表观遗传学的应用范文

时间:2023-12-28 17:51:03

导语:如何才能写好一篇表观遗传学的应用,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

表观遗传学的应用

篇1

1.巴氏小体案例在遗传学教学中的应用

2.下一代测序技术在表观遗传学研究中的重要应用及进展

3.遗传学教学中在细胞与分子水平上理解等位基因的显性与隐性

4.果蝇唾腺多线染色体研究进展及其在遗传学教学中的应用

5.以人类血型为遗传学案例教学的思考与实践

6.表观遗传学药物的研究进展

7.表遗传学几个重要问题的述评

8.构建优质教学体系,促进《遗传学》精品教育

9.小鼠毛色遗传的控制机制及其在遗传学教学中的应用

10.肝癌发生的分子遗传学和表遗传学研究

11.景观遗传学原理及其在生境片断化遗传效应研究中的应用

12.以遗传信息为主线的遗传学教学架构及与其他课程的衔接

13.认知过程中的表观遗传学机制

14.我国高校遗传学教材的出版与使用现状的调查

15.表观遗传学:生物细胞非编码RNA调控的研究进展

16.表观遗传学视角下运动干预阿尔茨海默病的机制分析

17.遗传学与基因组学整合课程探讨

18.表观遗传学研究进展

19.癫痫表观遗传学研究进展

20.不仅仅是遗传多样性:植物保护遗传学进展

21.利用文献精读教学新模式优化遗传学教学

22.2015年中国医学遗传学研究领域若干重要进展

23.发展行为遗传学简介

24.光遗传学技术应用于动物行为学在神经回路中的研究进展

25.表遗传学推动新一轮遗传学的发展

26.生物教育专业《遗传学》教学改革的探索

27.糖尿病肾病遗传学研究进展

28.肿瘤表观遗传学研究热点的聚类分析

29.浅谈高校《遗传学》课程教学改革与实践

30.2015年中国微生物遗传学研究领域若干重要进展

31.利用经典文献优化《遗传学》双语教学

32.孟德尔豌豆基因克隆的研究进展及其在遗传学教学中的应用

33.表观遗传学在肺癌诊治中的研究进展

34.人格行为遗传学研究的两类取向

35.害虫遗传学控制策略与进展

36.表观遗传学及其应用研究进展

37.阿尔兹海默病的表观遗传学机制及相关药物研究

38.胃癌遗传学及表遗传学研究进展

39.遗传学在胆管细胞癌发展中的重要性

40.子痫前期表观遗传学研究进展

41.行为遗传学:从宏观到微观的生命研究

42.遗传学史在遗传学教学中的作用

43.男性不育的遗传学评估

44.表观遗传学与肿瘤干细胞

45.开放式教学在遗传学实验教学中的探索与实践

46.表观遗传学调控与妇科肿瘤发生、演进及治疗的研究进展

47.规律运动干预人类衰老过程的表观遗传学机制研究进展

48.表观遗传学及其在同卵双生子研究中的新进展

49.分子群体遗传学方法处理鲤形态学数据的适用性

50.番茄果重数量性状基因的研究进展及在遗传学教学中的应用 

51.遗传学教学中遗传学史及科学方法论的教育

52.景观遗传学:概念与方法

53.孤独症的遗传学和神经生物学研究进展

54.肺癌表观遗传学的研究进展

55.肿瘤的表观遗传学研究

56.遗传学课程群的设置和思考

57.《遗传学》课程的建设与优化

58.表观遗传学在中枢神经系统退行性疾病中的研究进展

59.遗传学实验教学体系的改进

60.肝癌表观遗传学研究进展

61.保护生物学一新分支学科——保护遗传学

62.表观遗传学在淋巴系统肿瘤研究中的新进展

63.大肠癌的表观遗传学研究进展

64.重视经典遗传学知识体系构建和学生自学能力的培养

65.植物化学遗传学:一种崭新的植物遗传学研究方法

66.关联分析及其在植物遗传学研究中的应用

67.表观遗传学及现代表观遗传生物医药技术的发展

68.三阴性乳腺癌与表观遗传学研究现状

69.构建培养新型医学人才的医学遗传学课程体系改革

70.骨髓增生异常综合征的遗传学检测研究进展

71.钉螺遗传学及其生物学特性的研究进展

72.羞怯:来自行为遗传学的观点

73.遗传学探究性实验教学的思考及实践

74.“教学、实践、科研、临床”四位一体的医学遗传学教学体系建设探索与实践

75.国内高校遗传学教材发展研究

76.男性生殖遗传学检查专家共识

77.肿瘤表遗传学研究的进展

78.创新性遗传学大实验对提高大学生综合能力的研究

79.白内障表观遗传学研究的现状及进展

80.遗传学研究性实验教学模式探索与创新人才培养

81.表观遗传学在木本植物中的研究策略及应用

82.高通量测序技术结合正向遗传学手段在基因定位研究中的应用

83.激发与培养学生学习遗传学兴趣的教学途径

84.从表观遗传学开展复杂性疾病证候本质的研究

85.蓝藻分子遗传学十年研究进展

86.建设遗传学课件体系 提高多媒体教学质量

87.表观遗传学与肿瘤

88.原发性肝癌的表观遗传学及其治疗

89.青少年焦虑、抑郁与偏差行为的行为遗传学研究

90.儿童孤独症的遗传学研究进展

91.本科生遗传学实验教学的改革探讨

92.与闭经有关的遗传学问题

93.多媒体教学在遗传学“三点测验”教学中的实践

94.一个实用的群体遗传学分析软件包——GENEPOP3.1版

95.论从“肾为先天之本”到“中医遗传学”

96.《遗传学》多媒体教材的编写与实践

97.肺癌的表观遗传学研究进展

98.无创性产前遗传学检测研究进展

篇2

1 DNA甲基化和组蛋白乙酰化

1.1 DNA甲基化 DNA甲基化是指在DNA复制以后,在DNA甲基化酶的作用下,将S-腺苷甲硫氨酸分子上的甲基转移到DNA分子中胞嘧啶残基的第5位碳原子上,随着甲基向DNA分子的引入,改变了DNA分子的构象,直接或通过序列特异性甲基化蛋白、甲基化结合蛋白间接影响转录因子与基因调控区的结合。目前发现的DNA甲基化酶有两种:一种是维持甲基转移酶;另一种是重新甲基转移酶。

1.2 组蛋白乙酰化 染色质的基本单位为核小体,核小体是由组蛋白八聚体和DNA缠绕而成。组蛋白乙酰化是表观遗传学修饰的另一主要方式,它属于一种可逆的动态过程。

1.3 DNA甲基化与组蛋白乙酰化的关系 由于组蛋白去乙酰化和DNA甲基化一样,可以导致基因沉默,学者们认为两者之间存在串扰现象。

2 表观遗传学修饰与恶性肿瘤耐药

2.1 基因下调导致耐药 在恶性肿瘤中有一些抑癌基因和凋亡信号通路的基因通过表观遗传学修饰的机制下调,并与化疗耐药有关。其中研究比较确切的一个基因是hMLH1,它编码DNA错配修复酶。此外,由于表观遗传学修饰造成下调的基因,均可导致恶性肿瘤耐药。

2.2 基因上调导致耐药 在恶性肿瘤中,表观遗传学修饰的改变也可导致一些基因的上调,包括与细胞增殖和存活相关的基因。上调基因FANCF编码一种相对分子质量为42000的蛋白质,与肿瘤的易感性相关。2003年,Taniguchi等证实在卵巢恶性肿瘤获得耐药的过程中,FANCF基因发生DNA去甲基化和重新表达。另一个上调基因Synuclein-γ与肿瘤转移密切相关。同样,由表观遗传学修饰导致的MDR-1基因的上调也参与卵巢恶性肿瘤耐药的形成。

3 表观遗传学修饰机制在肿瘤治疗中的应用

3.1 DNA甲基化抑制剂 目前了解最深入的甲基化抑制剂是5-氮杂脱氧胞苷(5-aza-dc)。较5-氮杂胞苷(5-aza-C)相比,5-aza-dc首先插入DNA,细胞毒性比较低,并且能够逆转组蛋白八聚体中H3的第9位赖氨酸的甲基化。有关5-aza-dc治疗卵巢恶性肿瘤的体外实验研究结果表明,它能够恢复一些沉默基因的表达,并且可以恢复对顺柏的敏感性,其中最引人注目的是hMLH1基因。有关地西他滨(DAC)治疗的临床试验,研究结果显示,结果显示:DAC是一种有效的治疗耐药性复发性恶性肿瘤的药物。 3.2 HDAC抑制剂 由于组蛋白去乙酰化是基因沉默的另一机制,使用HDAC抑制剂(HDACI)是使表观遗传学修饰的基因重新表达的又一策略。根据化学结构,可将HDACI分为短链脂肪酸类、氯肟酸类、环形肽类、苯酸胺类等4类。丁酸苯酯(PB)和丙戊酸(VPA)属短链脂肪酸类。PB是临床前研究最深入的一种HDACI,在包括卵巢恶性肿瘤在内的实体肿瘤(21例)Ⅰ期临床试验中有3例患者分别有4~7个月的肿瘤无进展期,其不良反应是短期记忆缺失、意识障碍、眩晕、呕吐。因此,其临床有效性仍有待于进一步在Ⅰ、Ⅱ期临床试验中确定。在VPA的临床试验中,Kuendgen等在对不同类型血液系统肿瘤中使用VPA进行了Ⅱ期临床试验,结果显示,不同的患者有效率差异甚远。辛二酰苯胺异羟肟酸(SAHA)是氯肟酸类中研究较深入的一种HDACI。其研究表明,体内使用安全剂量SAHA时,可有效抑制生物靶点,发挥抗肿瘤活性。大量体外研究结果显示,联合使用DNA甲基化抑制剂和HDACI会起到更明显的协同作用。

3.3 逆转耐药的治疗 Balch等使用甲基化抑制剂—5-aza-dc或zebularine处理卵巢恶性肿瘤顺柏耐药细胞后给予顺柏治疗,发现此细胞对顺柏的敏感性分别增加5、16倍。在临床试验中,Oki等将DAC和伊马替尼(imatinib)联合使用治疗白血病耐药患者,结果说明,应用表观遗传学机制治疗恶性肿瘤确实可以对化疗药物起到增敏作用,并且在一定范围内其疗效与体内表观遗传学的改变呈正比。Kuendgen和Pilatrino等对HDACI和化疗药物的给药顺序进行研究,结果显示,在使用VPA达到一定血清浓度时加用全反式维甲酸可增加复发性髓性白血病和骨髓增生异常综合征患者的临床缓解率,这可能与VPA引起的表观遗传学改变增加患者对药物的敏感性有关。

篇3

由于遗传学在生命科学中具有不可替代的重要作用,其教学方法、教学模式的探索和研究近些年倍受关注。近年来,研究性教学在各高等院校不断地被提出,黑龙江八一农垦大学生命科学学院也把研究性教学改革不断地深入到各学科教学中去。作为遗传学教师,笔者在教学过程中不断地进行着研究性教学的实践和思考。

