量子计算的概念范文
时间:2023-12-29 17:53:50
导语:如何才能写好一篇量子计算的概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
量子力学是一门高深莫测的学科,离普通人很远,但正因为有了它,催生了现代半导体技术,从而有了大家都不离不开的电脑。现在,这门神奇的学科将再次登场,用最新的量子计算机来改变世界。
量子计算机是什么,这是个要首先说明的概念。这项概念,最早由大物理学家费曼提出。他在计算量子模型时,发现所面对的数据是天文级的,如果由普通的计算机来进行模拟,时间所耗甚巨。在一筹莫展的时候,他突然想到,如果计算机的架构也跟量子系统一样,是不是就能解决这一问题呢。为此,他提出了量子计算机的概念。不过,量子计算机在很长的时间内只停留在理论的层面。到了1994年,贝尔实验室的科学家证实了量子计算机在计算对数方面优于普通计算机,于是引发了研发的热潮。那什么是量子计算机呢。以我们平常已经熟悉不过的计算机为例,它的基础是二进制,而二进制建立在半导体器件的导通和截至两种状态上。而量子计算的基础是每个原子的不同状态,比如一个原子顺时针转和逆时针转,这就是两种不同的状态;还有两个原子纠结在一起,术语叫量子缠绕,这又是不同的状态。根据这些不同的状态,我们就可以赋予其不同的数值,这样一来,通过改变原子的状态,就能进行计算了。这种改变使得计算的效率大为提高,1个40位元的量子计算机,就能解开1024位元的电子计算机花上数十年解决的问题。
量子计算机这么好,为什么难于实现呢。因为原子的状态很不稳定,不容易控制。但是,最近的一则消息让人眼前一亮。IBM的科学家近日宣布,距离掌握量子计算机的基础技术又迈进了一步。这些科学家已找到了维持量子完整性和减少量子计算错误的方法,通过把传统硅制作工艺下生产的量子进行超导处理,从而就有可能实现维持数千甚至数百万的量子位保持一天的稳定状态。该项目的负责人称,“我们做的量子计算研究表明,它不再仅仅是个暴力计算的物理实验。现在就可以根据该成果去制作新的计算系统,由此将把高性能计算推向一个全新高度”。量子计算的目标是实现计算机只用一个量子就可以“瞬间完成几百万次计算。这些科学家们,在升级到一种“三维”超导量子(3D量子)后,就能将量子位的稳定状态延长到100微秒,而这已经是先前的2到4倍。尽管不是永恒稳定,但他们认为这样的状态“已经刚好达到容错计算的最低界限,也就意味着科学家可以开始重点研究进一步延长稳定状态方面的工作了”。现在,利用蓝宝石芯片,IBM已制造了一台3D量子设备来展示其研究成果。
在研制量子计算机的过程中,科学家们已经突破了很多障碍,现在的计算性能比2009年中期以来以提升了10倍,距离科学界确定的全尺寸量子计算机所需满足的最低要求已经非常接近了。但是如果要让量子计算机走进我们的生活,那还有很长的道路要走。同时,现代集成电路封装和通信技术也必须要有极大的进步,这样才能实现量子计算机与现代数据系统的对接。
篇2
[关键词]量子;特性;意识;应用
中图分类号:O413.1 文献标识码:A 文章编号:1009-914X(2016)25-0298-01
一、量子的基本知识
1、量子
我们在物理学中提到“量子”时,实际上指的是微观世界的一种行为倾向,也就是可观测的物理量都在不连续地变化。?比如,我们说一个“光量子”,是因为单个光量子的能量是光能变化的最小单位,光的能量是以单个光量子的能量为单位一份一份地变化的。对于量子的种种特性,连不少科学家都为之迷惑,对于我们普通人来说自然更加高深。今天我就试着走近它,来发现她“幽灵”般的的魅力。
2、量子的特性
量子的奇妙之处首先在于它的奇妙特性――量子叠加和量子纠缠。
量子叠加就是说量子有多个可能状态的叠加态,只有在被观测或测量时,才会随机地呈现出某种确定的状态,因此,对物质的测量意味着扰动,会改变被测量物质的状态。好比孙悟空的分身术, 孙悟空可能同时出现在几个地方,他的各个分身就像是他的叠加态。在日常生活中,我们不可能在不同的地方同时出现,但在量子世界里它却可以同时出现在多个不同的地方。”
而所谓的量子纠缠,则意味着两个纠缠在一起的量子就像有心电感应的双胞胎,不管两个人的距离有多远,当哥哥的状态发生变化时,弟弟的状态也跟着发生一样的变化。“如果这两个光量子呈纠缠态的话,哪怕是千公里量级或者更远的距离,还是会出现遥远的点之间的诡异互动,爱因斯坦称之为“幽灵般的超距作用”。科学家就可以利用这种效应将甲地某一粒子的未知量子态,在乙地的另一粒子上还原出来。量子纠缠的广泛应用将会改变我们的生活,真正地突破时空的局限,交通、物流也就不再会有时间与空间的阻碍了。我国发射的“墨子号”量子卫星昭示着我国在量子通信领域已处于世界领先的地位。
二、意识是量子力学现象
人们的意识一直都没有搞清楚,用经典物理学的电学、磁学及力学方法去测量意识是测量不出来的,科学家们现在已经开始认识到了意识是种量子力学的现象,意识的念头像量子力学的测量。为什么这么说呢?比如我们面前出现了一座房子,这时有两种可能的状态:一个没有任何心思的人会看房非房,他的意识处于自由的状态,没看到房子是石头的还是木头的,他根本就不动念头。意识也是这样,如果你看到这座房子,一下子动念头了,动念头实质上就是作了测量。
客观世界是一系列复杂念头造成的。有一本非常著名的书叫《皇帝新脑》, 就是研究意识,他认为计算机仅仅是逻辑运算,不会产生直觉,直觉只能是量子系统才能够产生,意识是种量子力学现象,意识的念头像量子力学的测量。而人的大脑有直觉,也就是说人的意识不仅存在于大脑之中,也存在于宇宙之中,量子纠缠告诉我们,一定有个地方存在着人的意识。
三、量子技术的应用
科学家认为,量子纠缠是一种 “神奇的力量”,可成为具有超级计算能力的量子计算机和量子保密系统的基础。实际上,量子纠缠还有很多奇妙的应用,可以在许多领域中突破传统技术的极限。量子技术已经成为一个新兴的、快速发展中的技术领域。这其中,量子通信、量子计算、量子成像、量子生物学是目前的方向。
1、量子通信
量子通信就是通过把量子物理与信息技术相结合,利用量子调控技术,确保信息安全、提高运算速度、提升测量精度。 广义地说,量子通信是指把量子态从一个地方传送到另一个地方,它的内容包含量子隐形传态,量子纠缠交换和量子密钥分配。狭义地说,实际上只是指量子密钥分配或者基于量子密钥分配的密码通信,解决了以往用微电子技术为基础的计算机信息技术极易遭遇泄密的问题。
2、量子计算
量子计算是量子物理学向我们展示的又一种强大的能力,源自于对真实物理系统的模拟。模拟多粒子系统的行为时,当需要模拟的粒子数目很多时,一个足够精确的模拟所需的运算时间则变得相当漫长。而如果用量子系统所构成的量子计算机来模拟量子现象则运算时间可大幅度减少,从此量子计算机的概念诞生。
3、量子成像
量子成像是从利用量子纠缠原理开始发展起来的一种新的成像技术,有一种比较奇妙的现象称之为“鬼成像”。比如将纠缠的双光子分别输入两个不同的光学系统中,在其中一个系统里放入待成像的物体,通过双光子关联测量,在另一个光学系统中能再现物体的空间分布信息。即与经典光学成像只能在同一光路中得到物体的像不同,鬼成像可以在另一条并未放置物体的光路上再现该物体的成像。
4、量子生物学
量子生物学是利用量子力学的概念、原理及方法来研究生命物质和生命过程的学科。薛定谔在《生命是什么》一书中对这一观点进行了详尽的阐述,提出遗传物质是一种有机分子,遗传性状以“密码”形式通过染色体而传递等设想。这些设想由脱氧核糖核酸双螺旋结构模型而得到极大的发展,从而奠定了分子生物学的基础。分子的相互作用必然涉及其电子的行为,而能够精确描述电子行为的手段就是量子力学。因此量子生物学是分子生物学深入发展的必然趋势,是量子力学与分子生物学发展到一定阶段之后相互结合的产物。
爱因斯坦相对论指出:相互作用的传播速度不会大于光速,可是对于分开很远距离的两个处于纠缠态中的粒子,当对一个粒子进行测量时,另一个粒子的状态受到关联关系已经发生了变化,这种传输的理论速度可以远远超过光速。这一现象被爱因斯坦称为“诡异的互动性”。量子纠缠是量子物理学里最稀奇古怪的东西,即使脑洞大开我们还是很难领会它,另外从常识角度来看,量子理论描述的自然界很荒谬,许多解释还涉及到哲学问题。但另一方面,量子物理学有很广泛的应用,它的发展可能带来行业面貌的改变,所涉及的范围从量子计算机到人工智能,无所不含,这也正是我们深入学习、研究量子物理的动力所在啊!
参考文献
[1] 薛定谔,生命是什么.
[2] 舒娜,量子纠缠技术与量子通信.
[3] 尼古拉.吉桑著,周荣庭译,跨越时空的骰子.
[4] 中国科普博览.
[5] 科普中国.
