对量子计算机的认识范文

时间:2023-12-29 17:51:29

导语:如何才能写好一篇对量子计算机的认识,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

对量子计算机的认识

篇1

关键词:计算机 趋势 发展

一、计算机科学与技术的发展趋势

(一)计算机科学与技术实现了智能化的超级计算

可能你不知道,超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。总之,计算机科学与技术实现了智能化的超级计算。

(二)计算机科学与技术实现了分子计算机

大家都知道,分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。也就是说计算机科学与技术实现了分子计算机。

(三)计算机科学与技术实现了纳米计算机

纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子算机也会像现在的马达一样,存在于家中的各种电器中,那时问你家里有多少计算机,你也数不清,你的笔记本,书籍都已电子化。再过十几、二十几年,可能学生们上课用的不再是教科书,而只是一个笔记本大小的计算机,不同的学生可以根据自己的需要方便地从中查到想要的资料所以有人预言未来计算机可能像纸张一样便宜,可以一次性使用,计算机将成为不被人注意的最常用的日用品。

(四)计算机科学与技术实现了量子计算机

量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态。使信息沿着聚合物移动。从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。

二、计算机科学与技术的发展趋势总结

计算机科学与技术的发展,将朝着向信息的智能化发展。计算机技术的大多数领域以应用学科和工程学科的出现为标志,这些学科的职责是促进与实践有关的认识的发展,这些学科常吸收更为基础的学科,提高就能有实践的进步,在对计算机技术研究中,发现常有另外一条路径,这个过程存在着强烈的相互作用,有关半导体是如何运行的理论也建立了起来,这是用它们能够使计算机技术的实践中普遍存在的问题得到解决,或者说是促进实践的发展。能实现或更困难一些。显然,选择机制在计算机技术的实践进化和认识进化之间明显地提供了一种双向的连接,推动计算机技术的快速发展。参考文献:

[1]王华.计算机技术发展[J].电脑与电信,2013(02).

篇2

未来的计算机技术将向超高速、超小型、平行处理、智能化的方向发展。尽管受到物理极限的约束,采用硅芯片的计算机的核心部件CPU的性能还会持续增长。作为Moore定律驱动下成功企业的典范Inter预计2001年推出1亿个晶体管的微处理器,并预计在2010年推出集成10亿个晶体管的微处理器,其性能为10万MIPS(1000亿条指令/秒)。而每秒100万亿次的超级计算机将出现在本世纪初出现。超高速计算机将采用平行处理技术,使计算机系统同时执行多条指令或同时对多个数据进行处理,这是改进计算机结构、提高计算机运行速度的关键技术。

同时计算机将具备更多的智能成分,它将具有多种感知能力、一定的思考与判断能力及一定的自然语言能力。除了提供自然的输入手段(如语音输入、手写输入)外,让人能产生身临其境感觉的各种交互设备已经出现,虚拟现实技术是这一领域发展的集中体现。

传统的磁存储、光盘存储容量继续攀升,新的海量存储技术趋于成熟,新型的存储器每立方厘米存储容量可达10TB(以一本书30万字计,它可存储约1500万本书)。信息的永久存储也将成为现实,千年存储器正在研制中,这样的存储器可以抗干扰、抗高温、防震、防水、防腐蚀。如是,今日的大量文献可以原汁原味保存、并流芳百世。

新型计算机系统不断涌现

硅芯片技术的高速发展同时也意味着硅技术越来越近其物理极限,为此,世界各国的研究人员正在加紧研究开发新型计算机,计算机从体系结构的变革到器件与技术革命都要产生一次量的乃至质的飞跃。新型的量子计算机、光子计算机、生物计算机、纳米计算机等将会在21世纪走进我们的生活,遍布各个领域。

量子计算机

量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。

量子计算机中数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前个人计算机的PentiumⅢ晶片快10亿倍。目前正在开发中的量子计算机有3种类型:核磁共振(NMR)量子计算机、硅基半导体量子计算机、离子阱量子计算机。预计2030年将普及量子计算机。

光子计算机

光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。

与电子计算机相比,光计算机的“无导线计算机”信息传递平行通道密度极大。一枚直径5分硬币大小的棱镜,它的通过能力超过全世界现有电话电缆的许多倍。光的并行、高速,天然地决定了光计算机的并行处理能力很强,具有超高速运算速度。超高速电子计算机只能在低温下工作,而光计算机在室温下即可开展工作。光计算机还具有与人脑相似的容错性。系统中某一元件损坏或出错时,并不影响最终的计算结果。

目前,世界上第一台光计算机已由欧共体的英国、法国、比利时、德国、意大利的70多名科学家研制成功,其运算速度比电子计算机快1000倍。科学家们预计,光计算机的进一步研制将成为21世纪高科技课题之一。

生物计算机(分子计算机)

生物计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。计算机的转换开关由酶来充当,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。

20世纪70年代,人们发现脱氧核糖核酸(DNA)处于不同状态时可以代表信息的有或无。DNA分子中的遗传密码相当于存储的数据,DNA分子间通过生化反应,从一种基因代玛转变为另一种基因代码。反应前的基因代码相当于输入数据,反应后的基因代码相当于输出数据。如果能控制这一反应过程,那么就可以制作成功DNA计算机。

蛋白质分子比硅晶片上电子元件要小得多,彼此相距甚近,生物计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。DNA分子计算机具有惊人的存贮容量,1立方米的DNA溶液,可存储1万亿亿的二进制数据。DNA计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于生物芯片的原材料是蛋白质分子,所以生物计算机既有自我修复的功能,又可直接与生物活体相联。预计10~20年后,DNA计算机将进入实用阶段。

纳米计算机

“纳米”是一个计量单位,一个纳米等于10[-9]米,大约是氢原子直径的10倍。纳米技术是从80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。

现在纳米技术正从MEMS(微电子机械系统)起步,把传感器、电动机和各种处理器都放在一个硅芯片上而构成一个系统。应用纳米技术研制的计算机内存芯片,其体积不过数百个原子大小,相当于人的头发丝直径的千分之一。纳米计算机不仅几乎不需要耗费任何能源,而且其性能要比今天的计算机强大许多倍。

目前,纳米计算机的成功研制已有一些鼓舞人心的消息,惠普实验室的科研人员已开始应用纳米技术研制芯片,一旦他们的研究获得成功,将为其他缩微计算机元件的研制和生产铺平道路。

互联网络继续蔓延与提升

今天人们谈到计算机必然地和网络联系起来,一方面孤立的未加入网络的计算机越来越难以见到,另一方面计算机的概念也被网络所扩展。二十世纪九十年代兴起的Internet在过去如火如荼地发展,其影响之广、普及之快是前所未有的。从没有一种技术能像Internet一样,剧烈地改变着我们的学习、生活和习惯方式。全世界几乎所有国家都有计算机网络直接或间接地与Internet相连,使之成为一个全球范围的计算机互联网络。人们可以通过Internet与世界各地的其它用户自由地进行通信,可从Internet中获得各种信息。

回顾一下我国互联网络的发展,就可以感受到互联网普及之快。近三年中国互联网络信息中心(CNNIC)对我国互联网络状况的调查表明我国的Internet发展呈现爆炸式增长,2000年1月我国上网计算机数为350万台,2001年的统计数为892万台,翻一番多;2000年1月我国上网用户人数890万;2001年1月的统计数为2250万人,接近于3倍;2000年1月CN下注册的域名数为48575,2001年1月的统计数为122099个,接近于3倍;国际线路的总容量目前达2799M,8倍于2000年1月的351M。

