数学建模的主要过程范文
时间:2023-12-28 17:57:40
导语:如何才能写好一篇数学建模的主要过程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
纵观人类发展史,数学建模知识的身影存在于日常生活的各个地方.特别是在新课程下,传统授课模式已经无法满足教学的要求,所以加快授课方法变革和创新刻不容缓.而通过在高中数学教学中传授建模思想,那么可以使学生综合运用已学的数学思想和方法来解决现实生活实践问题,从而可以进一步实现数学学科教学难点的突破.因此,对于建模教学的运用进行研究具有重要的意义.
1.明确建模步骤,奠定扎实基础
建模教学是一项系统性的教学活动,其实施步骤的合理性直接关乎建模教学的效率,所以为了提升建模教学的质量,就必须要合理确定建模步骤.而就建模教学的具体实施步骤而言,其过程可以分成三个主要阶段,即:简单建模阶段、典型案例阶段和综合建模阶段.其中的简单建模阶段实际上就是结合数学授课内容,在必要的教学环节中导入建模教学,并且需要选择一些简单的数学实例来引导学生进行合理建模,以便使学生初步体会数学建模的具体运用方法,使学生逐步养成正确的建模意识;典型案例建模则是要求数学教师为学生创设合理的问题情境,接着引导学生进行分析,以使学生切身经历和体验建模的具体过程,以使学生初步掌握建模的基本方法;而综合建模阶段则是以学习小组为单位来完成数学教师所指定的建模任务,具体包括学生自身来搜集教学资料,提出建模假设,解决实际问题等环节,以借此来使学生形成良好的思维方法,提高学生的创新能力.如此一来,通过循序渐进的建模学习步骤,有助于逐步提升学生的解题能力和创新能力.例如,针对简单建模阶段的教学内容而言,其主要是引导学生初步理解和认识建模方法,并且懂得运用五步建模法来解决一些简单的数学问题,所以相应的教学内容主要包括:数学建模的基本含义、基本方法及其相关的数学知识.比如,数列、函数、不等式、线性规划和统计等方面的高中数学内容均可以将其改编为一些比较简单的建模题目.针对典型案例建模阶段的教学内容而言,可以以建筑物的振动模型、土地承包、产品销售、市场物品交易以及动物身长同体重之间的关系等等,以便使学生逐步接触和了解建模的具体运用策略.而针对综合建模阶段的教学内容而言,可以选用图形剪裁、酒店清洁、图书馆添书和酒店清洁等方面的知识为平台,融汇各种必要的高中数学知识点,从而不断提升学生解决生活中实际问题的能力.
2.精选建模内容,加强知识整合
正如上文所述,针对不同建模学习阶段的建模教学而言,教师必须要合理选择一些合理的建模问题,以确保建模教学的整体质量,促使学生尽快实现数学教学知识的整合.而就具体的建模内容而言,其需要在充分考虑授课内容和目标的基础上,根据学生的学习特色、兴趣爱好和认知能力等来综合选择,以便充分促使学生自主投入到建模内容的学习中来.而就建模内容的选择原则而言,其主要注意以下几个方面:其一,建模内容要尽量贴合学生的生活实际,尤其是学生已经非常熟悉或者感兴趣的内容,以便借此背景来使学生充分体验数学建模的乐趣.其二,要确保内容选择难度的适宜性,采用层次化的学习模式来引导学生运用所学知识来解决一些必要的数学知识.其三,要尽量确保建模内容的趣味性,比如当前社会生活中的经典内容和热点话题等,以便激发学生学习建模知识的兴趣,促使学生运用建模思想来解决有关的数学问题.例如,在讲解“函数模型与应用”这部分授课内容的时候,为了可以借此教学过程来培养学生的建模思想和意识,相应的数学授课教师可以为学生设置以“收集数据并建立函数模型”等为建模主题的建模任务,学生可以结合“工资奖励”和“投资回报”等实际问题来构建不同奖励方案或者回报下的函数模型,从而使学生通过建模的过程中将那些已经掌握的基本函数知识有效地整合起来,以借助学生对于相关建模知识进行分析和归纳,从而不断提升学生的建模能力.
3.创新教学方法,践行实践探究
篇2
一、数学建模课程教学有助于培养创造性思维
1.1 数学建模有助于培养学生的数学应用意识与实践能力
数学建模是近些年发展起来的新学科,是将数学理论与实际问题相结合的一门科学。数学建模课程中面对的是来自于现实的实际问题,需要的知识可能涉及到数学的各个分支以及数学所应用的各个领域,数学建模虽然作为一门课程,但其内容不是单独属于数学的一个分支,而且其建模的教学过程不仅仅是传授数学知识,更多的是培养学生获取知识的能力、运用知识和技术手段去解决实际问题的能力。它需要建模者具备较强知识应用能力和实践能力,因而开展大学生数学建模教学和实践将不仅可以加强知识积累,更重要的是能提高大学生数学应用意识与实践能力。
1.2 数学建模有助于探索精神的塑造
数学建模所涉及的问题大都来源现实生产和生活,涉及面较广,对其建立比较确切的数学模型并不是轻而易举的事情,这就需要对实际问题进行反复多次的研究分析、抽象简化,抓住主要方面的因素进行定量地讨论分析,才能建立数学模型。而后,还需要对所建立的模型在计算机上进行反复多次的计算、论证以及修订,才能使其达到比较符合实际需要的模型。数学建模是一个非常艰辛的探索过程,通过这一过程不仅可以培养学生刻苦勤勉的态度、百折不挠的精神、坚毅不拔的毅力,还可以培养学生经得起失败、挫折、打击和克服各种困难的心理素质,以及孜孜不倦、精益求精和锲而不舍的探索神。
1.3 数学建模有助于培养学生的自主能力与创造能力
数学建模课程教学中,学生在解决数学建模问题时,必须亲自参加社会实践活动,从实践中提出问题,收集数据,得出结论从而解决问题。这样就转变了过去学生在学习中只是被动地学会如何做题和如何回答老师提出的问题,而学会了从实际中主动地学习,真正突出了他们的主体地位。因此数学建模的教学有利于发挥学生的自主能力。
1.4 数学建模有助于培养学生的团结协作精神
数学建模过程相当于进行一次小型的科研活动,是一个群体合作的过程,它需要各成员的相互理解、支持、协调和集思广益才能获得成功。因而参加数学建模活动,有利于培养学生团结协作,共同奋进的精神。
二、在数学教学中渗透数学建模的方法
2.1 注重数学基础知识的教学,为数学建模打好基础
基础知识没有学好,就不可能有知识的灵活的运用,更不可能有知识的推广和知识的创新。为了构建数学模型,要求学生对有关数学知识充分理解,这就要求教师必须依靠教学大纲,抓住教材,注重基础知识的教学,培养基本技能。灌输基本思想方法,解决数学应用题的关键是要善于分析实际问题的对象、结构和特点,灵活应用己知的数学模型,从而建立新的数学模型,解决实际问题。要培养学生的建模能力,就必须注重数学模型知识的学习,因此,在教学中,应该帮助学生打好基础,从学习和掌握建立数学模型常用的知识和数学思想方法入手,掌握数学应用题的基本特点、解题过程,掌握建立数学模型的技巧和解题要领,开动脑筋,积极思维,开阔眼界,拓宽知识面,从而提高解题能力。
2.2 在教学中切入数学建模,渗透数学建模思想
数学建模与正常数学教学的结合和切人是指教师可把一些较小的数学应用和数学建模的问题通过将问题解的过程分解后,放到正常教学的局部环节上去做,并且要经常这样做,教师可以用“化整为零”来描述种做法。切入的内容应与正常的教学内容、教材的要求接近,以便于学生的理解和对教材知识的掌握。