研究性教学是在‘‘发现学习模式”和瑞士皮亚杰的“认知发展学说”的理论基础上发展起来的,其认为学生学习的过程与科学家研究的过程在本质上是一致的,强调将教学与研究结合作为大学教学的基本思想,注重提高学生发现问题、分析问题和解决问题的能力,对培养创新型人才非常重要。研究性教学模式的核心理念是以实践中的真实问题为基础,将学生置于真实的情境中学习,培养学生的学习能力、创新能力和实践中的动手能力,增强学生对工作的适应能力,使教学与研究相统一m。研究性教学是以学生为主体,以问题为核心(PBL)去获取知识和应用知识的教学模式。研究性教学的内涵主要包括:教师把研究的思想、方法和取得的新进展引入教学活动;教师以研究的形式组织教学活动,打破原有的完整的学科逻辑和机械的顺序;学生积极参与研究之中,在研究中学习、成长,养成独立思考的气质和批判。

笔者根据研究性教学的规律及遗传学学科的特点,在教学过程中对以下几方面的问题进行了探索和实践。

1发挥学生的主动性和创造性,培养学生的思辨能力和独立思考能力

党的十指出,科技创新是提高社会生产力和综合国力的战略支撑,必须摆在国家发展全局的核心位置。要坚持走中国特色的自主创新道路,以全球视野谋划和推动创新,提高原始创新、集成创新和引进消化吸收再创新的能力,更加注重协同创新。这一论述充分体现了科技创新在经济和社会发展中的重要地位,也为高等教育提出了未来人才培养的方向。大学作为本科生培养基地,肩负着培养有创新精神和实践能力的高素质人才的重大历史使命。高校毕业生的质量直接关系到一个国家科技人才的整体实力和水平,高校教师如何改革现有的教学方法和模式,培养具有学习能力、自我创新能力的大学生,是目前教育教学过程中亟待解决的问题。

研究性教学模式具有极强的实践性。研究性教学模式特别注重教学与研究相结合,理论与实际相统一。研究性教学模式不只强调背诵、理解复述和模拟,而是注重培养学生的科学思维、自主意识、团队协作精神和工作责任心,强调培养学生获取与归纳整理信息的能力、分析解决问题的能力、展示成果与表述观点的能力。创新能力的培养不可能仅依靠获得知识,很大程度上还依赖于学生的直接经验的积累,因此切实加强研究性实践教学,对提高学生的实践能力是至关重要的。创新型人才的培养目标要求学生既要学会动手又要学会动脑;因此,教师在教学过程中要树立研究性教学为主的教学观,运用正确的教学法,积极探讨、推动教学研究和改革,培养学生主动探求知识的主体精神,动手、动脑的能力和创造性思维及创造精神。研究性教学过程从讨论问题开始,需要涉猎大量的资料,课程学习本身不仅在于学习知识,还在于掌握学习知识的方法。研究性教学以学生为主体的教学模式强调了学生在学习过程中的核心地位,教师只起引导、示范、鼓励、辅导和监控的作用,这种模式可以最大限度地调动学生学习的主动性和积极性,培养学生自主学习及独立分析和解决问题的能力。在遗传学的教学过程中可以采用问题式、讨论式、互动式课堂教学,从而达到更好的教学效果,在客观上具有一定的可行性。以学生为主体的教学模式关键在于课前的认真准备和教师在课堂上的灵活调控。

2专业知识教学和实验技术教学相结合

遗传学是一门在实验基础上发展起来的学科,尤其是现代遗传学技术的突飞猛进发展和遗传学知识的大量增加,都给学生的学习带来了一定的难度。因此,遗传学采用什么样的授课方法才能使学生掌握基本知识,提高学生的创新能力一直倍受教育工作者的关注。一些遗传学教师的教学经验表明,在遗传学授课过程中,适当地讲授遗传学研究的基本实验技术和遗传学研究材料的获得方法对帮助学生理解遗传学知识是非常重要的。例如,在介绍分子标记选择辅助育种的研究进展时,对分子标记的定义、类型、发展和每种标记的用途进行讲解,对遗传学研究材料如重组自交系和近等基因系群体的构建方法及其在基因定位和育种研究中的应用等知识进行回顾,大大增强了学生对专业知识的理解。在实验技术的教学方面,应不断地给学生介绍最新技术在遗传学研究中的作用以及不同技术在某一研究领域的时效性3。在内容上,尽量安排生动丰富且易于操作的实验项目,增加一些设计性和综合性的实验项目,尤其是近期,随着表观遗传学研究的日渐深入,适当地增加该方面的实验课程对帮助学生理解基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等表观遗传学对生物性状的改变所起的作用,可以开展表观遗传抑制剂对细胞周期调控的分析及RNA干扰基因沉默的遗传分析等实验。

3为学生提供具有时效性、权威性和新颖性的阅读材料

随着遗传学科的快速发展,研究领域不断拓宽,新技术、新成果不断涌现,任何一部教材都难以跟上遗传学快速发展的步伐,因此必须借助网络等媒体实现知识的不断更新。在教学过程中,教师可适当地借鉴〈(Science〉〉、《Nature》以及分子细胞生物学领域的一些国际权威杂志上的综述性文章作为教学中的补充内容,使学生在学习经典遗传学理论的同时,对分子遗传学和现代遗传学的发展有更深入的理解。如在研究癌症的遗传学基础时发现,一半以上癌症的发生过程中伴有p53突变。p53在正常细胞中寿命短、含量低,与细胞周期控制、DNA修复、衰老、血管生成和细胞凋亡密切相关。当p53发生突变时,细胞逃脱正常细胞生长的限制,使突变从一代细胞传到下一代细胞,这为癌症的发育创造了条件。在给学生授课的过程中,跟踪遗传学的最新研究动态,如引入p53等遗传学研究进展,可大大激发学生学习的积极性?。表观遗传学目前也是遗传学重要的补充,如乙酰化酶家族和染色体易位、转录调控、基因沉默、细胞周期、细胞分化与增殖以及细胞凋亡相关,从而对生物体的性状产生了影响。而非编码RNA不仅能对整个染色体进行活性调节,也可对单个基因活性进行调节,它们对基因组的稳定性、细胞分裂、个体发育都有重要的作用。在教学过程中,适量增加表观遗传学的知识,可以极大地丰富学生的知识量及对科技前沿知识的认识,为提高学生的科技创新能力奠定基础。

4案例式和情境式教学相结合,激发学生内在的学习动力

案例教学法(Casemedthodteaching,CMT)是根据教学目标和培养目标的要求,在学生掌握了有关的基础知识和基本理论的基础上,教师在教学过程中选择典型案例并以恰当的形式给学生展示,把学生带入一个特定情境中,在教师的指引下由学生自己依靠其知识结构和背景,在这种案例情境中发现、分析和解决问题,培养学生运用理论知识并形成技能技巧的一种教学方法5。案例教学法最大的特点就是模拟实践经验,增强学生实践的能力。遗传学教师在注重理论知识讲授的同时,要穿插与实际生活密切相关的大量案例,培养学生分析问题和动手实践等能力。

在遗传学教学过程中,注重教学内容与人类生活及人类疾病相结合,加强学生对教学内容的认识和遗传知识的深化。在讲授单基因遗传病、多基因遗传病和染色体病时,可与临床中真实的遗传病相联系,如常见的单基因遗传性疾病一白化病、苯丙酮尿症、黑尿症、先天性聋哑、高度近视,多基因遗传性疾病一原发性高血压、支气管哮喘、冠心病、青少年型糖尿病、类风湿性关节炎、精神分裂症、癫痫、先天性心脏病,染色体遗传性疾病一“21三体”综合征、猫叫综合征等。针对这些疾病,巧妙设计引导式问题,囊括大纲要求的知识点,突出遗传学的课程特色。在该模式下的教学过程中,学生不是被动地学、记忆和理解教师所教授的知识,而是在教师的指导下,将学生置于可以从不同角度看待事物的环境,问题情境便能够吸引并维持他们的兴趣,使他们积 极寻找解决问题的方法,创造性地得出结论,从而激发学生学习的内在动力。

5加强遗传学教师师资队伍建设,为研究性教学提供人才保障

过去,很多高校过于注重结果性评价而忽视过程评价,无法对教师的研究性教学能力和学生的实践能力作出公正而又科学的评价H。目前,黑龙江八一农垦大学已经非常重视研究性教学的实施,并为此做出很多努力和尝试。遗传学作为生命科学的重要课程,其教师队伍的整体水平是制约教学效果的一个重要因素。没有一支高水平的教师队伍一切将成为空谈。为了提高研究性教学水平,学校组织教师到优秀研究性教学能手的课堂上听课,通过学习其他课程的课堂教学方法、教学模式,为遗传学更好地进行研究性教学提供了教学案例。此外,学校年轻的遗传学教师可以通过培训、进修等形式提高专业水平。最后,如果想成功地进行研究性教学,授课教师必须进行学科专业的科学研究。授课教师要随时关注遗传学领域的最新发展动向,将权威杂志中介绍这门学科研究的新概念、新发现、新思路和新方法的文献综述引入课堂。这些参考文献学术水平高、内容新、难度适中,开阔了学生的视野,对他们很有吸引力。教师只有通过科研,才能真正理解本学科教材的内在联系,把握住本学科的发展趋势,及时吸纳学科内最新科研学术成果,适时地把学生引入本学科知识和科研的前沿,引导学生在科研实践中增长才智、得到锻炼,激发学生的创造欲望,通过科研、实验等手段培养学生的创新能力。

篇4

HIC-1在肿瘤发生中的作用机制肿瘤的发生通常伴随着表观遗传学的改变,包括基因甲基化、组蛋白修饰和非编码小RNA干扰等,这些改变可使基因功能发生变化,从而导致细胞恶变。事实上,异常的表观遗传学修饰是肿瘤形成的必然要素,其已成共识。越来越多的研究证明,HIC-1基因表观遗传学的改变,参与了多种肿瘤的发生。

启动子的甲基化与肿瘤的发生

一般认为,HIC-1是一种肿瘤抑制基因,在多数实体瘤和白血病中表现为表观遗传学沉默,如前列腺癌、非小细胞肺癌、乳腺癌、胃癌和肝癌、食管癌、非精原生殖细胞癌、儿童髓母细胞瘤、神经胶质瘤和室管膜瘤。应用甲基化特异性PCR(MSP)和重亚硫酸盐测序发现,人类许多实体瘤和白血病中HIC-1均表现出高甲基化。例如,Yamanaka等在研究前列腺癌的发生与7种基因甲基化的相关性时发现,HIC-1的甲基化率为99%;Eguchi等在非小细胞肺癌标本检测出33%的肿瘤组织和31%非肿瘤组织中有HIC-1启动子的甲基化,且基因的甲基化程度与肿瘤分化程度呈负相关;Fujii等对39例原发性乳腺癌组织研究发现,有26例肿瘤组织(67%)出现HIC-1基因的完全甲基化。一般认为HIC-1启动子区域的高甲基化可抑制HIC-1表达,且整个HIC-1基因的表达水平随肿瘤的发展不断降低。

HIC-1的表观遗传学失活可能促使细胞在肿瘤形成早期调整生存模式和信号通路,或调整一系列特异性转录因子的表达。将HIC-1基因人为导入该基因失活的肿瘤细胞株可明显降低肿瘤细胞的成活率。然而,HIC-1启动子甲基化也被发现存在于儿童正常脑组织、成人脑和前列腺上皮组织中。此外,在已确诊的急性白血病和慢性粒细胞性白血病慢性期的病人中,仅有少数病人出现HIC-1甲基化。但在复发的急性淋巴细胞白血病和急转的慢性粒细胞性白血病病人中,HIC-1均表现出高甲基化。故HIC-1甲基化已被认为是造血系统肿瘤的晚期事件,提示降低HIC-1的表达可能存在其他机制。通过以上例证说明,HIC-1启动子区域的甲基化程度与肿瘤的发生、发展有密切关系。干预肿瘤细胞HIC-1启动子甲基化,有可能对抑制肿瘤的发生、发展具有积极作用。

