计算机视觉技术的应用范文
时间:2024-01-01 15:20:41
导语:如何才能写好一篇计算机视觉技术的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词 计算机;视觉技术;应用研究
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。
1 计算机视觉技术
计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。
2 计算机视觉技术在各领域的应用分析
随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。
2.1 在工业领域中的应用
工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。
2.2 在农业生产领域中的应用
该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。
2.3 在林业生产中的应用
该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。
2.4 在农产品检测中的应用
农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。
2.5 在电力系统自动化中的应用
计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。
2.6 在图书馆工作中的应用
随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。
3 结束语
通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。
参考文献
篇2
关键词:计算机;视觉技术;交通工程
中图分类号:TP391 文献标识码:A 文章编号:1674-7712 (2014) 04-0000-01
一、引言
随着科技的发展,计算机替代人的视觉与思维已经成为现实,这也是计算机视觉的突出显现。那么在物体图像中识别物体并作进一步处理,是客观世界的主观反应。在数字化图像中,我们可以探寻出较为固定的数字联系,在物体特征搜集并处理时做到二次实现。这既是对物体特征的外在显现与描绘,更是对其定量信息的标定。从交通工程领域的角度来看,该种技术一般应用在交管及安全方面。监控交通流、识别车况及高速收费都是属于交通管理的范畴;而对交通重大事件的勘察及甄别则是交通安全所属。在这个基础上,笔者对计算机视觉系统的组成及原理进行了分析,并形成视觉处理相关技术研究。
二、设计计算机视觉系统构成
计算机视觉处理技术的应用是建立在视觉系统的建立基础上的。其内部主要的构成是计算机光源、光电转换相关器件及图像采集卡等元件。
(一)照明条件的设计。在测量物体的表征时,环境的创设是图像分析处理的前提,其主要通过光线反射将影像投射到光电传感器上。故而要想获得清晰图像离不开照明条件的选择。在设计照明条件时,我们通常会视具体而不同处理,不过总的目标是一定的,那就是要利于处理图像及对其进行提取分析。在照明条件的设定中,主动视觉系统结构光是较为典型的范例。
(二)数据采集的处理。如今电耦合器件(CCD)中,摄像机及光电传感器较为常见。它们输出形成的影像均为模拟化的电子信号。在此基础上,A模式与D模式的相互对接更能够让信号进入计算机并达到数字处理标准,最后再量化入计算机系统处理范围。客观物体色彩的不同,也就造就了色彩带给人信息的差异。一般地黑白图像是单色摄像机输入的结果;彩色图像则需要彩色相机来实现。其过程为:彩色模拟信号解码为RGB单独信号,并单独A/D转换,输出后借助色彩查找表来显示相应色彩。每幅图像一旦经过数字处理就会形成点阵,并将n个信息浓缩于每点中。彩色获得的图像在16比特,而黑白所获黑白灰图像则仅有8比特。故而从信息采集量上来看,彩色的图像采集分析更为繁复些。不过黑白跟灰度图像也基本适应于基础信息的特征分析。相机数量及研究技法的角度,则有三个分类:“单目视觉”、“双目”及“三目”立体视觉。
三、研究与应用计算机视觉处理技术
从对图像进行编辑的过程可以看出,计算机视觉处理技术在物体成像及计算后会在灰度阵列中参杂无效信息群,使得信息存在遗失风险。成像的噪声在一定程度上也对获取有效信息造成了干扰。故而,处理图像必须要有前提地预设分析,还原图像本相,从而消去噪音。边缘增强在特定的图像变化程度中,其起到的是对特征方法的削减。基于二值化,分割图像才能够进一步开展。对于物体的检测多借助某个范围来达到目的。识别和测算物体一般总是靠对特征的甄别来完成的。
四、分析处理三维物体技术
物体外轮扩线及表面对应位置的限定下,物体性质的外在表现则是其形状。三维物体从内含性质上来看也有体现,如通过其内含性质所变现出来的表层构造及边界划定等等。故而在确定图像特征方面,物体的三维形态是最常用的处理技术。检测三维物体形状及分析距离从计算机视觉技术角度来看,渠道很多,其原理主要是借助光源特性在图像输入时的显现来实现的。其类别有主动与被动两类。借助自然光照来对图像获取并挖掘深入信息的技术叫做被动测距;主动测距的光源条件则是利用人为设置的,其信息也是图像在经过测算分析时得到的。被动测距的主要用途体现在军工业保密及限制环境中,而普通建筑行业则主要利用主动测距。特别是较小尺寸物体的测算,以及拥有抗干扰及其他非接触测距环境。
(一)主动测距技术。主动测距,主要是指光源条件是在人为创设环境中满足的,且从景物外像得到相关点化信息,可以适当显示图像大概并进行初步分析处理,以对计算适应功率及信息测算程度形成水平提高。从技术种类上说,主动测距技术可分为雷达取像、几何光学聚焦、图像干扰及衍射等。除了结构光法外的测量方法均为基于物理成像,并搜集所成图像,并得到特殊物理特征图像。从不同的研究环境到条件所涉,以结构光法测量作为主要技术的工程需求较为普遍,其原理为:首先在光源的设计上由人为来进行环境考虑测算,再从其中获取较为全面的离散点化信息。在离散处理后,此类图像已经形成了较多的物体真是特征表象。在此基础上,信息需要不断简化与甄别、压缩。如果分析整个物体特征信息链,则后期主要体现在对于数据的简化分析。如今人们已经把研究的目光转向了结构光测量方法的应用,体现在物体形状检测等方面。
(二)被动测距技术。被动测距,对光照条件的选择具有局限性,其主要通过对于自然光的覆盖得以实现。它在图像原始信息处理及分析匹配方面技术指向较为突出。也通过此三维物体之形状及周围环境深度均被显露。在图像原始信息基础上的应用计算,其与结构光等相比繁杂程度较高。分析物体三维特性,着重从立体视觉内涵入手,适应物体自身特点而存在。不过相对来说获得图像特征才是其适应匹配的条件保障。点、线、区域及结构纹理等是物象特征的主体形式。其中物特较为基础与原始的特征是前两个特征,同时它们也是其他相关表征的前提。计算机系统技术测量基本原理为对摄像机进行构建分析,并对其图像表征进行特征匹配,以得到图像不同区间的视觉差异。
五、结束语
通过对计算机视觉技术的研究,悉知其主要的应用领域及技术组成。在系统使用的基础上深入设计,对系统主要构成环节进行分析。从而将三维复杂形态原理、算法及测量理论上升到实际应用。随着社会对于计算机的倚赖程度增加,相信该技术在建筑或者其他领域会有更加深入的研究及应用。
参考文献:
[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2012(06).
[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2011(04).
