数学建模案例分析[M].北京:海洋出版社,2000.

[2]朱道元.数学建模案例精选[M].北京:科学出版社,2003.

[3] 陈理荣.数学建模导论[M].北京:北京邮电大学出版社,1999.

篇2

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者总结了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

篇3

[关键词]数学建模,数学教学,高等数学

1 在高等数学教学中渗透数学建模思想

全国大学生数学建模竞赛虽然发展得迅速,但是参赛者毕竟还是很少一部分学生,要使它具有强大的生命力,笔者认为,必须与日常的教学活动和教育改革结合起来。任何一门学科的产生与发展都离不开外部世界的推动,数学也是如此。牛顿、莱布尼兹当年发明微积分就是和解决力学与几何学中的问题紧密联系着的。直到今天,微积分仍在各方面发挥着重要作用。但以往的高等数学教学往往是板着面孔讲理论,而割裂了微积分与外部世界的生动活泼的联系,没能充分显示微积分的巨大生命力与应用价值。学生学了一大堆的定义、定理和公式,可能还没有搞清楚为什么要学习微积分,也不知道学了微积分究竟有什么用。如果能在高等数学的教学中充分体现数学建模的思想,在讲述有关内容时与相应的数学模型有机结合,在看来十分枯燥的教学内容与丰富多彩的外部世界之间架起桥梁,而不是额外增加课程,岂不是可以收到事半功倍的效果?事实上,这种数学思想的渗透可以把数学知识和数学应用穿插起来,这就不仅能增强数学知识的目的性,增强学生的应用意识,而且也将在填补数学理论与应用的鸿沟上起到很大作用。另外,学生能力和素质的培养不是一朝一夕之功,应采取长期的、循序渐进的原则。在高等数学教学中配以循序渐进、由浅入深、由易到难的数学模型内容,这就易于在潜移默化之中提高学生的数学实践能力,这在学生的能力培养方面又达到了事半功倍的效果;再者,数学模型课程本身内容庞杂,各部分难度深浅不一,在高等数学教学中渗透数学建模思想后,由于已经讲授了微积分方面的数学模型,这有利于后继的数学模型课的进一步学习。因此,在高等数学教学中渗透建模思想的初步训练也是十分必要的。

2 数学建模教育在高等教育中的作用

2.1 数学建模教育有利于高等教育培养目标的实现①可以提高逻辑思维能力与抽象思维能力。逻辑思维能力包括:分析、推理、论证、判断、运用结论等能力;而抽象思维能力包括:分析、综合、概括、归纳、提取等能力。数学建模是建立模型、求解与分析的过程。建立模型是由具体到抽象的认识过程,如变速直线运动速度是位移的导数模型,通过思维分析把感性认识上升到理性认识,这个过程有助于提高学生抽象思维能力。②可以增强大学生的适应能力。如今市场对人才的要求越来越高,人才流动、职业变更频繁,一个人在一生中可能发生多次选择与被选择的经历,通过数学建模的学习及竞赛训练,他们不仅受到了现代数学思维及方法的熏陶,更重要的是对于不同的实际问题,如何进行分析、推理、概括以及利用数学方法与计算机知识,还有各方面的知识综合起来解决它因此,他们具有较高的素质,无论到什么行业,都能很快适应需要。③有助于增加自学能力。由于实际问题的广泛性,学生在建模实践中要用到的很多知识是以前没有学过的,而且也没有时间再由老师作详细讲解来补课,只能由教师讲一讲主要的思想方法,同学们通过自学及相互讨论来进一步掌握,这就培养了学生的自学能力和分析综合能力,使他们走上工作岗位之后,更好用这种能力来不断扩充和更新自己的知识。

2.2 数学建模教育为培养“双师型”的教师队伍打下了基础。高等教育对教师队伍提出了特殊的要求,即在业务素质上,教师除了应有较高的理论水平外,还要有较强的实际动手能力,即要教师成为理论型与实践型相结合的人才。成功地建立实际问题的数学模型并教给学生思路和方法,不仅要求教师具有深厚的数学基础,理性的思维训练,还要求教师应具有敏锐的洞察能力、分析归纳能力以及对实际问题的深入理解和广博的知识面,尤其是在社会经济高速发展的今天,数学建模已不单纯从数学到数学,而是涉及物理、化学、生物、医学、经济、管理、生态等众多领域。从事数学建模教学的教师必须不断地拓展自己的知识面,深入实际,才能有所作为。这无疑为“双师型”教师队伍的建没打下了良好的基础。另外,数学建模教学对高等教育专业的设置、高等教育的教学改革也提供了好的思路。高等教育引入数学建模并积极组织学生参与建模竞赛,有利于高等教育的发展,有利于学生动手能力的提高。

3 数学建模教育的具体措施

3.1 突出学生的主体地位。学生主体地位是指学生应是教学活动的中心,教师、教材、一切的教学手段,都应为学生的学习服务;学生应积极参与到教学活动中去,充当教学活动的主角。数学建模的特点决定了每一个环节的教学都要把突出学生主体地位置于首位,教师要激励学生大胆尝试,鼓励学生不怕挫折失败,鼓励学生动口表述,动手操作,动脑思考,鼓励学生要多想、多读、多议、多练、多听,让学生始终处于主动参与,主动探索的积极状态。

3.2 分别要求,分层次推进。在数学建模教学中,根据素质教育面向全体学生,促进学生全面发展的目标,教师要重视学生的个性差异,对学生分别要求,个别指导,分层次教学,对不同学生确定不同的教学要求和素质发展目标。对优生要多指导,提出较高的数学建模目标,鼓励他们大胆使用计算机等现代教育技术手段,多给予他们独立建模的机会,能独立完成高质量的建模论文;对中等程度的学生要多引导,多给予启发和有效的帮助,使中等程度的学生提高建模的水平,争取独立完成教学建模小论文;对差生要多辅导,重点是渗透数学建模的思想,只需完成难度较低的建模习题,不要求独立完成数学建模小论文。