人们已充分领略到网络的魅力,Internet大大缩小了时空界限,通过网络人们可以共享计算机硬件资源、软件资源和信息资源。“网络就是计算机”的概念被事实一再证明,被世人逐步接受。

在未来10年内,建立透明的全光网络势在必行,互联网的传输速率将提高100倍。在Internet上进行医疗诊断、远程教学、电子商务、视频会议、视频图书馆等将得以普及。同时,无线网络的构建将成为众多公司竞争的主战场,未来我们可以通过无线接入随时随地连接到Internet上,进行交流、获取信息、观看电视节目。

移动计算技术与系统

随着因特网的迅猛发展和广泛应用、无线移动通信技术的成熟以及计算机处理能力的不断提高,新的业务和应用不断涌现。移动计算正是为提高工作效率和随时能够交换和处理信息所提出,业已成为产业发展的重要方向。

移动计算包括三个要素:通信、计算和移动。这三个方面既相互独立又相互联系。移动计算概念提出之前,人们对它们的研究已经很长时间了,移动计算是第一次把它们结合起来进行研究。它们可以相互转化,例如,通信系统的容量可以通过计算处理(信源压缩,信道编码,缓存,预取)得到提高。

移动性可以给计算和通信带来新的应用,但同时也带来了许多问题。最大的问题就是如何面对无线移动环境带来的挑战。在无线移动环境中,信号要受到各种各样的干扰和衰落的影响,会有多径和移动,给信号带来时域和频域弥散、频带资源受限、较大的传输时延等等问题。这样一个环境下,引出了很多在移动通信网络和计算机网络中未遇到的问题。第一,信道可靠性问题和系统配置问题。有限的无线带宽、恶劣的通信环境使各种应用必须建立在一个不可靠的、可能断开的物理连接上。在移动计算网络环境下,移动终端位置的移动要求系统能够实时进行配置和更新。第二,为了真正实现在移动中进行各种计算,必须要对宽带数据业务进行支持。第三,如何将现有的主要针对话音业务的移动管理技术拓展到宽带数据业务。第四,如何把一些在固定计算网络中的成熟技术移植到移动计算网络中。

篇3

【关键词】现代;计算机技术;发展;方向;趋势

0引言

计算机是我们工作生活中一个比较常见的物品,又被人们习惯性地称为“电脑”,它不仅被应用于高速数据跟逻辑的运算,而且具备强大的存储与修改功能,是一种现代化的智能电子设备。计算机有两部分主体结构,一部分是硬件系统,另一部分是软件系统,共同保障计算机的正常运转。伴随着科技水平的不断提升,计算机技术也在随之发展,计算机作为一个综合型的生活办公工具应用到人们生活工作中的同时,其发展备受人们的关注,相关行业人员也在致力于计算机的发展研究过程中,计算机技术的发展已经逐渐走上了一个越来越成熟的轨道。但是,当前计算机技术的发展也受到了一定的阻碍,人们过于关注对计算机娱乐方面的应用,比如聊天、网络购物等内容,却忽视了现代计算机技术的发展与创新,甚至不了解。本文将带领大家一起去了解一下现代计算机技术的发展历程以及未来的发展动向。

1计算机的发展历程

世界上第一台计算机出现在1946年2月,埃克特和莫克利这两位美国的发明家在美国的宾夕法尼亚大学共同将它研制出来。世界上第一台计算机的问世开启了人类社会发展的新篇章,让社会发展迈出了一大步,开启了人们的新生活,带领人们进入了信息革命时期。世界上第一台计算机跟我们现在的计算机外形差距较大,那台计算机有好几间房子一样大,但是它的计算速度却并没有高于我们现在使用的微型计算机。从世界上第一台计算机问世到现在我们使用的计算机,无数的计算机研发人员一直在努力,尤其是科学家冯诺依曼在计算机技术的发展进程中发挥了重要的作用,被后人称为“现代计算机之父”。冯诺依曼开启了计算机发展的新时代,带动了广大科研人员对计算机技术的研究。随着时间的推移,计算机的发展可以分为四代:

1.1电子计算机

电子计算机时代是计算机发展的第一个时代,从1946年开始,到1957年结束。电子计算机与世界上第一台计算机有些类似,电子元件是计算机的主要器件,电子计算机也因此得名。电子管具的体积比较大,但是存储的容量相对较小,因此电子计算机的耗电比较快,不具备稳定性。这类计算机一般应用于科学研究过程中,而且在电子计算机时代,计算机一般使用机器语言或者是汇编语言,并不具备系统软件。

1.2晶体管计算机

随着科学技术的不断发展,量子力学和固体物理能带论的不断呈现,开启了半导体器件的计算机时代,理论研究给半导体器件的发展奠定了理论基础,提供了实践的依据。早在20世纪50年代上下,点接触晶体管就被两位科学家研制出来。随着科学的发展,结型晶体管又相继问世。自此之后,晶体管的发展就步入一个相对成熟的轨道,成功的应用与计算机的发展过程汇总,让计算机的发展进入了第二个时代,也就是我们所说的晶体管计算机时代。晶体管计算机时代从1958年开始,结束于1964年。晶体管具有相对优势,它虽然体积较小,但是质量比较轻,而且工作的效率相对较高,散热比较少,损耗较低,对于电子管的效能发挥到了一定的程度,因此,二代计算机的体积在不断减少,但是使用的年限却在增加,这就为计算机的发展奠定了基础。除此之外,晶体管计算机的创新之处在于它拥有浮点算法这一新应用,对于计算机运算水平是一个大的提升,让计算机在数据处理以及工业控制方面有了更大的突破。

1.3中小规模集成电路计算机

随着晶体管的呈现,使得集成电路的发展更加顺畅。不久之后,科研人员开始着手于研究晶体管以及其他电学元件,以此来制作更加复杂高端精密的集成电路。在1959年,有位著名的发明学家叫做罗伯特罗伊斯,他发明的集成电路更加复杂化,是通过平面工艺生产出来的,可以应用于商业领域。从那之后,计算机开始利用中小规模集成电路来进行技术发展,也就随之进入了第三个计算机时代,被人们称为中小规模集成电路计算机时代。中小规模集成电路计算机时代与之前存在的两个计算机时代相比,又有所不同,中小规模集成电路计算机的中心部分仍旧是存储器,但是计算机的体积开始不断减小,与此同时,计算机的能耗在不断降低,但是运算的速度以及可靠的程度却又在不断提升过程中。除此之外,中小规模集成电路计算机的外部设备得到完善与更新,它的功能组件强化,不仅可以应用于数据处理,还能够在企业管理、辅助设计、辅助制造跟自动控制领域进行充分的应用。