篇3
关键词:计算机自动化 视觉检测 制造业
中图分类号:TP274.4 文献标识码:A 文章编号:1007-9416(2014)05-0014-01
在精密测试技术领域,自动化视觉技术具有最大的发展潜力,它将电子学、图像处理、光学探测和计算机自动化技术综合起来进行运用,在工业检测中引入机器视觉,能够快速测量物品平面或三维位置尺寸,其主要特点有:柔性好、速度快和非接触性,在现代制造业中有着非常广阔的应用前景。
目前,国内视觉检测领域所需要的视觉检测设备大多是进口的,国内生产的设备缺乏较高的检验精度和较强的实时性;但是进口设备大大增加了检测成本,不少中小企业无力承担。面对国内检测需求日益增加的情况,积极进行成本较低,精度较高的检测设备的开发,成为一个亟需解决的问题,需要引起重视。
1 检测系统的工作原理
自动化视觉检测系统工作流程分为三个部分,分别是图像信息获取、图像信息处理以及机电系统执行检测结果。如果系统有需求,能够借助人机界面对参数进行实时的设置与调整。当被检测对象移动到特定的位置时,位置传感器就会发现它,会将探测到被检测物体的电脉冲信号发送给PLC控制器,经过计算,PLC控制器将物体移动到CCD相机采集位置的时间的出来,然后将触发信号准确的发送给图像采集卡,采集卡检测到此信号后,会要求CCD相机立即进行图像采集。被采集到的物体图像会以BMP文件的形式发送到工控机,运用专门的分析工具软件分析处理图像,分析检测对象是否与设计要求相符合,执行机会依据合格或者不合格的信号对被检测物体进行相应处理。经过这样的反复的工作,系统对被检测物体进行队列连续处理。如(图1)。
2 自动化视觉检测系统的组成
在工业检测领域,计算机自动化检测系统可以在尺寸测量、工件定位、特征检测、图形图像以及字符识别等方面进行运用。自动化视觉检测系统按照功能模块可以划分为,图像信息获取模块、图像信息处理模块、人机交互模块、机电执行模块以及系统控制模块五部分。其中处于核心位置的是系统控制模块,系统控制不论是在被检测物置信息的触发,还是机电执行模块所需检测结果信息的获取等等各个方面,都必须参与其中,否则无法完成;而人际交互模块更是与核心模块有着之间联系,通过与其直接通信,以便实时更新检测系统参数以及执行指令等。
3 自动化视觉检测技术在制造业上的应用
3.1 应用于汽车车身检测的视觉检测技术
现代汽车制造业的生产周期日益缩短,生产日益集团化,原材料和零部件供应呈现大宗化,而这正是给运用自动化视觉检测技术提供了客观环境。该系统包括三维视觉传感器系统、电器控制与接口系统、机械及定位系统、标定系统以及计算机自动化等部分,其测量步骤如下:首先在电气控制系统下初步定位运送车身;然后借助专门的控制系统准确定位待测位置;借着用计算机自动化进行检查点图像的采集与处理;最后,将被监测点的坐标参数计算出来。检测系统应该能够实时控制单光条、多光条、双目立体视觉以及十字叉丝等传感器的动作;按照要求顺序,全部视觉传感器进行测量,然后转换测量结果,将其放置于测量坐标中;经过自动识别,能够地装配结果进行判断。这一视觉检测方法具有非得用地、效率高、自动化、精度好的特点,能够很好的满足汽车工作的需求。
3.2 为智能焊接的实现解决核心难题
在焊接领域,对智能焊接机器人的研究已经成为关注的重点,智能焊接机器人要求能够识别环境目标,对焊接参数进行调整,并实时精确跟踪轨迹。比如在潜艇、大型轮船的制造中,焊接是十分重要的环节,焊接质量直接关系到后续的制造环节以及潜艇、轮船的强度和安全性。智能焊接机器人在红外摄像仪、高速摄像机以及CCD摄像机等高精度图像传感设备的辅助下,采用智能化图像处理方法能够进行图像焊接,检测焊接空间位置,规划焊炬姿态,对焊接熔池特征参数进行实时提取,对焊接组织、机构和性能进行预测等,能够在很多人类难以进行作业的场合完成焊接工作,在焊接过程中,通过数个光电接收阵列对检测组建进行多维视觉传感,并综合处理所获取的信息。目前国外KUKA,Motoman,GMF,Adept等厂家已经开发出智能焊接机器人,其装配了自动化视觉检测功能,并且已经广泛应用于潜艇与航天器的生产中。
3.3 提高手机生产检测速度
随着手机设计精密程度的日益提高,人工检验已经难以适应大规模生产,这是因为其需要的测量投影仪较多,检测速度慢。而采用自动化视觉检测系统能够自动检测电路板组建中的连接器以及内部零件等,检测速度快、测量结果准确,具有较强的扩展性和较高的性价比。检测系统主要就是测量计算机自动化接口电路板组件中各个连接器特定位置的几何尺寸,这里面包括连接器内部零件的尺寸、间距以及连机器与PCB底板的相对位置;另外还要对连接器与标准是否相符以及内部零件被损坏与否。系统可以将质量检验的效率大大提升,而且也能够使产品质量得到保障,实现降低检验成本的目的。
4 结语
作为一种新兴的检测技术,自动化视觉检测技术对我国自动化视觉检测产品的发展起到了很大的推动作用,使其不断向更高层次迈进,同时也为我国制造业的发展做出了贡献,具有广阔的发展前景。
参考文献
[1]伍健.基于PDE和全变分滤波方法的研究及在多种噪声中的应用[D].天津大学,2012.
篇4
关键词:计算机图形学;计算机视觉;可视化技术
中图分类号:TM862 文献标识码:A 文章编号:1671-2064(2017)01-0054-02
计算机图形学、计算机视觉以及可视化技术三者均是计算机领域重要组成部分,要做好计算机知识,就要先学好计算机图形学,但计算机图形学学习相对枯燥,尤其是算法教学难以理解,为解决这一问题,计算机视觉与可视化技术被应用到计算机图形学中。可见,三者之间存在一定的联系,因此,有必要对计算机图形学、计算机视觉以及可视化技术展开研究。
1 计算机图形学概述
1.1 计算机图形学目的
所谓的计算机图形学实际上就是怎样利用计算机表示图形,并利用计算机完成图形计算与处理,而这一过程的实现需要得到相关算法的支持。学习计算机图形学的目的是利用计算机技术为人们呈现既带有美感又不缺真实的图形(如下图1所示),为实现这一目标,就需要按照图形的要求创设合适的场景,并在一些光照模型的作用下,做好光照效果设计,在这一过程中需要计算机图形学能够与其他计算机技术相配合。经过计算机图形学出来的图像,多会以数字图像的方式展示出来,总的来说,计算机图形学与图像处理之间存在着一定的联系[1]。计算机图形学的涉及范围相对宽泛,不仅有图形硬件设计,还包括动画制作,虚拟现实等多个部分。此外,计算机图形学在动画制作中的应用频率也很高,如45分钟一集的动画影片中,85%的画面都需要用算机图形学来完成,由此可见,计算机图形学的应用频率极高,并在动画制作中发挥着不可替代的作用。因此,应重视计算机图形学的应用。
1.2 计算机图形学应用
随着计算机图形学的发展,它被应用到各个领域中,并发挥着重要作用。首先,在计算机辅助设计与制造中的应用,这是计算机图形学应用最多的领域,在计算机图形学被应用以后,不仅可以设计出更精准的图形,还能做好人机交互设计,强化修改能力。计算机图形学还被应用到三维形体重建中,利用该技术可以将原理的二维信息转化为三维信息,如在某次工程图纸设计中就应用了计算机图形学,经过一系列的处理以后,三维形体逐渐形成,最终实现了重建。其次,在医学领域中的应用。计算机图形学在医学领域中的应用多以计算可视化的形式展示出来,如在脑部手术中,医生为看清患处真实情况,经常需要利用在可视化技术的作用下将复杂的数据转化为图像,这时就体现了计算机图形学在其中的应用[2]。再者,在计算机动画中的应用,人们看到的动画影片就是计算机图形学作用的结果,以动画人物的行走为例,为保证动画人物的行走与自然人不存在过大差异,就需要应用大量的计算机技术,并在计算机图形学的作用下完成设计。最后,在计算机艺术中的应用。计算机图形学在计算机艺术中也有广泛应用,它不仅可以用于艺术制作,很多场景都是通过计算机图形学来完成的,现阶段,一些人正在利用计算机图形学创设人体模拟系统,其目的是让已故人士再次出现在荧屏上,这一目标的实现就需要得到计算机图形学的支持。