数学建模的主要切入点是教材,要从课本内容出发,以教材为载体,以教法革新为突破口,联系实际,在教学中积极地创设问题情景或通过对教材内容的科学加工、处理,再创造或拟编与课本相关的建模问题。采用改变设问方式,变换设问条件,互换条件结论等,综合拓广成新的应用题;或把课本的例题、习题改编成应用性问题等,并将建模理念渗透教学之中,逐步培养学生的数学建模意识。
三、将数学建模思想渗透到其它专业课的教学中
将数学建模思想贯穿于系列课程的教学过程中,全面培养学生数学建模的兴趣,由于数学建模过程中需要用到的知识非常广泛,从数学基础知识微积分、线性代数、概率论与数理统计到与数学建模紧密相关的运筹学、数学实验、数学建模等。为了让学生及早了解数学建模,学习数学建模的思想、方法。我们在教学中多次对系列课程的教学内容和教学方法进行改革。在教学内容方面,加大了案例教学内容的比例,在某些课程中尽量引入具有实际背景的大型案例,以提高学生的兴趣及解决大规模实际问题的能力。
篇3
关键词:数学建模竞赛;学生;数学能力;培养
中图分类号:G642 文献标识码:A 文章编号:1003-2851(2012)-06-0049-01
数学建模是应用数学去解决各类实际问题,把实际问题转化为数学问题的一种方法和过程。它是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径。数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学并参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次人才的一个重要方面。
一、数学建模竞赛促进大学生能力培养的重要内容
(一)有利于学生实践动手能力的培养
数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果。在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力,动手实践能力有助于学生毕业后快速完成角色的转变,数学建模必须要熟练掌握计算机的操作,以及工具软件的使用和计算编程,这是因为对实际问题进行分析和建立数学模型以后的求解都有大量的推理运算、数值计算、作图等工作,这都需要通过计算机和软件技术来实现。
(二)有利于培养学生的洞察能力
洞察能力是把握事物内在的或隐藏的和本质的能力,它是一种直觉的领悟。这种能力对于数学建模是非常重要的,但需要经过艰苦的、长期的经验积累和有针对性地训练数学建模活动的开展要培养学生逐步形成一种洞察能力,通俗地说就是能迅速抓住要点的能力。数学较其他学科来讲,更讲究思维推理的逻辑性和严谨性,不能有丝毫的差错。因此,在对实际问题进行分析时,既要注意思维推理的逻辑性、严谨性,更要注意实际问题的特点和本质,从而使数学知识与生产、生活实际更加紧密地结合,使我们更容易抓住重点,抓住问题的本质。同时,由于不同的实际问题在一定的抽象、简化层次下它们的数学模型是相同或相似的,通过大量建模训练,就能使学生达到熟能生巧,并逐步达到触类旁通的境界。
(三)有利于学生团队创新能力和相互协作能力的培养
数学建模都是以小组为单位开展工作的,体现的是团队精神,培养的是团结协作的能力,任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞,数学建模中最重要的就是模型的构造,而构造模型需要在较高数学素养的基础上具备相当的构造能力,构造能力的培养便是创造性思维和创新性思维的培养。数学建模的过程要由多名学生集体完成,参与数学建模活动的学生既要合理分工,充分发挥个人的潜力;又要集思广益,密切协作,形成合力,使个人智慧与团队精神有机地结合在一起。因此数学建模活动可以很好地培养学生的合作意识,使其认识到团队精神和协调能力的重要性。
(四)有利于促进大学生分析、综合和解决实际问题能力的培养。建模过程都需要经过分析与综合、抽象与概括、比较与类比、系统化与具体化的阶段,其中分析与综合是基础,抽象与概括是关键。数学建模就是解决实际问题,这除了要求学生能综合应用已学到的数学知识外,还要求学生了解工程技术知识、物理知识、化学知识、生物医学知识等综合知识。因此,数学建模通过学生运用综合知识对实际问题进行分析、整理,精异求精,抓住关键,并用数学语言来描述实际问题的关系和规律,把一定抽象、简化、假设的实际问题用数学语言表达出来,形成数学模型,再用数学方法进行推演、计算,最后得出结果。通过实践可以培养学生的综合知识运用能力及分析问题能力。
二、运用数学建模思想融入数学教学中
通过数学建模,在数学教学中应该融入数学建模思想.运用数学建模思想融入数学课程中,应以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,应要抓好以下两个关键点: 第一,在教学中渗透数学建模思想。联系实际是渗透数学建模思想的最大特点.培养学生应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过重强调灌输其逻辑的严密性,思维的严谨性。学数学主要是为了用来解决工作中出现的具体问题,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,有效快捷地解决问题;第二,计划性开设《数学建模和实验》课。数学建模竞赛在世界范围内广泛发展主要因素是与计算机的发展密不可分的。它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析。因此可以看出数学建模对提高学生计算机的应用能力的作用是至关重要的。
总之,当今社会的竞争是高科技的竞争,是人才综合素质和能力的竞争。学生通过参加数学建模课程的学习和竞赛,参与发现和创造的过程。数学建模能让学生真实感受到了数学学习的乐趣,还有助于学生更好地掌握知识和运用知识。数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用。因此,进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径。
参考文献
[1]杨新枝.高中数学教学中的初等数学建模[J].科技信息,2009(20)
篇4
关键词:小学数学;数学建模;教学策略探究
中图分类号:G622 文献标识码:B 文章编号:1002-7661(2014)17-139-01
数学教育是引导学生形成具有缜密逻辑性的思想方式。建立和解析数学模型能够有效提高学生的数学学习热情,降低数学学习的难度,使学生运用数学知识更加轻松自然。然而,在小学的数学教育内容中,就已经包含许多初级的数学模型。所以,在研究“数学建模”的过程中,教育界的学者们认为,小学的“数学建模”需要注意三个方面:小学“数学建模”的意义与目标;小学“数学建模”的定位;小学“数学建模”的教学演绎。
一、小学“数学建模”的意义与目标
1、小学“数学建模”的意义
小学的“数学建模”活动早已经有学校展开研究。从目前研究资料来分析,小学数学建模是指:学生在教师设计的生活情景之中,通过一定的数学活动建立能够解读的数学模型并以此为学习数学的基本载体,进行学习相关的数学知识。