1.4大规模和超大规模集成电路计算机

伴随着我国经济水平的提升,工业制造水平也在逐步提升,集成电路的技术有了新的发展。摩尔定律表明,当价格不变的时候,集成电路上能够容纳的晶体管数目,每隔18个月就能够增加一倍,在这个过程中,它的性能水平也在提升,计算机的发展进入了一个全新的时代,被人们称为大规模和超大规模集成电路计算机时代。自从1970年之后,以大规模集成电路和超大规模集成电路为标志的计算机开启了第四个全新的计算机时代。升级发展之后的第四代计算机的性能有了明显的优势,存储的容量明显得到了提升,在一个一厘米的圆形芯片上可以容纳上百万的电子元件。在这一时期,第四代计算机时代呈现出一个关键性的分化,大规模、超大规模集成电路为依托不断发展起来的微处理器以及微型计算机。微型计算机的发展可以大致分为四个阶段。第一个阶段是1971年到1973年,微处理器主要有三种,分别为4004、4040以及8008这个类型。第二个阶段是1973年到1977年,这一个时间段是微型计算机的发展以及创新的时期。第三个阶段是从1978年开始到1983年结束,在这一时间段里,是十六位微型计算机的发展阶段。第四个阶段从1983年开始,也是三十二位微型计算机的发展阶段。

2计算机技术的新发展方向与趋势

时代在不断变革和发展,大规模和超大规模集成电路计算机也处在一个时刻发展与创新的过程中,但是随着经济水平以及科技水平的提升,现代各个领域的发展也随之进行着,无论是生物领域还是物理领域,以及一些新材料的出现,都为新型计算机的发展奠定着前提条件。一系列新型计算机已经在酝酿发展的过程中,比如生物计算机、量子计算机、光子计算机以及纳米计算机等。或者这些新型计算机的发展还未成型或者技术发展没有十分成熟,但是它们的呈现代表着计算机技术发展的新方向与新趋势。

2.1生物计算机

生物计算机是一种全新的计算机类型,还有一个别名叫做仿生计算机,它的创新之处在于使用了生物芯片替代了原本半导体上大量晶体管。生物计算机主要通过生物工程技术所出现的蛋白质分子来作为主要的原料以及生物芯片,所以被叫做生物计算机。脱氧核糖核苷酸上存在着一些遗传信息,它是一种双螺旋结构,因此,它具有强大的存储优势,而且运算能力非常强大,与传统硅片相比更是略胜一筹。数据显示,一毫克的DNA的存储能力与一万片的光碟片差不多大容量。除此之外,DNA还具有超能力,能够同时进行兆个运算指令。这一系列的优势因素都给生物计算机的成熟发展奠定了基础,让它具备了集成电路所没有的优势,大致可以归结于五点。第一点,生物计算机的体积比较小,但是容量却比较大。第二,生物计算机具有良好的可靠性,这主要得益于计算机的内部芯片,一旦出现问题,这个内部芯片可以自行进行恢复。第三,生物计算机的存储量比较大,有关数据显示,一立方米的生物大分子溶液里大约可以存储一万亿的二进制数据。第四,生物计算机的运算速度比较快,这主要得益于DNA能够同时处理兆个指令的特别优势。第五,生物计算机具有良好的并行性。跟过去的计算机不同的是,生物计算机得益于DNA与蛋白质,因此充分发挥并行功能。生物计算机以它独特的优势成为21世纪科学技术发展的一个重要工程,当前,生物计算机的发展方向主要有两个,一个是研制有机分子元件,利用它来替换半导体元件,为分子计算机的出现提供帮助。另一个是通过不断探究人脑结构跟思维规律来研究生物计算机的结构,为生物计算机的成熟呈现奠定基础。

2.2量子计算机

量子计算机也是新型计算机技术发展的产物,它是建立在量子力学规律以及依托量子效应和量子比特而进行的超速运算、强大存储的一种新型计算机装置。假如这个装置处理和运算时使用的是量子信息,那么在进行量子算法的时候,就是所谓的量子计算机。量子计算机与一般计算机的一个不同之处在于它不仅能够使用0和1进行存储,还能够用粒子的量子叠加来进行存储信息的汇总。有关数据显示,一个四十位元的量子计算机可以解开一千零二十四位的集成电路计算机需要花费几十年才能够解决的问题。量子计算机的运算速度令人惊叹。到现在为止,全球还没有呈现出一个成熟意义上的量子计算机,不同国家和地区的科研人员仍然没有放弃努力,致力于对量子计算机的研究过程中,呈现出许多跟量子计算机相关的科学方案以及科学假设。在实际研究过程中,这一系列的科学方案仍然存在着一些不成熟的地方,但是伴随着时代的进步,相信量子计算机终究会被攻克,完美地呈现在人们的生活中。

2.3光子计算机

科学技术的发展带动着光学的发展,科研人员开始着手用光子来替代电子,光运算开始慢慢取代电运算,一系列的光学元件开始取代电子元件与电子设备,不断应用于电子计算机的发展过程中。光子计算机主要是运用光信号进行数字运算、逻辑测算以及信息的存储处理等的新型计算机,主要的优势可以归纳为三个方面:第一,强可靠性,光子没有电荷,所以就不存在电磁相互作用,具有较强的可靠性。第二,光子计算机的运算速度极高,光子的并行性比较强,因此具有较强的处理能力,加上光子传播速度很快,进一步提升了光子计算机的运算速度。第三具有超大的存储容量,光子互联不受到电磁的干扰,因此具有较高的互联密度。

2.4纳米计算机

纳米材料作为一种新型的高科技材料,在薄膜晶体管中的应用解放了传统意义上的晶体管。纳米计算机解决了一些顽固的技术难题,与此同时,由于纳米材料研发的芯片具有更低的生产成本,因此,纳米计算机的发展前景更加乐观。作为21世纪科学技术发展的一个重要方向,相信随着科研人员的不断探索与发现,纳米计算机技术一定可以随着时间的推移走进我们老百姓的生活中,帮助我们解决日常生活中的一系列问题。

3总结

时代在不断发展,科学技术水平也在不断提升。社会的进步和发展对于现代计算机技术的发展要求越来越高,计算机作为人们工作生活中一个必不可少的辅助用品,必将走在不断发展的路上,微型、智能、多功能发展,生物计算机、量子计算机、光子计算机以及纳米计算机等一系列新型计算机,作为现代计算机技术的一个发展方向与趋势一定可以破除各种技术阻碍,通过科研人员坚持不懈的努力成为老百姓生活中的一部分,为美好生活的构建增添色彩。

【参考文献】

[1]黄艳云.计算机技术的创新过程研究[J].计算机技术应用,2013(08).

[2]李育英,谭贤楚.计算机发展与社会进步[J].理论探新,2010(09).

[3]雷宏泽.浅谈计算机网络的发展历程与发展方向[J].青年文学家,2013(29).

[4]李文倩.个人计算机的发展趋势[J].工程技术的发展历程,2012(09).

[5]胡军,吴立春.刍议计算机科学与计算机发展的认识与思考[J].科技向导,2011(35).

[6]高纲领.浅议计算机发展与社会进步[J].科技资讯,2011(14).

[7]李文博.量子计算机的设计原理与运用领域解析[J].科技前沿,2014(11).

[8]谢小雨,薛慧,顾琳玲.计算机的发展趋势[J].科技向导,2011(24).

[9]樊玲玲.浅析计算机科学技术的发展[J].信息技术应用研究,2012(16).