2 计算机视觉技术
2.1 计算机视觉技术含义
所谓的计算机视觉技术,实际上就是用计算机取代人眼做识别、跟踪以及测量等,同时也兼顾图形处理,其目的是让图像在计算机被处理以后更适于识别。对于计算机视觉技术来说,意在实现人工智能,主要是从图像与多维数据等方面实现人工智能系统设计[3]。计算机视觉是一种在相关理论与模型基础上发展起来的视觉系统,其主要构成部分有以下几种:
(1)程序控制,这一点主要体现在机器人设计上;(2)事件检测,多体现在图像监测上;(3)信息组织,主要体现在图像数据库等方面。计算机视觉三个阶段如图2所示,通过观察图1可以发现,计算机视觉存在于图像处理始终,从早期处理直到后期结束都存在,最终实现了3D描述,可见,计算机视觉具有十分重要的作用[4]。
2.2 计算机视觉技术的应用
现阶段,现代社会已经进入信息化时代,计算机技术也被应用到各个领域,并发挥着重要作用。计算机视觉的应用促使计算机实现了智能化,在该技术的支持下,计算机可以像人一样透过视觉看待世界万物,且具有良好的适应能力,但这一目标的实现还需要很长时间,需要一系列的努力才能实现。现阶段,计算机视觉应用最多的就是车辆视觉导航,然而,这种导航还没有实现完全自主导航,这也是需要进一步研究的地方。计算机视觉技术的适应性较好,特别适合在工业领域应用,即便是存在电子在干扰或温度变化较大的地方都能很好的运行,其整体效果也不会受到影响,再者,计算机视觉技术的嵌入性较好,成本相对较低,尤其适合在PC方案中使用,同时,具有一定的非接触能力,能够获取大量信息,且不受距离限制,总的来说,计算机视觉技术总体效果较好,适合利用在各种工业环境中应用,因此,应重视计算机视觉技术的应用[5]。同时计算机视觉还被应用到移动机器人设计中,主要是利用小波模板展示人体形态,然后做图像扫描,这样就可以顺利完成小波变换,进而了解到人的存在。同样,将计算机视觉应用到机器人设计上,可以自动检测出正在行动的人或车辆,而无法检测到静止的人,之所以会出现这样情况,主要是由于其中采用率步态分析法。
3 可视化技术
3.1 可视化技术含义
可视化技术是一种综合了计算机图形学与图像处理于一体的技术,它可以将复杂的数据转化为图像并在屏幕上展示出来。在可视化技术中,融合了以上两种技术的特点,并在多个领域都有应用,随着可视化技术的应用,不仅有效实现了数据表示,还强化了数据处理能力,更对数据决策分析有一定作用[6]。现阶段,虚拟现实技术已经成为可视化技术主要发展方向。
3.2 可视化技术的应用
首先,在计算机图形学教学中的应用,计算机图形学相对枯燥,相关知识也很抽象,不便于学生理解,在计算机图形学中最重要的部分是曲线曲面,而这些曲线曲面多是与数学模型有关,具有一定的抽象性,学生理解难度较大,以往教师只能通过一系列的公式演算帮助学生理解,尽管这样依然难以让学生掌握曲线变化情况,学生依旧无法正确理解。为减少这种情况的发生,可视化技术被应用到计算机图形学教学中,教师将抽象的知识用动画的形式展示出来,学生只要观看动画,拖动一定的控制点就可以了解到曲线变化情况,这样一来不仅增加了教学趣味性,学生也可以随意变动曲线,让复杂的知识变得简单,深化学生对计算机图形学知识的深度理解,同时,利用可视化技术在一定条件下,还可以完成代码编译,如在Actoin ScriPt中做编译,这样也可以增强学生的理解能力[7]。
其次,在医学领域中的应用。医学领域对于可视化技术的应用主要体现在放射治疗与矫正手术上。通过可视化技术可以屏幕上看到手术整个过程,并将原来细节部位放大,手术医生观察的更加细致,手术成功几率也会大幅度提升,患者生命也能得到保证(如图3所示)。如在对某名患者进行身体检查的过程中需要应用到可视化技术,由于通过检查会获得大量数据,而这些数据又相对复杂,但在可视化技术下就可以通过图表、曲线图或立柱图的方式展示出来,经过可视化技术的作用,了解到患者的血糖为5.6mmol/L,医生可以根这一数据做出诊断,而不必再分析这些数据。据不完全统计,80%的医疗检查工作都是需要利用可视化技术。
地质勘探是我国最重要的工作之一,由于多数矿藏都深埋地下,即便使用探测仪受多种因素影响也无法了解到实际矿藏情况,这就需要应用到可视化技术,在可视化技术的作用下,相关工作人员可以了解到地下有无矿藏,如果存在矿藏,相关工作人员也可以了解到矿藏所在位置与实际储备量,进而为矿藏开采奠定基础。如在地质勘探中,相关工作人员利用可视化技术做地形图整理,然后从中提取地形数据,再用CATIA做导入,这样就可以完成地形模型创建,这样就完成了三维地质模型创建工作,同时在相关工作台的影响下,还可以完成地形数据导入,进而生成一定的地形云点,如果其中存在错误,可视化技术也可以将其中的错误内容删除,这些都是可视化技术所带来的好处[8]。由此可见,可视化技术已经成为地质勘探中不缺少的技术。
最后,在气象预报中的应用(如图4所示)。利用可视化技术能够将数据转化为图像,通过观察图像就可以了解到云层变化情况,同时也能了解到实际风力大小与风走向等,气象预报人员就可以根据图像做出精准分析,需要了解气象变化的人也能了解到现实情况,如果气象条件恶劣,相关工作人员也可以及时做出工作调整,减少危险事件的发生。据不完全统计,可视化技术在气象预报中的应用频率高达100%,由此挽回的经济损失高达13.2亿元,可见,可视化技术在气象预报中的应用十分有必要,因此,应重视可视化技术在气象预报中的应用。
4 结语
通过以上研究得知,计算机图形学、计算机视觉以及可视化技术三者各具特色,三者间也存在一定的关系,尤其是可视化技术综合了前两者的特点,并融合了其他技术,在很多领域中都有应用。可视化技术是现阶段应用最多的一种技术,在计算机图形学教学中也有应用,并发挥着不可替代的作用。本文分析了计算机图形学、计算机视觉以及可视化技术的含义与应用,希望能为相关人士带来有效参考,正确利用这些技术。
参考文献:
[1]陈敏雅,金旭东.浅谈计算机图形学与图形图像处理技术[J].长春理工大学学报,2011(01):138-139+146.
[2]柳海兰.浅谈计算机图形学的发展及应用[J].电脑知识与技术,2010(33):9551-9552.
[3]滑瑞朋.计算机图形学的应用及研究[J].山西科技,2012(05):37-38+45.
[4]刘涛,仲晓春,孙成明,郭文善,陈瑛瑛,孙娟.基于计算机视觉的水稻叶部病害识别研究[J].中国农业科学,2014(04):664-674.
[5]关然,徐向民,罗雅愉,苗捷,裘索.基于计算机视觉的手势检测识别技术[J].计算机应用与软件,2013(01):155-159+164.
[6]许志杰,王晶,刘颖,范九伦.计算机视觉核心技术现状与展望[J].西安邮电学院学报,2012(06):1-8.