HIC-1与p53抑癌基因的协同作用

HIC-1识别的一个重要靶点是SIRT1(thesilentmatingtypeinformationregulationhomolog1),该基因编码一种去乙酰酶。SIRT1可使p53去乙酰化,降低p53基因对细胞凋亡和(或)增殖的调节能力。据报道,在正常生理情况下,HIC-1能抑制SIRT1转录,进而抑制p53去乙酰化;但在肿瘤细胞中HIC-1表观遗传学的失活,导致SIRT1水平升高。p53因去乙酰化作用而失活,促使细胞抵抗凋亡而成活。另外,HIC-1的启动子区域存在PRE,意味着HIC-1是p53的直接靶基因,p53能激活HIC-1的转录而不依赖于其甲基化状态。因此,这个p53/HIC-1/SIRT1调节通路是HIC-1作为肿瘤抑制基因发挥作用及其与p53协同作用的重要途径。

HIC-1与p53的双杂合性缺失模型进一步证实了HIC-1以及HIC-1与p53协同作用在肿瘤发生、发展中的意义。Chen等研究发现,HIC-1+/-小鼠在老年时期发生一系列具有性别依赖性的恶性肿瘤,HIC-1+/-p53+/-小鼠骨肉瘤的发生率(35%)较p53+/-小鼠(20%)高,且具有年龄依赖性。在64只HIC-1+/-p53+/-小鼠中发现5例乳腺肿瘤(4例腺鳞癌,1例肌上皮瘤)及7例卵巢肿瘤,在p53+/-小鼠中仅发现1例卵巢血管肉瘤,而在HIC-1+/-小鼠中未发现上述肿瘤。

HIC-1在肿瘤发生中的其他作用机制

最近研究表明,肿瘤细胞中HIC-1的失活能使成纤维细胞生长因子结合蛋白1表达增加,从而导致血管形成或增生。Zhang等发现,HIC-1能调节ephrin-A1(EFNA1)基因的直接转录,从而抑制上皮肿瘤的形成。另外,实验结果表明,HIC-1是一种新的细胞生长调控机制中的核心分子,这种HIC-1介导的信号通路的中断将导致异常细胞增殖和肿瘤形成。Boulay等发现,肿瘤发生过程中HIC-1的缺失通过上调乳腺上皮细胞中β2肾上腺素能受体的表达促使肿瘤转移。此外,HIC-1还是调节细胞生长及凋亡关键基因的中心转录调节因子,在髓母细胞瘤中HIC-1对Hedgehog信号通路具有抑制作用,在干细胞功能中HIC-1能调节Wnt信号通路。

HIC-1在肿瘤治疗中的意义由于HIC-1基因受p53基因调控,而p53基因又是迄今报道人类肿瘤中突变频率最高的基因之一,且目前报道的p53基因突变肿瘤中有75%以上为错义突变,致使p53基因功能丢失,因此,通过活化其下游HIC-1作为靶点,是p53基因突变肿瘤治疗的有效选择;而对于野生型p53肿瘤,若联合HIC-1靶点干预可能效果更佳。在许多实体瘤及白血病中,由于HIC-1启动子甲基化导致HIC-1沉默或低表达,DNA甲基化状态可用DNA甲基化酶抑制剂消除。因此,HIC-1成为DNA甲基化酶抑制剂5-氮杂-2-脱氧胞苷(5-Aza-2`-deoxycytidine,Decitabin,5-CdR)的治疗新靶点。Nicoll等研究发现,通过5-CdR恢复HIC-1功能有可能改善乳腺癌病人的预后。另有研究表明,5-CdR的联合应用可增强头颈部鳞状细胞癌的放射治疗效果。另外,Eggers等通过临床研究发现,HIC-1可作为预测肾癌病人无复发生存率的独立因子。因此,深入研究HIC-1基因的功能与作用机制,将有助于应用靶向药物治疗肿瘤。

篇5

现代医学的研究已经证明,人类的健康取决于人的遗传结构及其与周围生活环境相互作用的平衡。当这种作用达到平衡时,人类处于健康状态,当这种平衡被打破时,人类就出现疾病[1]。将人类疾病按照环境与遗传因素作用的大小来分,可以分为三类,第一类完全由环境因素引起的疾病,如外伤、食物中毒和非正常死亡等;第二类完全由遗传因素引起的疾病,如白化病、进行性肌营养不良等;第三类即由环境与遗传因素共同起作用而引起的疾病,即通常称为复杂疾病。现代医学认为除第一类疾病之外,人类所有疾病的发生、发展和转归都与遗传物质(DNA)的直接或间接变化相关。全球人类基因组计划(HGP)的总负责人、美国著名学者Fran-cisCollins认为现代医学的发展已经进入基因组医学时代(theeraofgenomicmedicine),遗传医学正逐步融入医学科学的主流(mainstream)[2]。一般而言,某一致病基因被发现后,几个月内即可用于临床诊断疾病,而疾病相关基因也只需要2-3年就可用于评估患病风险。应用分子生物学技术进行常见疾病如感染性疾病、遗传性疾病和恶性肿瘤等的诊断,已成为国外医疗机构的常规项目,也是衡量一个城市和地区整体医疗水平的重要指标。在现代医学的教育体系中,医学遗传学渗透到了分子生物学、生物化学、病原生物学、胚胎学、生理学、肿瘤遗传学、药物遗传学、遗传毒理学、细胞遗传学、行为遗传学、表观遗传学和发育生物学等许多相关学科,在基础与临床之间起着一座桥梁的作用,是一门桥梁学科[3]。基于科学技术与医学遗传学迅猛发展的今天,怎样在医学生中开展医学遗传学的教学值得深思。

1合适的教材是教学之根合适的教材是课堂教学的重要保证。国内有许多遗传学专家,其各自编写了不同层次的教材,各有优势,各具特色。例如夏家辉主编的研究生用教材(人卫版)、李璞主编的面向21世纪医学遗传学教材(协和医大版)、陈竺主编的7年制规划教材(人卫版)、傅松滨主编的普通高等教育“十一五”国家级规划教材全国高等医学院校教材、左及主编的5年制统编教材(人卫版)、孙开来主译的由Collins等人撰著的医学遗传学原理(科学版)等,对我国的医学遗传学教育都起了非常重要的推动作用。我们多年来采用傅松滨主编的教材。该书言简意赅、深入浅出、图文并茂、清晰流畅,较受师生欢迎。但上述教科书也存在一定的缺憾。例如,它们均病例病案少,基本以分子遗传与细胞遗传学基础、药物遗传学、生化遗传学、免疫遗传学等主题为切入点的编写方式,使师生感到医学遗传学是将上述各学科硬拉在一起形成的学科,与临床距离远,难以激发学生学习兴趣,不利于教师教学与学生学习。另外,现在的教材中研究前沿成果比较少,特别在临床医学中的应用即解决实际问题的内容非常欠缺,医学遗传学作为基础学科,学生却误认为在临床基本上用不到,很难碰到遗传病,即缺乏实用性的内容。因此传统的教材抑制了学生的学习兴趣、抹杀了医学遗传学在医学中的重要地位,因此急需一本以问题为先导、增加临床病例并附有病案分析的基础与临床相结合的医学遗传学教材的问世。

2高素质的教师队伍是教学之本

医学遗传学是医学基础教学的重要学科,是基础与临床相结合的桥梁学科。高素质的教学队伍是好的教学效果之本,因此,高素质的师资队伍建设显得尤为重要。高素质的教师应从以下几个方面评价:①应具有以人为本、敬业奉献的精神;②应该继续教育与培训,与时俱进,抢占信息技术的制高点;③应该具有扎实的教学基本功,包括有渊博的知识,有很好的表达水平,有较强的综合分析归纳问题的能力,有较强的组织教学能力和科研能力等。作为教师应具有很强的优化教学内容能力,因为医学遗传学的课程课时比较少,内容多,因此要精简浓缩内容。合理利用网络搜索出最近的一些医学遗传学临床病例,及时更新多媒体课件,增加动画、病例图片,提高学生学习兴趣。医学遗传学的发展非常迅速,人类基因组计划,遗传病基因诊断、基因治疗等新的研究进展不断被纳入教学范围,因此及时掌握医学遗传学的最新动态非常重要。而网络资源具备的信息量大,因此教师应该具有较强的利用网络资源的能力,使自己的课堂教学内容丰富、知识量大。多媒体课件的制作、教学设计是关键,因此,教师应该具有较强的制作课件的能力,要通过分析课件的用途,选择合适的软件,确定页面的大小等内容,制作出高质量的多媒体课件。

3教学手段方法是教学之源

传统的教学是“教师、教材、学生”三要素组成的面授填鸭式教学模式,学生的主体作用发挥不大。随着科学技术手段的日新月异,特别是网络的不断普及及素质教育的推广,除了传统的教学以外,一些新的教学方法应该不断地推进到课堂教学当中。首先,应该采用传统的教学与PBL法相结合。由于学生能力在不断地培养之中,医学遗传学课程一般设置在第一、三学期,对于刚进入大学的学生来说,独立学习的能力还欠缺,所以应该在传统教学渗透现代化的教学理念。第二,应该采用病案分析的方法进行教学。医学遗传学是中学所学生物学知识的继续与加深,特别是理科生有一定基础,如果在高等学校学习时只是简单加深,使其误以为医学遗传学知识与中学阶段的生物学知识一样,感觉在“炒现饭”,这样会磨灭学生对这门课程学习的兴趣。在现代遗传学认为“所有疾病都与遗传有关”,典型病例比较多,在讲授知识时引入病例,将学生引入特定的情景中,引导学生对病例进行分析,提出问题,并解决问题。病例教学作为一种生动直观的教学模式,既能加深学生对理论知识的理解和记忆,也有利于实现教学方式从灌输式向启发诱导式的转化,使学生能自觉、主动、创造性的学习,培养学生批判性思维的能力[4]。医学遗传学的研究对象为人类的遗传病,研究遗传因素与疾病的内在联系。因此在讲授各类遗传病时,应引入临床真实病例,使学生在分析讨论过程中理解和巩固基本概念、基础理论,不仅能激发学生的学习兴趣,而且有助于加深学生对疾病本质的认识,培养医学思维。例如,在讲授多基因遗传时,首先给出唇裂腭裂的患者照片,使学生直观感觉认识唇裂腭裂是遗传病,而且是多基因遗传病,同时选取真实病例,譬如王菲的女儿也是其中的患者,以明星效应激发学生兴趣。在课堂上引导学生逐步分析多个家系系谱,使学生理解和掌握多基因遗传病的发病特点等讲授重点和难点。第三,学生参与的互动教学模式。目前的教学模式还是属于灌输式(填鸭式),教学中应充分发挥教师的主导作用和学生的主体作用,让学生主动去学习知识,真正参与到教学活动中来。在轻松、活跃的课堂氛围中给学生提供展示的平台。例如在教学中可试行学生讲课的方法,选择一章难度较小的章节留给学生讲授,提前一周布置任务,让学生利用课余时间搜集资料,准备课件。例如染色体一章第一节染色体的形态结构与种类内容简单,学生通过查阅资料,准备课件,应该可以更好的理解这堂课的内容。由于平时的教学都是教师教,学生学,因此这种教学形式的偶尔转变有利于提高学生的学习兴趣,同时对参加讲课的学生也是很好的锻炼。最后,基于网络平台的教学应用。现在信息技术深入到我们工作学习生活的各个角落,利用网络平台进行教学势在必行,这也是近几年来教育部为培养高素质人才的要求。因此,未来高校课程必将向着信息化和网络化的方向发展。医学遗传学这门课程也应该顺应网络化的趋势。医学遗传学已经建设成为校优秀课程,我们现在着手进行了网络平台建设,该平台将为师生搭建一个医学遗传学探究式的教与学互动的网络空间,使师生在此平台上互通信息。