篇4

【关键词】计算机技术;技术创新;创新原因

一、电子计算机发展中的突破性进展及其技术原因

由于现代社会对于复杂计算量任务的需求日益增加,人们迫切需要一种能够进行精确计算的电子设备,于是电子计算机应运而生,在随后的几年中,电子计算机技术得到了更加迅速的发展,并取得了很多里程碑式的突破,其主要表现和原因如下:

(一)晶体管技术与晶体管计算机的发明

在第二次世界大战以前,贝尔实验室的科研人员发现了一种能够使得微弱电流少量的变化,能够对另外的电流产生很大影响的材料,人们称之为“晶体管”;后来,人们逐渐发展晶体管在工作上不仅能够替代原有部件的作用,而且能够更好地提高计算机的性能,于是一些科研人员开始研究以晶体管计算机代替原有的电子管计算机,并确立了读写方便的二进制,同时人们从中得到启发,发明小型的供个人使用的计算机将会成为未来计算机的发展方向之一。采用晶体管作为主要部件的计算机被成为“第二代电子计算机”,并在随后的时期被广泛地运用,同时为以后的发展提供了契机。

(二)集成电路与PC机时代的到来

通过在发明晶体管计算机中的启发,通过当时的科学技术人们已经能够将晶体管、二极管和电阻等一些元部件和电路连线在一块集成电路板上,与普通的电子电路相比,集成电路具有体积小、重量轻、易携带、功耗低等优点,而且其可靠性也在逐步提高。后来,人们逐渐认识到集成电路的好处,并将集成电路运用到电子计算机的技术中来,同时将集成电路进行规模化生产,不仅促进了电子计算机的发展,而且使得计算机的成本降低,为未来计算机的普及奠定了良好的基础。

集成电路的发展不仅推动了电子计算机技术的发展,而且为PC时代的到来开辟了道路,随着集成电路被广泛的应用到电子计算机中,IBM公司首先建立了自己的集成电路工厂,并且在不断的摸索中,终于制造出了以集成电路为基础的电子计算机,从而使得计算机的发展到了第三时期。

(三)微处理芯片与英特尔系列

微处理器与集成电路和晶体管并称为计算机发展过程中的三大发明,可见微处理器对于计算机发展的推动力是不可或缺的,这三项发明分别使得电子计算机进入了新的时代。

当时微处理器的发明人员认为可以将复杂的芯片设计方案更加简洁化,在这一启发下,计算机的芯片主要是由只读存储器、随机存取器和输入输出接口和中央处理器组成,在这一结构的启发下,研发人员开始投入到微处理器的试运行过程中。

微处理器最终成功地研发并投入生产,使得整个计算机产业向着更加微型化的方向发展,尤其是在PC机领域,微处理器的产生,使得很多设想成为可能。

二、影响现代计算机技术创新的科学技术因素

科学家认为,电子计算机的集成度已经到达一个瓶颈时期,在集成电路板上如果再放置具有更强计算能力的部件,容易使得芯片散热不好,从而影响计算机的使用寿命。但是,人们对于电子计算机的要求却在不断提高,这一矛盾就导致了科学家开始寻找其他的路径来不断推进现代计算机的技术创新,主要包括以下几点:

(一)人工智能技术的发展

随着计算机功能和计算性能的进一步提高,人们开始思考能否让计算机模拟人类的思考和解决问题的模式,从而变得更加智能化,使得能够进一步解放人类劳动。目前为止,计算机技术在人工智能的领域已经取得了重大的成就,例如:一些专家系统已经能够利用已有的知识帮助人们解决问题,另外一些语音识别技术能够解放人们的双手,通过声音的录入就能够生成文字等等,这些技术虽然能够在一定程度上,使得电子计算机模拟人脑的行为,但是还远远无法跟人类的智能相媲美,因此在人工智能的道路上,我们还需要更多的研究和突破。

(二)量子力学的研究推动着量子计算机的发展

当人们认识到传统的综合性应用的计算机的发展已经到达一个瓶颈时期的时候,人们开始探索能否将计算机向着专用的方向发展,例如:人们可以利用量子计算机进行量子计算,但是从传统的综合性应用的计算机到量子计算机的改造是一项复杂的过程,这一过程中必须要攻克以下几个难题,例如:去相干的问题和纠错的问题等等,随着科学技术的发展,人们发明了量子计算机并且使得它的应用走向成熟,目前,对于量子力学的不断研究为量子计算机的发展提供了坚实的基础,成为未来电子计算机发展的新方向。

(三)光学为光子计算机的研究提供可能

光学的概念来自于爱因斯坦对于光学的研究,他在研究中发现与电子相比,光具有以下特点:光子的分辨率比较高;光子的速度更加快;光子的这些特点使得其未来具有更广阔的应用前景。而对于光学的研究,例如:激光、光纤、光存储和光显示等等,以及光学与光电子学的结合,标志着现代光学的诞生,这些技术的发展都有力地推动了光子计算机的发展。

作为一种全新的计算机,光子计算机是以光子作为信息的载体,而且能够进行光运算的新型计算机;在光学研究的基础上,目前光子计算机能够“与”、“或”、“非”三种基本的运算,同时还支持加法的运算等等,虽然目前光子计算机还没有正式的诞生,但是人们已经逐渐认识到其优势,也成为计算机未来发展的方向之一。

(四)DNA分子逻辑门奠定了DNA计算机发展的基础

DNA计算机是计算机科学与分子生物学相结合的产物,从此计算机的发展又开辟了一个新的领域。DNA分子具有较高的存储能力和强大的并行运算能力,所以DNA计算能够解决一些复杂的问题。DNA计算机的出现能够使得计算机的应用场合进入到人体内甚至细胞内,可以作为一种监控机制,发现DNA的变化等等,而且还能够合成一些药物,用来治疗人体的疑难杂症等等,具有非常广阔的应用前景,但是,目前DNA计算机的还处于研究过程中,完成对其真正的应用尚需时日。

(五)纳米技术的出现使得纳米计算机成为研究热潮

随着国际上对于纳米技术的研究,一些纳米材料正式诞生,使得全世界投入到了一股研究纳米技术的热潮中。同样,人们开始思考利用纳米计算机来实现一些传统计算机一些更加强大的功能,例如:可以利用纳米技术制作一些缩微计算机元件,而且这种纳米计算机一旦研究成功就有可能消耗很少的资源,在性能上也将获得更大的提高。目前,建造一个芯片生产工厂耗资巨大,使得很多厂商都不堪重负,但是如果利用纳米技术来制造和生产计算机的芯片,工厂的占地面积和所需资源等等都将大大降低。

三、影响现代计算机技术创新的社会因素

通过以上的分析和论述可知,在计算机的发展过程中,很多技术的研究为计算机的诞生和发展提供了契机,使得现代计算机朝着很多方向进行发展。但是,影响现代计算机技术创新的因素远远不止科学技术因素,还与社会因素密不可分,影响现代计算机技术创新的社会因素主要有以下几点:

(一)国家需求对于计算机技术的发展要求

随着目前世界上各个国家都处速发展时期,一些工程项目的数据和计算复杂程度逐步增加,采用传统的计算机已经无法满足这些需求。因此,必须要对计算机技术进行创新。例如:目前的加密技术正在逐步提高,密文在目前的计算量来讲是无法破译的,但是随着超级计算机性能的提高,运算速度的加快等等,密码必须进行更严密的运算,这就需要超级计算机来进行。超级计算机能够使得运算速度得到很大提高,可以在国防安全和信息安全等方面起着重要的作用。