篇5
关键词: 计算机视觉;快速开发;框架;模块化;模块耦合;底层剥离
中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2012)29-7084-04
在视觉分析实际应用项目中,如何通过建立计算机视觉分析快速开发框架,搭建一个分工明确,快捷有效的图像学应用处理平台,提高开发效率,缩短开发时间,已成为项目开发人员关注的重点内容之一。本框架从项目应用和实际需求出发,将计算机视觉技术的核心算法从底层研究工作中剥离,可极大的缩短开发时间,提高开发效率。
在本框架下,开发人员可各司其职,分工、构成和职能划分明确,框架开发人员只专注于框架接口的定义;算法开发人员只专注于图像处理与识别等算法的开发;上层应用开发人员只负责抽取出一般的处理流程,专注于项目的具体实现和功能模块的组合应用。
1 研究与应用
1.1背景
计算机视觉是用摄像机和电脑代替人眼对目标进行识别、跟踪和测量的机器视觉。系统将获取的视频或图像资料,通过计算机处理成为更适合人眼观察或传送给仪器检测的图像,其中包括图像处理、模式识别或图像识别、景物分析、图像理解等相关内容,它们之间既有差别,又有相互重叠。
在计算机视觉分析技术中,对于一些复杂的问题,往往不是某单一学科能够解决的,它需要一系列相关技术的支持。例如:对航道中船舶的识别,获取的视频流往往要经过平滑、去噪等图像处理操作后,便于下一步运用基于直方图分类器的图像识别算法来区分船舶和水面,通过图像分割技术来提取检测目标。而这些方案的实现中,同一个问题的解决又往往需要有一系列的算法来支持。还是以船舶识别为例,图像平滑有领域平均、低通滤波等算法;图像去噪有各种滤波器算法;基于直方图的分类器也存在决策树、贝叶斯、SVM等等算法。虽然上述的算法本身没有优劣之分,但在特定的环境下一定会有某个最佳算法。
因此,在实际应用项目中如何找出其最优路径,除了需要开发者拥有深厚的图像学功底,更需要的是通过大量的对比实验来找出该最优路径的解决方案。即便如此,也只能解决特定环境下的计算机视觉需求,换个应用场景,上述步骤又需要重新进行,此类过程的重复,既增加了开发成本,又延长了开发时间。
本框架从工程化的角度出发,在不同项目中的计算机视觉软件开发中,研究如何提高开发结果的复用性,尽量降低上述各条件间的相互依赖关系,将视觉技术的核心算法从底层研究中剥离,达到缩短开发时间,提高开发效率的目的。
1.2研究目标
1) 框架系统的扁平化、模块化;
2) 完成处理过程的任意组合,使图像处理模块单一化;
3) 理行为在处理模块内部完成,处理结果可通过接口方式进行输出;
4) 处理模块间的数据流动定义在框架之中,框架负责配置数据流;
5) 置好的数据流,通过指定图像处理模块实现对物体的识别、行为的识别。
1.3.5框架的效果演示
从右侧功能区中选取两个输入模块:MediaOpen00和MediaOpen01,分别打开视频文件“.\公司监控视频.avi”和图片“.\Lena.jpg”,任意添加一些图像处理模块或者图像识别模块,这里我们选取了行人检测算法、基本全局阈值二值算法、人脸检测算法、轮廓检测算法,加入输出展示模块用于显示处理结果。最后我们用曲线将模块间的输入输出点连起来,完成数据流向的配置过程。其中一个输出点可以连接多个输入点,但一个输入点只能接入一个输出点。
2 结论
随着计算机视觉技术发展的日新月异,算法的更新和积累将会越来越多。计算机视觉快速开发框架从实际应用工程的角度出发,在不同项目计算机视觉软件的开发过程中,将视觉技术的核心算法从底层研究中剥离,使视觉分析应用项目中的框架开发人员专注于框架接口定义的开发,而项目中的算法、上层应用等开发人员各司其职,分工明确,不但提高了开发结果的复用性,同时,也降低了项目开发中各条件间的相互依赖关系,缩短了开发时间,提高了开发效率。
参考文献:
[1] Gary bradski,Adrian Kaebler.《Learning OpenCV》[M].O’Reilly Media Inc,2008.
[2] 张广军.机器视觉[M].北京:科学出版社,2005.
[3] 张少辉,沈晓蓉,范耀祖.一种基于图像特征点提取及匹配的方法[J].北京航空航天大学学报,2008,34(5).
[4] 刘立,彭复员,赵坤,万亚平.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1).
[5] 戴斌,方宇强,孙振平,王亮.基于光流技术的运动目标检测和跟踪方法研究[D].国防科学技术大学机电工程与自动化学院.
[6] 陈胜勇,刘盛.基于OpenCV的计算机视觉技术实现[M].科学出版社.
篇6
关键词:OpenCV;计算机视觉技术;三维模拟技术
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2015)30-0137-02
21世纪是国际计算机技术高度发展的时代,人们生活中的每个角落都可以看到计算机技术的身影,尤其是现代计算机视觉技术和图像处理功能发展更加迅猛,各技术分支也逐渐趋于成熟。计算机视觉技术主要指的就是利用智能计算机系统来代替人类的眼睛对现实三维世界进行辨识和理解,整个过程均是计算机自我学习的过程,而随着这项技术研究的不断深入,其不再仅仅包含计算机技术科学,同时还涉猎了包括生理学、神经学、物理学、应用数学等多门学科,为人类科技的进步提供了有效的动力。
1 计算机对视频中运动物体检测的原理概述
在现代计算机技术基础下,对视频当中的运动物体检测原理主要包括两种,分别是从微观和宏观的角度出发。其中宏观检测技术指的是当计算机截取了视频中的某一个图像,其以整幅图像为对象进行检测;微观检测技术是指在截取图像后,根据实际需求对某一区域内的图像内容进行检测。在计算机视觉技术实际应用时,其第一步就是对图像的采集,第二步是对已经采集的图像进行预分析处理,如果采用宏观检测技术则对图像整体进行分析;如果采用微观检测技术则首先将图像进行分割,然后对分割后各图像内容中出现的运动物体影像进行分析。在图像数据获取过程中应用的是背景差分法,这一技术主要是将背景和运动物体进行分离提取,以获取没有背景图像的运动物体影像数据。还可以利用帧间差分法,这种方法主要是对一个视频图像的逐帧画面进行差别比较,从而获得各帧图像上的差值,而将这些差值帧图结合起来就是一个物体在计算机视觉下的运动轨迹。现代研究者更倾向于将背景和帧间差分法进行结合运用,这样可以获得无背景下的运动物体轨迹,进而提升计算机视觉系统捕捉数据的准确性。
2 OpenCV的应用概述
OpenCV是现代计算机视觉技术当中具有开源性的视觉库,其最早是由俄罗斯Intel分公司所研发,不仅高效,而且具有兼容的优势。同时与传统IPL图像处理系统相比,OpenCV所处理的图像数据等级更高,例如在对运动物体进行特征跟踪、目标分割、运动轨迹分析以及三维模型重建等方面都有着巨大的优势。
OpenCV本身编辑的源代码是开放式的,编写过程简洁且方便,并且程序中大多数函数已经通过了汇编的最优化,使其能够更加高效地被应用。在使用OpenCV的摄像机标定模块已经为用户设计了实用性较强的接口,并且能够支持Windows界面的操作平台,使得这一技术的操作更加简便。这一技术本身操作简便,对于编程人员和检验人员个人技能素质要求并不高,视觉技术系统研发人员可以利用简便的操作来检验其设想是否能够实现,这就使得现代计算机视觉技术开发团队能够形成更好的协作研发关系,进一步提升技术研究效率。目前已知OpenCV编程系统在航空航天定位、卫星地图绘制、工厂大规模生产视觉检测等方面得到了广泛的应用,同时对于无人飞行器的视觉捕捉技术也有极大的帮助。最为重要的是OpenCV编程语言的兼容性较强,编程人员可以根据自己的意愿对源代码进行披露,并且国内也已经形成了规模较大的交流社区,给更多同行业者提供答疑解惑的场所,进一步扩大了OpenCV的应用范围。