小学数学建模在建模目的、活动方式、背景知识三方面,与传统数学模型存在较大差异。(1)建模目的方面:小学的数学建模目的是让学生了解数学知识,通过数学模型掌握新吸收的数学知识和争强对数学知识的正确应用,使学生在潜移默化中形成数学思考能力。(2)活动方式方面:小学的数学建模是为了培养学生的学习数学兴趣和更好掌握数学知识的教学方式,所以在教学活动方式上需要教师精心设计活动内容,由教师引导逐渐参与和体会数学世界的丰富和与现实生活的紧密联系。(3)知识背景方面:小学的数学建模,是在小学生毫无数学基础的情况下进行构建数学模型,所以在小学的数学建模中,需要简单的数学知识,以此为学生的数学知识结构打下良好基础。
通过上述三个方面的分析,小学“数学建模”的意义,在于通过数学教育方式的改进,引导小学生发现数学与生活的紧密联系,提高小学生对数学知识的兴趣,培养小学生数学思维能力和学习能力,为日后的数学学习打下结实基础。
2、小学“数学建模”的目标导向
小学的数学建模,其目标导向是培养小学生的建模意识。通过培养建模意识来提升数学思维能力,积累数学知识,提升数学素养。建模意识的培养需要通过挖掘教学内容中蕴涵的建模元素,采用教师引导、学生寻找、以生活内容加强记忆的方式,使学生掌握数学建模的过程和通过数学模型解决生活问题的能力,在不断反复的学习和锻炼中组建使学生提升数学建模的意识。
二、小学“数学建模”的定位
数学建模,是建立数学模型并且通过使用数学模型,解决生活中存在的数学问题,整体过程的简称。
如果通过大学或高中的教学视角审视数学建模,无疑会对学生日后学习和工作产生积极的影响。不过,从小学生的视角考虑数学建模,就需要特别注意建模的合理性定位,既不能失去数学建模的意义,又不能过于拔苗助长,导致教学效果的反向反弹。所以“数学建模”的定位要适合小学生的生活经验和环境,同时适合小学生的思维模式。
1、定位于儿童的生活经验
在小学对小学生的数学教学过程中,提供学生探讨研究的数学问题,其难易程度和复杂程度需要尽量贴近小学生的日常生活。在设计教学内容的时候,需要多设计小学生常见的生活数学问题,使学生因为好奇心而对学习产生动力,通过思考探索,体会数学模型的存在。
同时,在教学的过程中需要循序渐进,随着学生的年龄争长,认知度的加强,生活关注内容的变化,适时地增加数学问题的难度。在此过程中,既需要照顾学生们的学习差异性,又要尊重学生的学习兴趣和个性。
2、定位于儿童的思维模式
小学生的思维模式比较简单。在小学数学的建模过程中,需要根据学生的具体学习程度循序渐进,通过由简入深的学习过程,让学生具有充分的适应过程。只有适应学生思维模式的教学定位,才能使学生的数学意识得到提高,并且通过循序渐进的学习过程掌握运用数学模型解决实际问题的能力。
举例:在小学二年级,关于认知乘法和除法的过程中,将时间、路程、速度引入教学场景之中。学生跟随教师引导,逐渐发现时间与路程的关系,并且结合所学的数学知识,乘法与除法,找到了“一乘两除”的数学原型。从而使学生通过“数量关系”中,认知到生活与数学的关系。
三、小学“数学建模”的教学演绎
小学“数学建模”的教学演绎,主要分析以下两个方面。
1、在小学“数学建模”中促进结构性生长
因为小学生的逻辑思维能力还处于发展构成阶段,所以必须在数学建模教学过程中从学生的“逻辑结构图式”出发,充分考虑小学生的知识结构和认知规律,通过整合实际问题,从数学问题角度为学生整合抽象的、具有清晰结构认知性的,数学教育模型,从而使小学生能够直接清晰地对数学模型拥有直观深刻的认知。
2、在小学“数学建模”中促进学生自主性建构
在小学“数学建模”中教师需要引导和帮助学生,运用已学习的数学知识,构建具有应用性的数学模型。在教学过程中,教师需要对学生们习以为常的事物进行剖析,使事物露出具有吸引性的数学问题,通过激发学生的好奇心,引导学生探索生活中存在的数学问题,帮助学生发现生活中隐藏的数学问题和解决问题,最终促使学生能够独立自主地根据实际问题建立数学模型。
小学数学的“数学建模”是教学方式中新的尝试,它作为一种学习数学的方式、方法、策略和将生活与数学紧密联系的纽带,对引导学生更好的认识数学、学习数学、运用数学、具有十分积极的作用。小学生学习建模过程,实际就是锻炼逻辑思维能力的过程,对学生日后学习学习知识和兴趣爱好都有显著的帮助。
参考文献:
[1] 陈进春.基于数学建模视角的教学演绎[J].江苏教育,2013(4).
篇5
关键词:数学建模;教育改革;高师院校;教学策略
引言
以数学建模为引导的大学数学教育改革取得了令人瞩目的成功.很多高校都开设了数学建模和数学实验课,受到学生的高度欢迎.通过此类课程,学生掌握了“用数学”的方法,提高了自身的数学素养,这使得他们在进一步的学习和科研中能够熟练地应用数学这一普遍而有效的工具.相比于大学数学改革的成功,中小学数学教育改革却停步不前.虽然国家在10年前已通过《普通高中数学课程标准(实验)》指出:“数学建模已经成为不同层次数学教育重要和基本的内容.”“数学建模是数学学习的一种新的方式,它有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力.”[1]要求相关部门和学校重视高中数学教学中的数学建模教学,但时至今日,真正开展数学建模教学的中学寥寥无几.究其原因,主要是当前的高中数学老师难以胜任数学建模的教学任务.高师院校是培养未来中小学教师的摇篮,其培养的学生承担了中小学一线的教学任务.如何使高师院校学生在大学学习数学建模的过程中,掌握足够的数学建模知识,能够在将来的教学岗位上,结合实际情况,开展数学建模教育,成为高师数学教育面临的问题.本文首先讨论了中学老师开展数学建模教育所面临的困难,接着分析了高师数学建模的教学要求,然后给出了针对高师学生的数学建模教学建议与策略.
1中学数学建模课程面临的问题与困难
虽然HansFreudenthal的“数学现实化”[2]已广为我国数学教育界所认可和接受,并导致了20世纪90年代中后期高考应用题和“中学数学知识应用竞赛”出现.但相对开展得如火如荼的高校数学建模教学与竞赛,在中学开展数学建模教学却进展缓慢.这主要是因为中学数学建模教学面临着与大学类似课程不同的情况与困难,总结起来主要是以下几条:(1)缺乏高水平的稳定师资.作为培养中学数目教师的摇篮———高师院校,数学建模课程的开展并不理想,目前的数学建模多为选修类课程,没有统一的教学目的和教学方式,这导致学生水平参差不齐,这难以保证高中数学建模的师资水平.(2)缺乏合适的教材.相对于大学数学建模教材和辅导书的百花齐放,针对中学数学建模的书籍在市场上难觅踪影.(3)缺乏合理的考核和引导方式.高考虽然增加了应用题,但并不是真正意义上的数学建模题目.当前对学生的考核方式依然偏重于那些利于记忆且方便在试卷上出现的知识点,而忽略数学建模这种对学生能力的全面考察.(4)缺乏先进的实验环境.数学建模课程需要学生上机编程实践,虽然一些高中生已经具有基本的编程能力,能够进行模型的实现[3],但很多中学在设备硬件、软件上并不具备数学实验的条件.由于面临种种困难,导致中学的数学建模无法开展起来,即使勉强开展了,也是蜻蜓点水,难以让学生体会到数学的奥妙,以至于“数学滚出高考”得到很多人的呼应.[4-5]如何借鉴高等院校数学建模教学的成功经验,培养适合当前中学教学需求的数学老师,成为当前高师院校面临的问题.
