数学建模课程标准范文
时间:2023-12-28 17:56:03
导语:如何才能写好一篇数学建模课程标准,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
课堂教学从传统的集中于数学的内容方面,转变到数学的过程方面,其核心是给学生提供机会、创造机会,通过“问题
情境一建立数学模型——解释、应用、拓展”的学习过程,让每个学生在生动具体的情境中都参与数学,亲自体验数学的生存和发展过程,通过学生自己动手去做,通过积极主动的探索去建立自己的理解和意义,在自身活动的过程中学习和理解数学,掌握数学知识和技术应用的方法与途径。教学时,教师应善于从学生的生活经验和已有的知识背景出发,为学生提供充分的进行数学实践活动和交蔼的机会,努力改变传统的单一的学习方式,即从单一、被动的学习方式,向自主探索、台作交流、操作实践的学习方式转变,使他们在自主探索的过程中真正理解和掌握基本的数学知识技能和相应的思想与方法,同时获得广泛的数学活动经验。
新世纪下半叶以来,数学最大的变化和发展是应用,数学几乎渗透到了所有学科领域。为了适应数学发展的潮流和未来社会人才培养的需要,美国、德国、日本等发达国家普遍都十分重视数学建模教学。增加数学和其他科学、以及日常生活的联系是世界数学教育的总趋势。中国现在也很重视对学生的应用数学能力的培养,并已把这方面的要求明确写入教学大纲。本校要求数学教师在条件允许的情况下,在教学过程中尽可能加强此方面教学,以提高学生应用数学知识解决实际问题的能力,并增加他们对数学的学习兴趣。
为了解近年来开展数学建模数学的成果,并了解中学生应用数学的能力。亦为今后开展数学建模教学提供较可靠的资料,本人在全校范围内进行了一次学生数学建模能力的测试。本人在三个年段各随机抽取100名学生作为测试对象,时间为一小时,题目如下,视解题情况酌情给分。
中国象棋是同学们喜爱的棋类,回学们是否知道,象棋里充满着数学问题。
以本人多年的中学教育经验,中学是最适台让学生开始接触数学应用的时期。较之小学生,中学有较成熟的逻辑思维、形象思维能力,已有独立或与人合作解央数学应用问题的能力;较之大学中学生有哑强的创造欲,思维尚未形成定式,有更强的可塑性和接受能力,思考问题容易出其当然,中学的数学建模教学府遵循一些原则。具体地说,数学建模问题难易应适中,千万不要搞撤离中学生实际的建模教学,题目难度应以“跳一跳就可以把果子摘下来”力度。在建模教学,应提倡学生利用小组学习、集体讨论等方式合作解决问题,鼓励学生使用计算机等工具。着养他们讲求效率、实事求是、追求完美、团结协作、优势互补等现代科学研究必须具备的科学态团队精神。埘于建模作业优劣的评定。应以创新性、真实性、有效性、现实性、合理性等方面为。而且建模教学臆刘高考应用问题自所涉及,鉴于当前中学数学教学的宴际,保持一定比例的高用问题是必要的,这样更有助于橱动帅生参与建模教学的积极性,保持建模教学活动,促进中学建模教学的进一步发展。
鉴于当前中学教学实际,本人以为数学建模数学可从以下儿种典型模型人手加强学生的数学应用能力。
一、三角模型。对测高、测距、航海、水坝等的计算应用问题,可引导学生建立三角模型,转化三角形问题。
二、方程模型。对现实生活中广泛存在的等量关系,如增长率、储蓄利息、浓度配比、行程等问可列出方程转化为方程求解问题。
三、几何模型。对诸如工程定位、边角余料加工、拱桥计算、皮带传动、跑道的设叫与计算等应用问题,涉及-定图形的性质常可建立几何模型,转化为几何问题求解。
四、目标函数模型。对丁现实生活巾普遍存在的最优化问题,如造价用料最少、利润产出最大等,可透过实际背景,建立变量之问的目标丽数,转化为函数极值问题。
五、直角坐标系模型。对于色帆投物、打炮射击、投篮、平抛等问题,其物体运动轨迹都是抛物往往町转化为二次函数图像问题去解决;而当蛮量之间具有线性关系时,则可转化为直线或平面问题去解决。
篇2
[关键词]数学应用 数学模型 创新意识 实践能力
《普通高中数学课程标准》上提到“当今知识经济时代,数学正在从幕后走向台前,数学与计算机技术的结合使得数学能够在许多方面直接为社会创造价值。”而高中数学新课程明显使学生能够体验到数学在解决实际问题中的作用、数学与日常生活的密切联系,以及与其他学科的关联,能使学生逐步形成并发展数学的应用意识,提高解决实际问题的能力。
下面我就自己的教学体会,简单阐述新课标下如何将实际问题进行数学模型化教学的。
咱们江苏新课程标准中说明数学建模已经成为不同层次数学教育重要和基本的内容,也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这不仅是数学本身发展的需要,也是社会发展的需要。
数学模型,指的是对现实原型为了某种目的而作抽象、简化的数学结构,它是使用数学符号、数学式子及数量关系对原型简化而本质的刻画,比如方程、函数等概念都是从客观事物的某种数量关系或空间形式中抽象出来的数学模型。关于原型进行具体构造数学模型的过程称为数学建模。如二次函数就是一个常用的数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。我们的数学建模教学就是灵活综合地运用数学知识来处理和解决实际问题,因而它是问题解决的重要方面。建模思想强调的就是在解决实际问题时,首先应有数学建模的自觉意识或观点,这实际上就是数学知识的应用意识。