(二)人们对于计算机的需求也是创新因素之一

目前,随着科学技术的发展,计算机已经被普遍地推广和应用,人们对于计算机的需求也在不断上升,这也成为计算机技术创新的重要因素之一,主要表现在以下几点:第一,体积微型化,为了能够打破时间和空间对于计算机使用的限制,人们需要一种能够便于携带的、体积更小、续航能力更强的计算机,这就促使着计算机技术向着更加完善的方向发展;第二,功能全面化,人们对于计算机的需求也向着功能更加全面的方向发展,希望能够利用一台计算机进行工作、学习和娱乐等等,所以现代的计算机也正在向着功能更加全面的方向发展着。

四、面对计算机技术创新的几点建议

人们的生活每时每刻都在变动,计算机技术的创新也无时无刻不在发展,面对日新月异的计算机技术创新,主要有以下几点建议:

第一,准确把握需求,一项新技术的产生肯定有一定的需求因素为推动力,明确需求才能更好地研究出符合相关需求的计算机技术。

第二,计算机技术有着众多的研究领域,每个研究领域都可能为计算机技术的创新提供启发,所以在通用计算机的基础上研究一些针对专业领域的计算机技术也非常重要,从而能够更好地促进计算机技术的创新。

第三,计算机在给人们带来方便的同时,也存在着很多隐患,例如:病毒、网络攻击、信息窃取和辐射等问题,不仅影响着人们的健康,而且还威胁着国家的安全,因此我们在致力于计算机技术的创新过程中,也需要考虑计算机带来的负面影响。

第四,信息时代的到来,为计算机技术的发展提供了另一个契机,随着人们逐渐认识到信息的重要性,人们开始利用计算机进行沟通和交流,所以计算机的携带、功耗、续航以及成本等问题也成为计算机技术创新过程中需要考虑的重要因素。

第五,由于目前计算机已经被广泛地运用到各个领域,所以计算机技术的发展不仅仅需要本领域相关知识的支持,而且还需要其他领域知识的配合,在此过程中需要研发和技术人员对于相关领域的技术有着深入的了解,才能够真正制造出跨领域发展的计算机。

参考文献:

[1]李乃胜.当代科学技术发展前沿[M].青岛:中国海洋大学出版社,2004年1月出版.

[2]杨华.未来计算机的发展趋势展望[J].黑龙江科技信息,2007年7月.

[3]高文.计算机技术发展的历史、现状与趋势[J].中国科学基金,2002年1月.

[4]侯跃武.计算机基础与实训教材系列:电脑入门实用教程[M].清华大学出版社,2009年5月出版.

篇5

关键词:计算科学计算工具图灵模型量子计算

1计算的本质

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幂运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

2远古的计算工具

人们从开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。

3近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

4电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部过程控制计算器,实现了100多年前巴贝奇的理想。

5电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(GodonMoore)对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自20世纪60年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速度被公认为“摩尔定律”。

6“摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米),此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在21世纪前30年内终止。著名科学家,哈佛大学终身教授威尔逊(EdwardO.Wilson)指出:“科学代表着一个时代最为大胆的猜想(形而上学)。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的7量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇DavidDeutsch提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。种种迹象表明:量子计算在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024位的十进制数)分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024位整数的质因子分解问题,大约需要28万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40分钟的时间就可以分解1024位的整数了。

8量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过电子管计算机,晶体管计算机,到现在的电子计算机,再到量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器也可以用来搬动“算珠”,而且效率更高,速度更快。随后,人们用继电器替代了纯机械,最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

因为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进的电子计算机的CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。量子计算则完全不同,对于量子计算的核心部件,类似于古代希腊中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

9“神谕”的挑战与人类自身的回应人类的思考能力,随着计算工具的不断进化而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展—整体思维能力的不断增强—公理系统的不断扩大—旧的神谕被解决—新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

[1]M.A.NielsenandI.L.Chuang,QuantumComputationandQuantumInformation[M].CambridgeUniversityPress,2000.

篇6

关键词:计算工具;图灵模型;量子计算;哥德尔不完备定理;神谕

一、引言与计算的产生

在人类社会的早期时代,加减乘除的概念就被人们所认识到。随着人类文明的发展和技术的进步,对求方程的解,求函数的微分和积分等概念也纳入了计算的范畴。伴随人类生产活动的不断增加,人们对计算的要求也越来越大,计算工具也再不断的改进。

二、远古的计算工具

人们开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。因此源用至今,并流传到海外,成为一种国际性的计算工具。

三、近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员所广泛采用。

机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

四、电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术所限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。

此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部通用过程控制计算器,实现了100多年前巴贝奇的理想。

五、电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,并由于二次大战的迫切的军事需要,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算器。

电子计算机的出现和发展,让人类进入了一个全新的时代。它极大影响了经济社会发展,并彻底改变了人们的生活。电子计算机是二十世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(Godon Moore) 对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自二十世纪60 年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速率被公认为“摩尔定律”。

六、 “摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升? 传统计算机计算能力的提高有没有极限? 对此问题,学者们在进行严密论证后给出了否定的答案。

如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R. Landauer) 为代表的理论科学家认为到二十一世纪三十年代,芯片内导线的宽度将窄到纳米尺度(1 纳米= 10-9 米) ,此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米) 后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在二十一世纪前三十年内终止。

著名科学家,哈佛大学终身教授威尔逊(Edward O. Wilson) 指出:“科学代表着一个时代最为大胆的猜想(形而上学) 。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

这段话成为许多科学家的座右铭,给人以启示。科学需要梦想,甚至需要形而上的猜想。科学的预言有时在哲学看来有着形而上学的味道。而在人类面临着计算科学的最大难题——计算的极限到来之时,DNA计算和量子计算为实现人类的这个梦想铺开了宏伟蓝图。

七、DNA计算系统

1994年11月,美国计算机科学家阿德勒曼(L.Adleman)在美国《科学》上公布DNA计算机的理论,并成功运用DNA计算机解决了一个有向哈密顿路径问题[7]。 DNA计算机的提出,产生于这样一个发现,即生物与数学的相似性:(1)生物体异常复杂的结构是对由DNA序列表示的初始信息执行简单操作(复制、剪接)的结果;(2)可计算函数f(ω)的结果可以通过在ω上执行一系列基本的简单函数而获得。

阿德勒曼不仅意识到这两个过程的相似性,而且意识到可以利用生物过程来模拟数学过程。更确切地说是,DNA串可用于表示信息,酶可用于模拟简单的计算。这是因为:首先,DNA是由称作核昔酸的一些单元组成,这些核昔酸随着附在其上的化学组或基的不同而不同。共有四种基:腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶,分别用A、G、C、T表示。单链DNA可以看作是由符号A、G、C、T组成的字符串。从数学上讲,这意味着可以用一个含有四个字符的字符集∑ =A、G、C、T来为信息编码(电子计算机仅使用0和1这两个数字)。其次,DNA序列上的一些简单操作需要酶的协助,不同的酶发挥不同的作用。起作用的有四种酶:限制性内切酶,主要功能是切开包含限制性位点的双链DNA;DNA连接酶,它主要是把一个DNA链的端点同另一个链连接在一起;DNA聚合酶,它的功能包括DNA的复制与促进DNA的合成;外切酶,它可以有选择地破坏双链或单链DNA分子。正是基于这四种酶的协作实现了DNA计算。