2高师数学建模课程教学要求
相对普通高等院校以培养学生在数学建模竞赛、科学研究中的数学应用能力,高师院校的数学建模课程需要增强学生的综合能力.针对中学开展数学建模课程面临的问题,高师院校学生需要提高的能力主要包括三方面:(1)针对中学实验所需的软硬件缺乏的现状,需要增强高师院校学生的动手能力,使之能够独立搭建实验环境,指导他人完成整个数学建模;(2)针对中学建模教材缺乏的现状,需要增强高师院校学生对教材的选择与编撰能力,能够独立地选择、综合,甚至改进、编撰教学材料的能力;(3)针对中学缺乏数学建模教师的现状,需要增强高师院校学生的独立教学能力,使之能够在新环境中制定课程的教学目标、采用适合的教学方法、探索合理的考核方式,进而保证相关工作的顺利开展.
3高师数学建模课程教学建议与策略
从高师数学建模课程的教学要求出发,本文从教学动机、教学模式、教学过程和教学目标进行分析,结合作者在高师院校的教学经验,给出了以贯彻数学建模思想为出发点,采用少讲、精讲、多练的教学模式,让学生逐步主导教学,并以培养学生综合能力为目标的教学建议和策略.
3.1以贯彻数学建模思想为出发点
开展大学生数学建模教学和实践可以提高大学生的科学素质这一观点已得到众多教育界学者的认同[6-8].相对于要求掌握的知识与技能来说,大学数学建模课时安排偏少,而一般高师院校则更少,这决定了教学目的不能以单纯灌输知识为主,而应以培养数学建模思想为主.同时,数学建模是一门注重理论联系实际的课程,单纯的知识灌输无法达到教学要求.因此,在教学过程中,应着重于训练学生运用数学知识建立数学模型,以体验综合运用相关知识和数学方法解决实际问题的过程,让学生领会数学的精髓,才能使其真正掌握数学建模这一解决实际问题的犀利武器,从而发展学生的创新能力.
3.2以少讲、精讲、多练为教学模式
在数学建模课程中贯彻少而精、多讲不如多练的原则已得到众多一线教师和学者的赞同.在教学中,将一个问题从多方面、多维度讲透彻,要比讲得多讲得浅教学效果好.在一般的案例讲解中,采用模型假设、模型构建、求解与验证、分析的步骤进行[9],在高师院校的教学中,教师需要从多个方面来引导学生,使其从不同层面、不同维度对案例进行再思考,将问题进一步深化,达到一题多练、举一反三的目的.深化方法与步骤因案例而异,但至少可以在以下方面展开:(1)模型与解的合理性.这主要是锻炼学生的怀疑精神和创新意识.要求学生在求解完毕后,重新审视整个过程,思考模型中哪些假设是合理的,哪些是过于理想化的;对于得到的解,是否达到了要求,有没有改进的空间.(2)问题的扩展性.这主要是锻炼学生从不同的角度看问题.要求学生求解完毕后,多思考多联想.比如当问题的假设或约束改变一项或多项时,模型应该怎么改变?当前模型除了适合本案例外,还能用在什么地方?(3)问题的实践性.任何数学问题都是由实际问题抽象而来的,只有对现实中的现象与问题进行实地考察、深入了解,才能够真正了解数学模型在生活中的应用.对于课堂讲解的案例,要尽量的创造条件让学生接触其最初的问题原型,比如交通流问题、课程选择与安排问题、循环比赛名次问题等.少讲、精讲的原则既避免了老师为了赶进度而“满堂灌”的低效教学方式,又能使老师将授课的重点与核心转移到知识的综合利用、问题的深度挖掘上;通过多练和实践性体验模型数据对应的实际问题,以使学生真正学会“用数学”的目的.少讲、精讲、多练的教学模式能够在兼顾高师院校数学建模课时相对较少的情况下,较为系统培养学生的建模思想和建模方法.
3.3让学生逐步主导课堂
在数学建模课程中,以“学生为主体”已成为共识[10-11].高师院校学生因为其未来从事职业的性质,还需要具有主导课堂的能力,这样才能游刃有余的教授新开设的数学建模课程.要达到此目的,在教学过程中应由“学生为主体”进一步推进为“学生为主导”.这主要表现在教学案例的选择、教学方式的探讨和教学深度的讨论上.当对数学建模具有一定了解后,让其直接参与教学案例的选择,这样能够让学生从不同的教学与学习目的来思考如何选择案例.采取何种教学方式也可以让学生多参与讨论,鼓励学生以教练与运动员的双重身份来评价、改进教学方式.在教学的重点和教学的深度方面也可以由学生来把控,老师多作为监督员的身份出现.为达到以上目的,在作者的教学经历中,将授课时间分为前、中、后三个阶段.前期是学生接触数学建模的时期,以教师讲授为主;中期为学生熟悉、消化数学建模基本理论的时期,这段时期开始引导学生针对某一章内容,自主选择案例并进行深入研究、讨论;后期为学生主导教学的时期,此时老师只作为课堂的指导者和答疑者出现,并不直接参与授课,而是对学生选题、教学方式、教学深度进行指导和把握.因为授课内容和进度并不完全依赖于某一课本,这需要授课老师付出较多的时间来规划整个教学过程,比如需要对学生的选题内容进行逐个检查与审核,需要组织同一选题的组进行教学方式的讨论与PK,需要对学生对问题的研究深度进行把握等.让学生主导教学过程的方式能够锻炼学生的文献分析能力、团队合作能力和竞争意识,并且换位思考的学习方式让学生更能够把握问题的精髓.学生为主导的教学过程能够让学生在未来的教学岗位上面临教材缺乏、师资不足的情况下合理、有效的进行教学.
3.4以培养学生综合能力为目标
因为中学教学较为程序化,对于实践性较强的数学建模课程的老师,需要具有较高的综合能力.对于数学建模等新兴课程,高师院校更应注重学生综合能力的培养.首先,在教材的选择、教学内容的选取上,要使学生具备一定的判断和选择能力.除了运用上一小节提到的“学生主导课堂”模式之外,尽量在期末安排一次课程进行课程回顾,回顾内容包括案例再讨论(教学内容选择)、教学方式回顾与评比(教学方法学习)、常见教材优劣讨论.其中关于常见教材的讨论,并不需要学生详细阅读市面上所有教材,因为在课程后期学生数学建模课程内容与教学模式已相对熟悉,并且数学建模教材的内容和案例重现度高,所以学生只需要对教材大体浏览即可了解其内容是否符合教学目的.同时,分组的方式使不同组同学阅读不同的教材,缩短其课外阅读时间.其次,在教学材料的获取上,要使学生具有基本的检索、查阅能力和整合材料的能力.比如学生必须学会在没有指定教材的情况下,如何通过互联网来获取材料,包括文献快速查找与分析、文献快速归类与整合能力等.再次,在实验环境的搭建与完善上,要使学生熟悉常用数学软件,能够独立完成安装、设置操作,并熟悉基本语法.这样保证他们到了一个全新的工作单位,在没有实验环境的条件下,能够独立开展数学建模相关的工作,而不会受制于暂时的教学条件.在常用数学软件中,至少应包括LINGO、MATLAB、MATHEMATIC等.通过对学生综合素质的培养,使学生能够在缺乏教学条件下应付自如,全面开展数学建模教学,提升我国中学数学教学质量,改变当前“数学只为数钱”[5]的现状.