数学建模可以通过以下框图体现:
实际情境提出问题数学模型
检验实际解数学结果
在数学建模中,问题是关键,这些问题来自于日常生活、现实世界其他学科等多方面。而培养学生运用数学模型解决实际问题的能力的关键就是把实际问题抽象成数学问题,这不但要求学生有一定的抽象能力,而且要有一定的分析、综合能力。而学生的这些能力的获得不是一天两天就能完成的,需要把数学建模意识贯穿在教学的始终,也就是要不断地进行引导学生用数学思维的观点去观察、分析问题,教会学生从各种复杂的具体问题中抽象出我们所熟悉的数学模型,从而用数学模型来解决实际问题。
在进行数学建模教学时教师可以根据教材的具体内容,以及针对学生实际情况提出一些问题并供学生选择;或者提供一些实际情景,引导学生提出问题;特别要鼓励学生从自己生活的世界中发现问题、提出问题。教师要尽可能创设有趣、形象,而又能引起学生积极主动参与的学习情境。如在学习正弦定理、余弦定理后,我带领学生去学校东边复新河,在河的西岸不过河进行设计测量方案,测量河对岸的那棵最高的杨树的高度,河东岸两颗大树之间的距离以及河坝前后两棵梧桐树之间的距离,以及在河两岸架桥的长度问题。在现场说出各种测量方案,回到教室后写出具体测量方案与求解思路,以及求解结果。这样让学生从不同的角度构建数学模型解决实际问题,以培养他们的实际应用能力,同时学生也学会了独立思考、分工合作、交流讨论、寻求帮助,并获得良好的情感体验。在学习数列第一节前,我用自习课时间给学生播放《国王赏赐》的故事,细胞分裂现象以及84年以来奥运会上我国所获金牌的情况。让学生在看片的同时构建数列的概念,同时让学生预测2012年的伦敦奥运会上,我国将获得几枚金牌。这样既培养了学生从实际生活中构建数学模型的能力,又激发了他们的爱国热情。
我们作为数学教师一定要随时留意数学建模的实际应用,比如现在时兴的贷款买房问题,怎样还贷才能更省钱,自己算过后,可以把问题投影给学生,让学生帮助解决。这样学生感到老师请教他们问题了,情绪也能高涨,感兴趣地去想着解决出来。这样无形中就把中学数学知识应用于现实生活了。同时也保持了与教材同步。
经常与教材同步引入数学模型问题来激发学习的兴趣,如在讲正弦定理的证明时,通过构造三角形面积模型、圆内接三角形模型、向量模型、转化为直角三角形模型及坐标模型等。在讲过正弦定理、余弦定理后的解决的一些测量距离与高度问题等。又如在学过等差数列后解决的剧场座位数问题,学过等比数列后来解决储蓄问题、信用贷款问题等等。另外,还有立体几何、统计和线性规划等等实际应用的数学模型。要经常这样随时渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力,增强应用意识,提高实践能力,有利于扩展学生的视野。
高中数学课程明确提出应注重提高学生的数学思维能力,而数学思维能力在形成理性思维中发挥着独特的作用。在学习数学和运用数学解决实际问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与构建等思维过程。而这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断。
经常进行数学建模的训练,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。
参考文献
[1]普通高中《数学课程标准》2003年第1版
[2]沈文选编著《数学建模》湖南师大出版社,1999年7月第1版。
篇3
[关键词] 数学建模;算法编程
[中图分类号] G633.6 [文献标识码] A [文章编号] 1005-4634(2013)03-0120-03
1 问题的提出
20世纪80年代,计算机科学还只是数学的一个分支,而现在计算机科学拥有了广泛的研究领域,在很多方面反过来推动数学发展。在课程改革新形势下设计高中课程,应该坚持创新精神,注重数学课程与信息技术的整合,重温数学与信息技术的历史渊源,通过对高中数学建模与算法编程求解进入高中数学课程的处理,使学生更多的了解数学与信息技术的密切关系及其未来的发展。
数学建模与算法编程求解进入高中数学课程旨在将数学建模这项活动推广到高中数学学习之中,使学生能运用数学知识建立数学模型,同时能运用信息技术手段编写算法程序求解数学模型,打破传统的教育教学模式和课程评价方式。
2 数学建模与算法编程求解进入高中数学 课程的必要性探讨
2.1 高中数学建模是描述现实世界的有力工具
随着科学技术的飞速发展和知识经济社会的到来 ,“数学模型”和“数学建模”这两个词汇越来越多的出现在现代人的生产、工作和社会活动中。数学模型可以描述为:对于现实世界的一个特定的对象,为了一个特定的目的,根据特有的内在规律,作出一些必要的简化假设,运用恰当的数学工具得到的一个数学结构。建立数学模型的全过程就叫数学建模。20世纪70年代以来,电子计算机飞速发展,数学广度和深度向一切领域渗透,数学建模越来越受到人们的重视。除了在一般工程技术领域外,在高新技术领域数学建模也成为必不可少的工具(医学上的 CT技术、印刷出版界的激光照排技术就是数学建模的产物)。在诸如经济、人口、生态、地质、体育等非物理领域,用数学方法研究其定量关系时,数学建模也成为首要的、关键的步骤,是这些学科发展与应用的基础。