篇3
关键词:计算工具;图灵模型;量子计算;哥德尔不完备定理;神谕
一、引言与计算的产生
在人类社会的早期时代,加减乘除的概念就被人们所认识到。随着人类文明的发展和技术的进步,对求方程的解,求函数的微分和积分等概念也纳入了计算的范畴。伴随人类生产活动的不断增加,人们对计算的要求也越来越大,计算工具也再不断的改进。
二、远古的计算工具
人们开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。
早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。因此源用至今,并流传到海外,成为一种国际性的计算工具。
三、近代计算系统
近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员所广泛采用。
机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。
四、电动计算机
英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术所限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。
此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部通用过程控制计算器,实现了100多年前巴贝奇的理想。
五、电子计算机
20世纪初,电子管的出现,使计算器的改革有了新的发展,并由于二次大战的迫切的军事需要,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算器。
电子计算机的出现和发展,让人类进入了一个全新的时代。它极大影响了经济社会发展,并彻底改变了人们的生活。电子计算机是二十世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。
在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(Godon Moore) 对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自二十世纪60 年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速率被公认为“摩尔定律”。
六、 “摩尔定律”与“计算的极限”
人类是否可以将电子计算机的运算速度永无止境地提升? 传统计算机计算能力的提高有没有极限? 对此问题,学者们在进行严密论证后给出了否定的答案。
如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。
而以IBM研究中心朗道(R. Landauer) 为代表的理论科学家认为到二十一世纪三十年代,芯片内导线的宽度将窄到纳米尺度(1 纳米= 10-9 米) ,此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米) 后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。
哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在二十一世纪前三十年内终止。
著名科学家,哈佛大学终身教授威尔逊(Edward O. Wilson) 指出:“科学代表着一个时代最为大胆的猜想(形而上学) 。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”
这段话成为许多科学家的座右铭,给人以启示。科学需要梦想,甚至需要形而上的猜想。科学的预言有时在哲学看来有着形而上学的味道。而在人类面临着计算科学的最大难题——计算的极限到来之时,DNA计算和量子计算为实现人类的这个梦想铺开了宏伟蓝图。
七、DNA计算系统
1994年11月,美国计算机科学家阿德勒曼(L.Adleman)在美国《科学》上公布DNA计算机的理论,并成功运用DNA计算机解决了一个有向哈密顿路径问题[7]。 DNA计算机的提出,产生于这样一个发现,即生物与数学的相似性:(1)生物体异常复杂的结构是对由DNA序列表示的初始信息执行简单操作(复制、剪接)的结果;(2)可计算函数f(ω)的结果可以通过在ω上执行一系列基本的简单函数而获得。
阿德勒曼不仅意识到这两个过程的相似性,而且意识到可以利用生物过程来模拟数学过程。更确切地说是,DNA串可用于表示信息,酶可用于模拟简单的计算。这是因为:首先,DNA是由称作核昔酸的一些单元组成,这些核昔酸随着附在其上的化学组或基的不同而不同。共有四种基:腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶,分别用A、G、C、T表示。单链DNA可以看作是由符号A、G、C、T组成的字符串。从数学上讲,这意味着可以用一个含有四个字符的字符集∑ =A、G、C、T来为信息编码(电子计算机仅使用0和1这两个数字)。其次,DNA序列上的一些简单操作需要酶的协助,不同的酶发挥不同的作用。起作用的有四种酶:限制性内切酶,主要功能是切开包含限制性位点的双链DNA;DNA连接酶,它主要是把一个DNA链的端点同另一个链连接在一起;DNA聚合酶,它的功能包括DNA的复制与促进DNA的合成;外切酶,它可以有选择地破坏双链或单链DNA分子。正是基于这四种酶的协作实现了DNA计算。
DNA计算与电子计算机完全不同,它的计算单元是装在试管培养液中的DNA长链。通过控制试管的温度和向试管中投放反应物,来进行计算。
八、量子计算系统
量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman 曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题[11]:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个 ,有可能发生的情况就会多出一倍 ,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里 ,这却恰恰提供一个契机。转贴于 因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。
在费曼设想的启发下,1985年英国牛津大学教授多伊奇David Deutsch 提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题[15]。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。
有种种迹象表明:量子计算至少在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024 位的十进制数) 分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024 位整数的质因子分解问题,大约需要28 万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046 位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40 分钟的时间就可以分解1024 位的整数了。
更重要的是,量子计算从本质上说是可逆的,朗道证明了可逆计算可以不消耗资源———也就是说,量子计算的运算速度可以不违背熵持续增加原理而无限增加。从这个例子我们可以直觉地认为量子计算在处理大规模计算问题时优越性是十分明显的,但目前还没法用数学证明这一点。
九、计算的本质
在人类文明的早期,人们就认识到“加减”这些计算活动,以及它们的重要性。随着,计算工具的不断改进,人们的“计算”本身的也不断的加深了解。到后来开方、求方程的解、求微分求积分也被纳入进计算的范畴。
“什么是计算?”问题一直到20世纪30年,才由哥德尔(K.Godel,1906-1978),丘奇(A.Church,1903-1995),图灵(A.M.TUI-ing,1912-1954)等数学家 的工作,人们才弄清楚什么是计算的本质,以及什么是可计算的,什么是不可计算的等根本性问题。
抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为 什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。
从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幕运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。
随着计算机日益广泛而深刻的运用,计算这个原本专门的数学概念已经泛化到了人类的整个知识领域,并上升为一种极为普适的科学概念和哲学概念,成为人们认识事物、研究问题的一种新视角、新观念和新方法。
十、“计算主义”的兴起
随着计算工具的发展,一些哲学家和科学家开始从计算的视角审视世界,科学家们不仅发现大脑和生命系统可被视作计算系统 ,而且发现整个世界事实上就是一个计算系统。当康韦证明细胞自动机与图灵机等价时 ,就有人开始把整个宇宙看作是计算机。因为特定配置的细胞自动机原则上能模拟任何真实的过程。如果真是这样,那么 ,我们便可以设想一种细胞自动机,它能模拟整个宇宙。实际上,我们完全可以把宇宙看作是一个三维的细胞自动机。基本粒子或其它什么层次的物质实体可以看作是这个细胞自动机格点上的物质状态 ,支配它们运动变化的规律可以看作是它们的行为规则。在这些规则的作用下基本粒子发生各种变化,从而导致宇宙的演化。
总之,计算或算法的观念在当今已经渗透到宇宙学、物理学、生物学乃至经济学和社会科学等诸多领域。计算已不仅成为人们认识自然、生命、思维和社会的一种普适的观念和方法 ,而且成为一种新的世界观。一些学者认为:不仅生命和思维的本质是计算,自然事件的本质也是计算。
十一、量子计算中的神谕
人类的计算工具,从木棍、石头到算盘,经过机械计算器,电器计算机,到现代的电子计算机,再到DNA计算机和量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器可以用来搬动“算珠”,而且效率更高,速度更快的时候,人们自然想到利用机器来搬动算珠,诞生了机械计算设备。
随后,人们用继电器替代了纯机械。最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。
电子计算机后,人们改变了思路,即:到自然界中去发现那些符合图灵模型的现象,例如DNA分子链的自我复制现象。DNA分子提供了AGCT四种碱基,相当于电子计算机中的2进制的0和1。DNA自我复制的机制,非常接近电子计算机的的模型——图灵机模型。
可以说,DNA计算机是基于图灵机的先进计算方式。但是它始终不能突破图灵机的极限。即:在牛顿经典物理学下“确定世界”的计算模型。
量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。
应为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进电子计算机CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。在DNA计算中,这种情况稍微复杂一点,可视为ATCG四种碱基所构成的拥有上百万根轴,每根轴上有四个珠的“超级算盘”,尽管它的体积小到可以放在一根试管中。
量子计算则完全不同,对于量子计算的核心部件,类似与古代希腊世界中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。
十二、“神谕”的本质与哥德尔不完备性
量子计算在信息的承载体上与经典计算毫无区别:它同样利用二进制比特——称为量子比特——来进行运算。但是,量子力学的一个十分“反直觉”的奇特现象铸就了量子比特与传统比特的天壤之别。一个量子比特不仅仅可以表示信息“0”和“1”,还出人意料地可以表示一种“0”和“1”的叠加状态。
我们可以清晰地看到量子计算的神奇以及它不同于经典计算之处。那么,为什么量子计算会显示出如此奇怪的性质呢? 这些性质又有什么本质的物理原因呢[12]? 遗憾的是,迄今为止,科学家们还在为这些神奇的量子现象的本质而进行探索,答案不得而知。
人们对量子计算本质的无知来自于人们对量子世界内部的本质的认识还不统一。但这并不妨碍人们把量子计算最为超级计算机的想法。虽然它带有强烈的工具主义倾向。
量子计算的科学研究依然在继续,然而,对量子计算和量子力学本身的哲学研究却已经显示出人类的无奈和无助。也许,世界本身就是一个整体,我们仅仅从细处着眼永远无法看到导致整体变化的内因。
哥德尔不完备性定理告诉我们,任何一个足够强的一致的公理系统的完备性是不可证明的,而它的完备性的不可证明是可以证明的。
一些悲观的科学家和哲学家认为:我们科学研究所依赖的各种公理系统是无法证明完备的,即现实世界的有些现象是无法被已有定律和规律来揭示,人们努力地试图用这些已经发现的公理和规律去解释量子计算、量子力学,去解释自然和宇宙是不可行的。科学家们一直在努力解释量子世界的本质,但也应该清醒,这些努力有可能最终是失败的。而这些失败恰恰证明了哥德尔不完备性定理的正确性。所以他们认为人类是无法认识某些规律的,一些迷题永远是个迷。
十三、“神谕”的挑战与人类自身的回应
笔者的观点与上述不同,人类的思考能力,随着工具的不断进化而不断加强,尽管在远古时期,有些智者的思考能力已经远远超越了他们的时代,但是,在整体上,人类的思维能力和解决问题的能力是随着经济和科技的进步而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。
哥德尔的不完备性并不能组织人类对未知事物的新发现,如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:
“计算工具不断发展——整体思维能力的不断增强——公理系统的不断扩大——旧的神谕被解决——新的神谕不断产生”不断循环。
也许那时会出现新的“神谕”,而“神谕”的出现对人类来说并不是负面的,而是对人类整体思维能力和认识能力的一次挑战。并将刺激着人类对宇宙和自身的更深刻认识。
无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。
参考文献
[1]M.A.NielsenandI.L.Chuang,Quantum Computation and Quantum Information. Cambridge University Press, 2000
[2]A.M.Turing,“On computable numbers,with an application to the Entscheidungs problem,”Proc. Lond. Math. Soc. 2 ,vol.42,pp.230-265,1936
[3]“Quantum Information Scienceand Technology QuIST program ver.2.0”Defense Advanced Research Projects Agency DARPA ,Apr.2004
[4] P.W.Shor,“Algorithms for quantum computation:discrete logarithms and factoring” New Mexico: IEEE Computer Society Press,1994,pp.124-134
[5]吴楠 由量子计算看科学与哲学的层次观,自然辨证法通讯,vol.29,no.4,pp90-95,2007
[6]李建会 走向计算主义,自然辨证法通讯,vol.25,no.3,pp31-36,2003
[7]Adleman,L.M.“Molecular Computation of Solutions to Combinatorial Problems.” Science , 266:1020-24,1994
[8] Adleman,L.M. “Computing with DNA.”Scientific American,279 2 :54-61, 1998
[9]D.P.DiVincenzo,“Quantum computation,” Science ,vol.270,pp.255-261,1995.
[10]彭罗斯1998:《皇帝新脑》。许明贤等译。长沙:湖南科技出版社
[11] R.P.Feynman,“Simulatingphysicswithcomputers,”International J. Theor. Phys. , vol. 1, pp. 467-488, 1982.
[12]A.Einstein,B.Podolskey,andN.Rosen,“Can quantum-mechanical description of physical reality be considered complete?”Physical Review, vol.47,pp.777-780,1935.