4总结
篇6
中职学校开展教学的主要目的是为社会培养高素质技能型的专门人才,如笔者所在的学校就有服装生产管理专业、服装网络营销专业、服装设计、室设建筑等专业,这些专业的技术人才除了要具备相关的专业知识之外,还必须要有一定的动手能力和实践能力。中职学校的毕业生将来要成为我国生产、建设和服务行业第一线的生力军,如果他们能够应用已经掌握的数学知识和数学方法不断地改进和优化工作方法和工艺流程,就能够在一定程度上提升产品的质量,促进工作效率的提升,增强产品的市场竞争力,从而为国家的发展和社会的进步做出自己的贡献。所以,作为对学生发现问题、分析问题和解决问题能力培养的数学建模思想,在中职学校人才培养中的作用不容置疑。数学建模作为一种面向应用的思想,对于解决中职数学中的一些应用性的问题意义重大。
2.数学建模方法在中职数学教学中的渗透
所应坚持的基本原则在中职数学教学过程中渗透数学建模方法,应当依据中职学校人才培养的目标和学生自身的知识能力特点,赋予一些新的内容,同时也要体现出新的理念,另外还要遵循一定的原则。
2.1应当遵循实效性的原则在中职数学教学过程中渗透数学建模方法,必须要和高职高专学生的培养目标相结合,强化对学生数学建模意识和模型求解能力的培养。在教学过程中,老师可以通过基本知识的讲解和典型案例的分析,实现学生数学建模知识的螺旋式上升,促进学生建模能力的增长。通过数学建模方法的渗透,使得数学建模能成为好用、易懂的数学学习工具,而不仅仅是一种高不可攀的数学知识,从而促进学生综合素质的全面提升。
2.2应当遵循循序渐进的原则在中职数学教学的过程中,考虑到中职学校学生的特点,应当从最为基础的部分开始,从简单到复杂,循序渐进地引导学生养成深入思考的习惯。在进行建模思想的渗透过程中,不可一味的追求难题,这可能会对学生的学习积极性有一定的影响,使得部分学生丧失了求知的欲望。在教学过程中也可以和高职高专数学课程教学内容进行相应的衔接,以便能够实现知识的有效拓展。
2.3应当遵循实用性的原则中职学校的学生一般数学基础都比较薄弱,在进行数学建模思想渗透的过程中应该有针对性地开展教学。在中职数学教学的过程中,不宜过分地强调知识的严密性,而应该体现数学建模的实用性。如在函数部分,二次函数是现实生活中的模型,在教学过程中应该重点结合学生的专业特点,利用函数的模型来解决专业上的具体问题。如在服装网络营销中,一款服装可以通过降价提高销售量而增加利润,可是价格下降了单位利润也随之减少,如何合理降价才能使利润最大化呢?利用二次函数模型中有关最大(小)值的知识点,可以找出合理的降价点获取最大的利润。这是在市场营销中最常见的问题,通过数学建模方法在教学中的渗透,让学生体会函数模型在同一个问题中不同情况下的差异,这有利于培养学生考虑问题的全面性。理论知识能够在实践过程中发挥作用,从而更好地突出数学知识的实用性,提升学生运用数学建模思想解决问题的积极性。
3.数学建模方法在中职数学教学中渗透的策略
3.1将数学建模方法的渗透和学生的专业知识进行有效的结合
在中职学校的教学过程中,专业课程是学生学习的重点内容,对中职学校教学水平的衡量也主要是以专业课程的教学为主要标准。数学课程是十分重要的基础课程,能够教会学生运用数学工具解决实际问题,这有助于学生专业课程的学习。从这个角度来讲,在进行数学建模方法的渗透过程中,将数学建模和学生的专业课学习结合起来,可以促进学生专业课学习效果的提升。例如已知a,b,m∈R+,且a<b,则:(a+m)/(b+m)>a/b。在进行不等式模型分析的时候和学生的专业联系起来,这个结论就会比较容易理解。如室设建筑专业在进行涂料的配比中,将a克的蓝色涂料加青色涂料配成b克的新涂料(b>a>0),其浓度为a/b,若在此新涂料中再加入m克的蓝色涂料(m>0),待全部溶解后其浓度为(a+m)/(b+m),显然再次加了蓝色涂料的新涂料的浓度增大,即此不等式成立。这样的数学教学过程不仅可以加深学生对于数学知识的理解,还可以将数学知识和学生的专业学习紧密地联系起来,在生活化的基础之上渗透数学的模型思想,提升学生学习数学知识的积极性。
3.2将数学建模方法的渗透和学生的生活实际进行有效的结合
在中职学校的数学教学过程中,有很多实际的问题都蕴含着数学建模的思想,在学习这些知识的时候老师可以适当地渗透数学建模的思想,强化学生对数学建模思想的认知。如下面的一个实际应用:小亮家准备购置一套新房,需要向银行贷款8万元,经咨询得知银行贷款月利为0.01且是复利,贷款期为25年。小亮每月稳定地有950元的收入结余,如果他准备按月用等额本息法偿还贷款,是否具有偿还能力?现在购房分期付款的问题很普遍,不少学生的家庭也都会采取这种方式进行购房,所以这类问题学生都很有兴趣,在学习的过程中也会觉得比较有用。在中职数学课程中学完数列的相关知识之后,设计这样的问题,通过建立数学模型,就能获得答案。
4.小结
篇7
关键词:数学建模思想;大学数学教学;探讨
作者简介:贺爱娟(1979-),女,山东日照人,烟台大学文经学院基础教学部,讲师。(山东 烟台 264005)
基金项目:本文系烟台大学文经学院科研基金项目(项目编号:2011JYB001)的研究成果。
中图分类号:G642.421 文献标识码:A 文章编号:1007-0079(2013)31-0082-02
数学建模主要是通过运用数学知识解决实际问题的全过程,训练学生综合运用数学知识去刻画实际问题,提炼数学模型,处理实际数据,分析解决实际问题的能力。[1]对于数学基础功底薄弱,未来将要走向一线工作岗位的大学生来讲,数学建模思想在数学教学过程中的应用,有利于他们快速理解掌握基础知识,发散思维,了解数学解决实际生活问题的作用,有利于学生毕业后独自快速接受工作技能,激发创新思维,表现出良好的综合素质。
一、数学建模思想在大学数学类课程教学中融合的必要性
随着计算机的广泛应用,我国正在迎来一个手动化、机械化向信息化、自动化加速转变的社会。高科技的社会本质上是数学应用的社会,一切科学和工程技术人员的教育必须包括数学和计算科学的更多内容。数学建模思想已在科学研究、教学性研究、人才市场需要等方面得到了充分的应用,在天气和气候预报、机械设计和交通控制、电子设计自动化、生物科学、材料科学等领域,正急需通过数学与计算机的结合来构建各类模型解决一些重大问题,比如Navier-Stokes方程成为流体力学建模的基本方程、MAXWELL方程组成为描述电磁学的基本规律。[2]数学的思想和方法已经渗透到生产、生活和科研的各个角落,发挥着巨大作用。通过数学和计算机科学的结合成为工程设计中的关键工具,了解和掌握数学建模知识并能充分应用数学建模的思想和方法,可以让学生具有更好的快速适应和处理问题的能力,是当代大学生必须具备的基本素质。培养学生这种素质的最佳方法就是在高等数学等基础课程的理论学习过程中融入数学建模思想,这将起到理论和模型互相映射,提高学生的理解能力和想象能力。
二、数学建模思想与大学数学类课程教学的融合切入点
1.从应用数学出发
数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。
2.从数学实验做起
要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。
3.从计算机应用切入
数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。
三、探索适合独立学院学生的数学建模教学内容
大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:
1.加强必修课
大学数学系列课程主要包括“高等数学”、“线性代数”、“概率论与数理统计”、“运筹学”和“数学建模”等,其核心部分是“高等数学”,所以必须加强核心课程的重点讲解,同时进行辅助授课。对主修数学的学生,加强对计算机语言和软件的学习,对数学原理进行剖解分析,多分析运行数学解决的社会生活问题,多设定课程设计工作。学生通过对科学问题、生活问题的深入研究,结合自己的课程设计,建立数学建模,让数学建模思想渗透到整个学习过程中。对非数学领域的问题,引导学生通过计算机软件的学习,建模解决专业中遇到的实际问题。比如通用的CAD等基于数学理论,解决不同领域的数学建模问题,以便将来适应社会的需要。
2.开设选修课
拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍Matlab、Maple等计算软件课程),增加建立和解答数学模型的方法和技巧。[3]比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。
3.积极组织学生开展或是参加数学建模大赛
比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如2012年的《葡萄酒的评价》、《太阳能小屋的设计》,2011年的《交巡警服务平台的设置与调度车灯线光源的计算》、2009年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。
4.加快教育方式的转变
高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。
四、注意的问题
21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:
第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。
第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。
第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。
第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。
参考文献:
[1]段勇, 傅英定,黄廷祝,等.浅谈数学建模思想在大学数学教学中的应用[J].中国大学教学,2007,(10):32-34.