2.2 数学建模与算法编程求解进入高中数学课程 能够促进素质教育发展
课程改革是实施素质教育的核心技术和关键技术,课改牵涉到中小学培养目标的调整、课程结构的改革、国家课程标准的制定、课程实施与教学改革、教材改革和课程资源开发、评价体系的重建等[1]。而教材改革和课程资源开发是课改的首要任务,新课程主张从终身学习的角度精选学习的内容,并加强学习内容与学生现实生活、科技进步、社会发展的联系,数学建模与算法编程求解进入高中数学教学适应了新课程的要求,是对教材改革和课程资源开发的有效填充。
传统课程以应试教育为评价方式,学生接受教育的场所主要是课堂教学,知识和信息的来源主要是教师和课本。新颁布的课程标准确立了知识与技能、课程与方法、情感态度与价值观三位一体的课程目标,着眼于学生素质的多方位发展,让真正的人才脱颖而出;新课程还强调数学是有用的,学数学能提高能力,数学是科学的语言,是一切科学和技术的基础,是思考和解决问题的工具;新课程的全面发展还表现为重视“德”的发展,在未来经济与社会发展中,越来越需要那些具有正义感、责任心、合作精神以及团队建设能力的人才[2]。素质教育要求受教育者的基本素质必须得到全面和谐的发展,具有全面性,这就从教育内容上规定了素质教育的性质。数学建模与算法编程求解进入高中数学课程适应了新课程教学内容的要求,使学生自主能力、合作能力、动手实践能力、创新能力得到提高和培养,既体现了三维目标又更新了评价方式,促进了素质教育的发展。
2.3 数学建模与算法编程求解进入高中数学课程 是时代与社会发展的需要
21世纪科学技术是第一生产力,各国竞争归根到底是科技的竞争,更是科技人才的竞争,科技人才要发展,教育要先行。数学建模虽早已有之,但把数学建模与算法编程求解课程引入高中数学课堂是一个新生事物,反映了社会的实际需要,顺应时展潮流,符合教育改革的要求,因而受到广大师生的普遍欢迎,成为实施素质教育的有效途径。不断转变教学方式和深化课程改革是为了更好的培养适应时代和社会发展需求的人才。数学建模与算法编程求解进入高中数学课程能不断提高学生的基本素质,加强自主探究能力、合作能力、创新能力、实践操作能力的培养,为进一步的学习打下坚实基础,培养更多优秀人才,为经济建设服务。
3 数学建模与算法编程求解进入高中数学 课程的可行性分析
3.1 观念的准备
随着科技的进步、教育技术的不断更新,社会进入了信息时代,教育走信息化之路已成必然。在开设计算机课程的同时,很多学校开设了信息技术基础课程,并逐步探索信息技术与各学科教学的整合。数学作为一门基础学科,在与计算机结合的同时,其研究领域、研究方式和应用范畴等得到了空前拓展。数学教学也因与信息技术逐步整合而得到优化。信息技术与学科整合能改革传统的教学模式,有利于学生运用信息技术解决学科问题或学习新的知识,能突破教材重点、难点,使课堂充满生机与活力。内容丰富的学科课堂教学成为信息技术学科的有效载体,信息技术成为学科课堂教学的崭新支撑,从而不断朝基础教育现代化的目标靠拢。
3.2 高中课程中能找到数学建模与信息技术整合 的生长点
高中课程为数学建模与信息技术整合打下初步基础:(1)在高中学习了指数函数模型、对数函数模型、三角函数模型和回归模型及其应用等,让学生体会到数学模型与现实紧密联系,并学会建立模型解决现实问题,学生初步具备了建立数学模型的思想;(2)新课程开设了算法初步和框图设计章节学习,为学生进一步学习计算机语言奠定了基础,同时初步具备了编写程序和运用计算机解决实际问题的思想;(3)函数与方程中二分法求近似解的学习,让学生了解到可以运用二分法,通过算法语言编写程序来逼近模型的解的问题。
3.3 普通高中信息技术为数学建模开展提供方便
为了解决现实中复杂的数学模型,根据教育部颁发的《中小学信息技术课程指导纲要》的要求,从2001年秋季起,普通高中开设了计算机必修课,使学生可通过编写算法程序解决数学模型的解的问题,体会数学模型和计算机技术结合解决现实世界问题的威力。
3.4 数学建模进入高中数学课程的操作性研究
1)内容的选择。数学建模问题直接来源于科研、生产、工程管理实际,且大都是经过适当简化的正在研究或探讨但尚未完全解决的实际问题的研究片断。数学建模涉及的领域很宽,但对每题题意的理解并不困难,这是因为问题的提供者已将这些材料巧妙地构造成只有用数学知识才能解决的问题,对所涉及的领域知识仅限于常识范围。
2)内容的安排。在人教版必修3算法初步中设计计算机语言c+编程基本介绍作为第4小节,设计数学模型建立与算法实现案例作为第5小节。
3)实例分析。根据表1,选用一个函数近似描述这个港口的水深与时间的函数关系?若某船吃水深度为4米,安全间隙为1.5米,该船2点卸货,吃水深度以每小时0.3米的速度减少,那么该船在何时必须停止卸货,将船驶向较浅的区域?