[13] K.Gdel, “On formally undecidable propositions of Principia Mathematica and relatedsystems” , New York: Dover Publications , INC., 1961 (Translated)
篇4
早在90年代,美国信息科学家洛夫·格罗弗和彼得·肖尔就已经从理论上证明,量子计算机可以比传统计算机更有效地搜索大型数据库和执行长数字的质因数分解。这也意味着量子计算机可以更迅速地破解AES和RSA加密算法,这是一件非常恐怖的事情,因为目前数据保护主要依赖于这些算法。虽然同样通过量子位工作的量子密码已经成为一种商业解决方案,但是它只能够确保密钥交换的安全。
极其严格的要求
另一方面,也有一些持怀疑态度的声音,怀疑D-Wave所谓的量子计算机是否是真正意义上的量子计算机。多年以来,世界各国的科学家一直不懈努力地研发量子计算装置,但都没能够走出实验室阶段,没有获得太多实质性的进展。这是因为对于量子计算机的要求是极其严格的。首先,需要通过原子粒子的性质来制备量子位,这是量子现象发生的必要要求;其次,该系统必须从环境中隔离并冷却到几乎绝对零度,因为量子现象会受到外部影响;其三,人们必须谨慎地从外部进行干预,并分配单个量子位的初始值,触发量子力学的“纠缠”进行所需的算术运算;其四,读取结果。
到目前为止,研究人员利用单个离子或光子、原子核自旋的原子或者超导电子对作为量子位,这些已经超出了平常人的想象。而按照D-Wave的记录,他们2011年在因斯布鲁克大学通过钙离子取得14量子位的纠缠链,并于2012年在布里斯托尔大学成功分解数字21的质因数3和7,这些都是很普通的成功,是什么让D-Wave那么的与众不同?物理学界许多对D-Wave的量子计算机持怀疑态度的人猜测,D-Wave公司那个所谓量子计算机的庞大黑盒子,所使用的量子位实际上是微芯片上的超导环,通过传统的电子设备进行控制和读取。因此,批评者们质疑这个系统量子位之间有没有量子纠缠效应,或者说计算机是否真正利用量子纠缠效应进行计算,怀疑这只是一台普通的计算机。
应用范围有限
除了在生产技术上的优势以外,D-Wave的秘密还在于它的计算机概念。它被用于编程求解所谓的“旅行商问题”(给出城市的名单和每对城市之间的距离,要求给出访问每个城市一次并返回到起点城市的最短路线),D-Wave的系统能够根据物理“能量最低原理”逐渐进入并给出最佳的解决方案。量子计算机的结果需要通过电子设备来读取,这是量子计算机面临的另一个问题:既然量子位包含一定概率的“0”和“1”,那么也只是有一定的概率获得正确的结果,因此需要重复足够多次数的计算,以达到统计学上可接受的确定性。
篇5
这项计划将由谷歌的量子人工智能(Quantum Artificial Intelligence)研究小组来实施。谷歌在博客中透露,美国加州大学圣巴巴拉分校的一个研究小组也加入了这项计划。
谷歌去年的研发开支达到80亿美元。为了在互联网搜索和在线广告等市场保持领先地位,谷歌目前正在开发一些新的计算机技术。在科技行业中的一些人看来,量子技术是计算机进行海量数据分析的一种革命性方式。这种新技术对谷歌的主要业务尤其有帮助,对它的新项目――如联网设备和联网汽车――也是有用的。
“在一个硬件研发团队的协助下,量子人工智能研究小组现在能够落实新的设计并测试新的产品。”谷歌在博客中写道。
在整理和分析海量数据方面,量子计算机将具有比传统计算机更快的解决速度。谷歌量子人工智能小组成员马苏德・莫森(Masoud Mohseni)曾经与人合作撰写过具有领先学术水平的量子技术论文。谷歌也一直被视为这一新技术革命的领导力量之一。
此外,谷歌的竞争对手微软也在进军这个新领域,并建立了一个名为“量子架构和计算(Quantum Architectures and Computation Group)”的研究小组。
探秘量子计算机
量子计算机,早先由理查德・费曼提出,一开始是从物理现象的模拟而来的。可他发现当模拟量子现象时,因为庞大的希尔伯特空间使资料量也变得庞大,一个完好的模拟所需的运算时间变得相当可观,甚至是不切实际的天文数字。理查德・费曼当时就想到,如果用量子系统构成的计算机来模拟量子现象,则运算时间可大幅度减少。量子计算机的概念从此诞生。
从物理层面上来看,量子计算机不是基于普通的晶体管,而是使用自旋方向受控的粒子(比如质子核磁共振)或者偏振方向受控的光子(学校实验大多用这个)等等作为载体。当然从理论上来看任何一个多能级系统都可以作为量子比特的载体。
从计算原理上来看,量子计算机的输入态既可以是离散的本征态(如传统的计算机一样),也可以是叠加态(几种不同状态的几率叠加),对信息的操作从传统的“和”,“或”,“与”等逻辑运算扩展到任何幺正变换,输出也可以是叠加态或某个本征态。所以量子计算机会更加灵活,并能实现并行计算。
量子计算机或不再遥远
据外媒报道,美国普林斯顿大学研究人员近日设计出一种装置,可以让光子遵循实物粒子的运动规律。现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。
研究人员制作出一种超导体,里面有1000亿个原子,在聚集起来之后,众多原子如同一个大的“人工原子”。科学家把“人工原子”放在载有光子的超导电线上,结果显示,光子在“人工原子”的影响下改变了原有的运动轨迹,开始呈现实物粒子的性质。例如,在正常情况下,光子之间是互不干涉的,但是在这一装置里,光子开始相互影响,呈现出液体和固体粒子的运动特性,光子的这种运动“前所未有”。
现存的计算机是基于经典力学研发而成的,在解释量子力学方面有很大局限性。量子计算机(quantum computer)是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。研究人员称,在改变光子的运动规律之后,量子计算机的发明也许不再遥远。
就我国量子计算机而言,相关研究也一直处于世界领先水平。早在2013年12月30日,美国物理学会《物理》杂志就公布了2013年度国际物理学领域的十一项重大进展,中国科学技术大学潘建伟教授及其同事张强、马雄峰和陈腾云等“利用测量器件无关量子密钥分发解决量子黑客隐患”的研究成果位列其中。
《物理》杂志以“量子胜利的一年――但还没有量子计算机”为题报道了中国科学家成功解决量子黑客隐患这一重要成果。
尽管量子计算机仍然是遥远的未来,但2013年科学家们却报道了一系列量子信息和量子通信领域的胜利。在量子密码方面,两个独立的研究组报道了一种新的加密手段,可以提供绝对的安全性,以解决量子黑客隐患。
篇6
注意教材书(文献[9])已有"辐射场"及"能量场"的物理学概念。但囿于理论局限,使得教材书对这种场的描述是静止的(机械的)、孤立的(与物质世界无必然联系的)、无源的(原因不清),因而也是抽象的(没有物理意义的)。
上已证明,原子中能量量子化的根源是原子核,量子化是原子核自身性质。值得物理学注意的是,原子核这种性质并不孤立存在,它同时还严格地规定着所有外部世界。因而使得电子、原子、分子、物体、天体、宇宙都只能有唯一稳态位置和结构。这就是大自然最基本的内在本质规律。也就是普适方程即(20)式所揭示的规律。
那末,具体规律是什么呢?请看:
2辐射能场(存在)定理
研究表明,辐射能场准确存在可用定理表述。
〖辐射能场定理〗:任何粒子(含场粒子及天体,无例外,下同)在其周围都形成(存在)一种辐射能场,这种辐射能场可用普朗克常数?和量子数n=0,1,2,3…准确具体描述。在微观辐射能场表现为量子化,在宏观则表现为大量粒子的简并统计结果。
3辐射能场实质
辐射能场实质系以粒子为中心,向周围空间抛射场粒子流(这里主旨中性场粒子流,对于电磁场当有别论),这种场粒子流经电子集约化就成了光子。研究也表明,任何光子包括X射线都准确如此。参见(15)式,据此不难描述任何光子的自身结构。并且可以证明任何光子的静止(如可能)质量均不为零。认为光子静止质量为零,还是量子力学根据"相对论"瞎子摸象猜测结果。
这已表明光子的真实粒子性。并可准确具体证明,所谓波动性实际上是普朗克常数与量子数相互作用的一种客观表象,任何光子都不存在任何物理意义上的波动属性。
4辐射能场形象
研究表明,辐射能场形象与点光源的光通量完全一致。对于原子核,其辐射能场可用图(3)准确表示:
图中箭头方向表示辐射能流方向,其线密度表示能流密度,n为量子数。
5辐射能场性质
研究表明,辐射能场实质系以光速抛射场粒子流(粒子上限为中微子),故,辐射能场具有排它性。原子核的辐射能场首先排斥核外所有电子,任何电子也因此未能落到核上,这是事实。所以,电子未能落到核上量子力学的任何解释都只能是自欺欺人的胡言乱语!也所以,玻尔对电子的担心完全多余。
需要指出,辐射能场这种排斥作用,通常主要表现为能量形式。相形之下排斥力效应很小,一般可忽略。这与太阳光辐射的能量效应十分明显,而太阳光的压力效应十分微小,完全相似。不过在研究宇宙膨胀时,完全不可忽略天体辐射的斥力效应。就是说,"宇宙斥力"存在。然,囿于历史和理论局限,爱因斯坦在提出宇宙斥力概念后,又不得不自我否定。
6原子核辐射能场数学表达式
大量研究表明,原子核(质子)的辐射能场数学表达式准确为:
E=n2·h2/2mP·r2――――――――(21)
式中h为普朗克常数,n为量子数,mP为质子质量,距离为r=0∞,需指出,辐射能场场强E具有能量量纲(这是因为使用因子h结果),其数值则为r处单位面积上的能量。
注意:该式与(64)式有必然联系,但物理意义微妙不同,且具有丰富物理内容(略)。
研究还表明,由此电子所得到的原子核辐射能场能量准确地为:
E=n2·?2/2me·r2―――――――(22)
注意:这也就是玻尔量子化条件。
式中me为电子质量,不难看出普朗克常数h=2π?紧密地联系着质子和电子。
已很明显,量子力学与玻尔相比,玻尔正确,量子力学谬误!
并且由(21)、(22)式不难看出,当量子数n=0时,E=0。需指出,这是物质结构非常状态。参见图(3),在n=0时,原子核没有了辐射能场,原子核不再有排斥电子的能力。于是,电子必然落到核上。研究表明,这就是宇宙到达最低温度--宇宙奇点的情况。于是,原子中发生比核反应还强烈的变化,结果原子爆炸--物质爆炸--宇宙爆炸!这就是宇宙爆炸原因,由此也不难了解宇宙过去。
可悲的是,量子力学竟将量子数n=0也定义为原子的一种稳定状态。可歌呼?可泣乎?灾难,罪过!阿们--
7辐射能场的实验验证
7.1太阳的辐射本领已足够大
目前世界公认太阳发射本领(文献[2])为3.8×1033(尔格/秒),这相当于太阳每秒抛射出质量为m=2×109(千克)物质。但如上可知,太阳实际发射本领远大于此。因为太阳光仅是辐射能流的一部分,这种能流粒子上限为中微子。
7.2宇宙正在膨胀
宇宙正在膨胀,表明"宇宙斥力"存在,这是宇宙中心辐射能场性质。宇宙正在膨胀恰系宇宙中心辐射能场的客观真实写照(或曰照片)。
7.3"太阳风"的存在
文献[10]介绍的"太阳风"正是本文定义的太阳辐射能场,太阳风就是太阳辐射能场的客观真实写照。该文献给出了对太阳风考察的卫星实际探测结果(文献图示略)。这可谓太阳辐射能场的真实实验验证。
7.4第四个验证是,任何原子中任何电子均未能落到核上,这是事实
不仅如此,人为方法:高能阴极射线、X射线或高能加速器也很难将电子打到原子核上。这绝非因碰撞截面太小,总会有几率。实际上正是由于原子核具有排它性的辐射能场排斥效应所致。由(22)式可见,电子得到的原子核排斥能与距离平方成反比例。在核半径处排斥能十分巨大,以致可忽略静电引力能。简单计算表明,电子必须具有200倍C(光速)才可能到达核半径处。也因此,玻尔对电子的担心完全多余!
需要指出,对此类问题,量子力学仍会故伎重演--狡辩。但经如上及以下分析论证,量子力学纯系主观臆造,对物理学实质问题全然无知,已经使得量子力学的狡辩不再有任何效力。
7.5第五个验证是人们熟悉的,然而又不熟悉的,这就是气体压力
量子力学会立即反驳说:"气体压力来自分子热运动和碰撞"(文献[8])。需指出,这种解释充其量只能算作表面化非本质解释,作为哲学或市民语言尚可,但不能作为物理学家语言。在严格物理意义上说这种解释是自欺欺人的。这种解释实际上并不清楚分子热运动的实质和根源,更不知温度对单个分子的意义是什么。量子力学(文献[8])以公开宣称:"对单个分子温度没有任何意义"。
这是因为量子力学有一剂灵丹妙药--波函数Ψ--量子力学家主观意识,就可以包治百病。温度与这灵丹妙药无任何联系,在灵丹妙药中没任何位置,所以温度没有用处。也所以量子力学结论:对于单个分子,温度没有意义。
但是,只要神经不错乱,人人都懂得,既然宏观温度是大量分子集体贡献,怎么能说单个分子没有贡献?单个分子又怎能摆脱温度环境?这与人对社会贡献完全一致,能说个人对社会的贡献没有意义吗?!
大量研究已经表明,温度概念同样也有极为丰富的物理内容。温度问题同样也贯穿全部物理世界全部内容。并对此可做如下结论:
普朗克常数h=2π?与量子数n=0,1,2,3…好比一对孪生兄弟,他们共同贯穿全部物理世界全部内容,并且,宏观温度T就是量子数n=0,1,2,3…的照片。
注意,此结论在确切物理意义上正确。
研究还表明:分子热运动及分子间斥力的实际根源正在于原子(核)间排斥能场相互作用的结果。并可得以下具体结果:
PV=∑Ei――――――――――――――――(23)
式中PV为气体压力势能,Ei为单个气体分子的辐射能场能量(推导略)。这种严格关系唯一证明分子(原子)辐射能场客观存在。此时并唯有此时辐射能场的排斥力效应也十分明显,这就是气体压力。
第五章大自然内在本质规律二
5.1大自然内在本质规律之二--潜动能客观存在
研究还表明,这种规律正确存在也可用定理表述:
5.2潜动能定理
〖潜动能定理〗:任何质量为m的物体(含场粒子及天体)当以速度V运动时,必有潜动能存在。若以符号T2表示则为:
T2=(1/2)mV2―――――――――――(24)
可见,潜动能在数值上与物体经典动能(机械动能)相等。现将经典动能定义为显动能,并以符号T1表示之:
T1=T2=(1/2)mV2――――――――(25)
那么,可以定义物体运动全动能,以符号Tm表示则为:
Tm=T1+T2=mV2―――――――――(26)
如果,质量m以光速C运动,其全动能必为:
Tm=mC2=E―――――――――――(27)
看!这就是遐迩闻名的爱因斯坦质能关系。这已表明,爱因斯坦质能关系只不过是物体(粒子)运动全动能之特例!然而,不仅爱因斯坦本人,而且后人至今都不清楚质能关系的物理意义。可(27)式中E=mC2的物理意义是再清楚不过了!
5.3潜动能的物理意义
研究表明,潜动能普遍客观存在,实际上它是物体(粒子)运动时的伴随能量。由于潜在性,低速时或直观上人们难以发觉。只有在高速时才明显表现出来,所以人们至今尚不知晓。
研究表明,潜动能实质也是一种辐射能场,这种场粒子上限亦为中微子,对中微子目前尚不能检测,这也是人们尚未发现潜动能的直接原因。
需指出,温度为T的物体当以速度V运动时,同时存在辐射能场及潜动能能场,两种能场分别可测并须分别描述。但是,以下将完全证明原子核的辐射能场实际上就是原子核自旋潜动能。由此也证明潜动能普遍客观存在。
也所以潜动能的能量效应较其压力(即动量)效应明显,尤其当速度V<<C时,人们无法观测到这种动量效应。然而当物体速度接近光速(VC)时,潜动能的能量效应与动量效应均不可忽略。这时潜动能的能量效应形成爱因斯坦的质能关系事实;而其动量效应则形成"物质波"的事实。这就是"物质波"的本来面目和真实内容。
5.4潜动能的实验验证
5.1回旋加速器的验证
文献[10]介绍:"电子在回旋加速器中,任何瞬间,轨道平均磁场的增量必须是轨道上磁场增量的2倍"。即:
dBave=2dB―――――――――――――-(28)
这无疑表明本文如上全动能成立,亦即表明潜动能客观存在。
5.2电子在加速器中同步辐射光
电子在加速器中同步辐射光能正是电子运动的潜动能,并且,电子同步辐射光的波长λ为:
λ=h·c/E――――――――――――――(29)
注意:式中能量E是电子同步辐射光能量,也就是电子的潜动能。
5.3地球的潜动能
地球有潜动能?从没听说过!有人说。
不错,但经本文由普适方程已经计算出地球确有潜动能:月球的存在给出完全的证明。因为本文对月球的计算表明,普适方程不仅适用于太阳系,而且适于地(球)--月(球)结构。并且,对月球的计算,得出两个重要结果:①由普适方程计算月球绕地(球)轨道半径与天文观测(文献[2])的误差小于1%;②由普适方程计算得出--月球是颗裸星。这已是个奇迹,目前为止任何理论都办不到!
这种结果无疑表明:
第一,地球所得到的太阳辐射能刚好等于地球轨道动能,也刚好等于地球的潜动能。于是,地球能量处于一种动平衡中。这表明,月球绕地(球)轨道受地球潜动能严格支配,亦即受地球轨道动能严格支配,亦即受太阳能量严格支配。不仅如此,太阳以此严格支配着系内所有天体(无例外)的运行(位置、动能、尺寸、质量以及轨道曲线性质)。
第二,地球运动潜动能客观存在,在数值上准确等于地球轨道运行动能。故〖潜动能定理〗成立!