4科研是教学之生力军

科研工作是促进学科建设和发展与培养创新人才的基本途径,也是提高教师的业务素质及学术水平和提高教学质量的根本保证。科研能使学生学术思想活跃,课程内容理解深透,授课生动,讲解自如,能使学生真正弄懂教材内容,从而启发其学习兴趣,培养科研思维和启迪创新精神。认真钻研的教学态度能加深对知识的理解,拓宽知识面,有益于科研思路的确立和开拓科研新领域[5]。我们医学遗传学的教学团队,均为硕士以上学历,在遗传学、分子生物学、肿瘤分子生物学方面均取得了一定得成绩,这对医学遗传学的教学工作起到了推波助澜的作用,相信在教学团队的一致努力下,医学遗传学的教学与科研将踏上一个新的台阶。

篇6

关键词: 遗传学课程 “创新型灵活教学模式” 教改

遗传学是生命科学中进展最快和最为活跃的学科之一,已成为现代生命科学的共同语言和新世纪生命科学研究的前沿领域。该学科理论与技术的迅猛发展,极大地推动了整个生命科学的发展和人类进步。遗传学课程是高校生物科学、生物技术专业一门重要的专业课程之一,如何在课程教学中既注重经典遗传理论,又及时穿插本学科最新的研究进展,同时注重提高学生的综合素质,增强教学效果,这是高校遗传学教学工作者共同面对的问题。几年来,围绕培养应用型、创新型人才的办学宗旨,我院遗传学课程组教师积极进行教学改革,研究探索的“创新型灵活教学模式”在实际教学工作中取得了良好的教学效果。

1.精选、优化课程内容

适应培养应用型人才的需要,我院制订的新教学方案强化了实践环节,相应缩减了理论教学课时。同时由于遗传学的飞速发展,新概念、新理论、新成就不断涌现,知识内容不断增加,因而,要想在有限的学时内把课程的精华系统地传授给学生,就必须首先整合课程体系,精选、优化课程内容,合理处理基础知识与学科前沿知识的比例关系,突出教学重点。同时还要注意遗传学与各相关学科教学内容的衔接和纵横联系,避免重复。基于以上理念,我们略去了教材中遗传的细胞学基础、核酸的分子结构及基因的调控等与其他学科重复、交叉的内容,并将经典遗传学的内容精简,增加了端粒的结构与功能、表观遗传学等内容,从而使遗传学课程体系更加科学、完备。

2.贯穿创新理念,采用灵活多样的教学方法

“创新”,一方面要求教师在教学过程中始终奉行 “教师为主导,学生为主体”的理念,改变教师 “注入式”的教学模式,在教学方法的改革上与时俱进,构建全方位、多角度的师生互动研究型教学模式,并不断发展创新。另一方面在教学过程中时刻注意教会学生学习,着重培养学生的创新意识和创新技能。

“灵活”要求教师在教学方法上不采用单一的模式,而是根据具体教学内容,灵活地应用多种教学方法,包括讲授法、自学法、讨论法、归纳法、比较法、推理法、抽象概括法等。如:采用课前预习促使学生带着问题进课堂;连锁交换规律中的交换值与基因之间距离、连锁强度及与交换的性母细胞数之间的关系,交换值与重组值的区别,三点测验中双交换与干涉及并发系数之间的关系等内容,采用课堂讨论式教学调动学生积极参与教学过程,加强师生互动,激活学生高级认知的能力参与学习活动,使学生对新概念、新知识的掌握通过高水平的思维加工来达成,而不再依赖过多的机械记忆,有效增强教学效果;三大遗传规律的教学主要是采用启发式教学方法,引导学生深刻体会遗传学家的研究思路和技术路线及研究方法、研究结果和经验教训等,让学生有置身于科研实战环境的感觉,学会进行科学研究的基本方法,同时引导学生总结、归纳自由组合及连锁交换规律的实质,调动学生学习的主动性,培养学生的创新能力和创造性思维能力;基因显性的表现形式、伴X显隐性遗传及广义和狭义遗传力等内容,通过采用比较、启发等多种方法,启发学生思维,化难为易,促进学生对知识的理解和掌握,培养学生的创新精神及分析、解决科学问题的能力;根据课堂教学实际,适当布置课后练习,使基础题突出代表性,能力题突出综合性,并定期开展课外习题辅导,培养学生理论联系实际、灵活应用知识的能力。

3.紧跟学科前沿,启发学生的创新思维

随着21世纪生命科学的飞速发展,遗传学研究前沿不断拓宽和深入,因而遗传学的教学也面临新的挑战,首要的问题就是知识的更新。在遗传学教学中,要随时注意结合最新的研究进展,把学生的思维引导到研究前沿,从而营造一种微妙、温馨,令人产生创新冲动的课堂氛围,鼓励学生运用已有的知识和技能去想象、推测、讨论,并在课后积极主动地跟踪、查阅新知识,极大地启发学生的创新思维。活跃的课堂气氛也能够感染每一位学生,从而轻松实现教学相长。

除此之外,我们要求教师将教学、科研成果随时融入课堂教学,充分利用教师的科研实力,拓展学生专业知识领域,强化学生综合素质的培养,体现教学、科研成果在教学中的应用,促进教学质量的提高。针对遗传学的研究热点,给学生提供一些信息,指导他们通过图书馆和网络,选择与课程内容相关的专题研究,补充课堂之所学。在此过程中使学生培养兴趣、开阔眼界,学会主动获取知识、应用知识和解决问题,以培养学生研究性学习的兴趣和能力,引导学生的发散思维,增强学生参与知识建构的积极性和自觉性,培养学生的思维能力、观察能力和运用能力。主讲教师以电子邮箱或QQ群作为师生交流的平台,及时最新教学材料和通知,并解答学生的疑难问题。同时,配备青年教师为课程助教,在课程主讲教师指导下负责学生习题 、课外辅导、课程网站建设及参与组织各项实践教学活动,综合运用教学团队的力量,更好地实现本课程的教学目标。

4.强化实验教学,改革实验考核方式

强化实验教学有助于开发学生的潜能,培养学生的动手能力和创新能力。因此,要培养实践能力强的应用型人才,首先要重点突出人才培养方案的实践性。为此,我们整体优化了实验教学内容,精选基础性实验,革新验证性实验,拓展综合性、分析性、探索性和创新性实验。在完成基础实验的同时,将一些实验内容综合,并增加自选性实验和自我设计实验,以最大限度地培养学生的综合实验能力和创新能力。实验室要面向学生开放,实现实验教学的资源开放、时间开放、内容开放,增强实验教学效果,提高资源利用率。

实验考核由注重实验结果转变为注重实验过程。实验指导教师不仅要客观、公正地给出学生实验成绩,而且要指出其存在的问题及解决的办法,注重学生动手能力的培养,提高学生学习的积极性和主动性,提高其分析和解决问题的能力,增强实验教学效果,增强学生的综合素质。实验考核包括平时考核和期末考核两部分。平时考核的内容包括实验预习、实验操作、实验态度及纪律、实验报告等环节,这部分成绩占该实验课总成绩的60%;期末考试(包括实验操作、技能、实验理论等)占该实验课总成绩的40%。

篇7

江赐忠,美国衣阿华州立大学遗传学博士,同济大学特聘教授、博士生导师。先后获得教育部“新世纪优秀人才”、上海市科委“浦江计划人才”、上海市教育发展基金会“曙光计划人才”、上海市教委“东方学者”荣誉称号与资助。在Nature、Genome Research、Nucleic Acids Research等著名国际学术期刊上发表SCI收录论文37篇,单篇论文已被引用超过400次。出版国际英文专著的一个章节。

十月,Science以“生物信息学,神秘的新职业”为题发文,“在大数据时代,这是个有趣的地方,也是令人激动的时刻。”一位教授这样评价道。

我们处在一个大数据的时代,由于高通量测序技术飞速发展,在生物医学研究中已经得到广泛应用,每天都会产生海量数据。数据量如此之大,部分是由于思维方式已经从数据的生成转变为数据的分析,因此就更需要有专家能够用高效的方式去分析挖掘,让其对科学家和临床医生具有意义,并最终惠及客户和患者。

这些海量数据就象一堆沙子,生物信息学专家就好比淘金人,要从沙子中淘出金子来。美国衣阿华州立大学遗传学博士,同济大学特聘教授、博士生导师江赐忠就是一位致力于我国生物信息学发展的“淘金者”。

兴趣成就梦想

人们常说,兴趣是最好的老师,江赐忠正是在兴趣的牵引下进入生物信息学领域的研究。

江赐忠说他每当念及童年时光,对大自然里的各种小动物都记忆犹新。夏天把抓来的萤火虫放在纸叠的灯笼里,看它们一闪一闪地发光;观注成群结队的蚂蚁有序地把苍蝇一只一只地往洞里搬,从小就爱上这绚丽多彩大自然里各种可爱的小精灵。因此小学的自然课、中学的植物学与动物学都是他最喜欢的课,他从洋葱表皮细胞显微镜观察认识了生命微观结构,由光合作用实验开始了解生命奥秘。带着对生物的喜爱与生命奥秘的好奇,江赐忠考大学时第一志愿选择了生命科学。

后来在美国读博士学位期间,对人类健康、中医药、当代科学研究方法、甚至是商业等都有很深影响的国际合作项目“人类基因组计划”正在如火如荼地进行,也带动对酵母、秀丽线虫、果蝇等其它模式生物基因组测序,产生大量基因组测序数据。加上计算机软硬件的迅速发展,逐渐产生了一门新兴的交叉学科――生物信息学。这门学科主要是结合计算机、数学、统计等方法,从海量数据中挖掘出规律与有用的信息,用于解释生物现象、阐述其机制、解决相关生物医学问题。如鉴定出某种疾病发生发展中起重要作用的基因、潜在的药物靶点等。

江赐忠所在的衣阿华州立大学在这期间成立了生物信息学专业,“我有幸加入这个专业,接受系统的生物信息学学习与技能训练。其实我一直也很喜欢计算机。通过加入生物信息学专业,正好圆了我学习计算机的梦。碰巧我的博士学位论文前半部分是做实验获得数据,后半部分主要就用计算机进行分析所得的数据。”他告诉记者。