表1 某港口在某季每天的时间与水深关系表
时刻 水深/米 时刻 水深/米 时刻 水深/米
0:00 5 9:00 2.5 18:00 5
3:00 7.5 12:00 5.0 21:00 2.5
6:00 5 15:00 7.5 24:00 5
解答:将表1转化为函数图可知,=2.5,函数可以考虑为y=+。这个港口水深与时间的关系式为:=2.5+5(5.50.3=2.5+0.31.1,安全水深与时间的关系式为:=5.50.3(2)(2)。求函数=2.5+5(5.50.3(2))=2.5+0.31.1的零点。
由于,所以利用二分法求近似解,dev c++算法程序如下。
#include
#include
#include
main( )
{ double a,b,c,d,e,f,g,x,r,s,t,p,l, m,n,o,q,u,v,w;
a=6;b=8;
printf("imput jd:");
scanf("%lf",&u);
while(fabs(ba)>u)
{ p=3.1415926;
m=p*a/6;
s=2.5*sin(m)+5(5.50.3*(a2));
n=p*b/6;
t=2.5*sin(n)+5(5.50.3*(b2));
c=(a+b)/2;
l=p*c/6;
r=2.5*sin(l)+5(5.50.3*(c2));
g=s*r;
if(g
{ a=a;
b=c; }
else if(g>0)
{ a=c;
b=b; }
}
printf("%lf",c);
system("pause");
return 0; }
数学建模与算法编程求解进入高中数学课程,是素质教育发展的需求,它具备新的教育模式、教育理念和教育评价方式,带来了新鲜的数学课堂,开辟了数学教学的新天地。开设高中数学建设模型教学课堂势在必行。
参考文献
篇4
一、数学建模与数学建模意识
数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。
高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段——高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。
二、高中数学教师必须提高自己的建模意识、积累自己的建模知识
我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。
三、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。
四、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。
五、数学建模教学与素质教育
数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力。恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力。众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。
篇5
关键词:初中数学建模活动;内容设计;组织原则;数学建模能力
在初中课程内容中,数学建模活动既没有明确的课程定位、目标要求,也未设置专题活动内容,更没有明确的教学要求、实施策略等,致使很多一线教师对初中数学建模活动的内涵、内容设计和组织原则等认识模糊,甚至将应用题教学与数学建模活动简单地画上等号。因而,正确理解初中数学建模活动的内涵,明确建模活动内容,掌握组织原则,才能取得预期的活动成效。
一、初中数学建模活动的内涵
数学建模活动由数学、建模、活动三个关键词构成。“数学”凸显数学学科本质属性,蕴含着数学眼光、数学思维、数学语言等诸多含义,最终指向用数学知识分析和解决实际问题;“建模”是指运用数学符号系统建立数学模型;“活动”是指为实现学习目标而采取的行动。初中数学建模活动是指初中生(以下简称“学生”)在实际情境(生活情境、社会情境、科学情境和数学情境)中,从数学的视角发现和提出问题,用数学的方法分析问题,简化、假设、抽象出数学问题,建构数学模型,确定参数、求解验证,最终解决实际问题的学习活动。2011年版义务教育数学课程标准中使用了“模型思想”的表述,将数学建模活动看成是一种思想,包括从现实问题到数学问题、从数学问题到数学模型,数学模型求解及结果验证三个过程。2017年版高中课程标准指出数学建模活动是一种过程,分为现实问题的数学抽象(实际模型)、数学表达(数学问题)、建构模型求解问题三个阶段。从建立和求解模型的过程与形态可以看出,模型思想的建立过程与数学建模活动过程的本质是一致的,都包含对现实问题进行数学抽象,用数学语言表达形成数学问题,用数学方法建构数学模型,计算求解模型并解释现实问题的活动过程。事实上,模型思想必然形成于数学建模活动的过程中。
二、初中数学建模活动的内容设计
1.构建数学模型活动
数学建模中的“建模”是指建构数学模型[1]。数学知识本身就是一种数学模型,从数学知识属性维度看,数学模型一般分为概念模型、方法模型和结构模型。因此,学生对数学知识的学习本质是一种构建数学模型的学习活动,构建数学模型是学生习得数学知识的基本途径。从初中数学建模活动(以下简称“数学建模活动”)的过程看,构建数学模型活动本身不是严格意义上的数学建模活动,而是数学建模活动过程的某个阶段或某个环节。在这类建模活动中,活动重点是渗透模型思想,使学生学会建构数学模型,为完成完整的数学建模活动奠基。
2.应用数学模型活动
数学建模活动更强调的是建立模型和解决问题的过程[2]。数学模型的价值在于将现实世界与数学的壁垒打通,通过数学模型连接现实世界与数学世界,使学生体悟数学建模的现实意义。现行初中数学教材注重数学与现实世界的联系,设置了大量的应用类问题,为学生应用数学模型解决实际问题提供了良好的载体。比如苏科版初中数学教材中勾股定理的简单应用、用一次函数解决问题、锐角三角函数的简单应用、收取多少保险费才合理等属于应用数学模型活动。虽然这些应用类问题具有封闭的、数据清楚、信息正好、结果唯一等特点,不同于真正的数学建模问题,但应用数学模型活动也属于数学建模过程的重要阶段,解决应用类问题所考查的能力往往正是数学建模过程中某些环节所需要的能力[3]。教师要利用好这些素材,开展有意义的数学模型应用活动,在活动中渗透数学建模思想,重点提升学生建构数学模型解决应用题的能力。
3.主题综合实践活动