第三,"物质波"就是本文所定义的"潜动能"。
第四,普适方程无条件成立!
5.4X射线韧致辐射
周知,X射线韧致辐射最短波长λmin为:
λmin=h·c/E-―――――――――――(30)
式中E为外加能量,在数值上等于电子显动能,也等于潜动能。需要指出的是,电子只能放出潜动能形成所谓的"波长":λ。而电子的显动能与宏观物体的机械动能一样:只能直接作机械功,不能直接成为辐射能。量子力学对此问题"心不在肝"!
所以,(30)式的真实物理内容是:电子放出潜动能形成所谓波长:λ,这证明潜动能客观存在。可是,量子力学,还有德布罗意,把这称为"物质波"!
还要注意:由(30)式可见,韧致辐射最短波长λmin连续可变,这已完全表明电子能量连续可变。再一次证明"量子化"并非电子自身固有属性。
第六章物质波及其实质
6.1究竟物质波是什么
谈物质波问题,恰进入量子力学权威领地。作为权威,理应对此做出科学合理解释。遗憾的是虽经近百年发展量子力学仍满足于对物理现象作似是而非的猜测,量子力学的"波函数"概念正是对"物质波"现象的猜测,并强加给电子。
下面考察物质波。
德布罗意"物质波波长"表达式为:
λ=h/p――――――――――――――――(31)
该式表示什么物理意义呢?
认真研究表明:虽然λ具有长度量纲,但并不表征任何长度物理量,只能表征粒子动量p的反比量度。之所以具有长度量纲,是因为动量p反比量度的单位取h的结果。除此之外(31)式不再有其他物理意义,或将其变化如下:
λ=h/p=hv/pv=hv/mv2=hv/Em―――(32)
式中Em=Tm为前文定义的粒子运动"全动能",这表明λ亦可表征粒子运动全动能的反比量度,或者说是对潜动能的一种量度。所以可结论:
6.2物质波实质
第一,"物质波"波长只能表征粒子运动时的动量效应或者潜动能,实质是潜动能的反比量度。除此之外(32)、(31)式不再有其它意义。
第二,"物质波波长"绝不表示粒子有任何物理意义上的"波动"性质!
第三,那又为何将λ定义为"波长"呢?研究表明,这还是在于量子力学的特长--富于猜想的结果:看到粒子(光子或电子)的干涉和衍射现象,联想宏观波动(水面波动)的干涉,于是猜想微观粒子(光子和电子)有一种说不清的波动性质。由此便将λ定义为"波长"。殊不知,宏观波动(水面波动)的干涉与微观粒子的干涉是完全不同的两回事。研究表明,水面波动确系水面物质波动。而粒子(光子和电子)的干涉和衍射却完全是由普朗克常数?与量子数n(一对孪生兄弟)共同(技术)表演的结果。并可严格准确具体证明:粒子(光子或电子)的干涉条件中的自然数n=0,1,2,3…恰为量子数n=0,1,2,3…(略)。这是因为粒子的干涉和衍射现象是粒子与(量子化了的)物质场(辐射能场)相互作用的必然结果。
并且在本文已到达的深度--准确描述场粒子自身结构深度上说,仍未发现任何粒子有任何内禀波动属性。这说明根本不存在"物质波"。而德布罗意"物质波"概念恰在于粒子运动"潜动能"的事实。所以,与其说德布罗意发现了"物质波",毋宁说他发现了粒子运动的潜动能。
之所以人们认为粒子具有波动性,客观原因在于人们对微观粒子,例如光子,几乎完全缺乏了解。也因之,目前为止,光子的"波粒二象性"问题仍属世界公认遗难问题之一!
第七章普适方程物理意义
7.1普适方程物理意义
普适方程物理意义可用图(4)
描述如下:
图中曲线①就是普适方程①
式,这代表大自然一种普遍基本规
律--相互吸引规律。式中T为
粒子(含天体)轨道动能,V为引
力势能。动能等与势能之半,这本是
经典物理内容。
曲线③就是普适方程③式,
这代表大自然另一种普遍基本规律
--相互排斥规律。式中E为粒子
(含天体)所得到的由辐射中心来的
辐射(排斥)能。
显然,曲线①是线性的,即引
力能V随距离r呈直线变化;而
排斥能E(曲线③)是双曲线。故,
两条曲线必相交,交点为②,即普适方程②式(T=E)。这代表大自然第三种基本规律--普遍客观存在规律--两种相反作用永恒绝对平衡规律:既可以是稳态平衡,例如原子和太阳系;又可以是动态平衡,例如银河系及宇宙的膨胀(含宇宙爆炸)。并且牛顿力学在大自然中完全好用!量子力学对牛顿力学的非议纯属癔语糊勒!
7.2普适方程注释
第一,普适方程物理意义虽很宽广,但却真实具体,并不抽象。
第二,普适方程可以直接用来计算原子结构,计算天文结构须要变换(略)。
第三,已不难看出大自然(宇宙万物)没有任何东西能够(可以)逃脱普适方程规律的支配!所以这里用了"永恒绝对普遍"规律说法,不仅物理意义,而且哲学意义准确可靠。亦不难看出人类目前为止的哲学理论错误(略)!
第四,因此不难理解:普朗克常数及量子数好比一对孪生兄弟,他们共同贯穿全部物理世界全部内容!
研究表明,这已构成物理学最基本的定律--物理学奠基定律。以致物理学不得不另辟一章:
第八章物理学奠基定律
8.1物理学奠基定律
〖物理学奠基定律〗:普朗克常数h=2π?与量子数n=0,1,2,3…好比一对孪生兄弟,它们同时共同贯穿全部物理世界全部内容,无例外。
8.2奠基注释
大量研究表明,这不是简单推广。该定律普遍永恒绝对全天候成立!世界上找不到脱离这种定律的东西,人类的灵魂也不例外。因此,也没有能脱离〖物理学奠基定律〗的物理学。所以这叫〖物理学奠基定律〗,名副其实也!
第九章量子力学的猜测
上述可见,量子力学对一些基本物理学问题要么似是而非,要么一无所知,俨然却夸夸其谈。甚者竟反科学之道建立了【测不准原理】,于是使得科学陷于恶性循环不解之中。这就是目前科学活生生的现实!
现总结量子力学对科学的种种似是而非的猜测:
量子力学猜测一:(目前)试验电离能=原子真实能级
量子力学猜测二:原子结构不同壳层K,L,M,N…中电子的量子数分别为n=0,1,2,3…
量子力学猜测三:粒子(物质)具有(一种朦胧的)波动属性
量子力学猜测四:"物质波"①是轨迹波;②是几率波;③是弥撒物质波包
量子力学猜测五:费米子(电子、质子)的自旋量皆为(1/2)?
量子力学猜测六:电子具有反常磁矩属性(闭着眼睛摸大象)(以下准确计算证明)
量子力学猜测七:物质世界是测不准的,且不可能测准的,并由此建立一种反科学的理论──【测不准原理】
等等,仅举与本文有关七例。
以上及以下讨论充分证明《量子力学》完全错误,一无是处!并可对物理学做如下结论。
第十章物理学正论
10.1世界是粒子的(含场粒子及天体)。但任何粒子都不存在任何物理意义上的内禀波动属性。
10.2粒子能量是量子化的(包括天体)。但实际上根本不存在什么"量子",即使将"量子"理解为"能量子"也不科学。(量子力学纯属虚构!)
10.3普朗克常数?及量子数n已给出并将给出全部物理世界准确信息,它们共同贯穿全部物理世界全部内容。
10.4任何粒子(含天体,电子,无例外)均不具反常磁矩内禀属性(以下给出具体计算严格证明)。
10.5物质世界是可测的,并完全可测准的,其准确程度完全取决于普朗克常数h=2π?的准确度。
10.6电子、质子、中子都是经典粒子。附录中严格证明(这种证明本身就是物理学一种奇迹,量子力学望尘莫及)。
10.7目前为止,世界是经典的。所以,量子力学所谓超脱经典实际就是超脱科学!
以下附录是对全文的严格、具体证明。
第十一章附录:粒子及其磁矩问题
粒子物理问题,由于缺少直观经验,这给人们正确认识造成极大困难。然而量子力学的出现并没有帮助人们解决困难,反而给人们本来有限的认识能力又设置了人为的更难以逾越的障碍,这就是【测不准原理】。并把人们的认识能力禁锢在量子力学谬误之中。
目前为止的实验,已经验证粒子具有磁矩。但对粒子磁矩问题,量子力学由于缺乏了解,又为了"符合"试验,经常自觉不自觉混淆,有时偷换,普朗克常数的物理概念。这已使得量子力学对粒子磁矩问题的描述严重有诈!
以下用CGS和高斯单位制具体讨论:
11.1粒子磁矩问题的实验表达式
文献[10]中,粒子磁矩表达通式如下:
g=nh/μ0H=ω?/μ0H―――――――(33)
研究表明,该式可谓经验公式,因由试验而来,应当是正确表达式。
然而问题在于,量子力学对实验表达式的真实物理意义及实验的真实物理过程并不清楚。对表达式的理解也有错误,因而得出完全错误的结果和结论。
对于电子,(33)式可变为:
ge=ωe?/μBH――――――――――――(34)
式中ge=1.0011596被量子力学定义为电子的"反常磁矩"值,ωe为电子自旋磁矩在磁场中进动角频。并有:
μB=γe?=(e/2meC)?―――――――(35)
其中γe=e/2meC――――――――――――(36)
那么有ge=(ωe?/?H)÷γe――――――――(37)
可简为ge=ωe/γeH―――――――――――(38)
这就是量子力学基本思路,并由此得出电子自旋磁矩错误结果。又将这种错误勇敢地推广到其它粒子和其他情况,这就错上加错。
需要指出,根据教科书概念,(36)式为电子轨道回旋比。量子力学又认为电子自旋回旋比为轨道回旋比的2倍,这是由于认为(实际是猜测)电子自旋量为(1/2)?的必然结果。也得出电子的朗德因子为2的结果,这是完全错误的(见下)。
以下讨论给出完全的证明:电子纯系经典粒子,并且其荷质比绝对均匀。
那么,对于这样的经典粒子--电子来说,不管其角动量如何变化其轨道回旋比与自旋回旋比永远相等(只要建立均匀荷质比的经典粒子模型,立即可证,略)。
考虑到量子力学错误因素在内,不影响以上及以下讨论。研究表明(38)式对电子仍然准确成立。
但量子力学错误主要表现在:
11.2量子力学所犯经典错误
量子力学所犯经典错误一:将g定义为磁矩"反常"因子。这表明量子力学缺乏了解又理论贫乏,犯指导方向错误。以下将给出g因子的真实物理意义和内容。
量子力学所犯经典错误二:认为费米子(电子、质子)的自旋量皆为(1/2)?,这是狄拉克根据量子力学计算的错误结果:实际上是与作为能量单位的?简单呼应导出结果,没有物理意义。因而是完全错误的。
量子力学所犯经典错误三:量子力学自觉不自觉混淆并滥用普朗克常数?的物理概念并偷换之,这叫偷换概念。注意,(37)式中分线上下都有?项。由(33)式可知:
nhω?=E――――――――――――――(39)
这里?分明表示能量E的单位,这就是(37)式分线上面之?。而(37)式分线下面之?却是角动量的单位。两种完全不同的物理概念不容混淆,虽然它们的数值和量纲完全一致。
称职的物理学家在未有把握之前不会轻易消去?项。然而量子力学却毫不顾忌这么做了,那末所得结果必有诈!
量子力学所犯经典错误四:以下将证明量子力学完全不了解粒子磁矩实验的真实物理过程以及(33)、(38)式的真实物理意义。
那么,电子磁矩实验真实物理内容是什么呢?现将(34)式变化如下:
ωe=(ge·H/?)μB――――――――――(40)
注意,式中μB为玻尔磁子,系作为磁矩的单位出现,为常数;而?则作为能量的单位出现,亦为常数;因子ge也是常数。
那么,(40)式明确表明:ωe与H成正比,而与电子真实角动量无关(注意式中无有角动量物理量)。也就是说,无论电子真实角动量是多少,(40)式中的ωe都保持不变。
或者由(38)式得:
ωe=ge·H·γe―――――――――――(41)
式中ge及γe均为常数,该式仍然表明ωe只与H成正比,与电子真实角动量无关。并请注意,这种认识上的差异将产生完全不同的结论。
由此可结论:由于粒子磁矩进动实验结果与粒子真实角动量这种无关性(注意:与实验无关,并非理论无关),因而这种试验就不能直接测得任何粒子真实磁矩。因为完全相反,粒子真实磁矩直接与角动量紧密(理论)相关(只要建立经典粒子模型立即可证)。并且研究表明,这一结论对任何粒子都成立。
然而,量子力学却由此直接得出"电子自旋磁矩"μe:
μe=ge·μB―――――――――――――(42)
注意:这种结果,①偷换了常数?概念;②假定电子自旋量为(1/2)?;③并不了解ge因子的真实物理意义,因而是完全错误的结果。
然而,(41)式是有功劳的,它已经揭示出粒子磁矩问题的本质规律(量子力学全然不知)。并且,这种规律的正确性可用下述Ⅳ条磁矩定理表述。
11.3粒子磁矩定理Ⅰ
〖粒子磁矩定理Ⅰ〗:任何粒子(含场粒子及天体,下同)的磁矩问题都是经典问题,不存在任何非经典问题。
显然,此定理的证明,不可能立竿以毕。但是,本文如下仍将给出完全的证明!