篇8
[关键词]数学建模 高职数学 数学模型
[作者简介]杨晓波(1978- ),女,四川阆中人,四川信息职业技术学院,讲师,研究方向为应用数学。(四川 广元 628017)
[中图分类号]G712 [文献标识码]A [文章编号]1004-3985(2014)33-0186-02
一、引言
高等职业教育的培养目标是培养应用型人才,理论知识为应用知识服务。高职毕业生以后将成为我国生产、建设、管理和服务行业第一线的生力军。在工科高职院校中,高职数学是实现培养目标不可缺少的载体。数学建模是应用数学的相关知识和借助于计算机解决实际问题的重要手段。结合高等职业教育的目标,在高职数学教学过程中有效融入数学建模思想是很有必要的。
二、高职数学教学融入数学建模思想的意义
1.是高职数学课程本身的需要。在高职人才培养方案中,高职数学的主要任务之一就是使学生在原有的数学基础之上,获得基本运算能力、计算能力、逻辑思维能力和实际应用数学的能力等。要获得这些数学能力,把数学建模的思想渗透到高职数学教学过程的各个环节中,是一个非常好的途径。现有的高职数学教学,在内容多、学时少的情况下,要完成计划的教学内容,传统的数学教学方式很难实现,而如果在教学过程中有效融入数学建模的思想,就可以解决这一问题。由此可见,将数学建模思想有效融入高职数学教学中是高职数学课程本身的需要。
2.是高职学生学习高职数学的需要。(1)激发学生的学习兴趣。数学建模可以改善高职生对数学学习主动性和积极性不高的情况。因为数学建模的问题都来源于实际的生活,所提出的问题容易引起学生的兴趣。在高职数学课程中融入数学建模思想,能够使学生弄清楚数学概念的来龙去脉,同时获得运用数学知识解决实际问题的能力。(2)培养学生的创新能力。创新能力是人才培养的关键。数学建模题来源于生活,有很大的灵活性,结果不唯一,学生从同一问题出发,从不同角度,建立相应的数学模型来解决问题。在建立模型的过程中,要经历分析问题、查阅资料、调查分析、建立模型、求解并分析模型、完成论文的撰写,整个过程给学生很大的独立思考的空间,有益于学生创新能力的培养。(3)提高学生的相互协作能力。数学建模过程是一个比较复杂的过程,需要的知识比较多,需要三个人组成一个小组,在有限的时间内完成指定的任务。在建模的过程中,三个人既有分工,又要合作,各取其长,成员之间要相互讨论、相互合作,最终问题得以解决,这样的过程有利于培养学生的相互协作能力。(4)提高学生的计算机能力。在数学建模过程中,求解数学模型,离不开计算机的使用,常常要用的软件有Matlab、Lingo、spss等。对计算机的应用,可以促使学生主动学习需要的相关软件,从而激发学生的求知欲,提高学生利用计算机的能力。
3.是高职数学教师的需要。当前高职教育蒸蒸日上,而高职数学却日趋边缘化。作为高职数学的教师,要使高职数学完成在专业培养方案中的教学目标,在高职数学中融入数学建模的思想刻不容缓。在高职数学教学过程中有效融入数学建模思想,对教师的专业基本功和知识面要求都较高,教师需要对多门相关课程和相关数学软件比较熟悉。因此,高职数学教师要不断创新,努力提高自己的专业素养,适应新形势下的高职数学教学。
三、在高职数学课程中融入数学建模思想的可行性
学习高职数学的最终目的是“用数学”,是要使数学为我们的工作所用、为我们的生活服务。现在的高职数学教学较多采用传统教学方式,老师在讲台上面讲,学生在下面听,学生的主要任务就是听和不断地做题、练习,虽然获得了数学计算的能力,但是往往在“用数学”方面较弱。要改变这种现状,在高职数学中有效地引入数学建模思想是可行的。
其一,高职教育的培养目标是应用型人才,注重知识的实用性,与数学建模的思想是一致的。“用数学”恰恰是高职生的软肋,而数学建模正是培养学生“用数学”的有效载体。高职的专业多为理工科,专业课程中有许多经典的数学模型,这些都为融入数学建模提供了丰富的资源。
其二,举办数年的全国大学生数学建模竞赛,在培养大学生知识的综合性、能力的创造性以及团队合作意识方面显示了一定的优势,得到了社会各界的广泛关注和各级教育部门的大力支持。近些年来越来越多的高职院校投入一定的人力物力来支持数学建模活动,围绕竞赛组织开展了相关的教学、教研、教改活动。这些都为数学建模思想融入高职数学教学奠定了良好的基础。
其三,虽然高职数学教学课时十分有限,但在计算机技术飞速发展的今天,可以借助计算机辅助教学,增加课堂授课量,提高课堂教学效率,从而为数学建模思想融入高职数学课堂争取宝贵的课时。总之,计算机辅助教学和数学软件的普及,为数学建模思想融入高职数学课堂教学创造了优越的条件。
四、在高职数学教学中融入数学建模思想的有效途径
1.在教学内容中融入数学建模思想。现有高职数学教材基本上是本科教材的翻版或者是缩略版,重理论轻应用,不适合高职生。因为高职生是一群数学基础较差的群体,对数学的学习缺乏兴趣,觉得数学学习没有用处。如果引入的内容与生活紧密相连,与学生学习的专业相关,就会让学生觉得数学就在身边,是专业的需要,是生活的需要。因此,编写一本既满足高职数学教学目标,又满足学生可持续发展的高职数学教材是当务之急。教材内容的选择要根据专业需要,删除某些烦琐的推理过程和计算技巧等。安排适量的数学实验课,让学生学习常用的数学软件,这样遇到计算问题时,就可以借助于计算机数学软件,比如极限、导数、微分、积分等,从而解决引入数学建模而不增加授课学时的难题。
2.在教学过程中融入数学建模思想。从广义上来说,高职数学中的许多概念、定义都是从客观事物的某种数量关系或者空间形式中抽象出来的数学模型。因此在教学过程中,依据学生的基础,可以把概念、定义从生活中的实际原型或者与生活相关的例子中自然而然地引出来,让学生觉得课本里的概念不是硬性规定的,数学不是枯燥乏味的、不是无用的,而是与生活息息相关的。同时在授课讲解时,应该尽量结合实际,设计适宜的问题情境,引导学生参与教学活动,让学生体验到通过自己的思考能够解决原来遥不可及的数学问题。
3.在课后练习中引入数学建模。课后练习是培养学生数学应用能力的重要环节。在设计课后练习题的时候,应该选择一些适合高职学生并较好操作的实际问题,让学生分析问题,并用所学的数学知识解决问题,这样既可以让学生掌握数学知识,又可以让学生获得用数学知识解决实际问题的能力。例如在讲解函数的时候,引入怎样合理避税、病人为何按时吃药等问题,使学生在实际的例子中体会“用数学”的乐趣。