主题综合实践活动是指以现实世界中实际问题为研究对象,明确具体研究主题,综合应用学科知识(不限于数学知识)解决实际问题的实践活动。在初中阶段,主题综合实践活动是数学建模活动的主要形式,是学生参与完整的数学建模活动,培养学生数学建模能力的重要途径。主题综合实践活动内容源于杂乱无序的现实世界,学生需从“原生态”的现实情境中抽象出数学问题,我们一般将其称为数学化能力。数学化能力是数学建模的关键成分,在主题综合实践活动设计中应予以重点关注。每个学期开展1~2次主题综合实践活动,有利于促进学生经历完整的数学建模活动过程,培养数学建模能力。综合实践主题的选题源自学生熟悉的现实生活,符合学生的生活经验和认知水平。综合实践活动有利于激发学生的学习兴趣,培养应用意识和数学建模能力,具有积极的现实意义。比如在分析问题环节,先梳理影响出租车收费的相关因素,再确定主要因素(里程数),调查收集燃油附加费的收费标准。在提出假设环节,假设出租车收费只受里程数影响,不存在乘客主观因素的影响;假设打车策略以费用为唯一标准,不考虑顾客的主观感受,也不考虑出租车公司的有关优惠活动。主题综合实践活动任务给学生提供了“原生态”的问题情境,能有效驱动学生从现实世界中发现和提出有意义的实际问题,运用数学知识建立数学模型,从而解决实际问题。从主题综合实践活动的整个流程看,学生经历了相对完整的数学建模活动过程,有效弥补了以上两种阶段性建模活动在培养学生数学建模能力上的不足,对培养学生数学建模能力至关重要。
三、初中数学建模活动的组织原则
1.阶段性原则
阶段性原则是指根据初中数学教学内容,参照数学建模过程将数学建模活动分为不同的阶段,发挥数学建模活动的教育价值[4]。数学建模活动是一个完整的解决实际问题的过程,具体包括现实原型———实际模型———数学模型———模型求解———检验解释等。在初中数学学习中,受数学知识与数学能力所限,我们不可能也没必要使学生经常性地经历完整的数学建模活动过程[5]。在平时数学知识的教学中,注重渗透数学模型思想,引导学生经历数学建模的某个环节或某个阶段,体现数学建模活动的阶段性原则。初中数学建模活动一般分为三个阶段:标准数学模型学习阶段、用数学模型解决实际问题(应用题)阶段、主题建模实践阶段。三个阶段由低到高、层层递进,教学中应根据数学建模活动的内容特点,对建模活动目标精准定位,分阶段、分层次培养学生的数学建模能力。
2.适切性原则
适切性原则是指数学建模活动内容应源于学生熟悉的、真实的实际情境,符合学生的认知基础、智力水平和心理特点,注意学生解决问题能力上的差异[6]。从实际情境的视角看,选用的问题情境要符合实际情况,是学生熟悉的情境。对于综合性实际情境,应具备一定的挑战性,有利于促进学生主动学习数学、物理等相关学科知识,但建立数学模型时涉及的数学及跨学科知识应符合其认知水平,不能随意提高数学建模活动的要求。从数学建模的教育价值看,数学建模活动应在学生解决实际问题能力的基础上,运用数学知识又不限于数学知识主动连接现实世界,感受数学建模的应用价值。
3.发展性原则
发展性原则是指组织的数学建模活动应能驱动学生积极主动参与建模活动,发展学生的数学建模能力。发展性原则属于数学建模活动的目标范畴,即为什么组织、为谁组织数学建模活动?发展学生的数学建模能力是数学建模活动的出发点和落脚点,在组织不同类型的数学建模活动时,都应遵循发展性原则,提高数学建模活动立意,将活动目标落到实处。比如在构建数学模型的活动中,活动的内容设计应有利于引导学生经历现实问题到数学问题再到数学模型的抽象过程,特别是对数学对象的第二次抽象时,教师应将教学重心放在引导学生用数学符号建构数学结构(数学模型)上,分阶段发展学生数学建模能力水平。
参考文献
[1]孙凯.从问题类属谈初中生数学建模能力培养[J].数学通报,2020,59(12):30-33.
[2]张景斌,王尚志.中学数学建模活动为中学生创造发展空间[J].数学教育学报,2001,10(01):11-15.
[3]张艳娇.谈“数学建模活动与数学探究活动”如何在教科书中落实[J].中学数学杂志,2020(09):1-7.
[4]刘伟.初中生数学建模能力培养研究[D].曲阜:曲阜师范大学,2020:132.
[5]温建红,邓宏伟.“综合与实践”教学中渗透模型思想的策略与建议[J].中学数学月刊,2021(03):52-55.
篇6
关键词:建模思想 小学数学 应用
《数学课程标准》指出:“数学教学应该从学生已有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。”在小学数学教学活动中,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。
一、数学模型的概念
数学建模就是建立数学模型,是一种数学的思考方法,是利用数学语言、符号、式子或图象模拟现实的模型,是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。在小学阶段,数学模型的表现形式为一系列的概念系统,算法系统,关系、定律、公理系统等。
二、小学数学教学渗透数学建模思想的可行性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学数学教学活动中,教师应采取有效措施,加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。数学在本质上就是在不断的抽象、概括、模式化的过程中发展和丰富起来的。数学学习只有深入到“模型”、“建模”的意义上,才是一种真正的数学学习。
三、小学“数学模型”的构建
(一)建模的策略
1.精选问题,创设情境,激发建模的兴趣。数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。
2.充分感知,积累表象,培育建模的基础。教师首先要给学生提供丰富的感性材料,为数学模型的准确构建提供可能。
3.组织跃进,抽象本质,完成模型的构建。具体生动的情境或问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的有效组织,那就无法建模。如“平行与相交”一课,如果只是让学生感知火车铁轨、跑道线、等具体的素材,而没有透过现象看本质的过程,提出问题:为什么两条直线永远不相交?动手实验思考:①在两条平行线间作垂线。②量一量这些垂线的长度,你发现了什么?经历这样的学习过程,完成从物理模型到直观的数学模型再到抽象的数学模型的建构过程。
4.重视思想,提炼方法,优化建模的过程。不管是数学概念的建立、数学规律的发现、数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。如“圆柱的体积”一课教学,在建构体积公式这一模型的过程中要突出与之相伴的数学思想方法:一是转化,将未知转化成已知;二是极限思想。
5.回归生活,变换情境,拓展模型的外延。初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升。使模型的外延不断得以丰富和拓展。
(二)建模的途径
开展数学建模活动,关注的是建模的过程,而不仅仅是结果,因此,在小学数学教学中,教师要转变观念,革新课堂教学模式,以“建模”的视角来处理教学内容。
1.根据教学内容,开展建模活动。教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,精心设计和选择列入教学内容的现实问题情境,将实际问题数学化,建立模型,从而解决问题。
2.上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。可以结合教材内容,整合各知识点,使之融进生活背景,产生好的“建模问题”作为实践活动课的内容。如安排这样的问题:“找10盒火柴,先在小组里拼一拼,看看把10盒火柴包装成一包有哪些不同的方法。怎样包装最节省包装纸?”