3 基于OpenCV的计算机视觉技术
3.1 基于OpenCV下的运动物体检测技术
在常规运动物体检测技术下,均是直接通过图像背景和运动物体的区分来实现运动物体的捕捉。而基于OpenCV下的运动物体检测技术则不仅能够针对于图像背景的分离实现运动物体的观察,还可通过物体本身特定的信息来进行检测,主要包括形状、轮廓以及颜色等。这样就能够实现在复杂的背景当中将特定的运动物体完整抽离出来。其基本流程包括:首先,对影像数据当中某一时间点的图像进行捕捉,然后对这一视频图像的格式进行转化;其次,对转化格式后的视频图像进行早期处理,并将运动物体和复杂的背景区分开,降低周围各环境因素对运动物体主体图像的影响;第三,根据完成提取后的运动物体图像进行辨识,然后再从视频当中捕捉拥有相同特征的物体,并对该物体进行跟踪识别。而这一过程的实质则在于先利用图像捕捉技术对画面进行截取,然后同时利用背景差分法和帧间差分法对图像进行分割,逐帧地将运动物体完成提取出来,以供计算机进行视觉跟踪处理。
3.2 基于OpenCV的图像预处理技术
一般情况下,计算机视觉处理技术应用的环境情况较为复杂,大多数应用环境当中均有光照的变化,并且部分计算机视觉处理设备还需要在露天环境下进行工作,此时周围环境中的风、温度、光照、气候以及运动物体数量等对视频图像的采集均有着极大的影响。环境因素会使图像采集的质量大幅度降低,同时图像当中的噪点问题也难以避免,而噪点是视觉捕捉和图像处理当中最大的影响因素。因此,在基于OpenCV下的计算机视觉技术在捕捉视频图像之后先对其进行预处理,然后再由系统对运动物体进行分离、检测和跟踪。一般的预处理过程主要包括平滑度滤波、图像填充、背景实时更新等。
1)图像的平滑度滤波预处理技术
由于在实际计算机视觉捕捉过程中图像噪点是难以避免的问题,以此在对图像中运动物体进行检测前,应该相对这些噪点进行预处理,降低环境噪声对图像的影响。图像的平滑度滤波处理共分为两种方式,分别为线性和非线性。其中线性处理方式就是通过计算机处理设备的简单运算,对图像当中的噪点进行直接清除,但这一技术使用后会造成截获图像模糊不清的情况,因此仅对噪点较少的图像采用该处理方式;非线性滤波处理则是利用复杂的图像处理运算,将截获图像当中的噪点无限缩小,使其不对图像整体造成影响,并且可以有效保证图像的局部调整,但这种处理方式在运算时速度没有线性滤波处理快,因此需应用在噪点较多,图像信息较复杂的处理当中。
2)图像的填充预处理技术
这一处理技术在使用过程中运算速度较慢,主要是由于其需要对逐帧的图像均进行处理,也包括两种处理方式,分别为边缘填充和腐蚀膨胀处理。其中边缘填充处理主要指的是在确定运动物体之后,利用计算机系统自身的边缘检测处理技术,对物体的轮廓进行辨识,并利用形态学上的漫水填充方式对运动物体周围的噪点进行颜色填充,减小其对画面整体元素的影响。而腐蚀膨胀处理与边缘填充处理原理相类似,但这种处理技术主要是针对于噪点进行腐蚀和膨胀,使其在画面当中所占比例扩大,但对运动物体本身不造成影响,这使运动物体和噪点之间的差异就会更加明显,就可以将噪点的影响降到最低,但这种处理方法的效果和摄像机本身的性能、质量等有着密切的关联。
3)背景的实时更新预处理技术
在进行运动物体和背景分离过程中,计算机系统需要对图像上的背景元素进行辨识,并对其开展初始化处理,这样就能够为后期实时背景图像的差异进行凸显,以增加前景图像的效果,降低噪点对图像的影响。在运用这一技术时,首先要先对第一帧的图像进行确定,并将第一帧图像当中的背景图像元素进行辨识,然后在后期图像更新和运动物体检测过程中对背景进行实时更新处理。在更新的过程中其流程主要包括:首先,系统要对所读取的画面进行有效的判断,了解该图像是否为第一帧;其次,将Opencv处理的图像转变为单通道灰度值;第三,对转变后的图像进行高斯平滑度滤波处理,将图像当中的噪点进行去除;第四,采用形态学噪点填充技术对图像当中的噪点进行二次处理,以获得所需要更新的背景图像。
3.3 前景运动物体的提取技术
在计算机视觉技术进行运动物体的检测时,只有有效保障检测流程的准确度,才能够有效保障对前景运动物体的跟踪效果。其主要分为两大步骤,其一是对二值化后的图像数据进行分割处理;其二是在图像分析前对其进行充分的填充处理,保证前景图数据的完整性。同时,在前景图像提取的过程中也分为多个步骤,其包括:首先,对所提出的前景图像和背景图像进行差分处理;其次,将差分处理后的图像二值化处理;第三,对背景当中前景物体的轮廓或边缘进行辨识,根据前景图像的轮廓对其进行填充。由于在实际操作过程中,摄像头所处环境的变化较大,并且会在不同场所内的不同角度捕捉画面,因此就需要在前景图像提取时有效提高背景图像实时更新的效果。
利用阀值二值化的分割方式能够有效将前景图像和背景图像分离开,从而使目标运动物体能够呈现独立化,并且阀值分割方式开展前要相对每个像素点进行确定,判断其是否位于灰度值的范围内。而将该图像的像素灰度和阀值进行对比后会出现两种结果,分别是灰度值低于或高于阀值。在实际应用过程中,有效确定图像的分割阀值T,就能够降低环境当中光照因素对图像质量的影响。
4 计算机视觉技术当中的三维重建技术
1)三维重建的视觉系统
计算机视觉技术在对图像进行捕捉时可以视为是对大量的图像信息进行处理,从摄像机的视觉角度出发,其所输入的图像一般为二维属性,但输出的信息确是三维数据,而这种三维空间数据能够提升对运动物体所处空间位置、距离等描述的准确性。在三维重建视觉系统工作过程中,其相对基本的图像数据框架进行确定,然后利用一个坐标点建立2.5D图像数据,即以此点为视角能够观察到的图像数据,再将2.5D图像数据进行整合从而建立三维图像。
2)双目视觉系统
当人体利用双眼在不同角度、同一时间内观察同一个物体时,就可以利用算法来测量该物体和人体之间的距离,而这种方法也被称为双目立体感,其应用的原理主要是人体视觉差所带来的影响。同时利用两台摄像机对同一图像从不同角度进行观察,就能够获得人体双目观察后的效果,因此这一三维重建技术也被称为“双目视觉系统”。两台不同的摄像机即可代表人体双眼,其对图像进行逐帧捕获,但由于角度不同和环境影响因素的差异,因此造成了图像差异,必须对其捕捉的图像进行预处理。
3)三维重构算法
在计算机视觉技术中对于视频流的采集主要依靠的是彩色摄像机、红外摄像机、红外接收摄像头等设备。还可以利用微软所提供的Kinect设备,在进行运动物体检测前能够对NUI进行初始化处理,将系统内函数的参数设定为用户信息深度图、彩图、骨骼追踪图等数据。在使用Kinect设备对视频流进行打开时,其可以遵循三个步骤,其一是彩色和深度数据的处理;其二是根据数据的索引添加颜色信息,并将其引入到深度图数据当中;其三是骨骼追踪数据。
5 结束语
计算机视觉捕捉技术是现代计算机应用当中较为先进的内容,其应用范围较广,对于运动物体的捕捉准确度较高,能够有效推进现代计算机模拟技术的发展。
参考文献:
[1] 张海科.基于Opencv的人手识别与跟踪定位技术研究与实现[D].昆明: 云南大学,2013.