这定理的证明本身就已是物理学奇迹之一。这已表明量子力学完全无聊!
11.4粒子磁矩定理Ⅱ
〖粒子磁矩定理Ⅱ〗:任何磁矩进动试验都不能直接测得任何粒子的真实磁矩。但玻尔磁子除外。
其实,上述讨论已经给出定理Ⅱ的证明。这是由于实验磁矩进动角频(ω)与粒子真实角动量(L)无关,而粒子真实磁矩(μ)却与粒子真实角动量(L)紧密直接相关(不可开胶)!
然而,量子力学竟然由实验直接得出粒子的磁矩结果。那么,这种结果必不真实,严重有诈!这表明,量子力学先天不足,后天空虚,已养成寄生性和猜测性。所谓寄生旨在寄生于经典物理,经典物理已清的,量子力学也清楚,并夸其谈而娓动听;经典物理未清的,量子力学也一无所知,不得不依赖对实验进行猜测--并美其名曰"符合"试验。
11.5粒子磁矩问题理论表达式
研究表明,为了要得到粒子真实磁矩,就必须建立磁矩问题的理论表达式。量子力学对此完全无能。本文大量研究,现给出粒子磁矩问题的准确理论表达式如下:
Kφ=ω·L/μ·H――――――――――(43)
或为讨论方便变为:
ω=Kφ·μ·H/L――――――――――(44)
注意,这种理论表达式的正确性,可用粒子磁矩定理Ⅲ表述如下:
11.6粒子磁矩定理Ⅲ
〖粒子磁矩定理Ⅲ〗:任何粒子(同上)不管公转还是自旋(旋转轴须平行),其磁矩在磁场中进动角频ω与粒子磁矩μ成正比,与外加磁场强度H成正比,与粒子角动量L成反比。其比例为常数。
若用符号Kφ表示这个常数,那么有:
Kφ=1.0011596――――――――――――(45)
研究表明,Kφ为物质与物质场相互作用常数,并且这是所有粒子(含天体)的共性问题,绝非任何粒子(例如电子)所特有。任何粒子,无例外,都不具反常磁矩内禀属性,以下给出完全的证明。
研究还表明,理论表达式即(43)、(44)式具有普遍意义,对所有粒子(含天体)任何情况(公转和自转)都准确适用。并都将得到与实验完全相符的结果。
这一事实完全表明:
第一,粒子磁矩问题是共性问题。
第二,粒子磁矩问题确系经典问题。这表明〖粒子磁矩定理Ⅰ〗成立(以下还将证明)。
11.7电子及其磁矩
作为物理学者,在将(34)式变为(38)式时不应忘记两件事:
11.7.1物理学者不应忘记第一件事
第一件事:由于混淆并(偷)更换常数?物理概念的结果,使得(38)式具有了完全特殊的意义。在于,(38)式却反映且唯能反映电子基态轨道磁矩真实情况。这是由于唯基态电子轨道运动角动量为?,也方可与作为能量单位的?相消。这么做的结果,使得磁矩实验只能直接测得电子基态轨道运动真实磁矩,且在数值上等于玻尔磁子μB:
μB=ωe·?/ge·H――――――――――(46)
需指出,这是所有磁矩进动试验所能测得的唯一真实磁矩。除此之外任何粒子任何情况(公转和自转)的真实磁矩都不可能由磁矩进动实验直接得出(只要建立经典模型立即可证)!
(46)式也可由(34)式直接导出,但物理意义完全不同:在(34)式中,μB系作为磁矩的单位出现,为常数,?则作为能量的单位出现;而(46)式中μB则是电子基态轨道真实磁矩,而?为电子基态轨道运动真实角动量。
11.7.2电子快报
电子快报:
研究表明,(46)式又有引伸的重要物理意义(可谓物理学今古奇观):在于由电子自旋的实验竟然得出电子轨道运动的真实磁矩μB;反而无论如何也不能直接测得电子的自旋真实磁矩。就是说,将电子自旋试验参数(自旋进动角频ωe、自旋试验场强H、自旋因子ge)代入(46)式,居然得出电子基态轨道运动真实磁矩μB!并且计算也表明,对其它轨道磁矩(38)式也适用。这便是值得物理学家注意的"电子快报"!于是有:
11.7.3电子磁矩问题的表达通式
因此,可以构造电子磁矩问题的表达通式:
μe=ωe·Le/ge·H――――――――(47)
式中μe既表示电子的自旋磁矩,也表示轨道磁矩,Le则为对应的角动量。
11.7.4电子磁矩问题表达通式的应用
例一:用电子磁矩表达通式即(47)式求解电子轨道角动量为L2=2?时的轨道磁矩μ2
解:将L2=2?代入(47)式有:
μ2=ωeLe/geH=ωeL2/geH=ωe·2?/geH=2(ωe?/geH)
=2μB(正确)
研究表明,对电子自旋(47)式当然成立,因为(34)~(38)式是系由自旋试验而来。只要将电子自旋真实角动量代入(47)式便得电子自旋真实磁矩(以下给出结果)。
11.7.5庄严事实
庄严事实:
由电子自旋试验得到的结果即(38)式,却完全适用于电子任何情况(包括自旋各种状态,也包括轨道公转各种情况)。这已充分证明〖粒子磁矩定理Ⅲ〗成立,同时证明〖粒子磁矩定理Ⅰ〗也成立。如果电子不是经典粒子,(47)式绝不会成立。
11.7.6一条真理
一条真理:
上述庄严事实展示一条真理,即下式成立:
ω自/ω公=ωe/ωB1――――――(48)
式中用ω自表示电子自旋磁矩进动角频,亦即ωe;而ω公表示电子轨道磁矩进动角频,亦即ωB。研究表明这是〖粒子磁矩定理Ⅲ〗及〖粒子磁矩定理Ⅰ〗的必然结果!以下还将对(48)式进一步证明。
这种结果,唯一表明电子纯系经典粒子,因为只有经典的荷电粒子模型(并且荷质比均匀)才有(48)式结果(只要建立经典模型立即可证,略)。
11.7.7量子力学错误结果
然而,量子力学却得出与(48)式相悖的错误结果:
ωe/ωB=μe/μB=ge=1.0011596―――(49)
显然,量子力学完全不知常数ge的真实物理意义。更不知:〖粒子磁矩定理Ⅱ〗已无余地地指出,任何磁矩进动试验都不可能直接测得任何粒子的真实磁矩!然而,量子力学却直接得出(42)、(49)式结果。所以这种结果必不真实,严重有诈!也显然,这种结果纯系根据实验比值瞎子摸象。又美其名曰"符合"试验,多荒唐!
11.7.8物理学者不应忘记第二件事--荷质比均匀问题
第二件事:电子(作为粒子)自身内部结构各点微荷质比是否均匀?如果微荷质比均匀,则(34)~(38)式均成立,反之都不成立。
这问题,只要建立经典模型立即可证(略)。同样可证明,如果粒子内部微荷质比不均匀对轨道公转磁矩影响甚微,可忽略;但对自旋磁矩影响显著,不可忽视(研究表明质子和中子正是这种情况)。然而,量子力学一律忽视!
以下对荷质比作定量讨论,需要定义。
微荷质比的定义:将粒子内部结构各点的真实荷质比定义为微荷质比,用符号q/m表之。
那么,如果粒子自身内部结构各点微荷质比点点相同,即:
q/m=常数―――――――――――(50)
则被定义为:粒子自身内部结构荷质比均匀。
否则谓荷质比不均匀。
显然,此类问题量子力学显得力所不及。但值得庆幸的是,对电子来说大量研究表明(50)式准确成立。也正因如此,才允许(否则不允许)进行(35)~(38)式变换,才有(48)式结果。否则(48)式不会成立,也不会有(47)是正确结果。
此外,本文应用普适方程已准确推出电子自身内部结构(繁琐,略),这种结构也准确表明电子内部结构各点微荷质比点点相同。且有:
q/m=常数=e/me―――――――(51)
那么,以下〖粒子磁矩定理Ⅳ〗给(48)式以严格证明。
11.8粒子磁矩定理Ⅳ
〖粒子磁矩定理Ⅳ〗:任何粒子(同上)只要是经典的,如果(50)式成立,不管公转还是自旋下式总成立:
ω1/ω2=q1/m1÷q2/m2-―――――(52)
式中q1/m1、q2/m2分别表示两种情况下的粒子平均荷质比;ω1、ω2分别表示两种情况下磁矩进动角频;下表"1"、"2"表示两种情况:其中包括两种粒子情况m1、m2,或者两种电荷q1、q2情况,或者表示同一粒子两种试验条件,或者表示自转与公转两种情况。
这表明(52)式的广泛适应性。它也表明粒子磁矩问题的共性,同时也表明离子磁矩问题的经典性。
只要建立经典模型,〖粒子磁矩定理Ⅳ〗立即可证(略)。需指出,〖粒子磁矩定理Ⅳ〗既可由理论表达式推导证明(略),也可由实验表达式推导(略)。
那么,将(52)式应用于电子的自旋与公转两种情况,则有:
ω1/ω2=ω自/ω公=ωe/ωB
=q1/m1÷q2/m2――――――(53)
式中下标"1"表示电子自旋情况,下标"2"表示电子公转情况。于是:
q1/m1q2/m2e/me
那么有:ω自/ω公ωe/ωB1―――――――(54)
这表明(48)式成立,亦即表明电子自身内部荷质比均匀。
这再一次证明了电子问题的经典性质。如果电子不是经典粒子(54)式绝不成立。
至此,上述四条磁矩定理严格证毕。
那么,这就在事实上彻底打破了《量子力学》关于电子理论问题的神话--鬼话。
并且至此,已完全、充分、确切地证明了量子力学纯系伪科学(非任何偏见)。在哲学及物理学意义上说,此结论都严格准确。
11.9粒子磁矩理论表达式的应用
11.9.1用理论表达式计算电子轨道磁矩
例二,应用粒子磁矩理论表达式即(43)式求解电子基态轨道运动角动量为L1=?时的轨道磁矩μB
解:由(43)及(54)式得
Kφ=ωBL1/μBH=ωe?/μBH――――(55)
那么μB=ωe?/KφH―――――――――――(56)
式中Kφ=ge(数值相等但物理意义不同)。显然,该式与(46)式等价。所以(56)式结果正确。这表明本文磁矩理论表达式正确成立。
也显然,对于其它轨道磁矩理论表达式都成立(略)。
那么,(55)式是一个很有用的式子,他好比粒子磁矩问题杠杆,由它可导出所有粒子所有情况(公转和自传)的真实磁矩。
11.9.2用理论表达式计算电子自旋真实磁矩
例三,用粒子磁矩理论表达式求解电子自旋真实磁矩:μe
解:将磁矩理论表达式用于电子自旋则有
Kφ=ωeLe/μeH―――――――――――(57)
联立(55)、(57)二式则有
μe=(ωeLe/ωB?)μB――――――(58)
由〖粒子磁矩定理Ⅳ〗及(48)式知:ωe=ωB,故有:
μe=(Le/?)μB―――――――――――(59)
只要将电子真实自旋角动量:Le
Le=(1/401.16764)?―――――――――(60)
(这是本文大量研究结果,推导繁琐,略)代入(59)式便得电子自旋真实磁矩:μe
μe=(1/401.16764)μB――――――――(61)
可有人不敢相信这(61)式结果。但是,(59)式必正确!
那么,为何量子力学猜测电子自旋量为(1/2)?,又能与实验"相符"呢?这是由于磁矩实验表达式即(34)~(38)式与电子真实角动量无关,不管电子真实角动量是多少,(34)与(38)二式总自洽成立。因此,量子力学诡称符合实验,实属欺诈!