3.3 全方位渗透数学思想方法。数学思想方法是数学知识的精髓,是知识、技能转化为能力的桥梁,是数学结构中强有力的支柱。由于建模数学面对的是千变万化的灵活的实际问题,建模过程应该是渗透数学思想方法的过程,首先是数学建模化归思想方法,还可根据不同的实际问题渗透函数的思想、方程的思想、数形结合的思想、逻辑划分的思想、等价转化思想、类比化归和类比联想思想及探索思想,还可向学生介绍消元法、换元法、待定系数法、配方法、反证法、解析法发、归纳法等数学方法。只要我们在建模教学中注重全方位渗透数学思想方法,就可以让学生从本质上理解数学建模的思想,就可以把数学建模知识内化为学生的心智素质。

3.4 实行以推迟判断为特征的教学结构。所谓“推迟判断”就是延缓结果出现的时间,其实质是教师不要把“结果”抛给学生,推迟判断要注意两个方面:一是数学概念、定理、解题都要作为“过程”来进行,二是教师在聆听学生回答问题特别是回答错误问题或回答得不太符合教师设计的思路时,应该有耐心,不宜立即判断,教师应沉着冷静,精心组织学生与学生、学生与教师之问的教学交流。由于建模教学活动性强,教学成功的关

键是教师要调动所有学生的探索欲望,积极参与教学过程。学生通过步步深入的积极思考探索,激发了思维,真正唤起主动参与的意识。

3.5 重视分析建模的数学思维过程。学生普遍感到数学建模难度大,最重要的原因是数学建模的思维方式与学生长期起来是数学知识学习有明显差异,如何突破这个难点,让学生乐于参加数学建模活动?关键是要分析建模的数学思维过程,通过建模发生、发展、应用过程的揭示,挖掘有价值的思维训练因素,抽象概括出建模过程中蕴含的数学思想和方法,发展学生多方面数学思维能力,培养学生创新意识,让每一个学生各尽其智、各有所得,获得成功。

3.6 特别强调数学应用。数学建模教育要注意以下几点:

①引导学生关注日常生活问题,将学生实际生活中遇到的问题有机地融入建模教学,选择数学建模专题时尽可能贴近学生实际。

②在建模教学中,教师要注重再现数学模型形成过程,可先让学生体会数学建模的一般思想方法,进而让学生亲自动手寻找实际问题并自行构造数学模型进行解决,经过一段时间的训练,再引导学生尝试通过建模解决一些复杂但又在现实生活中遇到的问题。

③建模教学要加强与其它学科联系,不仅与物理、化学、生物等学科联系,还可与经济学、管理学、工业生产等方面联系,拓广学生建模问题来源。

篇4

一、高等数学教学中存在的问题

1.陈旧的教学观念

我国高校中的高等数学课堂存在过分看重学生计算能力和逻辑思维能力培养的现象,这样就导致高等数学课堂非常乏味和枯燥,学生在课堂上很难提高学习兴趣和主动学习的能力。一些高等数学教师在传统的教学观念的影响下,在课堂上只是单纯地引入一条条的数学概念和定义,而]有进行详细的实例讲解,这样不仅会造成学生在学习的时候没有足够的积极性,而且当进入社会参加工作以后遇见一些问题的时候,他们常常不能利用相关的数学知识解决相关难题。

2.不恰当的教学内容

目前我国大多数高等院校教师在进行高等数学教学的时候,教授的内容只是经过简化之后的数学分析。例如,在函数微积分的教学中,拥有较强的技巧性和灵活多样的计算方法的不定积分的教学占了几个课时,学生课上学习之后,还需要再花费大量的课下时间进行练习,这样会给学生造成很大的学习负担,而且并没有很强的应用性。

3.落后的教学方法

高等院校的高等数学学习,其教学效果与教学方法有很大关系,所以在目前的高等数学教学中应该改进落后的教学方法。现在的高等数学教学方法属于传统的教授形式,在这样的课堂中教师给学生灌输一些数学知识和相应的定义,十分乏味和枯燥,同时也对学生的创新意识有很大的束缚作用。

二、在高等数学教学中融入数学建模思想

1.融入数学建模思想的重要作用

在高等数学教学中融入数学建模思想,是我国教学改革中的一项重要内容。融入数学建模思想,能够让高等数学教师认识到高等数学教学的重要性,从而明确高等数学中的教学重点内容。把数学建模思想融入高等数学课堂教学中,能够让高等数学课堂变得更加完整,学生对数学知识的理解更加全面,同时还能够培养学生的学习积极性和自主学习的能力。

2.融入数学建模思想的基本原则

在高等数学课堂中融入数学建模思想,首先要能够分清二者的主次关系,虽然融入数学建模思想能够使高等数学课堂气氛变得更加融洽,但是课堂的主要内容还应该是高等数学,而不要把高等数学课堂变成数学建模课。其次,不要生搬硬套数学建模课程,而需要有机地把高等数学课堂和数学建模思想相结合。最后,将数学建模思想融入高等数学课堂上不是一朝一夕就能够完成的,需要教师和学生共同努力,循序渐进来完成。

3.融入数学建模思想的教学案例

在高等数学教学课堂中融入数学建模思想,要能够根据每节课知识点的具体内容补充相应的具体案例,这样能够让学生在课堂建模过程中学会高等数学的具体应用方法。例如,在学习连续函数的零点存在定理的过程中,教师可以提出“登山问题”来让学生进行相应的思考。

在我国高等数学的教学中融入数学建模思想是我国高等院校进行改革的重要内容,能够促进学生综合素质的提高,对加强我国的创新型人才培养有着非常重要的作用。

参考文献:

篇5

关键词:数学建模; 小学数学教学; 渗入

【分类号】G623.5

一、前言

按照小学数学教学的实际需要,在小学数学教学过程中,数学建模思想的渗入关系到小学生数学意识的培养,对小学数学课堂教学质量的提高有着重要的现实意义,从这一点来看,在小学数学教学中,应当做好数学建模思想的渗入,具体应当从创设情境,感知数学建模思想,参与探究,主动建构数学模型,解决问题,拓展应用数学模型这些方面入手,保证小学数学建模思想的渗入能够取得积极效果。