兴趣和坚持,是通向科研成功的两颗启明星。因此,有兴趣为始,还要以毅力相伴。博士毕业后,江赐忠就开始完全转入专业的生物信息学分析。这样,他无缝过渡到生物信息学与基因组学这个领域。2007年高通量测序技术开始兴起,他参与到核小体、组蛋白等表观遗传高通量数据分析的项目中,掌握了高通量数据分析的最新技术。也正是高通量测序与染色质免疫沉淀技术的兴起,表观遗传组学研究取得突飞猛进的发展,成为当前生物医学研究热点,江赐忠也成为这个领域众多研究者的一员。

科学无国界,科学家有自己的祖国

一个国家的科研水平与实力和国家的强大息息相关。在上世纪90年代早期及之前,中国国内的工作想在《科学》、《自然》等国际顶尖学术期刊上发表基本上是个可望不可及的追求。但是,最近十几年,国内实验室的工作每年都有多篇在《科学》、《自然》、《细胞》等国际顶尖学术期刊上发表。中国正在走向世界,他最希望的是中国的生物信息科学也能够走在世界的最前列。

回国工作后,江赐忠主持参与了国家“973”重大科学研究计划项目、国家自然基金委重大研究计划与面上项目。根据中国出生缺陷防治报告,我国出生缺陷占新生儿的约5%,每年约有100万缺陷儿出生,给家庭和社会造成极大负担。导致缺陷儿的原因很大一部分与表观遗传紊乱有关。而核小体作为染色体的基本结构单元,通过开放或屏蔽DNA序列来控制转录因子与DNA结合,从而调控基因的转录表达。核小体在基因组中定位的变化与染色质结构的变化是重要的表观遗传基因调控机制。核小体的正确定位与染色质的正确结构在胚胎发育中起着重要作用,但分子机制并不清楚。

鉴于此,江赐忠团队联合了国内四家高校研究所,在生殖发育、表观遗传、与生物信息方面的杰出研究团队,一起申请到“973”重大科学研究计划项目“胚胎发育中的核小体重排与染色质重塑”。该项目结合生物信息学手段,主要从胚胎与干细胞两个层次来研究核小体定位与染色质结构变化在胚胎发育中的作用机制,以期能够获得早期胚胎发育母源驱动向合子启动转化(MZT)这一重要过程、以及干细胞全能性维持与分化中核小体定位与染色质结构变化模式及表观遗传基因调控机制,为降低出生缺陷率、提高我国人口健康水平奠定基础。

目前,项目研究已经取得一批成果。如染色质重塑酶是影响核小体定位的重要因素之一。染色质重塑酶缺失会导致果蝇胚胎发育停滞,但其分子机制并不清楚。在果蝇中Brahma由Brm基因编码。为此,他们在果蝇三龄幼虫中敲降Brm基因,以此研究核小体定位变化与全局基因表达谱变化。结果发现,Brm敲降导致整个基因组核小体占有(occupancy)变化,全局基因组上核小体密度变低。相对照,Brm敲降对核小体的位置偏移影响较小,约75%的核小体偏移少于10bp。Brm敲降对核小体定位的固定性(即相位)也有影响。核小体定位偏移、丢失与获得、相位变化都富集在基因启动子区。Brm敲降还导致了基因5’端大量区域核小体串(即3个及以上连续核小体)发生变化。

有意思的是,这些区域上的基因在发育与形态发生上有重要功能。这一定程度上解释了Brm敲降导致果蝇胚胎发育停滞的原因。这些区域上富含AT富有的转录因子的模体(motif),因此Brm敲降可能通过影响这些转录因子对DNA的结合,从而调控其靶基因活性,影响胚胎正常发育。该结果已发表在Nucleic Acids Research (2014)。

让世界关注中国

江赐忠始终认为,一个人的力量不足为奇,只有集众之力才能形成一股巨大的推动力量。他先后参加了2009年的The 16th Conversation for Journal of Biomolecular Structure and Dynamics,2010年的The 8th International Bioinformatics Workshop,2010年与2012年冷泉港亚洲会议Epigenetics, Chromatin & Transcription,2012年的International Workshop and Summer School on Crops等国际会议,同时他们也邀请了时为北卡罗来纳州大学教堂山分校(University of North Carolina at Chapel Hill)的Jason Lieb教授等国内外知名学者来校访问交流。通过这些学术交流,他们充分了解相关领域国际上的最新研究动态与现状,与国际接轨。

“生物信息学是门交叉学科,既要有牢固的生物学知识,又要有很强的数理知识与编程能力。要同时掌握这些跨学科知识与技能不是件容易的事情,这就造成这方面人才的匮乏。据我所知,我国目前设有本科生物信息学专业的高校并不多。幸运的是,我在的同济大学生命学院有开设生物信息学本科专业。因此,我国很必要加强生物信息学专业人才的培养与储备。”江赐忠对于人才的重视和渴望溢于言表。

篇8

关键词 行为遗传学;数量遗传学;分子遗传学:基因:人格

分类号 B845

1 引言

人格是一个人独特精神面貌的整体反映,是需要、动机、兴趣、态度、价值观、气质、性格、能力等多个方面的整合。它的形成和发展与遗传因素息息相关。然而,人格的遗传性究竟如何?到底哪些基因在起作用?它们又是如何起作用的?针对诸如此类的问题,行为遗传学家们试图为我们提供有效的解答,并由此形成了一个重要的研究领域,即人格行为遗传学研究。

人格行为遗传学研究就是运用行为遗传学理论和方法来考察和揭示人格特征(包括人格障碍)和人格差异的遗传基础问题。它强调遗传基因是塑造人格核心特征和造成人格个别差异的主要因素,但并不忽视环境的作用,甚至主张人格特征与人格差异是多种基因、多种环境以及基因与环境动态交互作用的结果。早在19世纪中后期,英国心理学家高尔顿(Galton,F.)就首先利用家谱法和双生子法研究了人格差异的遗传基础。尽管他的研究因未将遗传和环境区分开来而具有诸多局限,但它“为人类行为的变异范围提供了档案证明并且说明了行为变异存在遗传基础”(Plomin,DeFries,McClearn,& McGuffin,2008),是运用行为遗传学方法研究人格差异的先驱性尝试。高尔顿之后的20世纪,人格的行为遗传学研究因行为主义主流范式的盛行而长期遭到“冷遇”。前者强调人格的遗传性,而后者坚持环境论并认为人格由社会化的习惯决定,两者的矛盾在这种势力不均的情势下曾一度不可调和。

但近几十年来,行为主义的逐渐衰落和现代生物学特别是分子生物学的飞速发展分别为人格的行为遗传学研究提供了巨大发展空间和发展动力,并使它由传统的数量遗传学取向发展到分子遗传学取向。分子遗传学取向是发端于20世纪初而到20世纪末才应用于人格研究的一种新取向,它在研究方法和研究理念上都较数量遗传学取向具有革命性突破,目前正以惊人的速度发展着。可以说,人格遗传学研究进入到分子遗传学时代(Johnson,Penke,& Spinath,2011)。不过,两种研究取向在基本思路方面各有特色,在具体研究方面都取得了很多有价值的成果,积极推动了人格行为遗传学研究的复兴和发展。

2 数量遗传学取向

人格的数量遗传学(quantitative genetics)研究取向主张运用双生子研究、收养研究等设计来估计群体中遗传因素对人格表现型方差的贡献率,旨在用数量化的手段从宏观上估计某种人格变异在多大程度上是由遗传效应引起的,并考察遗传通过与环境交互作用或相关影响人格的方式以及这些效应发生的具体情境。

2.1 人格遗传率

数量遗传学衡量人格遗传性大小的核心指标是遗传率(heritability),即在某群体内观测到的人格总变异中能被遗传变异解释的百分比,它既可以揭示遗传是否影响某种人格特征又可以指明这种影响达到何种程度。人格遗传率可以用公式h2=Vg/Vp(其中h2代表人格遗传率,Vg代表遗传导致的人格变异,V。代表观测到的人格总变异)来表示,数值在0~1之间,越接近于0,说明变异越少源于遗传;越接近于1,说明变异越多源于遗传。需要指出的是,遗传率估计具有如下三个特点:第一,它具有群体特异性,仅仅适用于解释样本或群体的人格差异,而不适用于描述个体人格的遗传性;第二,它假定遗传因子和环境因子之间不存在相关或交互作用;第三,它会因测量方法和计算方法不同而有细微差别(郭永玉,2005;Larsen & Buss,2009)。

2.2 数量遗传学设计

为了把基因和环境对人格差异的贡献分离开来,数量遗传学家采用了家族研究、双生子研究和收养研究等多种研究设计。家族研究是最早用于人格研究的行为遗传学方法,但它不能将遗传与共同环境的作用区分开来,因而不能得出准确的遗传率;双生子研究是现代人格行为遗传学研究最常用的一种有效方法,它在一定程度上克服了家族研究的缺陷,但它的等环境假设和代表性也往往令人担忧:收养研究作为一种强有力的自然实验法,是“解开影响家族相似性的遗传和环境源之结的最直接方法”,避免了双生子研究中的等环境假设问题,提供了环境影响人格差异的最佳证据,但它也存在三个争议,即代表性、生前环境影响和选择性安置效应(Plomin et al.,2008)。

鉴于以上三种方法各有其长处和不足,在过去的20多年中,数量遗传学家已经开始利用家族研究、双生子研究和收养研究的组合设计来研究人格。例如,研究分开抚养的同卵双生子就把双生子研究和收养研究各自的优点进行了有效整合,并且分开抚养的同卵双生子在某种人格特质上的相关系数可以直接解释为遗传率的一个指标(Larsen & Buss,2009)。另外,随着离异和再婚现象增多而产生的继亲家庭研究,自然地综合了家族研究与收养研究的优势,也是一种有趣和有效的组合研究设计。对多组比较的组合设计,甚至简单的收养和双生子研究,现代行为遗传学通常采用模型拟合(model fitting)的方法进行统计分析,即建立一个反映各种遗传和环境因素对某种人格特质贡献大小的结构方程模型,并将其与观测到的相关进行比较,从而估计出遗传和环境的影响程度(郭永玉,2005)。

2.3 具体研究与发现

数量遗传学取向的人格研究者利用上述设计主要对人格特质、人格障碍以及态度与偏好的遗传性问题进行了考察。

2.3.1 人格特质

数量遗传学关于人格特质的研究主要涉及人格的五大特征,即外倾性、宜人性、责任心、神经质和经验开放性,其中研究最充分的要数外倾性和神经质。多数数量遗传学研究表明,“大五”人格模型中的所有因素都具有中等大小的遗传率,并且此研究结果在不同年龄段、不同性别以及不同文化背景的样本群体中具有普遍一致性(saudino,1997;Loehlin,McCrae,Costa,& John,1998)。例如,两项以双生子为被试的研究表明,神经质和外倾性的遗传率估计值分别为43%和52-54%(Wray,Birley,Sullivan,Visscher,& Martin,2007;Rettew,Rebollo-Mesa,Hudziak,Willemsen,& Boomsma,2008)。以往数量遗传学对“大五”人格的研究通常都以正常人群为被试,最近许多研究开始关注异常人群“大五”人格的遗传性问题。例如,Kendler,Myers和Reichborn-Kjennerud(2011)的研究表明,边缘型人格障碍与“大五”人格中的神经质维度存在显著的遗传正相关,而与宜人性和责任心维度存在显著的遗传负相关。Hare等人(2012)的研究表明,躁郁症患者人群“大五”人格的遗传率(23%~32%)某种程度上低于正常人群的研究结果(40%~60%)。我们固然可以推测是异常人格影响了“大五”人格遗传率的变化,但要得出确切的因果结论还需依赖未来数量遗传学和分子遗传学更加细致的综合研究。