下面考察质子。
11.10质子及其真实磁矩
考察质子磁矩立刻出现困难:却乏质子有关数据。
11.10.1质子结构数据
不过不要紧,本文大量研究已经给出质子自身结构准确描述,并在几方面都与实验完全相符。这种描述给出如下两个重要结果:
第一,质子自旋真实角动量以LP表示,则为:
LP=h=2π?=6.6260755×10-27(尔格妙)―――(62)
第二,质子自旋理论半径以rP表示,则为:
rP=1.324100×10-13(cm)――――――(63)
这两项结果推导繁琐,但以下仍将给出出其不意令人叹为观止的证明。
仿照电子,对质子做如下计算:
EP=n2LP2/2mPrP2=n2h2/2mPrP2―――(64)
式中mP为质子质量,n为量子数。将(63)、(62)式代入得:
EP=n2×7.5163935×10-4(尔格)――――(65)
注意:式中数字恰为质子自旋动能,现以符号TP1表示:
TP1=(1/2)mP·C2
=7.5163935×10-4(尔格)――――――(66)
那么,据潜动能定理,质子必有潜动能,以TP2表示:
TP2=TP1=(1/2)mP·C2
=7.5163935×10-4(尔格)―――(67)
那么,质子必有全动能以EPm表示:
EPm=TP1+TP2=mP·C2
=1.5032787×10-3(尔格)―――――(68)
这就是闻名遐迩的爱因斯坦"质能关系"式:
E=mC2――――――――――――――――(69)
这表明质子自旋速度恰为光速C,那么质子自旋角动量若以符号LP表示必为:
LP=mP·C·rP=6.6260755×10-27(尔格妙)
=h=2π?―――――――――――――(70)
如上计算表明,(63)、(62)二式必需同时成立。如果LP、rP中一项不成立,则上述计算都不成立。这可谓对质子结构数据初步证明,以下还将证明。
11.10.2质子世界
注意,(64)式有着极为丰富的物理内容。现将其变化如下
E=n2h2/2mPr2――――――――――――(71)
这就是质子辐射能场准确数学表达式,式中r=rP∞为距离,E的量纲为能量,但其数值为在r处单位面积上的能量,即能场强度。当距离从∞收缩至rP时,能量E恰为EP即(65)式,且此时质能关系式E=mC2成立。这说明质子活动(自旋)范围为rP(自旋半径),亦即(63)式成立。
上述可见,质子世界的(作用)范围为r=0∞。其中0rP为质子内部结构世界,而rP∞为质子(或原子核)的外部作用世界。
11.10.3量子化的根源
注意,(64)式及(71)式能量都是量子化的,并且,这就是世界量子化的真实根源!这是质子(原子核)的内禀属性。也并且,原子核(质子)以此严格规定并支配着所有外部世界:核外所有电子、原子、分子、晶体、固体、液体、气体、天体、宇宙的结构和性质,以及宇宙的历程。这些也都是大自然内在本质规律。
11.10.4质子与普适常数
根据经典物理,现将质子电荷库仑自举能用Epe表示,则:
Epe=e2/2rP=8.7296129×10-7(尔格)―――(72)
那么有:
EPm/Epe=1722.0451=Φ―――――――(73)
这也就是正文中的普适常数Φ之值,参见(15)式。式中EPm为质子全动能,即(68)式。可见,普适常数Φ还严格规定着质子。
注意:(15)式与(73)式是完全不同的计算,然而竟得出完全相同的结果,即普适常数Φ之值。这种令人叹为观止的结果,已完全表明本文对质子的计算无误。以上质子数据都成立。
11.10.5质子与反常磁矩
作如下计算:
(TP1+TP2)/TP1=1.0011614――――――(74)
这就是试验测得的"反常磁矩值"。注意文献[10]介绍:"试验测得电子反常磁矩值为1.0011609(±0.0000024)"。
再做如下计算:
1+1÷(Φ/2)=1+2/Φ=1.0011614―――(75)
这就是普适常数Φ与反常磁矩的关系。
上述计算已经表明:
第一,谓反常磁矩值并非为电子所特有,而是物质间相互作用常数,为任何粒子(包括天体)所共有。
第二,本文关于质子结构数据的计算准确无误。
11.10.6质子的真实磁矩
有了上述准备,现在继续考察质子磁矩。但又出现困难:质子内部结构微荷质比是否均匀?不过不要紧:可以先假定其荷质比均匀,然后在研究处理。
那么,如果质子荷质比均匀,亦即假定(50)式对质子成立,就可将〖粒子磁矩定理Ⅳ〗应用于质子和电子两种粒子。必有:
ω1/ω2=ωe/ωP=q1/m1÷q2/m2=e/me÷e/mP
=mP/me―――――――――――(76)
式中用下标"1"表示电子,下标"2"表示质子,所以有:
ωe/ωP=mP/me―――――――――――(77)
该式右端为质子与电子的质量之比,为:
mP/me=1836.1528―――――――――――(78)
而(77)式左端,实验(文献[12])已经测得:
ωe/ωP=658.210688―――――――――(79)
然而,量子力学(文献[12])错误地推荐此值为:
ωe/ωP=μe/μP=658.210688―――――(80)
显然,这是错误结果:第一因为,上述〖粒子磁矩定理Ⅱ〗已无余地地指出,任何磁矩进动实验都不可能直接测得任何粒子的真实磁矩;第二因为,试验实际测得的数据是ω而不μ,
这表明(79)式正确无误,而(80)式错误。
回头再看,(77)式并不成立!究其原因恰在于:假设不合理。原来质子自身结构荷质比并不均匀!然而,不均匀程度如何?需作如下计算:
mP/me÷ωe/ωP=1836.1528/658.201688
=2.7896125――――(81)
注意:这就是质子内部结构荷质比不均匀程度。因为如果荷质比均匀,(77)式必成立(据磁矩定理Ⅳ)!而事实不成立,恰在于质子的荷质比不均匀(唯一原因)。故,(81)式准确表征质子荷质比不均匀程度。
若以符号gP表示质子荷质比不均匀因子(即不均程度),则有:
gP=mP/me÷ωe/ωP=2.7896125――――(82)
大量研究表明,此种关系对任何粒子都准确成立。
于是粒子荷质比不均因子(以符号g表示)的表达通式为:
g=m/me÷ωe/ω―――――――――――(83)
显然,这里的荷质不均因子与教科书中(文献[4])朗德因子数值相近,但物理意义完全不同。若以符号g''''表示朗德因子,则有:
Kφ=g''''/g=1.0011596――――――――(84)
研究表明,(84)式对所有粒子都准确成立。那么,对质子则有:
Kφ=gP''''/gP=2.79284386/2.7896125
=1.0011596――――――(85)
看!质子也有了"反常磁矩值":1.0011596。这种计算,再次打破了量子力学关于电子的神话--鬼话。
所以研究表明,Kφ=1.0011596为物质与物质场相互作用常数(参见〖粒子磁矩定理Ⅲ〗),为任何粒子(包括天体)所共有。并不为电子所特有,因而不能表征磁矩"反常"。
那么,将磁矩理论表达式,即(43)式用于质子:
Kφ=ωP·LP/μP·H―――――――――(86)
联立(55)、(86)二式有:
μP=(ωP·LP/ωe·?)μB―――――――(87)
将(70)、(79)二式代入得;
μP=(2π/658.210688)μB
=8.8528430×10-23(尔格/高斯)―――(88)
这就是质子自旋真实磁矩!这是质子磁矩的第一种算法。用这种算法可以算得任何粒子的真实磁矩,下面介绍另种算法。
11.11粒子磁矩另一种算法
大量研究,下面给出粒子磁矩另种算法表达通式:
μ=g·γ·L――――――――――――――(89)
研究表明,该式对所有粒子的磁矩都准确适用。虽然教科书中也有一模一样的公式,但物理意义大相径庭!
这里,L为粒子真实角动量;γ为所谓的回旋比,但对荷质比不均匀的粒子,γ已不再能表征真实回旋比,而只能表征平均荷质比概念;g则为荷质比不均因子,它表征粒子内部荷质比不均匀程度,为无量纲常数,可由实验测定,也可理论推导。并且有:
gg''''/Kφ―――――――――――――――(90)
式中g''''为教科书中的"朗德因子"。研究表明(89)、(90)二式对任何粒子(含天体),不管公转还是自转都严格成立。
11.11.1电子磁矩另一种算法
对于电子,(90)式变为:
ge=ge''''/Kφ=1.0011596/1.00115961―――(91)
这里,电子的ge1,表征电子内部结构各点荷质比绝对均匀。并再次证明电子确系经典粒子。那么,以上所有计算均有效!
11.11.2用另种算法计算电子轨道磁矩
例四,用(89)式求解电子轨道角动量为L3=3?时的轨道磁矩μ3
解:对于电子,ge1,γe=e/(2meC),并将L3=3?代入(89)式有
μ3=(e/2meC)×3?=3μB(正确)
11.11.3用另种算法计算电子自旋磁矩
例五,用(89)式求解电子自旋磁矩:μe
解:对于电子,ge1,γe=e/(2meC),代入(89)式得
μe=(e/2meC)Le=(Le/?)μB―――(92)
此结果与(59)式全同,正确。
11.11.4质子和中子磁矩的另种算法略……
11.12结语
综上述可见:
第一,Ⅳ条〖磁矩定理〗完全是经典的。
第二,电子、质子、中子完全遵从Ⅳ条〖磁矩定理〗,这已无可辩驳地证明:电子、质子、中子完全是经典粒子。《量子力学》纯属主观臆造!
第三,本文《物理学正论》成立。
参考文献
[1]理论物理《量子力学》-----------吴大猷著(台湾)
[2]《物理量和天体物理量》-----------艾伦著(英)
[3]《关于氦原子的计算》-----------黄崇圣著(成都科技大学学报1980.6)
[4]《原子物理学》----------------诸圣麟著
[5]《氦原子光谱,兼谈原子结构》-----朱正拥著(铁岭师专学报1986.4)
[6]《18个元素的原子结构计算》------张奎元著(铁岭卫校校刊1988.1)
[7]《36个元素的原子结构计算》------陶宝元著(铁岭教育学院院刊1989.1-2)
[8]《物理学》(教材)---------------复旦大学编
[9]《电动力学》------------------郭硕鸿著
[10]《物理大辞典》-----------------台湾版
篇7
量子力学完美地解释了在各种尺度之下物质的行为,在所有物质科学中是最成功的理论,但也是最诡异的理论。
在量子领域里,粒子似乎可以同时出现在两个地方,信息传递速度可以比光速快,而猫可以同时既是死的又是活的!物理学家已经对这些量子世界中吊诡的事情困惑了90年,但他们现在还是一筹莫展。当演化论和宇宙论已经成为一般知识时,量子理论仍然让人认为是奇特的异常事物;尽管在设计电子产品时,它是很棒的操作手册,此外就没什么用处了。由于人们对于量子理论的意义有着深度混淆,便继续加深一种印象:量子理论想急切传达的深奥道理,与日常生活无关,而且因为过于怪异,以至于一点也不重要。
在2001年,有个研究团队开始发展一种模型,或许可以去除量子物理的吊诡之处,至少也会让这些吊诡不那么令人不安。这个模型被称为量子贝氏主义,它重新思考波函数的意义。
在正统量子理论中,一个物体(例如电子)可用波函数来表示,也就是说波函数是一种用来描述物体性质的数学式子。如果你想预测电子的行为,只需推导出它的波函数如何随时间变化,计算的结果可以给你电子具有某种性质(例如电子位于某处)的概率。但是如果物理学家进一步假设波函数是真实的事物,麻烦就来了。
量子贝氏主义结合了量子理论与概率理论,认为波函数不是客观实在的事物;反之,它主张把波函数作为使用手册,是观察者对于周遭(量子)世界做出适当判断的数学工具。明确一点讲,观察者了解一件事:自己的行为与抉择会无可避免地以无法预测的方式影响被观测系统,因此用波函数来指明自己判断量子系统具有某种特定性质的概率大小。另一个观察者也用波函数来描述他所看到的世界,对于同一量子系统而言,可能会得到完全不同的结论。观察者的人数有多少,一个系统(一个事件)可能拥有不同的波函数就有多少。在观察者相互沟通、并且修正了各自的波函数以涵盖新得到的知识之后,一个有条理的世界观就浮现了。
最近才转而接受量子贝氏主义的美国康奈尔大学理论物理学家摩明这么说:“在此观点之下,波函数或许是‘我们所发现最有威力的抽象概念’。”
波函数不是真实的事物,这种想法早在20世纪30年代就出现了,那时量子力学创建者之一的尼尔斯·波尔在其文章中已经这么说。他认为量子理论仅仅是计算工具,即量子论只是“纯符号性”的架构而已,而波函数是工具的一部分。量子贝氏主义是第一个为波耳的主张找到数学基础的模型,它把量子理论与贝氏统计结合起来。贝氏统计是一门有200年历史的统计学,这门学问把“概率”定义成某种类似“主观信念”的事物。一旦新信息出现,我们的主观信念也必须跟着更新。针对如何更新,贝氏统计定下了明确的数学规则。量子贝氏主义把波函数解释成一种会依据贝氏统计规则来更新的主观信念,如此一来,量子贝氏主义的鼓吹者相信神秘的量子力学吊诡就消失了。
以电子为例,每当我们侦测到一个电子,就会发现它一定是位于某个位置;但是当我们不去看它,则电子的波函数可能是散开的,代表了电子在某一时刻处于不同地方的可能性;如果我们再去看它,又会看到电子出现在某一个位置。根据标准说法,观测促使波函数在一瞬间“崩陷”而集中于某一个位置之上。
空间各处的崩陷发生于同一时刻,这种情形似乎违背了“局域性原理”(即物体的任何改变一定是由其附近的另一物体所引起的),如此一来就会引发一些如爱因斯坦称为“鬼魅般的超距作用”的困惑。
量子力学一诞生,物理学家就知道“波函数的崩陷”是这个理论深深困扰人的一项特点。这个令人不安的谜促使物理学家发展出各种量子力学的诠释,但是都没能完全成功。
然而量子贝氏主义说量子力学根本没有任何诡异之处。波函数崩陷只是表示观察者依据新信息,忽然且不连续地更新了他原先分配的概率,就好像医生依据新的计算机断层扫描结果,而修正了对癌症病人病况的判断。量子系统并没有经历什么奇怪、不可解释的变化,改变的是(观察者选用的)波函数,波函数呈现的是观察者个人的期待。
篇8
如果有人说,在物理世界中有一个百岁的“幽灵”,你会相信吗?