二、小学数学教学中建模思想的渗入,应创设情境,感知数学建模思想

1、小学数学应在课堂中做好情境创设,为建模思想的引入打下基础

结合小学数学课堂教学实际,在建模思想的渗入过程中,首先应当做好情境创设,通过创设良好的数学情境,为建模思想的引入打下坚实的基础,考虑到小学生的思维特点及数学基础,在数学建模思想引入之前,一定要做好情境的创设,通过课堂情景的创设和构建,营造良好的数学教学氛围,为建模思想的引入做好铺垫。

2、小学数学应鼓励学生感知数学建模思想

在做好了前期的铺垫之后,就是应当根据小学数学课堂教学内容和相应的教学案例,鼓励学生感知数学建模思想,从数学思想的角度向学生介绍数学建模的内涵及意义,并且向学生剖析数学建模思想的重要性,以及数学建模思想对日后数学学习的重要意义,让学生对数学思想有全新的认知,做到在后续的学习过程中,能够根据学习需要提高数学建模思想的渗入效果。

3、小学数学教师应做好数学建模思想教学的指导

由于小学生年龄较小,在刚接触数学建模思想的时候,对数学建模思想的内涵和意义认识还不够全面,在此过程中,小学数学教师应当做好数学建模思想教学的指导,通过对学生学习兴趣的引导以及数学建模思想内涵的解读,让学生对数学建模思想有全面正确的认识,减轻在后续教学过程中的压力,避免由于学生认知不足而造成数学建模思想渗入效果不理想的问题。

三、小学数学教学中建模思想的渗入,应参与探究,主动建构数学模型

1、小学数学应在课堂教学中鼓励学生参与问题探究

按照小学数学课堂教学的实际需要,在数学教学过程中,建模思想的渗入应当与课堂教学融合在一起,其中可以通过鼓励学生参与问题探究的方式,以问题探究教学为切入点向学生介绍数学模型建构的意义和作用,并鼓励学生参与到问题探究中来,通过学生自己的问题设定和问题探究,一步一步地引导学生进行数学模型的建构,进而达到提高数学建模思想渗入效果的目的。

2、通过问题探究的方式引导学生主动建构数学模型

在课堂教学中,做好了前期的铺垫之后,就可以通过问题探究的方式引导学生主动建构数学模型,并且利用学生建构的数学模型,解决相应的问题,使学生能够树立信心,并且对数学模型的建构有正面积极的认识,从这一点来看,通过问题探究的方式引导学生主动建构数学模型,是做好数学建模思想渗入的重要措施,也是提高数学建模实践渗入效果的重要手段。

3、教师应当及时的做好指导,解决学生在数学模型建构中存在的问题

由于小学生年纪较小,虽然可以主动参与到数学模型的建构过程当中,但是由于小学生的数学基础相对薄弱,在数学模型建构中还存在较多的问题,在这一过程中,教师应当及时的做好指导,解决学生在数学模型建构中存在的问题,达到有效的指导数学模型的建构,鼓励学生通过数学模型建构的方式解决存在的数学问题,为学生的问题探究提供有力的方式方法。

四、小学数学教学中建模思想的渗入,应解决问题,拓展应用数学模型

1、鼓励学生利用数学模型建构,解决数学问题

从数学建模思想的渗入来看,其目的是教会学生利用数学模型建构的方式解决相应的数学问题,基于这一目的,在做好了前期的铺垫之后,学生从数学模型建构中也积累了一定的经验,在这一过程中,就应当鼓励学生利用数学模型建构解决目前遇到的数学问题,达到拓展应用数学模型的目的,使学生能够获得更多的解决数学问题的手段。

2、引导学生在其他领域有效运用数学模型

从小学数学教学过程来看,建模思想的渗入对小学数学教学人员具有重要作用,做好建模思想的渗入不但能够提高学生的解题能力,同时也有助于拓展学生的解题思路,因此,在建模思想的渗入过程中,应当引导学生在其它领域有效运用数学模型,特别是在生活领域中,应当鼓励学生运用数学模型解决相应的生活问题,使数学模型的应用范围能够得到不断的拓展。

3、培养学生正确的数学建模思维

结合小学数学教学实际,在数学建模思想的渗入过程中,培养学生正确的数学建模思维是十分重要的,同时,培养学生正确的数学建模思维也是解决问题和拓展应用数学模型的基础和关键,为此我们应当认识到小学阶段数学建模思想渗入的重要性,并且重点做好数学建模思维的渗入,为小学数学课堂教学提供更多的教学支持。

五、结论

通过本文的分析可知,在小学数学教学过程中,建模思想的渗入十分重要。要想做好数学建模思想的渗入,就应当根据小学数学教学的实际需要,从创设情境,感知数学建模思想,参与探究,主动建构数学模型和解决问题,拓展应用数学模型等方面入手,保证数学建模思想的渗入能够达到预期目标。为小学数学课堂教学提供数学建模思想,使小学数学教学能够在数学建模思想的渗入方面更加成熟有效。以此达到提高数学建模思想渗入效果的目的,为小学数学教学提供更多的支持。

参考文献:

[1] 蔡新镇;;浅谈小学生建立数学模型活动[J];中国教育技术装备;2011年22期

[2] 刘永文;;在小学数学教学中渗透数学建模思想[J];山东教育;2010年28期

[3] 伍仁刚;;课堂教学有效渗透数学建模思想例谈[J];小学教学参考;2009年23期

[4] 章颖;;在解决实际问题的过程中培养学生的建模能力[J];小学教学参考;2009年32期

篇6

一、数学建模思想对高等数学教育的作用

(一)促进高等数学教育的改革

数学建模简单而言,就是数学模型的建立过程,针对某一现实对象,为其特定目标,以其内在规律为依据,做出假设,利用数学工具,最终得到数学结构,实际上就是利用数学语言描述实际现象的过程。数学建模思想的应用能够促进高等数学教育的改革,转变以往传统的教学模式,提高学生学习的积极性。以往传统的教学方式难以提升学生学习的积极性,且教育过程并未考虑到学生的个性差异,主要依靠老师单方面的讲解,学生无法学习到更多知识,对于重点知识也不能够深入了解,这对于学生个性、创造性的发展都会产生制约作用。数学建模思想的应用可以改革高等数学的教育方式,尊重学生个性,注重创新。