4.在高职数学考核中融入数学建模。高职数学考核的首要目的是考核学生对知识点的掌握、数学能力的提高、数学思维培养的情况。现阶段高职数学考核方式一般是闭卷考试,试题的主要内容是考核基本知识和基本计算能力,虽然这是非常必要的,但不能很好地考核学生的数学应用能力。那么怎样考核学生的数学能力呢?应该适量加入数学建模方面的开放性试题,规定题目,限定时间,分组完成,以小论文的形式解答。灵活的考核可以让学生觉得数学考核不是那么死板,还可以督促学生在平时积极投入到高职数学的学习中来。
五、在高职数学教学中融入数学建模思想需注意的几个问题
在高职数学课堂上融入数学建模的思想,要以高职数学的教学目标为主,以数学建模为辅,两者不能主次颠倒。数学建模仅作为一种教学方式方法,是学生学习数学知识的一种途径,是为高职数学课堂教学服务的,数学模型仅仅是教学内容的载体。
在数学建模案例的选择上,应选择学生容易接受、趣味性强、适用性强的模型,必要的时候以学生的基础为准适当地进行修改,降低难度。不能因为是模型的经典就全盘灌输,这样会导致学生不易接受,教学效果适得其反。
在高职数学课堂上例举的数学模型要与课堂的教学内容相匹配,如果数学模型所涉及的知识不符合或者超出课堂的知识范围,将损耗原本就有限的课堂时间,同时也会增加学生的学习负担,起不到应有的效果。
[参考文献]
[1]李大潜.将数学建模的思想和方法融入大学数学类主干课程[J].中国大学数学,2006(1).
篇9
关键词:数学建模;实践;创新思维
随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。
所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构。我们常说的数学概念、数学性质、数学公式、数学法则等都是数学模型,甚至可以是一个图表,一个图像,总之就是得到的结构一定要蕴含着数学意义,再经过不断的修改和检验,得到合理的结论。这就是数学建模。数学建模没有统一的数学工具,可以根据建模者知识水平决定采取何种数学手段,因此具有很大的开放性。但是具体步骤大体相同:模型准备、模型假设、模型建立、模型求解、模型检验、模型优化与推广。我们看到数学建模整个过程是“实际一理论一实际”,即从实际问题中获得数学模型再指导实际问题,这也就是数学建模的核心思想。
当代丰富的数学理论为数学建模的应用提供了良好的基础,使得数学建模在自然科学、社会科学、工程技术领域广泛应用,数学建模的影响力不断增强,并且逐渐走进了高等院校的教学课堂。
一、数学建模思想在生活中的实践
数学建模可以帮助人们在生活中收集处理信息。数学建模中的题目对于人们来说非常具有挑战性,如“公交车调度”、“SAS的传播”、“奥运会临时超市网点设计”、“长江水质的评价和预测”、“出版社的资源配置”、“艾滋病疗法的评价及疗效的预测”等。从这些题目可以看出,有些问题是人们以前从来没有接触过的,要解决它们,就需要他们在很短时间内获取有关的知识,他们通过从互联网和图书馆查阅文献、收集资料、选取信息及大量的数据处理,锻炼了他们收集处理信息的能力和获取新知识的能力。应用数学知识去解决各类实际生活问题时,建立数学模型足十分关键的一步,同时也是十分困难的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。数学建模是联系数学与实际问题的桥梁,数学建模具有难度大、涉及面广、形式灵活的特点,数学建模的本身是一个不断探索、不断创新、不断完善和提高的过程。
二、数学建模思想在生产中的实践
通过实际的调查发现,我国对于数学建模思想的应用还比较少,虽然随着计算机软件技术的普及应用,人们已经认识到了数学建模思想的重要性,并在理论上对其进行研究,国家每年都会举办相应的建模大赛,以此来促进人们对于相关知识的学习,并通过比赛的方式,提高应用数学建模的能力,同时比赛的题目就是实际问题,如果参数的队伍中,能够有好的数学模型,企业就可以直接作为参考,由此可以看出,竞赛题目是目前我国数学建模思想应用的主要方式。对于工业领域的日常生产中,很少会直接应用到数学建模的思想来解决问题,首先受到企业自身生产条件的限制,目前我国使用的生产设备比较落后,还处于传统的机械设备水平,信息化的水平很低,要想在这种基础设施的条件下,采用数学建模思想解决问题,显然不够现实,其次就是数学建模理论自身的限制,现在对于数学建模思想的研究比较少,尤其是实践的机会少,管理者对数学建模的了解有限,这些都在很大程度上限制了我国数学建模思想应用的发展。现在,数学建模思想经过了多年的发展,自身的理论已经比较完善,但是利用数学建模思想来解决实际问题,依然是很多专家和学者研究的问题,而工业领域中,为了提高生产的效率,基本实现了机械化的改造,可以知道,目前机械设备的使用已经达到了一个极限,要想进一步提高生产的效率,只能提高自动化水平,而数学建模思想作为一种先进的理念,如果能够应用在工业领域中,在促进软件技术发展的同时,也能够解决日常生产中的很多问题。
三、数学建模思想在课堂教学中的实践
篇10
一、新疆地方高校数学建模的发展现状
(一)低年级大学生对数学建模知识认识欠缺
大学数学是理工类院校的重要基础课程,对专业课程起到了不可或缺的支撑作用,大学数学课程理论性强,新疆地方高校的学生本身学习起来就比较吃力,教师教学中更是无暇讲述和普及数学建模的思想和方法,所以相当一部分学生感到数学建模既神秘又高不可攀。
(二)新疆地方高校学生数学基础薄弱,大学数学课程的教学和专业学习存在脱节
受地域限制,新疆地方高校学生大部分来自于新疆各地州,包括汉、维、哈、柯、蒙等少数民族,数学基础参差不齐,相比较内地高校数学基础水平存在一定差距,学生学习数学兴趣不高,缺乏主动性,疲于应付考试,因此参加数学建模竞赛学生的比例比较低,导致理论知识与专业应用严重脱节,直接影响理工类专业学生的专业能力和培养质量。
(三)数学教学过程中,疏于数学教学建模思想和方法的渗透和培养
数学教学中渗透数学建模的思想和方法,要求授课教师不仅要有扎实的数学功底,而且还要有广博的知识面和丰富的数学建模经验。但实际教学中,由于课时的紧缺和教师专业方向的限制,完全仅限于所授课程知识的讲解,忽视了渗透数学建模的思想和方法对学学数学课程的促进作用,尤其忽视其对数学理论知识和专业知识的贯通作用。
(四)新疆地方高校对数学建模教学的重视和投入有待提高