一百多年前,爱因斯坦也曾一直为这个“幽灵”――量子理论产生的种种现象所困惑。
如今,爱因斯坦逝世已逾六十载,可谜团仍未完全破解。因此,可以毫不夸张地说,量子理论就是这么一个“幽灵”。
在量子理论对世界的描述中,一个物体可以同时处于多个位置,粒子也可以无阻碍似地穿过障碍物,所有的物体都有“波粒二象性”,它既是粒子又是波,两个分得很开的物体也可以进行某种类似“精神性”的合作……
这些描述听上去令人毛骨悚然,不可捉摸。难怪量子理论创立者之一的玻尔说过:“如果一个人没有被量子力学所震惊,那么他就没有真正懂得量子力学。”
什么是“量子”
“量子”不是一种粒子,它是一个能量的最小单位。所有的微观粒子(包括分子、原子、电子、光子)都是量子的一种表现形态。
众所周知,世界是由微观粒子组成的。因此从某种意义上来说,世界本身就是由量子组成的。在物理学中提到“量子”时,实际上指的是微观世界的一种行为倾向:物质或者说粒子的能量和其他一些性质(统称为可观测物理量)都倾向于不连续的变化。
以光为例,我们说一个“光量子”,是因为一个光量子的能量是光能量变化的最小单位,光的能量是以光量子的能量为单位一份一份地变化的。其他的粒子情况也是类似的,例如,在没有被电离的原子中,绕核运动的电子的能量是“量子化”的,也就是说电子的能量只能取特定的离散的值。只有这样,原子才能稳定存在,我们才能解释原子辐射的光谱。不仅能量,对于原子中的电子,角动量也不再是连续变化的。
量子物理学告诉我们,电子绕原子核运动时也只能处在一些特定的运动模式上。在这些模式上,电子的角动量分别具有特定的数值,介于这些模式之间的运动方式是极不稳定的。即使电子暂时以其他的方式绕核运动,很快就必须回到特定运动模式上来。
实际上在量子物理学中,所有的物理量的值都可能必须不连续地、离散地变化。在上世纪初,物理学家马克斯・普朗克最早猜测到微观粒子的能量可能是不连续的。
出生于德国传统保守家庭的普朗克从小受到良好的教育,虽然具有音乐天赋,十分迷恋音乐,但仍旧立志献身于科学,研究物理。当他去慕尼黑大学时,一位物理学教授曾劝说他不要学习物理,因为“这门科学中的一切都已经被研究过了,只有一些不重要的空白需要填补”。教授的一席话正代表了当时大多数物理学家的心态。
然而执着的普朗克却表示:“我并不期望发现新大陆,只希望能理解已经存在的美丽的物理理论,或许能将其加深和发展那么一点点。”命运总是喜欢开玩笑。本来并未期望在物理研究中“发现新大陆”的普朗克,却在不经意间成为了量子力学的创始人。
当时,解释热力学中的辐射问题,主要有瑞利-金斯定律和维恩位移定律,前者适用于低频辐射,却无法解释高频率下的测量结果;而维恩位移定律可以正确反映高频率下的结果,但无法符合低频率下的结果。
如何才能导出一个新的公式,使得高频、低频下都能符合实验结果呢?普朗克使用了一种巧妙新颖的方法:运用玻尔兹曼的统计物理,把光当成一个一个的谐振子。在他的假设中,既然辐射的是一个一个的谐振子,也就是说在黑体辐射时,能量就不是连续地,而是一份一份地发射出来的。
据此,普朗克导出了一个新公式,这个公式在频率较小时自动回到瑞利-金斯公式,在频率较大时又自动回到维恩公式。因此,新公式能在所有的频率范围与实验结果符合。
1900年12月14日,在柏林亥姆霍兹研究所的德国物理学会上,普朗克宣读了关于这一结果的论文。而这一天也被物理学家们定为量子力学的诞生之日。
然而,这一发现并不是普朗克的初衷。作为一名传统而保守的物理学家,他只是按照科学方法办事,并未想要掀起一场革命,连他自己都不知道,自己已经把量子这个“妖精”引进了物理学。
普朗克有些后悔,认为自己制造的这个量子“妖精”破坏了物理学的完美。他曾历经15年的时间,试图寻求一种经典物理方法来导出同样的公式,解决黑体辐射问题,以便挽回“局面”。
然而,他没有成功。直到1905年,26岁的爱因斯坦利用光量子的假说圆满解释了光电效应;1913年,28岁的玻尔提出了量子化的原子结构理论;1923年,31岁的德布罗意提出了德布罗意波;1925年,24岁的海森堡创立了矩阵力学;1926年,37岁的薛定谔建立了薛定谔方程……量子力学才逐渐羽翼丰满,真正使人们看到了量子概念所闪现的耀眼光芒。
说一说“量子叠加”
量子有一个非常奇怪的特性――量子叠加。
什么是量子叠加?经典事件里可以用某个物体的两个状态代表0或1,比如一只猫,或者是死,或者是活,但不能同时处于死和活的状态中间。
但在量子世界,不仅有0和1的状态,某些时候像原子、分子、光子可以同时处于0和1状态相干的叠加。比如光子的偏振状态,在真空中传递的时候,可以沿水平方向振动,可以沿竖直方向振动,也可以处于45°斜振动,这个现象正是水平和竖直偏振两个状态的相干叠加。
这种所谓的量子相干叠加是量子世界与经典世界的根本区别。
著名的“薛定谔猫”形象地描述了这个佯谬。在经典世界里,猫要不然是活的,要不然是死的,然而一只量子的猫却可以处在“死”和“活”的叠加状态上。那么这只量子“薛定谔猫”到底是死的还是活的呢?
量子测量原理给出的答案是,如果你不去看这只猫,它既不是死的也不是活的!如果你去看这只猫,那么它也许是死的,也许是活的!
正因为有量子叠加状态,才导致量子力学不确定原理,即如果事先不知道单个量子状态,就不可能通过测量把状态的信息完全读取;不能读取就不能复制。这是量子的两个基本特性。
在量子叠加原理基础之上,衍生出了量子的另一个奇妙特性,叫做“量子纠缠”。比方说,甲、乙两人分处异地,两人同时玩一个游戏――掷骰子,甲在一地扔骰子,每次扔一下,1/6的概率随机得到1到6结果中的某一个;同时,乙在另一地掷骰子,尽管两人每一次单边结果都是随机的,但每一次的结果却是一模一样的,就好像是双胞胎心灵感应一样。这就是“量子纠缠”。
若两个量子粒子处在特殊的状态(俗称“纠缠态”)中,不管其空间分离得多远,当对其中一个粒子施行操作或测量,远处的另一个粒子状态会瞬时地发生相应的改变,爱因斯坦称这个现象为“幽灵般的超距作用”。当时,爱因斯坦认为,怎么会允许两个客体在遥远的两地之间有这种诡异的互动呢?据此,他质疑量子理论的完备性。
1982年,法国物理学家Alain Aspect和他的小组证实了“量子纠缠”的超距作用确实存在。
但直到2015年,荷兰代尔夫特理工大学物理学家Ronald Hanson领导的团队进行了一项被他们称之为“无漏洞贝尔测试”的实验,“幽灵般的超距作用”才得到比较严格的验证。
有了量子纠缠,量子隐形传输的概念便呼之欲出。
通俗来讲,量子隐形传输是将甲地某一粒子的未知量子态,在乙地的另一粒子上还原出来。由于量子力学的不确定原理和量子态不可克隆原理,限制我们将原量子态的所有信息精确地全部提取出来。因此必须将原量子态的所有信息分为经典信息和量子信息两部分,它们分别由经典通道和量子通道送到乙地。根据这些信息,在乙地构造出原量子态的全貌。
1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实现了未知量子态的远程传输。这是国际首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。
量子也可以“接地气”
多年来,科学家们努力运用量子世界种种奇异的性质开拓出适用于经典世界的新技术,将向来被公众认为高深莫测“诡异”的量子物理从云端落地到人世间,服务社会大众。
其实,量子理论是一门非常实用的学科。
早在第二次世界大战之前,它的原理就已经被运用于分析金属和半导体的电学和热学性质。战后,晶体管和激光器这两个运用量子理论原理且广为人知的装置,更是极大地推动了信息革命的发展。
到本世纪初,在我们的周围随处可见直接或间接运用量子理论的技术和装置。从常见的CD唱片机到庞大的现代光纤通信系统、从无水涂料到激光制动车闸、从医院的核磁共振成像仪到隧道扫描显微镜……量子技术已经渗透到我们的生活中。
另外,计算能力的飞跃也是量子理论的重要应用之一。在经典计算机中,每个比特都只有0和1这两种状态。但在量子计算中,每个比特可以处在0和1的叠加状态,一旦操纵的量子数目增多,它就会以指数增长的形式来提升运算速度,有并行运算的能力。
比如,利用万亿次经典计算机分解300位的大数需要15万年,利用万亿次量子计算机,只需要1秒。同样,在大数据和人工智能里,求解一个亿亿亿变量的方程组,利用目前最快的亿亿次“天河二号”计算机大概需要100年左右,但是如果利用万亿次的量子计算机,只需要0.01秒。
量子计算的应用非常广泛,不仅可以解决大规模的计算机难题,破解经典密码,进行气象预报、药物设计、金融分析、石油勘探,而且还能揭示新能源新材料、高温超导、量子霍尔效应等复杂的物理机制。不过,量子纠缠“分身术”的特性有一个更为直接的应用,便是量子保密通信。
现在被认为最安全的信息传递方式是光纤通讯。光缆能把所有的光能限制在光纤里,外面得不到能量,所以这个传输被认为是安全的。但随着科技发展,只需让光缆泄露哪怕很少一部分能量,我们就能够窃听光缆传递的信号。
这是因为经典通信的信号只有0和1,发生窃听时,这两种信号不会被扰动。比方说,两人打电话时,他人可通过窃听器从通信线路中的上千万个电子中分出一些电子,使其进入另一根线路,从而实现窃听,而通话者无法察觉。“棱镜门”等事件的曝光便是最好的例证。
而量子通信则完全不会出现这个问题,这是因为其密钥具有不可复制性和绝对安全性。一旦有人窃取密钥,整个通信信息就会“自毁”并告知使用者。比如,甲、乙二人要进行安全通信,甲发出的光子信息状态有水平、竖直、45°等,假设有人窃听,由于光子不可分割,首先窃听者根本无法分割出“半个光子”;其次,因为单次测量测不准、不可克隆的量子态特性,窃听者无法复制信息;倘若窃听者截获光子,乙就收不到信息,也就不存在窃听。
篇9
【关链词】计算机发展趋势 新型计算机
一、 前言
计算机的发展将趋向超高速、超小型、并行处理和智能化。自从1944年世界上第一台电子计算机诞生以来,计算机技术迅猛发展,传统计算机的性能受到挑战,开始从基本原理上寻找计算机发展的突破口,新型计算机的研发应运而生。未来量子、光子和分子计算机将具有感知、思考、判断、学习以及一定的自然语言能力,使计算机进人人工智能时代。这种新型计算机将推动新一轮计算技术革命,对人类社会的发展产生深远的影响。
二、智能化的超级计算机
超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研究与开发,为我们的日常生活带来各种各样的好处。最大的超级计算机接近于复制人类大脑的能力,具备更多的智能成份.方便人们的生活、学习和工作。世界上最受欢迎的动画片、很多耗巨资拍摄的电影中,使用的特技效果都是在超级计算机上完成的。日本、美国、以色列、中国和印度首先成为世界上拥有每秒运算1万亿次的超级计算机的国家,超级计算机已在科技界内引起开发与创新狂潮。
三、新型高性能计算机问世
硅芯片技术高速发展的同时,也意味看硅技术越来越接近其物理极限。为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机的体系结构与技术都将产生一次量与质的飞跃。新型的量子计算机、光子计算机、分子计算机、纳米计算机等,将会在二十一世纪走进我们的生活,遍布各个领域。
1.量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态.使信息沿着聚合物移动.从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。
无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
2.光子计算机
光子计算机是利用光子取代电子进行数据运算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。
3.分子计算机
分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。
4.纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子机械系统起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积只有数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。美国正在研制一种连接纳米管的方法,用这种方法连接的纳米管可用作芯片元件,发挥电子开关、放大和晶体管的功能。专家预测,10年后纳米技术将会走出实验室,成为科技应用的一部分。纳米计算机体积小、造价低、存量大、性能好,将逐渐取代芯片计算机,推动计算机行业的快速发展。
我们相信,新型计算机与相关技术的研发和应用,是二十一世纪科技领域的重大创新,必将推进全球经济社会高速发展,实现人类发展史上的重大突破。科学在发展,人类在进步,历史上的新生事物都要经过一个从无到有的艰难历程,随着一代又一代科学家们的不断努力,未来的计算机一定会是更加方便人们的工作、学习、生活的好伴侣。
参考文献:
[1]刘科伟,黄建国.量子计算与量子计算机.计算机工程与应用,2002,(38).