除“大五”人格外,研究者还对活动水平(activity level)和“精神病”人格特质的个别差异进行了行为遗传学分析。活动水平是气质的一个组成元素,其个别差异出现于生命早期,并随着时间推移在儿童身上表现出稳定性。Spinath,Wolf,Angleitner,Borkenau和Riemann(2002)对300对双生子的研究表明,活动水平存在40%的遗传率。“精神病”人格特质包括权术主义、铁石心肠、冲动性不一致、无所畏惧、责备外化和压力免疫等方面。Blonigen,Carlson,Krueger和Patrick(2003)对353名男性双生子进行了研究,发现所有这些“精神病”人格特质都表现出中等或高等的遗传率。

数量遗传学研究发现,尽管不同研究设计所得出的具体数值会有所不同,但一般的人格特质都具有较高的遗传率估计值(Krueger & Johnson,2008)。

2.3.2 人格障碍

数量遗传学系统研究的人格障碍主要有精神分裂型人格障碍、强迫型人格障碍和边缘型人格障碍。精神分裂型人格障碍具有轻微精神分裂样症状,用个人访谈法和问卷法所做研究表明,它具有非常高的遗传率(Kendler,Myers,Torgersen,Neale,& Reichbom-Kjennerud,2007)。强迫型人格障碍是一种神经精神病状态,以思想、情感、观念以及行为的反复为典型症状,它所包含的五个因素即禁忌、污驰/清洁、疑虑、迷信/仪式和对称/囤积的遗传率位于24%和44%之间(Katerberg etal.,2010)。上述两种人格障碍可能是精神机能障碍遗传连续体的一部分,因为它们分别与精神分裂症和强迫焦虑症之间存在某种程度的遗传重叠(Plomin et al.,2008)。边缘型人格障碍是一种以心境反复无常、自我认同感紊乱、情绪冲动以及行为不稳定等为主要表现的人格障碍,它很大程度上受遗传基因影响。例如,对荷兰、比利时和澳大利亚三个国家5000多名双生子的数量遗传学研究表明,加性遗传效应(additive genetic effect)可以解释42%的边缘型人格障碍变异,而且这一结果具有跨性别和跨国别的一致性(Distel et al.,2008)。最近一项10年的双生子纵向研究发现,边缘型人格障碍特质在14~24岁的各个年龄段都具有中等的遗传率,且遗传率有随年龄增长而轻微上升的趋势,而这些特质的稳定性和变化受遗传因素高度影响,一定程度上也受非共享环境的影响(Bornovalova,Hicks,Iacono,& McGue,2009)。

2.3.3 态度与偏好

稳定的态度和偏好通常被看作人格的一部分,并表现出广泛的个体差异。数量遗传学家对态度和偏好的遗传性进行了饶有趣味的考察。综观多数研究可知,态度的核心特征传统主义具有中等的遗传率。例如,一项明尼苏达的双生子研究表明,传统主义的遗传率为63%;一项对654名收养和非收养儿童的纵向研究表明,遗传对保守态度具有重要影响,并且显著的遗传影响早在12岁时就已产生(Larsen & Buss,2009)。然而,并不是所有态度和信仰都表现出中等水平的遗传率,这要因所研究的态度类型而异。例如,一项对400对双生子的研究表明,对上帝的信仰、对宗教事务的参与以及对种族一体化的态度的遗传率为零(Larsen&Buss,2009)。基因似乎也影响职业兴趣或偏好。一项用修订版的杰克逊职业兴趣量表(JVIS)做的研究表明,34种职业兴趣中有30种的遗传率在37%和61%之间(schermer & Vernon,2008)。这表明,我们绞尽脑汁作出的职业选择很大程度上受到我们从父母那里继承的基因的影响。但值得我们注意的是,为什么有些态度和兴趣具有较高的遗传性,而有些态度和信仰的遗传性不明显甚至为零?或许未来的行为遗传学研究能够给出答案。

3 分子遗传学取向

人格的分子遗传学(molecular genetics)研究取向主张在DNA水平上用基因测定方法研究特定基因对人格表现型的影响效应,旨在超越传统人格数量遗传学研究仅停留在统计学层面考察遗传率的局限,而从微观层面直接鉴别对人格产生重要遗传影响的具体基因或基因组合,以精确揭示人格特征(包括人格障碍)或人格差异的根本遗传机制。

3.1 人格候选基因

已知人类基因具有数万种之多,要想从中找出对人格起作用的特定基因是件困难的事情。况且,复杂的人格或行为特质并不简单地遵循孟德尔的单基因遗传定律,而是同时受作用幅度不完全相同而又相互协同和相互作用的多个基因的影响,这就又大大增加了确定这些基因的难度。因此,研究者不可能对所有基因都进行考察,更多的是考察候选基因与人格的关系。人格候选基因(candidate gene)是被假定与某一人格特质有关的基因,通常人们已了解其生物学功能和序列,它们可能是结构基因、调节基因或在生化代谢途径中影响性状表达的基因。研究者一般通过了解相关生理机制来确定人格的候选基因。例如,用于治疗活动过度的药物常含有多巴胺,因而像多巴胺受体、多巴胺启动子和多巴胺转运体这样与多巴胺有关的基因便成为候选基因研究的目标。我们通常缺乏哪些基因是人格候选基因的强假设,因此试图将那些与具有生理作用的DNA标记有关的基因与人格联系起来的做法是很有道理的(张丽华,宋芳,邹群,2006)。

3.2 研究策略

人格分子遗传学研究者主要采用连锁策略和关联策略来寻找和鉴别对特定人格或行为特质有广泛遗传影响的具体基因。连锁策略(linkagestrategy)采取从行为水平到基因水平的“自上而下”的研究思路,它以携带某种人格特质或障碍的家系为研究对象,对连续几代人的DNA样本进行分析,以确定是否有对该人格特征影响较大的特定基因存在。由于研究者并无假定的候选基因,这种策略对定位单基因遗传特质的强效基因十分有效,但当牵涉若干个作用较小的基因时它便不再那么有效。然而,大多数复杂的人格或行为特质往往牵涉多个微效基因,于是另一种较新的关联策略(association strategy)便成为最常用的确定人格基因的策略。关联策略采取由基因到行为的“自下而上”的研究思路,通过考察拥有某种特定基因(或等位基因)的个体比没有该基因的个体在某种特定人格特质上的得分是高还是低,来确定候选基因与人格或行为特质之间的关联情况,即一种可能的因果关系。关联策略比连锁策略更容易找到只有微弱效应的特定基因,但系统性不够强。

随着人类基因组多态性研究以及SNP分型技术的发展,全基因组扫描(genome-wide scanning)逐渐成为一种标志性的分子遗传学人格研究策略(Strobel & Brocke,2011)。它主要包括对人格表现型的全基因组连锁分析和全基因组关联分析,先将人格表现型的相关位点定位于染色体某个区域,然后再进行候选基因研究或连锁不平衡分析,确定其具体基因位点。例如,一项用全基因组扫描做的研究表明,伤害回避与8p21染色体区域存在显著相关(zohar et al.,2003)。

3.3 具体研究与发现

基因主要是通过大脑中的神经递质系统来影响人格的,因而参与调节神经递质系统的基因便成为主要的候选基因。在Cloninger等人的人格心理生物模型中,新颖性寻求(novelty-seeking)、伤害回避(harm-avoidance)和奖赏依赖(reward-dependence)三种气质维度被假定分别与大脑调节不同类型刺激反应的三种神经递质系统即多巴胺(dopamine)系统、5-羟色胺(serotonin)系统和去甲。肾上腺素(noradrenaline)系统相联系。此类理论假设促使人格分子遗传学研究者们主要从这三种神经递质路径考察了基因多态性与人格之间的关系。

3.3.1 多巴胺系统

多巴胺是脑部负责快乐和兴奋的一种积极化学物质,它的缺乏会促使个体积极寻求有效物质或新异经验以增加多巴胺释放。到目前为止,人格研究中最早且最多关注的DNA标记是位于第11号染色体短臂上的多巴胺D4受体基因(DRD4)。1996年,两个独立研究小组同时在《自然遗传学》上报告了DRD4基因的3号外显子中的48-bp VNTR多态性与新颖性寻求之间存在正相关,标志着人格分子遗传学研究的初步登场(Ebstein & Israel,2009)。其中,Ebstein领导的小组运用三维人格问卷(TPQ)对124名犹太健康志愿者进行了测量,发现长重复段DRD4等位基因对新颖性寻求具有6%的解释效应,而未发现它与另外三个TPQ指标(奖赏依赖、伤害回避和坚持性)有显著关联(Ebstein et al.,1996);Beniamin领导的小组运用大五人格量表修订版(NEO-PI-R)对315名美国成人和兄弟姐妹进行了预测测量,也发现拥有长重复段DRD4等位基因的个体比拥有短重复段DRD4等位基因的个体新颖性寻求水平显著高,并且发现长重复段DRD4等位基因与NEO-PI-R量表的外倾性和责任心两个维度显著相关,而在其他三个维度即神经质、开放性和宜人性上未见此结果(Benjamin et al.,1996)。对于这两种研究的结果可能的解释是,拥有长重复段DRD4等位基因的个体对多巴胺的相对缺乏反应敏感,需要寻求外界新异经验来增加多巴胺释放,而拥有短重复段DRD4等位基因的个体倾向于对脑中已经存在的多巴胺作出高度反应,无需寻求新异经验便可使多巴胺含量达到适当水平。

此后,一系列研究对DRD4基因与新颖性寻求这种人格特质之间的关联进行了重复验证,但结果并不完全一致。两项分别以德国人和日本人为被试的研究证实DRD4基因与新颖性寻求特质之间的确存在显著关联(strobel,Wehr,Michel,&Brocke,1999;Tomitaka et al.,1999);Burt等人对明尼苏达137个双生子家庭所做的研究发现,DRD4基因与新颖性寻求测量指标之间不存在任何关联(Bun,McGue,Iacono,Comings,&MacMurray,2002);Ekelund等人则得出了与1996年研究相反方向的结果,即在新颖性寻求水平较高的群体中,2次和5次重复等位基因而非7次重复等位基因的频率更高(Ekelund,Lichtermann,Jarvelin,& Pelmnen,1999)。除此之外,有些研究还发现DRD4基因与其他人格候选基因存在联合效应。一项关于1岁新生儿对新异事物反应的研究发现,DRD4基因中的48-bp VNTR与5-羟色胺转运体基因(5-HTT)中的一种多态性存在联合效应(Lakatos et al.,2003)。之所以会出现如此多样的研究结果,可能与样本大小、被试特点(年龄、性别和种族文化等)、测量工具、研究设计等因素有关。例如,分组方法不同所得研究结果就会有很大差异(Tsuchimine et al.,2009)。不管怎样,这都有待于进一步研究证实。