3.改编教材习题,加强建模教学。
教材中有些问题需要改编,使其成为建模的有效素材。如图:
“图中正方形面积是8平方厘米,求圆的面积。”可以利用它开展以下的建模活动:设圆的半径是r,探讨出圆的面积与正方形面积之间的关系后,建立起关系模型,进而解决问题。
四、小学“数学模型”的应用
数学是一门应用性很强的基础科学,只有在实践应用中才能摄取数学知识的精髓。作为数学知识核心内容的“数学模型”,它的作用自然处于所有数学应用之心脏。
1.用模型解释。如果建模的过程是“归纳”的话,那么用模更多的是“演绎”。用模型去解释,是对模型的提取、解读和应用。
2.用模型解题。要学会把复杂问题纳入已有模型之中,使原有模型成为构建和解决新问题的思考工具。
3.用“旧模型”构建“新模型” 数学的概念、法则、关系等都是数学模型,并且总是建立其他数学模型的材料,模型的应 用还应体现在对新知的建构上。
篇7
【关键词】建模思想小学数学应用
【中图分类号】G424.21 【文献标识码】A 【文章编号】2095-3089(2014)2-0083-02
《数学课程标准》指出:"数学教学应该从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。"在小学数学教学活动中,加强数学建模思想的渗透,现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。
一、数学模型的概念
数学建模就是建立数学模型,是一种数学的思考方法,是利用数学语言、符号、式子或图像模拟现实的模型,是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。
二、小学数学教学渗透数学建模思想的可行性
数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。
三、小学"数学模型"的构建
(一)建模的策略
1.精选问题,创设情境,激发建模的兴趣
数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。如构建"平均数"模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?
2.充分感知,积累表象,培育建模的基础
教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供可能。
3.组织跃进,抽象本质,完成模型的构建
具体生动的情境或问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的有效组织,那就无法建模。如"平行与相交"一课,如果只是让学生感知火车铁轨、跑道线、双杠、五线谱等具体的素材,就没有了透过现象看本质的过程,因此,教师应将学生关注的目标上升为两条直线间的距离。完成从物理模型到直观的数学模型再到抽象的数学模型的建构过程。
4.重视思想,提炼方法,优化建模的过程
不管是数学概念的建立、数学规律的发现、数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。如"圆柱的体积"一课教学,在建构体积公式这一模型的过程中要突出与之相伴的数学思想方法:一是转化,;二是极限思想。
5.回归生活,变换情境,拓展模型的外延
从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升,使模型的外延不断得以丰富和拓展。
(二)建模的途径
开展数学建模活动,关注的是建模的过程,而不仅仅是结果,因此,要以"建模"的视角来处理教学内容。
1.根据教学内容,开展建模活动。 教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,将实际问题数学化,建立模型,从而解决问题。
2.上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。
3.改编教材习题,加强建模教学。
教材中有些问题需要改编,使其成为建模的有效素材。如:"图中正方形面积是8平方厘米,求圆的面积。"可以利用它开展以下的建模活动:设圆的半径是r,探讨出圆的面积与正方形面积之间的关系后,建立起关系模型,进而解决问题。
四、小学"数学模型"的应用
数学是一门应用性很强的基础科学,只有在实践应用中才能摄取数学知识的精髓。
1.用模型解释。如果建模的过程是"归纳"的话,那么用模更多的是"演绎"。用模型去解释,是对模型的提取、解读和应用。
2.用模型解题。要学会把复杂问题纳入已有模型之中,使原有模型成为构建和解决新问题的思考工具。
3.用"旧模型"构建"新模型" 数学的概念、法则、关系等都是数学模型的应用,并且能够总是建立其他数学模型的材料。模型的应用还应体现在对新知的建构上。如"一个数乘一位数"法则是一个模型,在教学"一个数乘两位数"时可以放手让学生自主探究,在其过程中,旧模型被调用,为构建更高一级的法则模型发挥重要作用。
篇8
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。
数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?
数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
一、在教学中传授学生初步的数学建模知识
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
二、培养学生的数学应用意识,增强数学建模意识
在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。
三、在教学中注意联系相关学科加以运用
篇9
关键词:大学生;数学建模;数学素质
Abstract: Mathematics modeling is a mathematical tool for solving real world problems with focus on major and unique features of the system studied, which is the core of mathematics competence of undergraduates. In this paper, the significance of mathematics modeling is analyzed by presenting the relations between mathematics modeling and mathematics competence. Finally, it studies how to cultivate undergraduates′ comprehensive qualities by mathematics modeling study.