[2]王延汀.谈谈光子计算机.现代物理知识,2004,(16).
[3]陈连水,袁凤辉,邓放.分子计算机.分子信息学,2005,(3).
[4]官自强.纳米科技与计算机技术.现代物理知识,2003,(15).
篇10
在全球的量子通信竞赛中,中国虽然并不是起步最早的,但是在中国科学院院士潘建伟等众多人的不懈努力下,中国在量子通信领域已经实现“弯道超车”,并成为首个将量子科学实验卫星送入太空的国家。
早在数年前,星地量子通信的中国梦已引发了世界的关注。
2012年8月9日,国际权威学术期刊《自然》杂志以封面标题形式发表了中国科学技术大学合肥微尺度物质科学国家实验室潘建伟团队的研究成果:他们在国际上首次成功实现了百公里量级的自由空间量子隐形传态和纠缠分发。
这一成果不仅刷新世界纪录,有望成为远距离量子通信的“里程碑”,而且为发射全球首颗“量子科学实验卫星”奠定了技术基础。该成果入选《自然》杂志公布的“2012年度全球十大新闻亮点”。
同年12月6日,《自然》杂志为该成果专门撰写了长篇新闻特稿《数据隐形传输:量子太空竞赛》,详细报道了这场激烈的量子太空竞赛。
建立“量子互联网”
2009年,潘建伟和他的中国科大物理学家团队从位于北京北部丘陵的长城附近的实验点,将激光瞄准了16公里之外的屋顶上的探测器,然后利用激光光子的量子特性将信息“瞬移”过去。
这个距离刷新了当时量子隐形传态的世界纪录,他们朝着团队的终极目标――将光子信息隐形传送到卫星上――迈进了重要的一步。
如果这一目标实现,将会建立起“量子互联网”的第一个链接,这个网络将是运用亚原子尺度物理规律创建的一个超级安全的全球通信网络。这也证实了中国在量子领域的不断崛起,从十几年前并不起眼的角色发展为现在的世界劲旅。
2016年,中国领先欧洲和北美,发射了一颗致力于量子科学实验的卫星。
这为物理学家提供了一个测试量子理论基础,以及探索如何融合量子理论与广义相对论(是爱因斯坦关于空间、时间和引力所提出的截然不同的理论)的全新平台。
这也标志着潘建伟与维也纳大学物理学家Anton Zeilinger之间的友谊(虽然存在激烈竞争)达到高峰。
Zeilinger曾是潘建伟的博士生导师;之后的七年,二人在远距离量子隐形传态研究的赛跑中棋逢对手;此后他们又建立了合作关系。卫星发射成功之后,两位物理学家将创建第一个洲际量子加密网络,通过卫星连接亚洲和欧洲。
“我们有句老话,一日为师终身为父,”潘建伟说,“科研上,Zeilinger和我平等合作,但在情感上,我一直把他当作我尊敬的长辈。”
迅速崛起
2001年,潘建伟建立了中国第一个光量子操纵实验室;2003年,他提出了量子卫星计划。那时的他才30岁出头。2011年,41岁的潘建伟成为当时最年轻的中科院院士。
潘建伟小组的成员陈宇翱说:“他几乎单枪匹马地把这个项目推进下去,并使中国在量子领域有了立足之地。”
潘建伟为何有如此动力?这要追溯到上世纪80年代后期他在中国科大的本科读书经历。
那时,他第一次接触到了原子领域一些“奇怪”的概念。微观客体可以处于多个状态的迭加态:例如,一个粒子可以同时处在顺时针自旋状态和逆时针自旋状态,或者可以同时存在于两个地方。这种多重的个性在数学上用波函数来描述,波函数给出了粒子处于每个状态的概率。只有在粒子的某一特性被测量时,波函数才会坍塌,相应的粒子才会处于一个确定地点的确定状态。至关重要的是,即使在原则上都无法预言单次实验的结果,粒子处于每个状态的概率仅表现为一个统计分布,并且只有通过多次重复实验才能得到。
由于量子纠缠的特性,当考虑两个或更多个粒子时,情况变得更加“古怪”了。多粒子系统可以被制备到某种状态:即使粒子间距离遥远,即使粒子的物理性质仅当其被测量时才会存在确定的值,对于每个粒子某个物理性质的测量结果之间总是会存在某种关联性。
这种怪异性就好比分别位于维也纳和北京的两位物理学家同时掷硬币,他们会发现每次结果都是正面朝上,或者都是反面朝上。
“我对这些奇怪的量子特性感到着迷。”潘建伟说,“它们几乎使我无法分心去学习其它东西。”他想验证这些不可思议的理论,但是在当时的中国,他找不到合适的量子物理实验室。
20世纪90年代中期,Zeilinger在奥地利因斯布鲁克大学建立了自己的量子实验室,并且需要一名学生来检验他的一些实验猜想。潘建伟认为这是一个理想的选择。于是,与大多数中国学生的选择不同,潘建伟来到奥地利师从Zeilinger,与Zeilinger开始了一段决定二人此后二十年间事业上并驾齐驱的关系。
当潘建伟在Zeilinger实验室施展他的专业才华时,世界各地的物理学家开始慢慢认识到,曾令潘建伟着迷的、深奥难懂的量子特性可以被用来创造比如量子计算机。
由于一个量子比特可以同时存在于0和1的叠加,它可能会建立起更快、更强大、能够将多个量子比特纠缠起来的量子计算机,并能以惊人的速度并行执行某些运算。
另一个新兴的概念是极度安全的量子加密,可应用在比如银行交易等方面。其中的关键是测量一个量子系统会不可避免地破坏这个系统。因此,发报方(通常称为“Alice”)和信息的接收方(通常称为“Bob”)两个人能够产生并共享一套量子密钥,其安全性在于来自窃听者的任何干扰都会留下痕迹。
2001年,潘建伟回到中国的时候,量子技术的潜力已经得到公认,并吸引了中国科学院和中国国家自然科学基金委员会的财政支持。
“幸运的是,2000年中国的经济开始增长,因此当时立即迎来了从事科研工作的好时机。”潘建伟说。他全身心投入到了梦想中的实验室的建设当中。与此同时,在奥地利,Zeilinger转到维也纳大学。在那里,因为他的远见卓识,Zeilinger继续创造着量子纪录。他最著名的实验之一表明,巴基球(含有60个碳原子的富勒烯分子)可以表现出波粒二象性,这是一个奇特的量子效应,很多人曾认为在如此大的分子中不可能存在这种效应。
“每个人都在谈论可以用小的双原子分子来尝试一下这个实验。”Zeilinger回忆说,“我说,‘不,伙伴们,不要只是思考前面的一两步,请思考一下我们如何能实现一个超出所有人想象的大跳跃。’”
这使潘建伟深受教益。世界各地的物理学家们开始构思,如何利用尚未实现的量子计算机来连接未来的量子互联网。当大多数人仍满足于在实验台上安全地得到量子信息时,潘建伟已经开始思考如何能够在太空中实现信息的隐形传送。
纽约IBM的计算机科学家Charles Bennett和他的同事在1993年首次提出“量子隐形传态”的概念,之所以有此名称,陈宇翱说:它就像来自于《星际旅行》一样,它使得关于一个量子客体的全部信息在某个地点被扫描输入,并在一个新的地点重构出来。这其中的关键就是纠缠:因为对处于纠缠态的其中一个粒子的操作会影响到另一个粒子。不管两个粒子距离多远,它们可以像一条量子电话线两端的电话机那样控,在两个相距甚远的地点之间传送量子信息。
当同时产生的纠缠粒子被发送到电话线连接的两端时,问题就出现了。传递过程中充满着噪音、散射相互作用和各种形式的其它干扰,任何一种干扰都会破坏隐形传态所必需的精巧的量子关联。例如,目前纠缠光子是通过光纤传输,但是光纤会吸收光,这使得光子的传输距离仅限于几百公里。标准的放大器起不到作用,因为放大过程会破坏量子信息。陈宇翱说:“要在城域距离之外实现隐形传态,我们需要卫星的帮助。”
但是当光子通过地球湍流的大气层一直向上,到达几百公里的卫星时,纠缠会不会继续保持?为了回答这个问题,潘建伟的研究团队于2005年开展了晴空下传输距离不断扩大的地基可行性实验,探究光子与空气分子发生碰撞后能否继续维持纠缠性质。但他们还需要建立一个靶标探测器,这个探测器必须小到能够装配到卫星上,并且灵敏度必须足以从背景光中筛选出被传送的光子,而且还得保证,他们可以将光子束足够聚焦,让其能够打到探测器。
这个工作激起了Zeilinger的竞争意识。“中国人在做了,因此我们想,为什么我们不试试呢?一些友好的竞争总是好的。”
竞争促使光子传输距离的世界纪录不断被刷新。在接下来的七年中,中国的研究团队通过在合肥、北京长城以及在青海开展的一系列实验,将隐形传态的距离越推越远,直到它超过97公里。
2012年5月,他们将成果张贴在物理预印本服务器ArXiv上。这让奥地利团队十分懊恼,因为他们正在撰写在加那利群岛之间隐形传态光子的实验论文。
8天后,他们在ArXiv上贴出了论文,报道他们的隐形传态取得了143公里的新纪录。两篇文章最终先后发表在《自然》杂志上。
“我认为这可以表明一个事实,即每个实验都有不同以及互补的价值。”维也纳大学物理学家、奥地利团队成员马晓松说。
在自由空间量子通信领域,中国团队和奥地利团队之间不断竞争,从纠缠光子的分发到量子隐形传态,创造了一个又一个的里程碑。
两支团队都认为,向卫星进行隐形传态在科学原理上已不存在问题。他们亟需的是一颗卫星来装载功能齐备的有效载荷设备,开展相关的量子实验检验。Zeilinger的研究组一直在与欧洲空间局(ESA)商讨建立量子卫星计划,但这些努力因拖延而渐渐告吹。
Zeilinger说:“它的运行机制太慢了,以至于没有做出任何决策。”一方面是欧空局的犹豫,另一方面中国国家航天局紧抓机会,得以扩大领先优势。在此当中,潘建伟起到了决定性的推进作用。“量子卫星”的发射使得潘建伟在量子空间竞赛中处于领先地位,他的研究团队将着手开展大量的科学实验。
成功的关键
如果没有通信对象,开发全球首个量子通信网络就失去了意义。因此,潘建伟邀请他从前的竞争对手加入这个项目。他们的第一个共同目标是在北京和维也纳之间生成和共享一个安全的量子密钥。
“总之,任何一个小组都无法独立完成向卫星隐形传态这一极其艰巨的任务。”马晓松说。尽管政府的主要兴趣在于它可以推进技术前沿,但许多物理学家对这个卫星项目如此着迷却是因为其它原因。“作为一名科学家,驱使我不断前行的动力在于进一步探寻物理学的基础。”陈宇翱表示。
迄今为止,量子理论的奇妙之处在实验室里被不断重复检验,但这些检验却从未在太空尺度中进行过。而且有理论认为,如果量子理论可能会在某处遭遇挑战,那必然是太空。大尺度是由另一个基本物理理论所掌控:广义相对论。相对论将时间作为另一种维度与三维空间交织,从而创造一个四维时空结构,包括宇宙。在巨大的物体如太阳周围,这种可塑结构将发生弯曲,表现为引力,引力将较小质量的物体如行星拉向巨大物体。
目前的挑战是,量子理论和广义相对论对时空概念有着完全不同的理解,物理学家们一直致力于将它们融入一个统一的量子引力理论框架。在爱因斯坦的绘景里,即使在无穷小尺度上,时空都是完全光滑的。然而,量子不确定性却意味着不可能在如此小的距离上测量空间性质。目前尚不清楚是量子理论还是广义相对论需要进行修正,抑或二者都要进行修正。
而卫星实验可以帮助测试量子理论的规则在引力牵引不能被忽略的尺度上是否仍然适用。
一个明显的问题是,量子纠缠是否可以延伸到地球和卫星之间。为了回答这个问题,研究组计划在卫星上制备一系列纠缠粒子对,将每对中的两个粒子分别发送到两个地面站,然后测量两个粒子的性质以验证它们是否仍然存在关联――而且设备运转良好。
“如果纠缠不再存在,我们就不得不寻找另一种理论来代替量子理论。”研究向卫星进行隐形传态方案的瑞士日内瓦大学理论物理学家Nicolas Brunner说。
该卫星还可更进一步,检验一些候选的量子引力理论对时空结构的预言。比如,所有这些理论都预测,如果科学家能以某种方式在10~35米(即普朗克长度)这一尺度观测,空间、时间将呈现为颗粒状。如果事实确实如此,那么光子从卫星沿着这条颗粒感的道路的穿梭将会轻微减速,而且偏振方向将有一个微小、随机的偏转――这些效应应该足以被地面站记录下来。
“卫星将开启一个真正全新的窗口,通往一个实验物理学家此前从未涉足过的领域,这非常神奇。”来自意大利罗马萨皮恩扎大学的物理学家Giovanni Amelino-Camelia说。