DNA计算与电子计算机完全不同,它的计算单元是装在试管培养液中的DNA长链。通过控制试管的温度和向试管中投放反应物,来进行计算。

八、量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman 曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题[11]:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个 ,有可能发生的情况就会多出一倍 ,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里 ,这却恰恰提供一个契机。转贴于  因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇David Deutsch 提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题[15]。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。

有种种迹象表明:量子计算至少在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024 位的十进制数) 分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024 位整数的质因子分解问题,大约需要28 万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046 位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40 分钟的时间就可以分解1024 位的整数了。

更重要的是,量子计算从本质上说是可逆的,朗道证明了可逆计算可以不消耗资源———也就是说,量子计算的运算速度可以不违背熵持续增加原理而无限增加。从这个例子我们可以直觉地认为量子计算在处理大规模计算问题时优越性是十分明显的,但目前还没法用数学证明这一点。

九、计算的本质

在人类文明的早期,人们就认识到“加减”这些计算活动,以及它们的重要性。随着,计算工具的不断改进,人们的“计算”本身的也不断的加深了解。到后来开方、求方程的解、求微分求积分也被纳入进计算的范畴。

“什么是计算?”问题一直到20世纪30年,才由哥德尔(K.Godel,1906-1978),丘奇(A.Church,1903-1995),图灵(A.M.TUI-ing,1912-1954)等数学家 的工作,人们才弄清楚什么是计算的本质,以及什么是可计算的,什么是不可计算的等根本性问题。

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为 什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幕运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

随着计算机日益广泛而深刻的运用,计算这个原本专门的数学概念已经泛化到了人类的整个知识领域,并上升为一种极为普适的科学概念和哲学概念,成为人们认识事物、研究问题的一种新视角、新观念和新方法。

十、“计算主义”的兴起

随着计算工具的发展,一些哲学家和科学家开始从计算的视角审视世界,科学家们不仅发现大脑和生命系统可被视作计算系统 ,而且发现整个世界事实上就是一个计算系统。当康韦证明细胞自动机与图灵机等价时 ,就有人开始把整个宇宙看作是计算机。因为特定配置的细胞自动机原则上能模拟任何真实的过程。如果真是这样,那么 ,我们便可以设想一种细胞自动机,它能模拟整个宇宙。实际上,我们完全可以把宇宙看作是一个三维的细胞自动机。基本粒子或其它什么层次的物质实体可以看作是这个细胞自动机格点上的物质状态 ,支配它们运动变化的规律可以看作是它们的行为规则。在这些规则的作用下基本粒子发生各种变化,从而导致宇宙的演化。

总之,计算或算法的观念在当今已经渗透到宇宙学、物理学、生物学乃至经济学和社会科学等诸多领域。计算已不仅成为人们认识自然、生命、思维和社会的一种普适的观念和方法 ,而且成为一种新的世界观。一些学者认为:不仅生命和思维的本质是计算,自然事件的本质也是计算。

十一、量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过机械计算器,电器计算机,到现代的电子计算机,再到DNA计算机和量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器可以用来搬动“算珠”,而且效率更高,速度更快的时候,人们自然想到利用机器来搬动算珠,诞生了机械计算设备。

随后,人们用继电器替代了纯机械。最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

电子计算机后,人们改变了思路,即:到自然界中去发现那些符合图灵模型的现象,例如DNA分子链的自我复制现象。DNA分子提供了AGCT四种碱基,相当于电子计算机中的2进制的0和1。DNA自我复制的机制,非常接近电子计算机的的模型——图灵机模型。

可以说,DNA计算机是基于图灵机的先进计算方式。但是它始终不能突破图灵机的极限。即:在牛顿经典物理学下“确定世界”的计算模型。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

应为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进电子计算机CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。在DNA计算中,这种情况稍微复杂一点,可视为ATCG四种碱基所构成的拥有上百万根轴,每根轴上有四个珠的“超级算盘”,尽管它的体积小到可以放在一根试管中。

量子计算则完全不同,对于量子计算的核心部件,类似与古代希腊世界中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

十二、“神谕”的本质与哥德尔不完备性

量子计算在信息的承载体上与经典计算毫无区别:它同样利用二进制比特——称为量子比特——来进行运算。但是,量子力学的一个十分“反直觉”的奇特现象铸就了量子比特与传统比特的天壤之别。一个量子比特不仅仅可以表示信息“0”和“1”,还出人意料地可以表示一种“0”和“1”的叠加状态。

我们可以清晰地看到量子计算的神奇以及它不同于经典计算之处。那么,为什么量子计算会显示出如此奇怪的性质呢? 这些性质又有什么本质的物理原因呢[12]? 遗憾的是,迄今为止,科学家们还在为这些神奇的量子现象的本质而进行探索,答案不得而知。

人们对量子计算本质的无知来自于人们对量子世界内部的本质的认识还不统一。但这并不妨碍人们把量子计算最为超级计算机的想法。虽然它带有强烈的工具主义倾向。

量子计算的科学研究依然在继续,然而,对量子计算和量子力学本身的哲学研究却已经显示出人类的无奈和无助。也许,世界本身就是一个整体,我们仅仅从细处着眼永远无法看到导致整体变化的内因。

哥德尔不完备性定理告诉我们,任何一个足够强的一致的公理系统的完备性是不可证明的,而它的完备性的不可证明是可以证明的。

一些悲观的科学家和哲学家认为:我们科学研究所依赖的各种公理系统是无法证明完备的,即现实世界的有些现象是无法被已有定律和规律来揭示,人们努力地试图用这些已经发现的公理和规律去解释量子计算、量子力学,去解释自然和宇宙是不可行的。科学家们一直在努力解释量子世界的本质,但也应该清醒,这些努力有可能最终是失败的。而这些失败恰恰证明了哥德尔不完备性定理的正确性。所以他们认为人类是无法认识某些规律的,一些迷题永远是个迷。

十三、“神谕”的挑战与人类自身的回应

笔者的观点与上述不同,人类的思考能力,随着工具的不断进化而不断加强,尽管在远古时期,有些智者的思考能力已经远远超越了他们的时代,但是,在整体上,人类的思维能力和解决问题的能力是随着经济和科技的进步而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

哥德尔的不完备性并不能组织人类对未知事物的新发现,如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展——整体思维能力的不断增强——公理系统的不断扩大——旧的神谕被解决——新的神谕不断产生”不断循环。

也许那时会出现新的“神谕”,而“神谕”的出现对人类来说并不是负面的,而是对人类整体思维能力和认识能力的一次挑战。并将刺激着人类对宇宙和自身的更深刻认识。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

[1]M.A.NielsenandI.L.Chuang,Quantum Computation and Quantum Information. Cambridge University Press, 2000

[2]A.M.Turing,“On computable numbers,with an application to the Entscheidungs problem,”Proc. Lond. Math. Soc. 2 ,vol.42,pp.230-265,1936

[3]“Quantum Information Scienceand Technology QuIST program ver.2.0”Defense Advanced Research Projects Agency DARPA ,Apr.2004

[4] P.W.Shor,“Algorithms for quantum computation:discrete logarithms and factoring” New Mexico: IEEE Computer Society Press,1994,pp.124-134

[5]吴楠 由量子计算看科学与哲学的层次观,自然辨证法通讯,vol.29,no.4,pp90-95,2007

[6]李建会 走向计算主义,自然辨证法通讯,vol.25,no.3,pp31-36,2003

[7]Adleman,L.M.“Molecular Computation of Solutions to Combinatorial Problems.” Science , 266:1020-24,1994

[8] Adleman,L.M. “Computing with DNA.”Scientific American,279 2 :54-61, 1998

[9]D.P.DiVincenzo,“Quantum computation,” Science ,vol.270,pp.255-261,1995.