除DRD4基因外,研究者还对多巴胺系统中的其他人格候选基因进行了考察,如多巴胺D2受体基因(DRD2)、多巴胺D3受体基因(DRD3)、多巴胺D5受体基因(DRD5)以及多巴胺转运体基因(DATl)等。一项用多种人格测验所做的研究表明,DRD2基因的-141C插入/缺失多态性与卡氏人格量表(KSP)测量的冷漠以及北欧大学人格量表(SSP)测量的自信缺乏之间存在关联(JSnsson et al.,2003,),而利用气质性格量表(TcI)对被试所做的一项研究表明,-141C插入/缺失多态性和DRD2/ANKK1基因的TaqlA多态性与人格特质之间可能并非存在直接强相关,而是在DRD2基因与ANKKl基因的交互作用条件下才对人格产生影响(Tsuchimine et al.,2012)。在一个由862名个体组成的样本中发现DRD3基因与神经质和行为抑制存在关联,而当该样本扩大到1465人时这种关联未得到验证(Henderson et al.,2000)。有研究表明,DRD5基因可能与人格的持续性发展有关(Vanyukov,Moss,Kaplan,Kirillova,&Tarter,2000)。由于发现DAT1基因与具有某些新颖性寻求特征的注意缺陷多动症(ADHD)存在关联(Jorm et al.,2001,),有人用极端分数个体为被试考察了DATl基因与新颖性寻求之间的关联,结果表明这种效应只在女性被试身上有所显现(van Gestel et al.,2002)。

3.3.2 5-羟色胺系统

5-羟色胺作为一种生物胺,对于人类的攻击性、抑郁、焦虑、冲动、幸福感等情绪情感具有重要调控作用。此系统中最经常被研究的人格候选基因是5-羟色胺转运体基因(5-HTT),该基因越长释放和回收5-羟色胺的效率越高,已有许多研究考察了它与伤害回避等焦虑类人格特质之间的关联。5-HTT基因具有两种多态性:5-HTT基因连锁的多态性区域(5-HTTLPR)和5-HTT基因2号内含子中的VNTR多态性,其中人格研究关注最多的是5-HTTLPR。

1996年的一项经典研究发现,短5-HTTLPR等位基因携带者较长5-HTTLPR等位基因携带者在神经质和伤害回避维度上的表现水平更高(Lesch et al.,1996)。功能性磁共振成像表明,携带一个或两个短5-HTTLPR等位基因复本的个体在对恐怖刺激的反应中表现出更强的杏仁核神经元活动(Harid et al.,2002)。这种由遗传导致的杏仁核对情绪刺激的兴奋性差异支持了该结论。不过,也有一些其他研究并未发现此种关联(Flory et al.,1999;Tsai,Hong,& Cheng,2002)。还有一些研究得出了相反结果。例如,使用极端得分个体做的一项研究发现,短5-HTTLPR等位基因在低伤害回避群体中比在高伤害回避群体中出现的频率更高(van Gestel et al.,2002)。2004年的一份元分析指出。这种可重复性的缺乏很大程度上是由于样本量过小以及所使用的量表不同而导致(Sen,Burmeister,& Ghosh,2004)。分析者发现,运用大五人格量表测量的神经质与5-HTTLPR有显著关联,而运用气质性格量表测量的伤害回避与5-HTTLPR不存在任何显著关联。2008年的另一份元分析也得出了类似结论(Munaf6 et al.,2008)。然而,使用NEO-PI-R量表对4000多名被试进行的一项大型研究发现,5-HTTLPR与神经质或其各维度(焦虑,抑郁,愤怒,敌意,自我意识,冲动。易受伤害性)之间不存在任何关联(Terracciano etal.,2009)。近年来,有研究者发现,与其杂合子同伴或短等位基因的纯合子同伴相比,具有长5-HTLPR等位基因的纯合子个体通常更关注积极情感画面,而选择性地回避一同呈现的消极情感画面(Fox,Ridgewell,& Ashwin,2009)。这表明他们通常更加乐观。使用信息加工眼动跟踪评估法进行的另一项研究发现,短5-HTLPR等位基因携带者在视觉上更加偏爱积极场景而回避消极场景,长5-HTLPR等位基因的纯合子个体更加无偏地看待情绪场景(Beevers,Ellis,Wells,& McGeary,2009)。这表明,短5-HTLPR等位基因携带者可能比长等位基因纯合子个体对环境中的情绪信息更加敏感。对于5-HTLPR与人格特质之间关系的这些看似不一致的结论,还有待进一步研究确证。此外,一项最新研究显示,5-HTLPR与Val66Met两种多态性对伤害回避存在显著交互作用(Ariaset al.,2012)。

除5-HTT基因外,研究者还对5-羟色胺系统中的另外两个人格候选基因5-羟色胺2A受体基因(5-HT2A)和5-羟色胺2C受体基因(5-HT2C)进行了考察。有研究者在双极性精神障碍患者和健康控制组群体中检验了5-HT2A的1号外显子中的一种单核苷酸多态性与伤害回避维度之间的关联,但是没有发现任何关联存在(Blairy et al.,2000)。还有研究者以健康日本人为样本对5-HT2A的5种单核苷酸多态性进行了考察,没有发现它们与气质性格量表的任何维度存在关联(Kusumi et al.,2002)。就5-HT2C与人格的关系而言,研究者发现5-HT2C中的一个点突变与三维人格问卷的奖赏依赖维度和坚持性维度存在关联,并且DRD4与5-HT2C对奖赏依赖存在显著交互效应(Ebstein et al.,1997)。然而,后来的一项重复性研究发现,5-HT2C对奖赏依赖不存在主效应,但DRD4与5-HT2C对奖赏依赖确实存在显著交互效应(Kühn et al.,1999)。

3.3.3 去甲肾上腺素系统

在人格的分子遗传学研究中,人们对去甲肾上腺素系统的关注远不及对多巴胺系统和5-羟色胺系统的关注多,但也取得了一些研究成果。有研究以健康被试为样本,考察了去甲肾上腺素转运体(NET)的一种外显子限制性片段长度多态性(RFLP)与气质性格量表中各维度之间的关系,但没有发现任何关联存在(Samochowiec et al.,2001)。不过,另一项以朝鲜人为被试的研究表明,去甲肾上腺素转运体的T-182C基因多态性与气质性格量表的奖赏依赖维度存在显著关联(Ham,Choi,Lee,Kang,& Lee,2005)。有研究表明,在中国人被试中,αla肾上腺素受体基因(ADRAlA)和0c2a肾上腺素受体基因(ADRA2A)的多态性与三维人格问卷各维度之间不存在任何关联(Tsai,Wang,& Hong,2001)。而之前的另一项研究发现,ADRA2A的一种常见单核苷酸多态性与易怒性、敌对性和冲动性诸测量值之间的确存在某些关联(comings et al.,2000)。关于去甲肾上腺素系统的诸候选基因与人格之间关系的研究,有待进一步加强。

4 总结与展望

行为遗传学通过数量遗传学和分子遗传学两条取径对人格遗传性问题进行了不同层次的详细探索,取得了较为丰富的研究成果,推进了我们对人格遗传程度和遗传机制的深刻认识,也有利于促进人格研究的科学化。人格行为遗传学研究的两类取向各具优势和不足。数量遗传学取向借助生态研究设计从宏观上估计遗传变异对人格差异的解释程度,资料获取经济简单、技术要求低,并且结果解释相对容易,但它无法确切地告诉我们究竟哪些基因或多态性导致了人格差异以及具体作用过程如何(Parens,2004),对研究设计和被试取样的依赖性较强,况且面对遗传与环境实际存在相关或交互作用的不争事实,遗传率的解释意义往往遭到质疑(Lerner,2011)。分子遗传学取向摆脱了数量遗传学取向存在的诸多不足,可以从DAN水平精确细微地探知造成人格障碍或差异的特定基因及其作用机制,但研究程序繁琐复杂,对新兴生物技术要求较高,在人格候选基因的选择上带有推测性,迄今为止尚未产生符合最初预期的可重复的实质性人格研究成果(McClellan & King,2010)。除此之外,两类研究取向还存在诸多共同的问题:一是受测量手段限制,对被试自陈报告依赖性高,往往会造成某些人格特质在防卫或伪装心理作用下被隐藏;二是由于研究设计和技术、被试取样、人格和基因自身复杂性以及环境与基因的交互作用等原因,研究结果的可重复性不高(Kim & Kim,2011);三是受过去百余年消极心理学研究传统的影响,所研究的对象主要是精神分裂症、抑郁症、多动症等病理人群(张文新,王美萍,曹丛,2012),缺乏对健康人群积极人格品质的遗传研究;四是研究成果的现实利用率低,未能把研究所得成果及时有效地转化为现实效益。

鉴于人格行为遗传学研究所存在的诸多问题,未来研究应特别注意以下五个方面:

(1)强调两种研究取向的有机结合,在数量遗传设计中加入对特定基因型的直接测量。这两种研究取向各有优缺,可以相互弥补,况且分子遗传学的许多工作需用传统数量遗传学设计综合考虑环境与遗传因素来完成。未来研究可以在数量遗传设计中加入对特定基因型的直接测量,例如,可以先用数量遗传学方法确定某种人格特征是否具有遗传性以及遗传到什么程度,然后再用分子遗传学方法从根本上细微探究影响人格的具体基因及其作用方式。

(2)注重多学科和多范式的有效整合。人格的行为遗传学研究是一项综合性很高的困难工作,涉及遗传学、心理学、生物学、神经科学、医学和社会学等多门学科,因此需要在更广泛的视野下进行多学科的整合研究。人格的遗传机制相当复杂,靠单一研究工具(如自陈问卷)或研究范式很难获得理想结果,今后应在传统研究范式的基础上综合采用脑成像、诱发电位、前脉冲抑制和计算机博弈模型等一些新的研究范式,从多个角度综合考察和相互印证人格与基因的关系,从而弥补由自陈报告带来的弊端,同时克服可重复性低的问题。

(3)扩大对健康人群积极人格品质的研究。未来人格行为遗传学研究不仅要研究病理人群的消极人格品质,而且更要研究正常人群甚至超常人群的积极人格品质,探究它们的遗传性及分子作用机制,为积极人格品质的培养提供遗传学依据。

篇9

关键词:基因组编辑;CRISPR-Cas9;猪;基因功能;网络调控

中图分类号:R34;S828 文献标识码:A 文章编号:0439-8114(2016)24-6510-07

最新的CRISPR(Clustered regularly interspaced short palindromic repeats)分类表将其描述为三大类型和多个亚型,结合生物化学与分子遗传学方法揭示了不同CRISPR-Cas(CRISPR associated protein)类型的特征[1],其中II型系统Cas9比其他更为简便。基于CRISPR-Cas9系统的作用原理,研究人员模拟细菌的成熟crRNA和tracrRNA,在体外人工合成gRNA(guide RNA),同样可以达到特异地切割靶标DNA,从而将该系统简化成核酸酶Cas9和人工合成的sgRNA两个组分,在靶标位点导致所期望的插入、删除或替换,由此开创了新型基因编辑技术,这是该系统的“基因工程功能”。更进一步地,通过点突变得到缺乏核酸酶活性的Cas9突变体,命名为dCas9。突变的dCas9可在gRNA的引导下,实现与DNA结合,但不能切割DNA。而dCas9具有融合异源模块的结构域,利用dCas9这3点特性,将其与一系列具有功能的异源模块融合,实现不同研究目的:转录激活与抑制、探索未知基因及其调控元件的功能、全基因组扫描等,这是该系统的“基因调控功能”。不论是基因工程/基因调控,其工作过程是相同的:gRNA通过序列互补原则将核酸酶带到基因组特定位点,使其与靶标结合。不过,基因工程与基因调控是利用Cas9蛋白的不同形式,包括野生型Cas9与人工突变的dCas9蛋白,以实现各自目的[2,3]。该技术能够快速地构建遗传改造的动物,使得在过去要花费数月或数年的工作现在只需几周完成。CRISPR技术与PCR技术类似,正在给生物工程研究带来革命性的改变,从各个方面影响着生命科学的发展[4]。目前基因组编辑CRISPR-Cas中也主要是应用Cas9系统,下面简称“Cas9系统”。