(二)提高学生的积极性

在数学建模中,学生与学生之间会加强交流和讨论,有利于相互学习,激发他们学习的积极性。老师在教学过程中,会注重对学生进行指导,能够及时发现他们在课堂上存在的问题。数学建模思想是一种创新思想,有利于着重培养学生的思维,训练他们的实践能力与动手能力,充分发挥学生潜能。

二、数学建模思想在高等数学教育中的具体应用

(一)将数学建模渗透于教学内容中

要想实现高等数学教育的改革,必须将数学建模渗透于教学内容中,提高教育质量,取得更好的教学效果。数学概念大多都比较抽象,理解难度大。例如在讲述极限理论过程中,为了能够让学生对知识点有更加透彻的理解,需将数学建模思想应用于其中,在讲述函数时,可以与概念形成的物理背景、几何背景相结合,提出概念,使探索过程有更加直观的表现,有利于学生掌握更多的知识点。在高等数学授课中,将数学建模思想应用于其中,有利于让学生对数学教育有更加深刻的认识,促使其创新思维得到激发,充分发挥数学建模的作用,培养学生解决问题的能力。

(二)将数学建模渗透于知识应用中

将数学建模渗透于知识应用中,要注重理论联系实际,突出数学知识的作用,鼓励学生利用数学知识,解决实际生活中遇到的问题,将实际生活、数学知识两者结合,例如在讲述黄金分割点的过程中,可以女生高跟鞋为例,女生穿高跟鞋的目的就是为了让身材比例看起来更协调,这与黄金分割点的知识有一定关联。在课程教育中,可以将趣味故事引入其中,让学生感到课堂气氛非常愉悦,愿意主动学习,加强老师与学生间的沟通和交流,可取得更好的教学效果。另外,还需对数学教育模式进行调整,可减少粉笔、黑板、灌输式教育的使用频率,老师能够适度利用计算机教学,充分发挥高科技的作用,利用技术辅助教学,将高等数学教育、现代信息技术结合,激发学生的好奇心,同时有利于提升课堂教育效率。

(三)将数学建模渗透于教学方法中

在高等数学教育中,课堂教学是其中最主要的环节,不同的教学方法则可取得不同的教学效果,将数学建模应用于教学方法中,可充分体现学生的主体地位,锻炼他们的实践操作能力。在教育过程中,需将建模思想表现出来,老师要尊重学生的主体、核心地位,对他们的学习进行指导。例如在空间平面曲线学习中,老师可以通过数学建模的方式,提高学生的记忆能力与理解能力,例如可讲述以往学过的圆锥、椭圆等相关的知识,分析方程式,鼓励学生回答问题,让学生都参与到教学课堂中,并让学生对一般方程式进行归纳,建立数学模型,锻炼他们的应用能力。

(四)将数学渗透应用于知识探索中

高等数学的教育要将实践、理论结合,利用理论对实践进行指导,利用实践验证数学知识。学生通过实际操作,可探索出更多与数学相关的规律,激发他们的求知欲,锻炼其动手能力,提高他们对数学的学习兴趣,并利用高等数学知识解决日常生活中遇到的数学问题,做到活学活用。

三、结束语

篇7

关键词:建模思想;初中数学;教学实践;运用策略

中图分类号:G633.6 文献标识码:B 文章编号:1672-1578(2016)12-0251-02

新课程改革实施已有一段时间,初中数学教学也取得了一定的进步。但是笔者在初中数学教学中发现很多学生缺乏主动思考意识,探索解决数学问题的能力较差,不能灵活运用所学数学知识解决实际问题。在此背景下,笔者结合多年的初中数学教学经验,并查阅文献资料,就初中数学教学中建模思想的有效运用进行分析探讨,以期培养学生树立建模思想,提高学生的数学综合应用水平。

1.初中数学教学中运用建模思想的必要性

受"应试教育"思想的长期影响,初中数学教师侧重讲解数学概念、数学公式、以及数学解题技巧,忽视了对学生数学应用意识的培养,把学生在考试中取得好成绩当做教学目标。这造成很多学生认为数学就是"学定理、记公式、做题目",数学实际应用能力比较差。

初中数学新课程标准明确指出:"在数学课程中,应当注重发展学生的数感……模型思想。为了适应时展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。"而在初中数学教学中应用建模思想,通过教育初中学生在数学学习中运用建立数学模型的方法来解决数学学习中的问题,从而培养学生的数学应用意识,提高学生利用数学的能力,激发学生学习数学的兴趣,树立学生学习数学的信心。

2.初中数学教学中建模思想的有效运用策略

2.1 巧妙设计问题,培养学生建模意识。在初中数学教学过程中,教师要结合初中阶段学生的智力水平和知识水平,设计数学问题,吸引学生的注意力和好奇心,引导学生主动利用建模思想思考问题。教师可以在课堂中有意识地引导学生去思考,培养学生的数学建模意识和探究意识。

例如,教师在讲授分式方程的内容时,可以举例让学生思考:芦山县发生地震,某厂接到在规定时间里加工1500顶帐篷支援灾区人民的任务。在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?这个题目考察了列分式方程解决实际问题的运用,分式方程的解法的运用,学生解答时会想到根据生产过程中前后的时间关系建立方程。用一个看似简单的例子,引导学生去主动思考,培养学生利用建模解决实际问题的意识。

2.2 提示解题思路,启发学生建模思维。提出问题是学习的开端,如何解决问题才是数学教学的目的。对于教师提出的一些问题,学生可能一时想不到解决思路。在学生努力思考过后还没有头绪时,教师要适当引导,提示解题思路,启发学生建模思维,让学生产生豁然开朗的感觉,提高学生应用建模思想解决问题的能力。