Key words: undergraduate; mathematics modeling; mathematics competence
数学模型作为对实际事物的一种数学抽象或数学简化,其应用性强的特点使其影响正在向更广阔的领域拓展、延伸。因适应新时期应用型、创新型人才培养的需要,数学建模受到了高等院校的重视,相应的课程建设计划得到了实施,竞赛活动得到了开展。基于数学建模培养学生解决实际问题能力的优势,通过数学建模来提升大学生的综合素质,已成为一个逐步引起关注的教育教学问题。
一、数学建模的内涵及其应用趋势
《数学课程标准(实验)》中提出:“数学探究、数学建模、数学文化是贯穿于整个高中数学课程的重要内容……,高中阶段至少应安排一次较为完整的数学探究、数学建模活动。”[1]对于数学建模的理解,可以说它是一种数学技术,一种数学的思考方法。它是“对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的数学表示”[2]。从科学、工程、经济、管理等角度来看,数学建模就是用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。
通俗地说,数学建模就是建立数学模型的过程。几乎一切应用科学的基础都是数学建模,凡是要用数学解决的实际问题也都是通过数学建模的过程来实现的。就其趋势而言,其应用范围越来越广,并在大学生数学素质培养中肩负着重要使命。尤其是 20 世纪中叶计算机和其他技术突飞猛进的发展,给数学建模以极大的推动,数学建模也极大地拓展了数学的应用范围。曾经有位外国学者说过:“一切科学和工程技术人员的教育必须包括数学和计算数学的更多内容。数学建模和与之相伴的计算正在成为工程设计中的关键工具。”[3]正因为数学通过数学建模的过程能对事实上很混乱的东西形成概念的显性化和理想化,数学建模和与之相伴的计算正在成为工程设计中的关键工具。因而了解和一定程度掌握并应用数学建模的思想和方法应当成为当代大学生必备的素质。对绝大多数学生来说,这种素质的初步形成与《高等数学》及其相关学科课程的学习有着十分密切的关系。
二、数学建模与数学综合素质提升
当今的数学教育界,对什么是“数学素质”,有过深入广泛的讨论。经典的说法认为,数学是一门研究客观世界中数量关系和空间形式的科学,因而,人们认识事物的“数”、“形”属性及其处理相应关系的悟性和潜能就是数学素质。一是抽取事物“数”、“形”属性的敏感性。即注意事物数量方面的特点及其变化,从数据的定性定量分析中梳理和发现规律的意识和能力。二是数理逻辑推理的能力。即数学作为思维的体操、锻炼理性思维的必由之路,可提高学生的逻辑思维能力和推理能力。三是数学的语言表达能力。 即通过数学训练所获得的运用数学符号进行表达和思考、求助与追问的能力。四是数学建模的能力。即在掌握数学概念、方法、原理的基础上,运用数学知识处理复杂问题的能力。五是数学想像力。即在主动探索的基础上获得的洞察力和联想、类比能力。因此,数学建模能力已经成为数学综合素质的重要内容。那么,数学建模对于学生的数学综合素质的提升表现在哪些方面呢?
(一)拓展学生知识面,解决“为‘迁移’而教”的问题。数学建模是指针对所考察的实际问题构造出相应的数学模型,通过对数学模型的求解,使问题得以解决的数学方法。数学建模教学与其他数学课程的教学相比,具有难度大、涉及面广、形式灵活的特点,对学生综合素质有较高的要求。因此,要使数学建模教学取得良好的效果,应该给学生讲授解决数学建模问题常用的知识和方法,在不打乱正常教学秩序的前提下,周密安排数学建模教学活动,为将来知识的“迁移”打下基础。具体可将活动分为三个阶段:第一阶段是补充知识,重点介绍实用的数学理论和数学方法,不讲授抽象的数学推导和繁复的数学计算,有些内容还可以安排学生自学,以此调动学生的学习积极性,发挥他们的潜能;第二阶段是编程训练,强化数学软件包MATLAB编程,突出重要数学算法的训练;第三阶段是数学建模专题训练,从小问题入手,由浅入深地训练,使学生体会和学习应用数学的技巧,逐步训练学生用数学知识解决实际问题,掌握数学建模的思想和方法。[4]
(二)发挥主观能动性,强化学生自主学习能力。数学建模是一种对实际的现象通过心智活动构造出能抓住其重要且有用的特征的表示,需要学生发挥主观能动性,通过主体心智活动的参与,实现问题的建构和解决。在大学,自主学习是学生学习的一种重要方式。大学生课外知识的获得、参与科研活动、撰写毕业论文和进行毕业设计等等,都是在教师的指导下的自主学习,因此,自主学习的意识和能力培养成为提升大学生综合素质的关键。数学建模对于强化学生自主学习能力,培养数学综合素质无疑具有典型意义。由于数学建模对知识掌握系统性的要求,而这些系统的知识又不可能系统地获得,很多参与数学建模学习和研究的学生,都深感其对提高自主学习能力的重要性,并从中汲取不竭的动力,进行后续的学习和研究
(三)把握数学建模的内在特质,培养学生的创新能力。创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模具有创新的内在特质,其本身就是一个创新的过程。现实生产和生活中,面临的每一个实际问题往往都比较复杂,影响它的因素很多,从问题的提出、模型的建构、结果的检验等各个方面都需要创新活动的参与,建立数学模型需以创新精神为动力,不断激发学生的创造力和想像力。因此,在数学建模活动中,要鼓励学生勤于思考、大胆实践,尝试运用多种数学方法描述实际问题,不断地修改和完善模型,不断地积累经验,逐步提高学生分析问题和解决问题的能力。持续创新是知识经济时代的重要特征,高等院校应坚持把数学建模教育作为素质培养的载体,大力培养学生的创新精神、创新勇气和创新能力,使其真正成为创新的生力军。