[10]彭罗斯1998:《皇帝新脑》。许明贤等译。长沙:湖南科技出版社

[11] R.P.Feynman,“Simulatingphysicswithcomputers,”International J. Theor. Phys. , vol. 1, pp. 467-488, 1982.

[12]A.Einstein,B.Podolskey,andN.Rosen,“Can quantum-mechanical description of physical reality be considered complete?”Physical Review, vol.47,pp.777-780,1935.

[13] K.Gdel, “On formally undecidable propositions of Principia Mathematica and relatedsystems” , New York: Dover Publications , INC., 1961 (Translated)

篇7

量子力学诞生于1926年,是人类对微观世界加以认识的理论基础之一。量子力学和相对论之间的不相容性在1935年被爱因斯坦、波多尔基斯和罗森论证后,约翰•贝尔于1964年提出贝尔理论,,阿斯派克等人于1982年证明了超光速响应的存在。1989年第一次演示成功量子密钥传输,1997年量子态隐形传输的原理性实验验证由奥地利蔡林格小组在室内首次完成,2004年,该小组又将量子态隐形传输距离成功提高到600米。2007年开始我国架设了长达16公里的自由空间量子信道,于2009年成功实现世界上量子隐形传态的最远距离。

二、量子通信技术的发展趋势

量子通信技术的研究方向除了包括量子隐形传态还包括量子安全直接通信等,突破了现有信息技术,引起了学术界和社会的高度重视。与传统通信技术相比,量子通信除具有超强抗干扰能力外且不需对传统信道进行借助;与此同时量子通信的密码被破译的可能性几乎没有,具有较强的保密性;另外,量子通信几乎不存在线路时延,传输速度很快。量子通信发展仅仅经历了20年左右,但其发展却十分迅猛,目前已经被很多国家和军方给予高度关注。

量子通信在国防和军事上具有广阔的应用前景,作为量子技术的最大特征,量子技术的安全性是传统加密通信所无可企及的。量子通信技术的超强保密性,能够有效保证己方军事密件和军事行动不被敌方破译及侦析,在国防和军事领域显示出无与伦比的魅力。另一方面,在破解复杂的加密算法上,也许现有计算机可能需要好几万年的时间,在现实中是完全无法接受且几乎没有实用价值的。但量子计算机却能在几分钟内将加密算法破解,如果未来这种技术被投入实用,传统的数学密码体制将处于危险之中,而量子通信技术则能能够抵御这种破解和威胁。

在民间通信领域量子通信技术的应用前景也同样广阔。中国科技大学在2009年对界上首个5节点的全通型量子通信网络进行组建后,使得实时语音量子保密通信被首次实现,城市范围的安全量子通信网络在这种“城域量子通信网络”基础上成为了现实。

三、总结

篇8

计算机科学技术的发展飞快,已经渐渐融入人们日常生活的点点滴滴中,快速发展中不免有些隐患,因此谨慎分析现状也是十分有必要的,对计算机科学的进一步发展也有着积极意义。如今,计算机科学技术作为一个生命力强、发展前景良好的科学技术,在个人、家庭、企业乃至国家各个层面区域的应用都很广泛,在开发成本、运行速度以及使用性能等方面都取得了不小的突破。同时,计算机科学的发展也带动了集成电路技术、网络技术、软件工程、材料科学等领域的快速发展,各个行业相辅相成,共同向前进步发展。在这个信息化的时代,计算机已经融入了千家万户的生活与工作中,在各个行业如工农业、文化教育行业、社会服务业等之中都发挥着不可代替的重要作用,对于社会来说已是不可缺少的一部分。其中最重要的则是计算机科学技术在社会生产方面的作用。随着全球信息化时代的进步,人与人之间、生活与工作之中,信息传递是格外重要的。而计算机科学技术则是通过互联网的作用改善信息传递的方式,加快其速度,从而促进了信息技术行业的发展。同时,人们对于信息的认识也与日剧增,从而对信息选择的要求也越来越高,精确性、有效性、及时性都是人们所追求的目标。由于计算机与网络的运行形势,使得人们的劳动方式与工作模式也得到了转变。秀才不出门,能知天下事。人们可以足不出户得完成工作与学习任务,节省了更多人力物力去完成其他的事情,对行动与思想方面也有一定的解放作用。这正是说明了科技乃人类社会第一生产力。另外,计算机科学技术带动了信息技术的发展,信息技术也推动着电子技术、生物技术以及新能源新技术的研发等领域的快速发展。

2计算机科学技术的发展前景

2.1生物计算机

早在1994年3月就有一位美国科学家提出了生物计算机这一设想。将DNA碱基序列当做信息的编码载体,利用当今的分子生物学技术,适当使用控制酶,改变DNA碱基序列并使信息有效反映出来,对数据进行运算。DNA计算机设想的出现有效拓宽了人类对计算机了解的视野,改变了计算机仅仅只是简单是物理性操作的性质,增加了操作方式。如今,英国生物信息研究院的研究人员做出的重大突破使得人们对信息储存的认识有了进一步的转变。科学家们将文学家莎士比亚的154首诗歌的音乐文件(mp3格式)以及相关的照片编制了DNA序列,使得储存密度大大增高,这一消息使得人们对生物计算机的构想进一步贴近现实。

2.2量子计算机

其特性即原子的同一时间点处于不同位置之间。在数据信息处理,数据储存两方面,量子位的能力较晶体管电子位来说都是存在很大进步的。

2.3光子计算机

光子计算机做出的重大突破即为可以利用光速来完成电子储存以及运算等工作,与传统的芯片计算机相比其运行速度大大增加。其实早在20世纪50年代后期就有科学家提出光子计算机这一设想,同时这一设想也在逐渐向现实发展前进着。1986年,戴维•米勒研制出小型的光开关,使得贝尔实验室的艾伦•黄研制的光处理器有了一定的基础,在1990年的1月,光计算机的工作正式开启。在元器件方面,光计算机有两种类型,即光电混合型与全光学型。贝尔实验室成功工作的光计算机采用的就是混合型元器件。然而相比全光学光子计算机,其运行速度还是有些逊色的。要想将全光学光子计算机成功的研发并制作出,必需研发出一种特殊的“晶体管”,这种晶体管能够用一条光来控制另一条光。然而现今存在的光学“晶体管”存在很大的问题,笨拙且较大的体积是无法适用在光子计算机里的。因此,对光子计算机的研发工作还需要很大的努力,还有很长的一段路要走。

3总结

篇9

现在是信息科学技术高度发展的时期,大家多多少少对计算机都有一定的了解和掌握,在这个时代生存,我们离不开信息这一媒介。我们也正是运用了这一媒介来传递着大家的生活,我们身边也处处体现出了信息技术创造出来的成就,这是一个高度发展的时代,是一个高度信息化的时代,也正是有了计算机的出现,使我们的整个世界都联系起来了,使整个社会成为一个小小的“村”,也正是因为信息技术的发展使得这个“村”互相渗透、互相融合、互相接纳、互相了解,带给人们无限的惊喜。