例如,在学习平方根的内容时,教师可以给学生展示准备好的"神舟"十一号飞船升空时的画面,然后跟学生解说:"神舟"十一号飞船发射成功,在太空中与天宫二号空间实验室自动对接。那么,大家知道宇宙飞船离开地球进入轨道正常运行的速度是在什么范围吗?学生开始思考,可能会思考无果,然后教师继续讲解:它的速度要大于第一宇宙速度V1(米/秒)而小于第二宇宙速度:V2(米/秒)。V1、V2的大小满足V12=gR,V12=2gR。怎样求V1、V2呢?这就要用到平方根的概念,也就是本章的主要学习内容。这个举例营造了一个有感染力的课堂互动氛围,使学生对本章知识的应用价值有一个感性认识,同时启发了学生的建模思维,引导学生主动尝试探索。

2.3 加强实践应用,建模解决实际问题。俗话说:学以致用。教师要引导学生多观察、多实践、多思考,拓展课堂教学空间,将数学建模思想延伸到生活中去,启发学生去发现生活中的数学,加强实践应用,鼓励学生利用数学知识建模解决实际问题。

例如,在学过平面直角坐标系的内容后,教师可以给学生布置灵活的课外作业,让学生观察生活中哪些地方运用到平面直接坐标系的内容,并运用所学知识表示出来。学生通过课外观察思考,可能会发现象棋的棋盘、地球仪、电影院的座位排列等等都使用了相关知识。学生根据电影院的座位排列方式,把"第几排"、"第几号"用坐标(a,b)表示出来,在纸上画出场地的排列图示,利用建模思想提高数学实际应用能力。

综上可知,初中数学教师应当结合学生实际,在数学教学中,巧妙设计问题,培养学生建模意识,提示解题思路,启发学生建模思维,同时加强学生实践应用,鼓励学生应用数学建模来解决实际问题。通过多种举措,培养学生的数学应用意识,提高学生的数学综合运用能力。

参考文献:

[1] 杨娟. 初中数学建模思想方法的教学探讨[J]. 学子(理论版),2016,07:56.

篇8

关键词: 数学建模 高职数学教学 教学改革

一、引言

数学是高职院校的重要基础课程,如何满足培养高技能人才目标的需要,逐步实现由基础理论型学科向实践应用型学科的转变,成为高职院校数学工作者研究的课题。要在数学课中引入应用实践性环节,数学建模是非常重要的载体,通过多年来开展数学建模培训教学与竞赛的实践,我们深刻意识到数学建模的思维和方法对培养学生的创造性思维与意识及解决实际应用问题的能力具有重要的作用。探索如何将数学建模思想和方法融入高等数学教学活动中,是高职院校开展数学建模的重要内容之一。

二、数学建模在高职数学教学中的作用

数学建模的指导思想是:以学生为中心、以问题为主线、以培养创新能力为目标。数学建模是联系数学和实际问题的桥梁,是运用数学思想方法解决实际问题的过程。通过数学建模,能把数学知识科学地应用到实践中,让学生体会数学的应用价值,有效地提高学生运用数学知识的能力,提高学生在专业学习中应用数学的能力。

1.有助于提高学生运用数学的能力。

数学应用于实际问题需要用理想化的抽象方法进行模型假设,不管是理论模型还是应用模型,抽象出来的都应该是事物的本质。数学教育必须培养学生把实际问题转化为数学模型的能力。我国大学生在高中阶段接受的是纯粹应试教育,应用数学的意识很弱,对于一个实际问题,不能转化为数学形式去求解。而数学模型是联系数学和实际问题的桥梁,学生通过学习和建立数学建模,可以增强数学应用意识,提高运用数学知识解决实际问题的能力。

2.有助于培养学生的抽象思维能力和创新意识。

数学建模要求学生运用已掌握的数学知识与数学思想方法进行综合分析,发挥抽象思维能力、想象力和创造力,归纳出用以描述实际问题的数学模型,再利用数学理论方法和计算机进行计算得出结论,许多看似完全不同的实际问题经过简化,得到的数学模型是相同或相似的,这就要求学生灵活使用类比归纳、综合抽象、寻找规律等数学思想方法,不满足于现状,立意创新。

3.有助于培养学生学习数学的兴趣。

现代社会要求大学生要有较高的数学素养,只有这样,才能在科学、工程技术等领域有比较大的作为。但是现在不少大学生对数学存有畏惧心理,觉得数学不过是一大套推理和计算的技巧而已,甚至认为大学数学没什么用处,只不过是一种思维的游戏。要改正这种错误认识,学习数学模型是很好的办法。在数学建模的过程中,学生会切身体会到数学应用性和实践性,从而产生学习数学的浓厚兴趣。

4.有利于提高学生运用计算机的能力。

随着计算机技术的发展,大量功能强大的数学软件应运而生,数学软件的使用使得过去很多繁琐的数学计算变得非常容易。而数学模型的求解往往计算量十分巨大,需要借助数学软件解决。通过求解数学建模,熟练运用数学软件,大大提高了学生应用计算机解决数学问题的能力。

三、将数学建模的思想和方法融入高职数学教学中

高职高专的目标是培养高等技能型应用人才。学生走上工作岗位后经常需要建立数学模型解决实际问题。不仅需要数学知识和解数学题的能力,而且需要多方面的综合知识和能力。高职教育要在高度信息化的时代培养具有创新能力的高技能应用型人才。将数学建模引入高职数学教学中已是大势所趋。

1.制定切实可行的教学大纲,构建合理科学的高职高专数学教学体系。

教学大纲是保证教学质量和人才培养规格的重要文件,是组织教学过程、安排教学任务的基本依据。合理制订教学计划、科学设置教学内容,可以提高学生学习的针对性和实用性。为服务专业,我们应该与专业课教师一道,根据学校各专业课程的需要,共同讨论数学课程教学内容等的安排,逐步形成适合本校专业特色的数学课程教学体系。根据各专业的不同需要设置公共模块和选学模块,搭建大平台、多模块的数学课程教学体系框架。

2.编写融入数学建模思想和方法、体现鲜明高职特色的教材。

教材是重要的教学载体,在体现教育思想、实现教育目标上起着非常重要的作用。数学建模是一项实践性的活动。而高职高专培养的是技能型人才,高等数学教材必须突出以实践为基础,以应用性职业岗位需求为中心,以素质教育与创新教育为目的,以培养学生能力为本位的教育观念,从而体现数学建模的思想和方法。针对高职高专的人才培养目标,应该多将实践性教学内容编入教材。