(四)促进合作意识养成,培养团队协作精神。 适应时代的发展,越来越多的高校将参加数学建模竞赛作为高校教学改革和培养科技人才的重要途径。数学建模比赛的过程就是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。数学建模竞赛采取多人组队、明确时间、完成规定任务的形式进行。一个数学建模任务的完成,往往需要成员之间的讨论、修改、综合,既有分工、又有合作,是集体智慧的结晶。竞赛期间学生可以自由地查阅资料、调查研究,使用必要的计算机软件和互联网。作为对学生的一种综合训练,学生要解决建模问题,必须有足够的知识,并有将其抽象成数学问题、有良好的数学素养,有熟练的计算机应用能力,还要有较好的写作能力,这些知识和能力要素的取得,往往来自于一个坚强的团队。具有一定规模的建模问题一般都不能由个人独立完成,只有通过合作才能顺利完成,没有全局观念和协作精神作为支撑,要完成好建模任务是非常困难的。
三、在数学建模的教与学中提升学生数学素质
数学建模课程的教学不是传统意义上的数学课,它不是“学数学”,而是“学着用数学”。它是以现实世界为研究对象,教我们在哪里用数学,怎样用数学。对模型的探索,没有现成的普遍适用的准则和技巧,需要成熟的经验见解和灵巧的简化手段,需要合理的假设,丰富的想像力,敏锐的洞察力。直觉和灵感往往也起着不可忽视的作用。因此,在数学建模教学中要把握“精髓”,侧重于给予学生一种综合素质的训练,培养学生多方面的能力。
(一)将数学建模思想渗透到教学中去。把数学建模的思想和方法有机地融入“高等数学”等课程教学是一门“技术含量”很高的艺术。其困难之一就是数学建模往往与具体的数学问题和方法,可能是很深奥的数学问题和方法紧密相连。因此,怎样精选只涉及较为初等的数学理论和方法而又能体现数学建模精神,既能吸引学生而且学生又有可能遭遇的案例,并将其融入课程教学中十分重要。特别要重视在教学中训练学生的“双向翻译”的能力。这一能力的要求,简单地说,就是把实际问题用数学语言翻译为明确的数学问题,再把数学问题得到解决的结论或数学成果翻译为通俗的大众化的语言。“双向翻译”对于有效应用数学建模的思想和方法,是一个极为关键的步骤,权威的专家多次强调了这一点。建模的力量就在于“通过把物质对象对应到认定到能‘表示’这些物质对象的数学对象以及把控制前者的规律对应到数学对象之间的数学关系,就能构造所研究的情形的数学建模;这样,把原来的问题翻译为数学问题,如果能以精确或近似方法求解此数学问题,就可以再把所得到的解翻译回去,从而解出原先提出的问题。”
(二)数学建模教学中重视各种技术手段的使用。在“高等数学”等课程的教和学中,使用技术手段,尤其是数学软件,只是时间的问题,尽管关于技术手段的好与坏还仍有争议。企图用技术手段来替代个人刻苦努力的学习过程,只会误导学生。但决不能因此彻底地排斥技术手段, 这是一个“度”的问题。对于数学建模的教师来说,技术手段既可能成为科研和教学研究的有力工具, 也可以通过教学实践来研究怎样使用它们。数学建模课程教学中涉及数理统计、系统工程、图论、微分方程、计算方法、模糊数学等多科性内容,这些作为背景性知识和能力的内容,一个好的教师一定要在教学中把它作为启发性的基本概念和方法介绍给学生。而这些内容要取得基于良好引导效果的教学成效,就必须使用包括数学软件在内的多种技术手段,以此来培养学生兴趣,引导学生自学,挖掘学生的学习潜能。
(三)确立“学生是中心,教师是关键”的原则。所有的教学活动都是为了培养学生,都要以学生为中心来进行, 这是理所当然的。数学建模的教学要改变以往教师为中心、知识传授为主的传统教学模式,确立实验为基础、学生为中心、综合素质培养为目标的教学新模式。然而,教学活动是在教师的领导和指导下进行的, 因而,教师是关键。在教学过程中教师对问题设计、启发提问、思路引导、能力培养方面承担重要职责,教师能否充满感情地、循循善诱、深入浅出地开展数学建模的教学就成了学生学习成效的关键,教师的业务能力、敬业精神、个人风格等发挥着非常重要的作用。因此,作为数学建模的教师,把数学建模思想运用在高等数学教学中的意义,就在于在整个教学中给了学生一个完整的数学,学生的思维和推理能力受到了一次全面的训练,使学生不仅增长了数学知识,而且学到了应用数学解决实际问题的本领。
参考文献
[1]叶尧城.高中数学课程标准教师读本[M]. 武汉:华中师范大学出版社,2003:20.
[2]王庚.数学文化与数学教育[M].北京:科学出版社,2004:56.
篇10
关键词:数学建模 数学应用意识 数学建模教学
一、数学建模是从现实问题中建立数学模型的过程。
在对实际问题本质属性进行抽象提炼后,用简洁的数学符号、表达式或图形,形成便于研究的数学问题,并通过数学结论解释某些客观现象,预测发展规律,或者提供最优策略。它的灵魂是数学的运用并侧重于来自于非数学领域,但需要数学工具来解决的问题。这类问题要把它抽象,转化为一个相应的数学问题,一般可按这样的程序:进行对原始问题的分析、假设、抽象的数学加工。数学工具、方法、模型的选择和分析。模型的求解、验证、再分析、修改假设、再求解的迭代过程。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性;数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
二、那么当前我国高中学生的数学建模意识和建模能力如何呢?
学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
三、那么高中的数学建模教学应如何进行呢?
数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
四、在教学的过程中,引入数学建模时还应该注意以下几点
应努力保持自己的"好奇心",开通自己的"问题源",储备相关知识。这一过程也可让学生从一开始就参与进来,使学生提高自学能力后自我探究。
将数学建模思想引入数学课堂要结合实际,这是关键。学生在课堂中解决的实际问题即建模材料必须经过一定的加工,否则有可能过于复杂,有些问题的数学结论可能偏离生活实际太多,也很正常。
数学课堂中的建模能力必须与相应的数学知识结合起来。同时还应该通过解决实际问题(建模过程)加深对相应的数学知识的理解。