什么是计算机呢?俗称电脑,是一种能够按照程序运行,自动处理海量数据的现代化智能电子设备。由硬件和软件组成,没有安装任何软件的计算机称裸机。常见的形式有台式计算机、笔记本计算机、大型计算机,较先进的计算机有生物计算机、光子计算机、量子计算机等。

在我们的课堂上一般涉及的计算机都是台式或者是笔记本计算机。信息技术与课堂整合的概念,最早源自于西方的“课堂整合”概念。课堂整合的含义是指对课程设置、各课程教育教学的目标、教学设计、评价等要素作系统的考虑与操作,用整体的、联系的、辩证的观点,认识和研究教育过程中各种教育教学要素之间的关系。课程整合并不是指单纯地将被划分的东西拼凑在一起,课程整合是把本来具有内在联系而被人为地割裂开来的内容重新整合为一个整体的课程模式。这种内在的联系是自然的、真实的、本质的,而非人为的。所谓信息技术与课程整合就是指信息技术以工具的形式与课程融合为一体,信息技术融入课程教学各要素中,使之成为教师的教学工具,学生的认知工具,重要的教材形态和主要的教学媒体。在教学中,计算机发挥着其应有的功能,也为我们的教学增添色彩,使得两个整体的结合,为教学又增添了一种靓丽的色彩。

在教学过程中,计算机也是辅助教学的阶段,这是信息技术应用于教育的第一个发展,该阶段大约是20世纪60年代初至80年代,主要是利用计算机的速度运算。图形动画和仿真等功能辅助教学,解决教学中的重点和难点。这一阶段,逐渐在大、中、小学开始开设了计算机公共课程,并称其为计算机教育,还没有明确提出信息技术教育的概念。计算机是辅助学习阶段,计算机在学校中逐步以辅助教为主转向以辅助学为主,强调如何利用计算机作为辅助教与学的工具。例如,利用计算机帮助搜集资料,辅导疑难,自我测试,以及帮助安排学习计划等等。计算机不仅辅助教师的教,更强调用计算机辅助学生自主地学。在这个发展阶段,计算机教育和信息技术教育两种概念同时被使用。信息技术与课程整合阶段,目前,信息技术与课程整合已经成为信息应用于教学过程的一个主要模式。原先的“计算机教育”概念已经被“信息技术教育”概念所代替。在现代的教学状态中,信息技术与课程整合既有着密切的联系,又具有一定相对独立性特点的新型教学类型。对它的研究与实施对发展学生的主体性、创造性和培养学生的创造精神和实践能力具有重要的意义。

篇10

关键词:计算机技术;发展;创新

中图分类号:TP39文献标识码:A文章编号:1009-5349(2015)12-0097-01

一、计算机技术发展的原因

(一)不断的创新创造

不断的创新创造是推动计算机技术发展的不竭动力。现在社会对计算机的需求以及对计算机技术的认识是计算机技术得以大力发展的主要原因。人们对信息的迫切需求是有一定的历史原因的。二战时期,信息资源的利用率低,信息传播速度慢,正是在人们迫切的需求下,推动了计算机技术的发展。在计算机发展的早期,国家军事等部门对计算机产生迫切的需求,之后计算机转变为民用和工业产品。在计算机行业,市场的占有是十分重要的。为了抢占市场,通过提高计算机技术,满足市场需求,从而在激烈的竞争市场中占据一席之地。计算机的发展还得到政策的支持,保证计算机快速高效发展。

(二)主客体的选择机制

计算机技术分为主体和客体两部分。在客体方面,计算机面向的群体对计算机技术进行选择。在其他条件相同的情况下,先进的技术能够占据更多的市场。为了占据用户市场,计算机技术之间的竞争也更为激烈。针对计算机面向的群体开发的计算机技术,更有针对性,更容易被用户接受。在主体方面,计算机技术的研制者是主体,客观分析计算机用户的需求,研制出相应的计算机技术。用户多样性的存在导致需求存在多样,计算机技术的研制者要不断研制出新技术或新方法,满足用户的需求。主客体的选择机制在计算机技术的主体和客体之间,建立了一种双向的互动的连接,推动计算机技术的有效发展。

二、计算机技术发展的现状

(一)普及性和发展性

计算机技术正在不断影响人们的日常生活,逐渐成为社会发展的重要生产力。计算机技术影响人们生活的方方面面,如桥梁设计、石油勘探等,在各个领域都扮演着重要的角色,充分体现出科学技术的迅速发展。计算机技术面向的用户从之前的军事和科研等转变成来自社会的各个普通家庭。毋庸置疑,计算机技术将会是人类生活生产的重要组成部分,对社会发展产生巨大的影响。

(二)专门化和综合化

计算机技术正朝着专门化和综合化两个方向发展。随着科学技术的进步,网络分布式系统逐渐取代了单机操作的模式,计算机技术的综合性大大提高了。由于国家政策的支持,计算机的专门化更多体现在维护国家安全和综合国力竞争上。计算机技术的专门化和综合化充分体现出科技的力量。

(三)突破性和普遍性

随着计算机技术逐渐普及,计算机技术在多个领域取得了突破性的进展。计算机的更新周期速度变快了,从电子管到半导体晶体管再到半导体,更新的速度从42年变为10年。此外,微电子精细加工到集成电路的诞生,这花费的时间更短,只用了不到两年的时间。相信在未来,计算机技术的更新周期会越来越短,更新的速度也越来越快。计算机技术可以根据不同人群的需求,加以改进和创新,更多体现出计算机技术的人性化和个性化。

三、计算机技术的发展趋势

(一)计算机技术发展的整体方向

计算机发展主要朝高、广、深三个大方向发展。第一,计算机技术向高的趋势发展。计算机的主频越来越高,运算的速度越来越快。计算机的处理器不单是一个,可以是几百个、几千个处理器并行处理。多个处理器并行处理,可以大大提高计算机的性能。计算机的处理系统可以连接上庞大的计算机网络,并实行有效的管理,互相协调工作。第二,计算机技术向广的趋势发展。计算机网络技术的的范围更广,向各个领域渗透。随着我国的经济发展和人们生活水平的提升,计算机的普及率呈现上升的发展趋势。计算机技术在人们的日常生活中可以充分体现出来,洗衣机、电冰箱等处处体现着计算机技术。网络范围的扩大给信息共享提供了有效的平台。第三,计算机技术向深的趋势发展。计算机技术向人工智能发展,已经实现人机的良性互动。人工智能是指运用计算机技术,使之具备一定的感知能力和思维逻辑能力。

(二)计算机技术发展的具体趋势

计算机技术发展的具体趋势主要朝两个方向发展,一个是智能化的高性能计算机,另一个是计算机网络的发展。智能化的高性能计算机有量子计算机、光子计算机、分子计算机和纳米计算机。这些高性能的计算机在计算机结构中占据主导地位,体系结构和技术都经历了质的飞跃。各种高性能的计算机被广泛应用在各个行业中,在各自领域中发挥出重要的作用,推动社会经济的发展。计算机网络为信息的共享和交换提供了一个全新的平台,在计算机技术发展的过程中占据主导和核心地位。随着我国经济的发展和进步,计算机技术被广泛应用于各个领域。革新计算机技术,加大对计算机技术的研发力度,健全计算机技术的规章制度,引导计算机技术健康发展。计算机技术被渗透到社会生活的各个方面,推动社会经济的发展,为人们的生活工作提供了极大的便利。

【参考文献】