篇7
关键词:计算机视觉分析;微小尺寸;精密校正;阈值;图像分割
中图分类号:TP274.4
计算机视觉分析理论是基于精密模式识别和人工智能程序化校验技能进行综合整编的方法,利用光学信息对真实物理结构的实时反映,配合人机协调手段进行二维图像的呈现。在工件表面进行质量检测和图片制备要素分析的系统环节中,阐述物体在空间环境之间的关系样式,争取三维场景的科学搭建。集合要素内容包括边缘、线条和曲面的配备,建立以工业部件为中心的坐标体系,并适当运用不同符号表现模式实现必要三维结构和空间关系的调整,促进精密仪器细节检验工作质量的不断提高。
1 计算机视觉检测技术的相关理论研究
1.1 技术原理分析
渗透性计算机辅助支持结构的视觉鉴定技术在被测实体中的图像显示支持功能基础形势上进行质量状况的把控,这其实就是根据既定的偏差标准实现规模物件的逐个排查。细致的检测工作在深度零件的诱导性特征和完整性配件的支持下,对整体完好效果的几何制备模型进行测量[1]。近阶段的视觉规范系统利用电耦合器件和摄像机进行主题元素的捕捉,并利用计算机内部程序的数字信号转化工具实现图像的并行处理。采用目标图像的特殊坐标记录,利用灰度分布图内的多种综合功能处理系统改善的要务。常规视觉下的检测过程相对比较繁琐,主要是将被检测物体放置于照明效果相对均匀的可控制背景环境中,联结CCD技术和图像卡实现被测部件和数字图像的共性要素融合,保证计算机自动化处理程序的录入。当然,这类研究系统是需要利用相关软体进行放大的,其主要必备功能就是进行图像的预处理、识别和有效分析,将整个过程内部的实际结果数值,包括被测部件的自身缺陷、尺寸等进行整理。
1.2 计算机视觉微小尺寸精密检测工业应用技术的现状
在科学设计信息内容和工业加工制备要领集成化对待的环节中,通常不会直接进行部件表面的接触,一般运用计算机程序下的扫描认知和图像即时呈现功能进行快速的比对检测,整体信号抗干扰能力较强,因此在现代工业生产技术领域内部广受好评。电子工业是在建立计算机视觉分析工艺之后表现最为活跃的行业类型,在此基础上衍生的印刷电板路和集成电路芯片就是利用标准模型的整改,实现规模工序的紧密排列。目前,时下流行的汽车生产、纺织、商品包装等也逐渐向这类手段靠拢,全面改善了现代化工业制备的应用效果。
2 应用视觉微小尺寸分析技术内部拓展机能的补充
灰度图像的主要分割方法包括灰度阈值校正、边缘检测制备等手段。
2.1 灰度阈值校正
这是区域分割方法中一种常见的手段,主要配合多个或单个阈值将图像自身的灰度级别划分为几个项目组,对相同像素的单位数据进行整编。根据实效范围进行分类,包括局部和全局阈值探究两种手段,全局规模下的阈值分析方法就是利用整幅图的灰度直方分布图进行内部最优阈值分割,包括单阈值和多阈值两种形式;同时还可以将初始分析的图像进行子元素的拆解,之后利用单个子图像的既定阈值范围进行最优化分割[2]。分割的基本原理公式为:
其中,合理阈值的选取是非常重要的,目前阈值确定的手段主要包括直方图双峰对照法和最大类间方差累积法等。这种利用灰度阈值实现精准质量的划分手段,计算执行工作相对比较简单,并且实际工作效率水平较高,即便是实际需要分割的物体与图像背景对比深度较强也可以收放自如,但唯一的缺点就是缺少对空间信息的掌控,涉及亮度不足的图像问题,这种阈值分割技术的施工质量往往不会太高。
2.2 边缘检测制备工序
图像内部元素的分割其实就是进行部件边界效益的提取,而边缘检测制备工序则是利用像元及邻域的整体状态进行物体边界相关结构的搭建。边缘检测分割制备技术具体包括并行和串行两种模式,并行手法是运用梯度信息的提取实现不同类别算子的整理;串行边界分割原理则是根据适当强度标准和相似走向的两个边缘端点位置实现连接,主要代表算法包括启发式智能搜索手段等。这种串行算法较并行边界积累统计原则来说具有更强的抗干扰能力,但实际的边缘检测同样不能完好地维持连续效果,需要利用其余技术内容进行边缘制备技巧的修复。
(1)原始图像 (2)Robert算子边缘检测 (3)Sobel算子边缘检测
(4)Prewitt算子边缘检测 (5)Kirsch算子边缘检测 (6)Gauss-Laplace算子检测
图1 微小双联齿轮边缘检测
3 视觉检测系统的创新性改进
根据以上现状问题,创新式视觉整改校验系统利用照明光源、摄像机和图像采集卡等结构实现计算机输出结果质量的补充。其主要运行过程如下:利用被测部件在均匀照明背景的全面优化控制基础,实现物体结构的全面清晰呈现,使用摄像机对相关图像信号进行梳理并转化为电荷信号,配合相关的图像资源采集卡进行部件数字化图像的格式转化;计算机内部软体操作程序将得到的数字图像进行处理和识别,并将最终结果数据输出,实现现代工业技术整体质量规模控制的既定要求。
系统硬件在实现部件转化图像信息的环节中,连接检测机理下的连续软件规划和照明光源等相关设备进行图像适当分辨率的调整,维持图像较为清晰的对比效果。全面控制获取数字图像的时间,抵抗不良因素的干扰影响,维持内部成本经济规模的合理控制,促进科技应用和可持续发展经济战略双重价值标准的同步进展。其中,光源设备的选择必须落实到部件既定的几何形状条件下,利用相关性能参数进行实际工作要求的提供,包括光源位置、亮度、寿命特性等因素的堆积,常用的可见光源包括水银灯、荧光灯等,但这类光源使用寿命有限,因此现下多配用LED光源进行快捷反应、小功耗标准的补充,并且长期使用后的照明效果比较稳定[3]。而摄像机等结构主要还是校正参数的表达方式,进行图像合理分辨率的整改,促进图像采集数字化协调功能的发展,提高系统工作速度等。
4 结束语
计算机视觉检测系统在进行一定部件性能评比的活动中有着很高的贡献,不仅配合硬件的照明、参数制备要领制备功能,同时促进数字化图像对比的速度,使得工业生产环节中的部件检查工序得到大范围整改,满足可持续发展战略规模的视觉意义,促进现代智能化分析处理技术的全面覆盖。
参考文献:
[1]陆春梅.基于数字图像处理技术的接杆激光环焊焊缝视觉检测系统研究[D].上海交通大学,2008.
[2]罗敏.基于机器视觉的黑片缺陷检测图像边缘提取算法研究[D].沈阳理工大学,2010.