3.采用案例教学,培养学生的数学应用意识与能力。

在高等数学教学过程中,对于每一个新概念或新内容,都尽量用一个能激发学生求知欲的案例引入,在每个知识的教学过程中,尽量列举与相关内容相联系的、与生产生活实际和所学专业紧密结合的应用实例,让学生充分意识到数学本身就是刻画现实世界的模型,并不是纯理论推导而毫无用处的游戏。例如经济学中的边际分析、弹性分析、征税问题等例子。不但能使学生学到知识,而且能让他们体验到探索、发现和创造的过程,是培养学生数学应用与创新意识和能力的好途径。

4.开设数学实验,培养学生的实践动手能力。

数学建模的一个关键步骤是利用计算机求解模型,数学实验是数学建模过程的重要组成部分。通过数学实验,可以加强学生对数学概念的理解,提高学生学习数学的积极性。数学实验提供了一种利用计算机进行交互式学习的环境,学生能够根据自己的设想,动手做数学实验。在这样的教学模式下,学生积极主动地学习,观察能力、归纳能力和思维能力会得到很好的训练和提高,实践动手能力和综合素质也会得到提高。

四、以数学建模为切入点推动高职数学教学改革

1.以数学建模为切入点推动高职数学教学内容和教学方法的改革。

高职教育是培养高等技能型应用人才的教育,因此高职数学的教学内容应充分体现“以应用为目的,以必需、够用为度”的原则,应将数学作为专业课程的基础,强调其应用性及解决实际问题的实用性。基于此考虑,我们一方面可以进一步扩大数学建模活动的受益面,有条件的话可以开设数学建模和数学实验的相关课程,系统介绍数学建模的思想方法和数学软件的使用方法等。另一方面可以在高职数学教学过程中融入数学建模思想和方法,可以把一些实际问题引入课程教学内容,花适当的课时讲解一些简单的数学建模,增强数学内容的趣味性、应用性和实践性。教学方法上,注重理论联系实际,注重将数学的应用贯穿于教学的始终,采用“启发式”、“互动式”的教学模式,运用多媒体和数学实验等多种形式。

2.以数学建模为切入点推动高职数学教学手段和教学工具的改革。

随着现代科学技术的高速发展,数学的应用领域也变得日益广泛。数学建模竞赛的赛题都是一些经过适当简化加工的实际问题,这些数学模型为数学的应用提供了很好的实例。这些实例使学生认识到数学是有用的,进而乐于深入了解数学应用的方法与技巧。在数学建模中,为了求出模型的解,必须用到计算机及有关的数学软件。数学的应用与计算机及数学软件已紧密结合。传统的教学手段——粉笔加黑板,已不适应数学教学的发展和应用现状。计算机进入数学教学势在必行,首先,可以开展多媒体教学,提高学生学习的兴趣;其次,引入数学软件求解数学问题,以及采用数学实验课的形式,促进数学教学与计算机技术的结合。

五、结语

将数学建模的思想和方法融入高等数学课程教学过程是高职高专数学教学改革的必由之路,我们应该加大改革与探索的力度,以数学建模为切入点推动高职数学教学改革,从而让高等数学更好地为高职高专的培养目标服务,为培养出更多更优秀的高等技能型人才作出应有的贡献。

参考文献:

[1]万萍.高职数学建模活动模式的实践与探索[J].国土资源职教改革与创新,2009(Z1).

[2]原乃冬.高等数学教学中渗透数学建模思想的尝试[J].绥化学院学报,2005(4).

篇9

【关键词】数学;模型;建模

近几年,随着数学建模教育的运用和扩展,数学建模能够让学生的创新意识和实践能力得到提高,已经得到了大家的肯定与认可。在人教版高中数学教材中,专家就对数学模型和数学建模提出了明确的概念,并对数学建模的过程和应用提出了相应的要求。但在实际的数学教学过程当中,由于我国边远少数民族地区很多高中学生、汉语理解能力较差、社会阅历较浅,做不到把实际问题和数学原理相结合,造成许多数学题目学生无法理解题目真实意义,更不用说建模和解题了。为此,如何在教学中构建建模教学思想并以此来提高学生的数学学习兴趣和学习成绩,我认为应该做到以下几点。

一、数学建模教学就是要让学生明白数学建模的概念,数学建模思想在解决实际问题中的作用

数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解来解释现实问题。教学建模的目的是体会数学的应用价值,全面培养学生应用意识;增强学生对数学这门科学的学习兴趣,重视团队的合作,在分析问题和解决问的能力上得到有效的提升,知道数学知识的发生过程,培养学生建立良好的创新意识和能力。数学建模的具体分析方法主要有:①关系分析法,通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法;②列表分析法,通过列表的方式探索问题的数学模型的方法;③图象分析法,通过对图象中的数量关系分析来建立问题的数学模型方法。在高中阶段通常利用另外一种数学模型来解应用问题:①建立几何图形模型;②建立方程或不等式模型;③建立三角函数模型;④建立函数模型。另外数学建模是数学学习的一种创新学习,这种学习让学生有了一定的自主学习空间,在学生应用数学解决实际问题的过程中获得其中的价值和作用所在,体验数学与日常生活和其他学科的联系,增强应用意识;用理论知识来解决实际问题,可以很好的增强学生的学习兴趣,使他们在创新意识和实践能力上得到有效的提升。