自2012年以来,大部分新疆地方高校开始向应用型高校转型,工、农、医等应用型学科专业便成为各新疆地方高校的发展重点,在资金有限的状况下,数学类等基础学科便面临一个尴尬的境地,尤其是对数学建模的教育教学热情有所退却。但笔者以为,越是在向应用型高校转型之际,加强对数学类基础学科的投入,尤其重视数学建模思想和方法的渗透才能保障应用型学科高质量发展和新疆地方高校向应用型高校顺利转型。
二、新疆地方高校大学数学教学中融入数学建模思想和方法的建议与思考
(一)根据学生层次合理调整教学内容的侧重点
新疆地方高校大学生的多民族性、数学基础不等性特点对大学数学授课老师的经验水平提出更高要求,不但要了解学生的知识水平、民族学生的思维方式,还需要清楚中学数学的授课内容和欠缺知识点。根据本人近年民族教学的体会,结合学生入学成绩和知识层次教学中将新疆地方高校学生分为三个层次:1.“民考民”和“双语”学生,该层次学生入学成绩相对较低,汉语言水平不高,并且数学基础较差,该层次学生在大学数学授课中应侧重于对中学数学知识的补充和巩固,否则大学数学的知识和理论学生是无法理解的,而对大学数学的知识点就要侧重于基本概念、基本定理、基本方法的掌握与理解,那么对该层次学生进行数学建模思想和方法的融入,就要选择部分中学知识点和大学数学中较易理解掌握的知识点典型例题由浅入深,循序渐进的进行讲授。2.“民考汉”学生,该层次汉语言水平非常好,入学成绩也不错,与汉族学生混合编班,数学基础相比较同班汉族学生还是有差距,但该部分学生学习努力、态度端正,是任课教师需要重视的团体,可以偶尔选择晚自习辅导时间或其他时间对他们进行专门辅导,选择一些典型例题,由浅入深的进行数学建模的思想和方法的培养,从而也能激发他们的学习积极性,使之逐步赶超同班汉族同学。3.其他学生,新疆地方高校该层次学生主要来自于新疆各地州,入学成绩一般,数学知识差别不大,但基础知识还需要补充,个别的知识点,部分学生中学就没有学过,例如:参数方程、极坐标方程,反三角函数等知识点,但这些内容在大学数学教学中却是比较重要的知识点。
(二)在大学数学的日常教学中,改进教学方法和教学手段,有针对性的融入数学建模的思想和方法
能够适时选择授课知识点,针对学生所学专业讲述新课,同时融入数学建模思想和方法,例如:在“高等数学”第六章定积分的应用章节中,讲授利用“微元法”解决做功、水压力、引力等问题时,对物理学和工程类相关专业讲述数学建模思想和方法便是不错选择。例如:蓄水池抽水问题(如图1,图2)上图便是实际授课中课件,完全是定积分的内容,但这些例题具有非常典型的数学建模思想和方法,(1)题目符合实际生活问题,具有数学建模题型特点,完全是生活中的问题;(2)具有理工科专业特点,属于做功和热能问题;(3)解题过程本质就是数学建模的思想和方法,分析问题,建立数学模型,确定解题方法,给出结果,分析结果。只需经常性通过类似问题的讲解,使学生理解数学建模的主要过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用,学生不仅掌握数学建模思想和方法,而且认识到大学数学对于专业课学习的重要性[1]。大学数学教学中渗透数学建模思想和方法,归纳起来应注意以下几点:(1)要循序渐进,由简单到复杂,逐步渗透。(2)应选择密切联系学生专业、易接受、有趣味性、实用性的数学建模内容。(3)在教学中列举建模案例时,仅仅是让学生学习数学建模思想和方法的初步、举例等少而精,忌大而冷,否则会冲击了大学数学理论知识的学习,因为没有扎实的理论知识,也谈不上应用。(4)大学数学教学中,恰当的处理好理论与应用的关系,应该清楚理论和应用是相辅相成的。扎实的理论是灵活应用的基础,而广泛的应用又促进对理论的深刻理解[2]。
(三)组织鼓励各专业学生参加大学生数学建模竞赛,培养创新型人才
为了广泛开展数学建模活动,促进学风建设,提高学生学习兴趣和创新能力,自2007年开始,我校开始组织学生参加“全国大学生数学建模竞赛”,经过近十年的学习与摸索,形成了我校特色的大学生数学建模竞赛培训模式,经大学数学任课老师推荐和动员,不同专业学生报名后,培训工作分为三个步骤进行:每年4月至6月的建模竞赛初级培训、暑期集训和赛前强化。三个阶段培训内容均以数学知识模块化,分别由相应专业方向老师进行包干培训。知识模块主要分为初等数学模块、运筹学模块、概率统计模块、方程模块等。初级培训阶段主要培训理论知识,补充巩固不同专业学生大学数学理论知识;暑期集训阶段主要讲述不同模块的典型例题,促进理论知识的理解和灵活应用;赛前强化主要是选例题,让学生自己实践练习,进行赛前仿真模拟比赛。对参加过“全国大学生数学建模竞赛”的学生,我们经过统计发现:(1)参加过该竞赛培训和实践比赛的学生,在各自专业的学习过程中,专业课知识学习能力和应用能力明显高于其他同学,尤其毕业论文和设计的完成质量高于其他同学;(2)参加过该比赛的学生在此后的学习热情明显高涨,萌生继续深造提高的愿望,并且开始主动备战参加考研,考研成功率也高于其他同学;(3)该比赛中的各类生活科研问题,也激发了学生的创新性。大学生数学建模竞赛中的赛题大都为生活和科技中的热门问题和前沿科学问题,具有一定的科研前瞻性,经过该竞赛的洗礼,激发了这些参赛同学的创新能力,很多同学在比赛后仍继续研究比赛中的该问题,并把问题作为自己的毕业论文和毕业设计,并能高质量的完成,甚至有同学以此为出发点,申报了“大学生创新创业训练计划项目”,锻炼了大学生的科研能力和创新能力。结语随着社会的发展、科技的进步,数学已经不再是抽象的理论,其应用已深入到人类生活的各个方面,科学技术数学化、数学应用普及化已成为一种趋势,许多自然科学的理论研究实际就是数学研究,就是数学建模以及数学理论的探讨。一个国家的国民素质,很大程度上是体现在其数学素质上,数学是思维的体操,数学是科学的研究工具,数学建模是架于数学理论和实际问题之间的桥梁[3]。数学建模活动的开展促进了新疆地方高校的学风建设,提高了新疆大学生的综合素质。我校的数学建模组织活动、日常教学中的数学建模思想的渗透手段、规范的数学建模管理、方式多样的培训方案、学生参与的科研活动等已然逐步形成了新疆地方高校的数学建模思想和方法的渗透模式。新疆地方高校的特殊性也给新疆地方高校的教学模式提出了挑战,如何根据自身的特点搞好数学建模教学工作,是一项具有探索性的实践研究,本文仅是一个初步研究,还有很多问题需要深入的思考和实践。
作者:刘福国 马燕 单位:昌吉学院数学系 昌吉市回民小学
参考文献:
[1]晁增福,邢小宁.将数学建模融入大学数学教育的研究与实践[J].ConferenceonCreativeEducation.2012:1136-1138.