篇8
关键词: 食品物流; 运作模式; 计算机视觉; 实时监控
中图分类号:TP393 文献标志码:A 文章编号:1006-8228(2013)08-87-02
0 引言
为了加强食品安全的有效追踪和监控,山东省自2011年5月以来,建成了黄河三角洲高效生态冷链产业物联网管理运营中心,开通了“冷链产业物联网管理平台”。黄三角冷链产业物联网管理平台依托食品产销对接系统和食品品质安全管理系统,实现了食品全程监控和追溯。然而,目前这一管理平台只能实现食品运输流程的监控和出现安全问题之后的追溯,而不能实现食品质量的实时监管。对消费者健康的保障和对社会稳定、经济发展的需求日益增长,通过一个可视化的食品物流信息化监控体系运作模式来进行食品安全监控的重要性日益突出[1]。
1 监控体系运作模式
监控体系运作模式利用计算机视觉技术,通过图像分析,提取食品数字图像中的特征信息,实现食品品质安全信息的快速、客观、准确检测,能为食品生产、加工、物流和销售过程的自动化跟踪和监管提供信息支持,让食品行业彻底实施食品的源头追踪以及在食品供应链中提供完全透明度的能力[2]。
1.1 食品图像的分析
计算机图像处理步骤包括图像预处理、目标边缘、检测与图像分割、特征提取以及模式识别,为后续图像特征提取提供分析对象。食品图像质量检测流程如图1所示。
[进行食品边缘检测][图像处理和模式识别软件][获取食品颜色][食品图像][食品分析系统]
图1 食品质量检测流程
为了在食品物流中实时监控食品的品质,我们利用计算机视觉技术实现直观可视化的监控。通过计算机视觉技术可以对食品进行像素级的图像获取,并能根据食品的形状变化和表面颜色的识别实现对食品外观的初步检测。同时在物流运输过程中能够实时对检测不合格的食品进行筛选和处理,避免了消费者购买到腐烂变质和表面缺陷的食品。实现实时物流跟踪,建立信息追溯和信息共享机制,成为当前食品物流配送的关键。物流可视化运作模式可以大大加快数据的处理速度,使时刻都在产生的海量数据得到有效利用;可以在人与数据、人与人之间实现图像通信,从而使人们能够观察数据中隐含的现象,为发现和理解食品流动过程中出现的问题和及时解决问题提供了有力工具。
1.2 建立智能移动货仓
在本物流可视化运作模式中,设计了在移动货仓上安装摄像头并连接到信息管理平台,通过摄像头对货仓打开次数及货物的提取、装载情况等进行记录。当在运输过程中需要对食品进行提取、调换等其他操作时,只有工作人员向物流信息平台发送请求指令,主管人员确认身份后,指令下达到货仓,方可进行工作。这样可以有效避免在运输过程中遗漏、丢失或者更换货物,管理流程如图2所示。
为了在食品生产、加工、运输、销售过程中及时了解食品物流的情况,给食品原料中夹带了RFID标签;在RFID标签中对食品的仓储过程、入库、出库情况进行标示,物流信息管理平台可以根据计算机视觉处理系统得出的数据与RFID信息进行比对,避免了货物在物流过程中出现异常情况[3]。
2 可视化食品物流功能结构
在食品物流监控体系中,通过摄像头CCD获取食品图像,传送到计算机视觉系统。系统对图像进行处理和分析,然后将分析结果提交到物流信息管理平台。食品质量管理员可以根据信息系统给出的信息通知到货仓告知物流现有情况;同时,在顾客购买食品时可以通过RFID技术,采用系统提供的终端接口,对货物的生产、加工、运输、分发、销售等情况进行追溯查询。系统结构图如图3所示。
可视化食品物流运作系统基于B/S体系架构,并且利用软件自动采集图像信息,并将货物信息、条码信息、尺寸信息和重量信息合成到图片中,同时这些信息也记录在服务器的关系数据库中。通过服务器端的Web服务,可以实现用户在局域网/广域网内,查询相应的信息内容[4]。
3 结束语
利用计算机视觉技术可以获得食品品质的空间位置信息,能够减少传统人工检测带来的高强度劳动,减少检测主观性和人工成本,释放人力资源。通过获取食品的数字图像,可以传输给远距离的分析者或者分析系统,从而实现食品品质信息的区域分析和共享。利用计算机视觉技术无缝地实现对货物的全程可视化追溯,是今后食品物流方面研究的重点,为实现食品便捷的反向查询,进一步保证食品的安全奠定了基础。
参考文献:
[1] 全英华.我国现代食品物流发展现状和对策[J].物流科技, 2011.5:67-68
[2] 陈非.物流可视化信息平台探究[J].科技创新导报,2011.31:198-120
篇9
关键词:计算机;交通监管系统;视觉
中图分类号:TP277
近年来,道路交通安全问题因公路交通事业的快速发展而受到越来多关注。据2002年世界银行统计,全球平均每年死于道路交通事故高达117万人。而在中国,据2008年公安部交通管理局公布的数据显示,全国道路交通事故多达265204起,死亡人数为73484人。
全国道路交通事故防御工作随公路里程、机动车保有量、道路交通流量、驾驶人数的增加成递增趋势。而通过必要的技术手段构建交通安全保障机制,降低交通事故是重中之重。若要好的为基础的交通违规行为检测技术的不断更新,市场上已出现了自动检测与记录的商业化产品,能实时记录出闯红灯、违规超车、违规停车、超速、逆行等违规行为。然而,我国高速交通监控体系仍比较落后,大多在交叉路口设置电子警察系统以此检测车辆闯红灯的违规行为。交通管理部门并不能对出现违规行为的车辆进行及时的交通管制和处理,概括来说管理与检测仍处于管理误区与盲目状态。针对该现象,文本研究了基于计算机的交通监管系统设计与实现。
1 智能交通管理系统简介
ITS系统,该系统综合先进的现代计算机网络技术、信息电子通讯技术、现代信息技术以及自动控制技术等,并将其在整个交通运输管理体系进行有效的运用,为此建立起一种实时、有效、准确、范围广的全方位发挥作用的交通运输控制体系和综合管理系统。近几年人流、车流随着城市发展而猛增,交通职能部门对更加智能的交通管理系统的需求越来越急迫。所以,ITS成为21世纪地面交通管理、运输科技、运营的主要研究方向,带领着交通运输一场伟大的变革。北美、西欧、日本自上世纪80年代末就开始竞相发展智能运输系统,并制定相应的开发计划加以实施,而发展中国家也开始对ITS系统的全面研究与开发。
2 认识基于计算机视觉的智能交通监控系统
2.1 计算机视觉技术
所谓计算机视觉,理解为使用可替代人眼的高清摄影机设备或其他现代高清电子影像摄录装备进行观察,实现对目标的追踪定位、图像识别、模拟数据测量等,并对采集的视觉数据信息送达远端计算机服务器,通过计算机服务器的信号图形图像处理技术对视频数据信息进行进一步加工,实现三维重现现实情景的计算机观察呈现技术。
2.2 智能交通监测系统
通过使用现有的、先进的计算机智能化、视觉化、信息化科技对国内各大路况交通运输实施监测,为工作于交通运输人员呈现数据信息的自动化采集、分析、处理等的智能化服务,且该交通管理系统存在一定自作能力和指挥能力,即为智能交通系统。随着道路、车辆的飞速发展,人民生活水平及国民生产总值的不断提高,智能交通系统,在国内外受到越来越多的青睐。近几年,各道路关键路段、路口随着道路监控机制的普遍建立,也都基本完成了视频监控。
2.3 基于计算机视觉的智能交通监控机制
根据前面2.1对计算机视觉技术和2.2对智能化交通监控系统概念的解析与理解,可总结出以计算机视觉为基础的智能化交通监控机制,其是通过现代高端计算机对视觉信息收集、提取、处理、分析等技术,实现对城市道路交通信息的实时监控、视频数据的收集、信息分析处理,并对城市交通状况使用智能交通机制状况,并通过视频影像引导车辆行驶,以此降低或避免各种各样交通事故发生的智能化交通监控机制。
3 构建以计算机视觉为基础的智能交通监控机制及配套措施
3.1 基于计算机视觉的智能交通监控机制的构建
监控指挥系统、实时交通信息收集系统、高质量信息传输系统是基于计算机视觉的智能交通监控的三大系统。实时交通信息收集系统由多套信息收集装置组成,通过这些信息采集装置实时监控不同位置交通现状。实时交通信息收集系统不仅能进行路段监控与实时交通信息采集的工作,还能将收集数据信息,经由高质量信息传输系统实施输送,或在服务器中存储已处理的信息;一个中央数据库与一个中央服务器是高质量信息存储传输系统核心部分,其中中央数据库对获取到的实时交通路况信息进行存储。而为了便于工作者能通过界面对中央数据库实施提取、查询、查看等操作,因此该界面就由中央服务器来提供,此外该服务器还能将已处理的实时路况数据通过高质量的传输系统输送到监控指挥机制,达到对各路段的交通进行管制、部署及指挥的目的。
3.2 专业技术人员的储备
以计算机视觉技术为基础的智能交通监控机制是一个庞大的系统,具有突出点的优点,该系统集自动化、信息化、智能化为一体,只有专业的技术人才才能使该系统高效工作,因此开展培训储备相关技术人员至关重要。实时交通信息借助于先进的高清装置的正常采集工作,所以储备一批针对高清装置安装、检测、调试及故障修复的技术人员极为重要。现代基于计算机视觉的智能交通监控机制虽然本身具有一定的图形图像分析及处理能力,然而有些工作人是永远被替代的,所以培养储备一批专业的图形图像处理技术人员也是重要的。储备服务器维护技术工,每天以计算机视觉技术为基础的智能交通监控机制都会获取大量的监控信息数据,然而只有大型的服务器才能存储这些数据,可想而知一旦服务器瘫痪就会引发整个机制的崩溃,造成严重的后果,因此专业服务器维护工作者的储备与培养也尤为重要。基于计算机视觉技术的智能交通监控机制并不能取代交通指挥员,其仅是用来采集实时交通信息的系统,仅为了协助交通指挥员监管及疏导城市交通,因此要求储备一批高素质、高质量的交通指挥员也极为必要。
3.3 交通知识的宣传
大城市的交通问题,并不是依靠单纯的开发先进的计算机视觉智能交通监控系统就能处理解决,也不是单单要求市政建设增加公交数量、增铺几条公路或增开通几条地铁就能解决的,以上这些仅是辅助方法。关键在于开展交通知识的宣传与教育工作,强化驾驶员的素质,倡导不酒驾、不逆行、不超速、限号行驶等,自觉遵守道路交通规则,提倡公交地铁出行,减少私家车辆行驶,齐心协力共同打造和谐的交通环境。
3.4 获取政府支持
市政建设的主要问题之一即是交通问题,政府的支持是万万不可缺失的。由于构建以计算机视觉技术为基础的智能交通管制机制,涉及面广,包括道路勘测、先进装置的引进、专业技术人员的储备、装备组织安装与调试、后期维护等等多方面,这些都需要投入大量的人力、财力、物力,而对于任何一个单位、部门或几个市政部门来说都无法独自承担,由此可知政府的大力支持是必不可少的,以政府的力量为媒介,将各部门进行协调、协作,只有这样才能构建成较健全的交通监控体系。
4 结束语
道路交通杂、乱是国内城市交通最突出的特点之一,对于我国的交通事业来说进行行人识别势在必行。而我国对于行人识别的研究仍处于起步阶段,还较落后。且基于计算机的交通监管系统设计较为复杂,涵盖点较多,因此本文仅对设计进行简要介绍,希望达到抛砖引玉的效果。
参考文献:
[1]康晓丽.无线网络技术在交通管理中的应用[J].科技情报开发与经济,2011(21).