二、数学建模教学要从实际问题中出发并加以提炼,从而强化学生数学的应用意识和建模的应用能力

数学建模就是要理论联系实际,它主要包括;一是从实际问题中抽象出数学模型;二是利用数学模型来求解;三是结合数学模型解决实际的问题。实际问题在数学建模的教学中有非常重要的作用。例如:小明拿着20元钱去打长途电话,电信部门规定,通话前3分种内收2.4元,3分种后每分钟按1元收费,小明这20元最多能通多长的电话?这道题目知识点是考察学生对函数的概念认识及函数解析式的应用,那我们建模可以利用函数图象建模或列表建模,并利用图象模型或列表模型得出题目解,同时还可以利用图象和列表模型检验问题的解。再例如:学校要举办一次篮球比赛,如果全校共有24个班,每个班都要进行一场比赛,问:学校一共要组织多少场比赛?另外为公平期间,各年级之间每班都举行一场比赛(高三9个班级,高二7个班,高一8个班)问需要多少场比赛?这是一道排列组合题目,在第一问中我们先假设高一(一)班先和其他班级比赛,那么高一(一)班共要比赛23场[数学公式(n-1)]场那么全校要1/2x24x(24-1)[数学公式1/2*n(n-1)]场,对于这一题目我们也可以利用图像来分析演示(仍然是数形结合思想),并还可以用图像来分析判断所列代数式正确性。第二问我们同样可以用第一问中相同的数学方法来求出答案(解法略)。通过以上例题,我们可以看出数学建模教学尽量是从生活的实际需要出发,让学生在掌握知识的同时,也让学生了解为什么要学数学建模,数学建模对我们解决现实问题有何帮助,以及怎样将知识和实际相联系等。

三、数学建模教学要结合实际和有因地制宜的思想

因材施教原则是教育教学的一条基本原则,在高中数学建模教学中教师要结合实际因地制宜进行数学建模教学。首先要选择学生身边的实际问题进行数学建模,这样:一是容易使学生建立比较好的、考虑比较周全的数学模型(只有熟悉问题,才可能考虑周到);二是容易使学生真正体会到数学的应用。其次要依据学生学习过程的认识原则,数学建模教学的内容和方法需要经历一个逐渐深入、提高的过程,应该随着学生思维能力的增长,逐步提出更高的教学目标。再次要根据每个人的认识结构不同,而以不同的方法施教。

四、数学建模教学要提高认识和先行思想

数学建模教学活动是有效培养学生能力,促进应试教育向素质教育转轨的重要过程。它对提高学生的学习兴趣,培养学生应用数学进行分析、推理、证明和计算的能力,用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力都有很大的效果。为此,数学建模教学可以看作为新课程改革下教师在数学教学中的另一种模式。目前高中数学教科书中虽增加了部分利用建模来进行研究的探究问题,但实际教学中除高中数学课本中的学生“阅读材料”内容外,“现成”的数学建模内容非常少,再加上数学建模需要一定的汉语理解能力和数学思维构造能力。为此,在这种情况下教师需要具备数学建模教学的意识,这样才能在日常的教学过程中用自己的意识感染身边的每一个学生,使学生能自主利用现有的知识自主构建数学模型,在数学的王国中自由驰骋。

【参考文献】

[1]新人民教育出版社《中学数学教学课程标准》

篇10

关键词:数学建模;高等数学;创新思想;教学手段;实践效果

引言

柏拉图说过:“数学是一切知识中的最高形式。”由此可见学好数学的重要性。高等数学是大学一年级的一门重要基础必修课,教学基本目标是让学生掌握高等数学中的基本定义、基本定理及应用定义、定理计算相关习题,为学好其专业课打下扎实的数学基础。但是高等数学课程的特点是抽象性和逻辑性都比较强,大部分的知识点学生理解起来比较吃力,上下两册书的难度呈递增趋势,即由一元函数的微积分学到多元函数的微积分学。随着课程的持续讲解,学生学习的兴趣会降低。如何在高等数学的教学中添加“活跃”因子,使高等数学的教学变得丰富多彩,是高等数学教学改革的重点。在充分考虑学生实际情况的基础上培养学生的应用技术能力,是适应新形势下高等数学教学改革的关键。

数学建模是从实际问题出发,首先作出基本假设、分析内在规律等前期工作;然后需要运用数学符号和语言得到目標函数,即数学模型;最后用计算机仿真方法计算出所需结果用来解释实际问题并且能够接受实际的检验。数学建模是理论与实际联系的一个重要桥梁,在教学中合理地加入数学建模解决实际问题的引例,彻底改变只是利用既定的公式和定理进行解题的形式,让学生真实地感受高等数学中公式和定理的用处,既能激发学生学习的兴趣,又能提高学生数学的实际应用能力。

把数学建模思想适当地融入到高等数学的教学中来,是提高教学效果的有效方法,也是教学改革的有效途径。通过在教学中添加数学建模这个“活跃”因子,不仅使得课堂的整体气氛变得活跃、生动。而且可以达到提高学生学习兴趣和综合能力的目的,拓展学生知识的广度,展示高等数学理论知识的实用性和应用性。

一、课上融入数学建模思想的教学手段与方法

(一)教学中融入数学建模思想的方法与作用

传统的教学模式,几乎都是老师一言堂式的教学模式。这种教学模式缺少老师与学生之间合理的互动,课堂逐渐变得枯燥无味,学生自然提不起学习的热情,久而久之教学效果会越来越不理想。并且这种模式很难跟上素质教育的脚步,很难为培养应用技术型本科人才做好数学基础。所以为了适应培养应用技术型本科人才的需要,高等数学课程的教学应打破传统的模式,适应时代的脚步。

在教学中适当地融入数学建模思想是打破传统教学模式的一种的有效方法。针对于不同专业的学生,适当地调整数学建模引入的实例,做到因材施教。比如,针对经济类专业的学生,教学中应多涉及与经济有关的数学建模实例;针对计算机类专业的学生,教学中应多涉及一些应用计算机软件编程的数学建模实例,使得学生在学习高等数学的同时还可以接触到Matlab,mathmatics,lingo等计算机软件方面的知识。这种教学方法,不仅可以提高学生的学习兴趣,促进学生学习高等数学基础知识的自觉性和主动性,而且对学生学习好本专业的后续课程有很好的帮助。

在高等数学教材中有许多知识点的教学可以用于融入数学建模思想,比如函数的极值及最值、导数的概念、微分方程、函数的极限等等。总体来说,无论是在几何上还是物理上的应用实例,都可以看成是一个简单的数学建模问题。通过不同的实例在教学中反复讲解数学建模的过程,不仅使学生对应用高等数学的知识来解决实际问题有了一定的了解,而且还使学生对数学建模有了初步的认识,培养学生将实际问题数学化的能力。

(二)高等数学教材中的数学建模案例分析

下面用教学中的一个具体例题谈谈在教学中数学建模思想的融入,在高等数学教材的下册第九章第八节多元函数的极值及其求法中的例6:有一宽为24cm的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,怎样折法才能使断面的面积最大?求解此题时,首先设折起来的边长为xcm,倾角为α,则梯形断面的下底长为(24-2x)cm,上底长为(24-2x+2xcosα)cm,高为(xsinα)cm,这就是数学建模中的建立变量的过程;

断面面积,A=24xsinα-2x2sinα+x2sinαcosα这就是数学建模中的建立目标函数的过程;0<α≤π/2,0<α≤π/2这就是数学建模中的约束条件;下面求这个函数取得最大值的点Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0..令Ax=24sinα-4xsinα+2xsinαcosα=0,Aα=24xcosα-2x2cosα+x2(cos2α-sin2α)=0.

解方程组,得α=60°,x=8这就是数学建模中的具体模型的求解过程;

根据题意可知断面面积的最大值一定存在,通过计算得知α=π/2时的函数值α=π/3,

x=8点的函数值小,又函数在D内只有一个驻点,因此可以断定,当α=60°,x=8时,就能使断面的面积最大。这就是数学建模中的对模型的分析与检验,找出模型的最优解;在课上讲解这道例题时,就可以以此为例拓展讲解关于数学建模的全过程,第一步模型的准备;第二步模型的假设;第三步模型的构成;第四步模型的求解;第五步模型的分析检验;第六步模型的应用,使学生初步了解数学建模的过程。

二、课下数学建模的组织与培训

有了课上融入数学建模思想作为前提,在课下时间选取部分学生对数学建模方面的知识进行培训与学习,每周固定时间进行数学建模的研讨课,然后学生自主分组,以团队形式进行小范围内的数学建模比赛。

第一阶段:老师具体讲解数学建模所用的基本方法,如层次分析法、模糊线性规划法、图论法插值拟合法等等。并针对每一种数学建模基本方法讲解一个具体的数学建模实例,让学生充分了解各种建模基本方法的应用;培训學习计算机软件能力,如Matlab、mathmatics等数学建模常用软件。使得学生可以有能力应用这些软件来解决数学建模中遇到的问题。

第二阶段:通过一段时间的具体培训,学生对自己在数学建模中的优势和劣势有了一定的了解。有些学生擅长计算机操作,有些学生擅长模型的建立与求解,有些学生则擅长撰写论文。通过一段时间研讨课的接触,学生们对彼此的优势相对比较了解,他们以三人为一团队的形式自主分组,尽量做到在团队中充分发挥自己的长处,并且可以互相配合完成整个数学建模的任务。由老师布置数学建模作业,小组内研究讨论并在规定时间内上交已完成的作业资料。学生通过自己查找相关资料解决问题有助于提高他们学习的主动性,将增强学生应用理论知识的能力,激发学生学习数学的兴趣。老师根据作业的具体情况查缺补漏,对大部分小组比较薄弱的数学建模知识再进行深入讲解与讨论。

第三阶段:开展小范围的数学建模比赛,有了第二阶段的上交数学建模作业作为基础,老师布置数学建模比赛题目,在选择题目时要做到循序渐进。通过比赛的开展,不仅使学生对所学的数学知识有了更加深刻的理解,计算机应用能力得到一定的提高,还培养了学生的协作精神。为举办关于数学方面的创新能力竞赛准备好后备力量,为参加全国大学生数学建模竞赛选拔优秀团队做好基础。

三、数学建模创新能力的实践效果

有了课上融入数学建模思想和课下数学建模的组织与培训作为前提,数学建模的实践效果可以说是水到渠成。近些年来一直持续举办关于数学方面的创新能力竞赛,如数学综合能力竞赛、大学生数学建模竞赛等。在学校及学院领导的大力支持下竞赛开展得十分顺利,在参赛学生及指导教师的不断努力和拼搏下,取得了优异的成绩,获奖范围从国家二等奖到省一、二、三等奖并不断创造着新的纪录。充分说明了培养学生数学建模创新能力的实效性。

下面用一个具体例题谈谈培养数学建模能力的实效性,在高等数学教材的上册第七章第五节中的例4:设有一均匀、柔软的绳索,两端固定,绳索仅受重力的作用而下垂,试问绳索在平衡状态时是怎样的曲线?这道题的求解方法是通过模型的假设,建立微分方程模型,应用高等数学中可降解微分方程的求解方法,就可以求解出此微分方程的特解,即曲线方程。这曲线叫做悬链线。这道题也是教材中一道典型的数学建模题,在课上的教学中会给学生拓展讲解数学建模中的微分方程模型。

2016年的全国大学生数学建模竞赛中的A题系泊系统的设计问题中,就应用到了这道例题中的悬链线方程,可见在高等数学课堂上加入数学建模思想的重要性。高等数学与数学建模相结合可起到相辅相成的作用。学生通过课上学习数学建模思想、课下参与数学建模研讨课、参加小范围内数学建模比赛和全校数学建模比赛等数学能力方面的竞赛,锻炼自己的数学创新能力。有了这些作为基础,才取得了全国大学生数学建模比赛的优异成绩。由此可见,数学建模创新能力的实践效果显著。在整个过程中全面训练学生的综合素质。

四、结语

本文在培养应用型本科人才的新形势下,针对学生的实际情况,提出了课上融入数学建模思想的教学方法和课下组织与培训数学建模的改革方案并加以实施。通过数学建模创新能力的实践效果可以明显看出,整个实施方案的效果显著。这需要求老师在具体的实施过程中做到不断地探索,时常总结具体实践中的宝贵经验,为更好地培养大学生的应用创新能力而努力。

参考文献: 

[1] 王涛,佟绍成.高等数学精品课程建设的研究与实践[J].黑龙江教育:高教研究与评估,2007(10):44-46. 

[2] 同济大学应用数学系.高等数学(第七版)(上下册)[M].北京:高等教育出版社,2014. 

[3] 杨四香.浅析高等数学教学中数学建模思想的渗透[J]. 长春教育学院学报,2014(3):44-46. 

[4] 丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135.