[2]钟振,赖顺桥,肖熠琳,张沛强.RFID车辆智能管理系统[J].机电工程技术,2011(02).
[3]文军.视频监控系统软件现状与技术分析[J].金卡工程,2007(08).
[4]张玉风.简述视频监控系统的发展历程[J].铁道通信信号工程技术,2006(06).
[5]马伏花,朱青.基于射频识别技术的车辆自动识别系统的实现[J].中国仪器仪表,2006(11).
篇10
【关键词】株高 HALCON 双目视觉 误差修正
1 引言
计算机视觉技术是近几年来发展较快的信息处理技术,随着图像处理技术的专业化、计算机硬件成本的降低和速度的提高,计算机视觉的应用已变得越来越广泛,其中不乏在农业中的应用。
株高是植物生长指标的重要参数,是一个物种争夺阳光的能力的主要决定因素[1]。对于作物来讲,株高参数是作物产量预估不可或缺的参数。
然而对于具体的利用机器视觉方法直接测量株高的研究还是比较少的,本文就是利用HALCON软件,采用双目计算机视觉方法来实现株高的测量。
2 双目视觉原理
双目视觉的基本原理是从两个视点观察同一景物,获取不同视角下的两幅图像,然后根据三角测量原理计算不同图像对应像素间的视差(disparity ),获取景物的三维信息,从而实现场景三维重构。
根据两个摄像机位姿的不同,双目视觉有多种模式,常用的有双目横向模式,双目横向会聚模式以及双目纵向模式(也称双目轴向模式)。
为了增加测量精度,基线一般不能太小,但基线长度也不可太长,否则,由于物体各部分相互遮挡,两个摄像机可能不能同时观察到目标点。
图1是会聚双目成像中的视差原理图。图中给出两镜头连线所在平面(XZ平面),两镜头中心间的距离(即基线)是B,两光轴在XZ平面相交于(0,0,Z)点,交角为(未知)。现在来看如果已知像平面坐标点(x1, y1)和(x2, y2 ),如何求取世界点W的坐标(X,Y,Z)。
根据相似三角形的关系可以很明显得出: (2.1)
(2.2)
(2.3)
其中r为从(任一)镜头中心到两系统会聚点的距离(未知)。将式(2.2)和(2.3)联立, 可得:
(2.4)
上式把物体和像平面的距离Z与视差d直接联系起来,若想求解式(2.4),除视差d外,还需要知道x1和x2本身。另外,由图1可以得到:
(2.5)
代入式(2.2)或(2.3)可得:
代入式(2.2)或(2.3)可得:
(2.6)
现实测量中,两相机的光轴与世界坐标Z轴的夹角不可能相等,不过即便如此,也只会引入几个待确定的三角函数,而这些三角函数在相机标定时即可确定。
3 测量过程
实现该测量过程包括如下几个功能模块:图像获取、摄像机标定、特征提取、立体匹配与三维信息恢复、后处理。本实验采用是分比率为960×720的双摄像头。被测区域大小约为56cm×42cm,所以采用的标定板应为被测区域1/3大小的HALCON专用的200mm标定板。标定数为24×2张图片。利用HALCON自带的标定助手,可以轻松实现单目标定。
双目标定时,需要有15张以上左右相机相同时刻拍摄的标定板的图片。再利用for循环,find_caltab函数,find_marks_and_pose函数以及binocular_calibration函数,可以实现双目标定。将标定过程中,获得的摄像机的内参以及两个摄像机相对位置关系作参数传递给函数gen_binocular_rectification_map,可以很好地实现双目视觉校正的目的,得到两幅校正后的图像,还能得到校正后虚拟立体视觉系统中两个摄像机的内参和外参。
不同种类的植物其株高定义不同,测量方式也不尽相同。本文研究的株高只针对直立型的,是指从植株根部露出土壤部分到植株最高处的株高。
先利用gen_binocular_rectification_map函数为map_image函数提供控制参数,再通过map_image函数对采集到的图像做校正处理,利用threshold函数,fill_up_shape函数以及select等函数找出校正后图像中植株的最低和最高点,利用intersect_lines_of_sight函数,可获得植株最低点和最高点的真实三维坐标,最后通过几何运算得到双目测量结果。
我们在图像采集时就应该考虑到,摄像头应该稍微带一点俯拍的角度,保证左右两幅图像上最高处均为现实坐标中的最高处。切忌俯拍角度不可太大,否则由于拍摄角度而引起的像差会很大,对结果将会有很大的影响。
经过以上几步骤得到的三维坐标,常因各种原因而存在一定的误差,需要进行误差校正。我们对已知高度的对象进行了测量,得出结果如表1:
通过上述数据得出的修正关系如下:
y=-0.0002x2+1.0699x (3.1)
其相关系数R2=0.9993
4 实验结果
我们对三种植物进行了测量得出的结果如下:
从测量结果中可以看出,修正后相对误差控制在2%之内,可以接受。误差引入的原因可能如下:
1、标定板的选择决定了标定精度。一定要选用高精度的标定板,且标定板的大小应约为测量范围1/3大小。
2、相机是图像获取的根本,高质量的图像离不开高分辨率相机,但是高分比率,高解析度的相机又会带来成本上的提升。本文中,对于390.0mm左右的对象,1个像素的误差可以带入约0.4mm的实际误差。
3、本文所采用的算法只能针对比较理想,比较直的植株,算法的不断优化,才能不断减少误差,提高精度。
5 结语
本文介绍了一种基于HALCON的,利用双目视觉测量株高的方法。对于直立型植物,通过对立体匹配与三维信息恢复结果的误差修正,其株高测量相对误差不超过2%,方法具有一定的可借鉴性。
参考文献
[1]章毓晋.计算机视觉教程 [M].北京: 人民邮电出版社,2011.
作者简介
郝慧鹏(1988-),男,内蒙古乌兰察布人,硕士研究生,主要研究方向为计算机视觉技术在农作物检测上的应用。
指导老师
田跃(1956-),男,北京人,北京科技大学数理学院物理系教授,北京市弱磁检测及应用工程技术研究中心副主任。
作者单位
- 上一篇:光纤通讯方案
- 下一篇:合理营养对健康的重要性