2013年初以来,Cas9系统的快速创新及其拓展应用,使其成为可替代ZFN和TALEN的第三代基因组编辑工具。2013年Science杂志将Cas9系统选为年度十大突破之一(亚军);2014年美国加州大学伯克利分校生物化学家Doudna博士和德国的Charpentier博士因此共同获得了美国硅谷“科技突破奖”与“阿尔珀特奖”;2015年被Science杂志评选为年度十大突破之首;2016年具有小诺贝尔奖之称的盖尔德纳国际奖授予了三位科学家:Doudna,Charpentier和麻省理工学院的张锋三位博士。几大公司看好Cas9系统的成果商业化前景。Editas Medicine、Intellia Therapeutics和CRISPR Therapeutics等公司已经收到数亿美元的投资。例如,2015年比尔・盖茨等大佬宣布为促进基因编辑技术的蓬勃发展,共投资1.2亿美元参与基因编辑公司 Editas Medicine的B轮融资,Cas9先驱之一张锋是该公司的联合创始人。Editas Medicine计划于2017年采用基因编辑疗法对先天性黑蒙症进行临床试验,这是一种罕见的视网膜疾病,基因突变可能导致眼睛中的感光细胞逐渐消失。据麻省理工W院Broad研究所网站最新报道,农业生物技术巨头杜邦(DuPont)公司宣布对Caribou Sciences公司进行投资,且将获得其专利在农作物使用的独家授权。而Caribou Sciences是Cas9技术首创之一Doudna博士实验室的附属公司。目前,杜邦公司正在温室中种植Cas9编辑的玉米、大豆、水稻和小麦,期望在5~10年内出售Cas9技术的产品。位于明尼苏达州圣保罗的动物生物科技公司Recombinetics正在开发同类动物,包括无须抑制牛角生长的牛和不需要被的猪。2016年6月底,美国国立卫生研究院(NIH)顾问委员会批准了一项申请:利用Cas9系统强化依赖于患者T细胞(一种免疫细胞)的癌症疗法。由于其易用性和通用性,Cas9已经被世界各地的实验室用来改写基因组和重塑细胞,其在医学和农业领域的潜在应用是无穷无尽的,它将开启该行业新一波的产品浪潮和利益追逐。根据瑞士洛桑附近的咨询机构IPStudies介绍,全球已有超过860项CRISPR专利,平均每天新增加一项专利。世界许多遗传学家和生化学家普遍认为,Cas9系统可对所有的生物进行改造,这是一项可改变生命未来的伟大技术,当然,该技术也面临许多伦理挑战。

1 CRISPR-Cas9系统的拓展性应用研究

最初的Cas9只能实现剪切的基因工程功能(CRISPR1.0版本)。每次只能执行一种功能的dCas9是CRISPR2.0。现在研究人员将突变dCas9蛋白与一系列具有功能的异源模块融合,成为能够执行多重功能的CRISPR3.0。这种平台能够执行复杂的程序,适用于研究基因网络机理和更深入探讨复杂性状/疾病[5]。

1.1 同时激活多基因表达/同时抑制多基因

Chavez等[2]设计了三方转录激活子(VP64-p65-Rta)融入dCas9,可探讨一连串基因回路对生物过程(比如组织发育或疾病发生)的影响,也可以精确指导干细胞分化,生成再生医学所需的移植器官。Konermann等[6]应用改造后的Cas9系统成功激活了十个基因,包括长非编码RNA(LncRNA)。这些基因转录效率得到了两倍以上的增长,该研究的意义在于,人们可以用这一技术在活细胞中有效启动任何基因表达[7]。Cas9系统已被成功地用于同时干扰小鼠2个基因和敲除猴与蚕的两个基因[8,9]。多位点编辑将促进多方面研究,包括上位效应的检测和基因组中物理距离非常接近的多基因操作。Ma等[10]同时靶向基因家族的多成员(多至8个位点),突变率平均为85.4%。Zalatan等[11]应用架RNA(scaffold RNA,scRNA),成功在酵母中重新定向了一个复杂的多分支的代谢通路,其中一些基因被激活,另一些基因被抑制(CRISPRa/i)。多基因的组合控制可以帮助人们灵活操纵细胞中的通路,例如,改写细胞命运或者设计代谢通路。Cheng等[5] 报道其CRISPR 3.0版本是Casilio,该系统可结合多个蛋白模块,包括基因激活、基因抑制、染色体荧光标记、组蛋白乙酰转移酶等,以实现不同的目的。

1.2 运用Cas9实施表观遗传学编辑

Kearns等[12]报道dCas9-组蛋白脱甲基酶LSD1 在鼠胚胎干细胞中靶向转录因子Oct4的远端增强子,抑制Oct4转录并失去多能性。许多酶能以不同的机制催化DNA去甲基化,其中,TET(Ten-Eleven Translocation dioxygenase)双加氧酶家族有3个成员:TET1、TET2和TET3,催化的5-甲基胞嘧啶氧化,可启动DNA的去甲基化。Xu等[13]首先向传统sgRNAs中插入两个拷贝的噬菌体MS2 RNA元件,构建了修饰后的sgRNA2.0,这有利于Tet1催化结构域(TET-CD),与dCas9或MS2外壳蛋白融合,以靶向基因位点。结果证明,dCas9/sgRNA2.0指导的去甲基化系统能有效地将靶基因去甲基化,可显著上调靶基因的转录,包括RANKL、MAGEB2或MMP2,而且这结果与它们启动子中相邻的CpG岛的DNA去甲基化密切相关。类似的工作与结果也由Choudhury等[14]报道于模式抑癌基因BRCA1启动子。这些结果不仅可以帮助我们理解在特定背景中DNA甲基化如何调节基因表达的机制,而且也使我们能够控制基因表达与功能,并带来潜在的临床效益。表观遗传效应模块的汇总详见文献[15]。

1.3 运用Cas9开展高通量全基因组遗传学筛选

全基因组 CRISPR 筛选克服了传统遗传筛选的缺点,可应用于几乎任何细胞系和任何遗传背景下的筛选[16]。应用其进行遗传筛选的基础是蛋白Cas9修饰后的多种形式融合和sgRNA文库。构建Cas9高通量筛选的文库有两种:阵列文库和混合文库。(1)细胞系中开展遗传学筛选。Wong等[17]创建了Cas9与CombiGEM结合的平台技术,可展望,该平台有着广泛的应用前景,加速系统鉴定控制人类疾病表型的遗传组合,并转化到新药物组合的发现。(2)体内开展遗传学筛选。Ma等[18]将活化诱导胞嘧啶核苷脱氨酶(AID)与dCas9融合成为dCas9-AIDx,在慢性粒细胞中靶标BCR-ABL,鉴定了赋予细胞伊马替尼抗性的已知突变和新突变。Zhu等[19]开发了配对的gRNAs(pgRNAs),产生大片段缺失,应用这种高通量方法确定了51条功能性的lncRNAs,并验证了其中的9个。该方法使科学家们能够快速识别哺乳动物非编码元件的功能。

1.4 光遗传学加CRISPR调控基因表达与靶DNA切割

东京大学和杜克大学基于光诱导的CRY2(色素)和CIB1(蛋白),开发出相似的光遗传学+CRISPR系统,其目的是利用光来开启和关闭基因表达,同时赋予时空控制和可逆性[20-22]。

1.5 通过荧光标记的dCas9对DNA实施标记

Deng等[23]w外构建“dCas9/荧光素”复合物作为探针,可视化基因组位点完全没有引起DNA变性,称为Cas9介导的荧光原位杂交(CASFISH)。dCas9/sgRNA能够在近着丝粒区、着丝粒、G富集端粒和编码基因等位点快速而有效地进行重复DNA元件标记,也适用于初生组织切片的检测。这种技术具有快速、有效、破坏性较少与成本低的特征,为基础研究和遗传学诊断增加了一种非常有潜力的工具。

1.6 CRISPR-Cas9系统同时实现基因工程和基因调控的双重功能

Kiani等[24]开发了Cas9系统一个新策略,能够同时实现基因组工程和基因调控的双重功能。其使用经过改造的gRNA和Cas9蛋白,在切割特定基因的同时调控其他基因的表达。这一技术大大增强了基因组编辑和基因调控的功能性,帮助我们进一步操纵细胞,以揭示重要生命过程背后的复杂机理,比如,癌症耐药性和干细胞分化,或者帮我们设计更高级的人工基因回路。更进一步地,双重功能Cas9可以促进基因工程菌株(例如大肠杆菌)大规模生产化合物和燃料。

1.7 多顺反子基因

Xie等[25]将tRNA与gRNA结合起来,开发合成了一个多顺反子基因,以提高Cas9系统的靶向能力和多重编辑效率,能够在水稻中高效实现多重基因组编辑和染色体片段删除(可达到100%)。Qi等[26]设计多个tRNA-gRNA单元,在玉米中的研究表明,该系统不仅增加靶向位点数目,也能更有效和准确地缺失染色体片段,这对基因功能的完全消除特别是lncRNAs的研究很重要。同时还表明,在一个表达盒中可容纳多达四个tRNA-gRNA单元,用来修饰同一基因家族中的不同成员或同一代谢途径中的不同调控基因。

1.8 Cas9系统应用于多能干细胞

诱导型多能干细胞(induced pluripotent stem cells,iPSCs)可无限地自我更新,而不会丧失分化成所有细胞类型的能力,且绕过了免疫排斥的障碍。iPSCs在再生医学中具有良好的前景,是用于致病突变原位校正的一种理想细胞群。将CRISPR应用到iPSCs中为纠正遗传缺陷疾病开辟了一条新途径,因为iPSCs很难采用传统的基因打靶策略进行操作,尤其是蛋白质介导的基因组编辑方法[27-30]。

1.9 染色体大片段和lncRNA编辑

Shechner等[31]介绍了以CRISPR-Cas9为基础的基因组靶向技术展示:CRISPR-Display(CRISP-Disp),将gRNA-ncRNA融合,能将大片段非编码RNA带到特定DNA位点,同时不影响dCas9的功能。CRISP-Disp系统可容纳约4.8 kb的RNA结构域,这相当于天然lncRNA的长度。除了lncRNA以外,研究人员还对各种天然和人工非编码RNA进行了测试,表明gRNA可以偶联多个非编码RNA结构域,这些结构域可同时且独立起作用。CRISP-Disp可用来解决如下问题:一个lncRN段是如何调控基因表达的?是这个片段的转录本在起作用,还是它本身的序列在起作用?揭示lncRNA在表观遗传学修饰、染色质重塑或者转录调控中做出的贡献。该系统除了研究非编码RNA机理外,对合成生物学来说,CRISP-Disp的灵活性、模块化和多重化特性是很有吸引力的。用CRISP-Disp招募RNA-蛋白复合体到特定位点,可以设计出复杂的基因调控回路。Yoshimi等[32]开发出了两种基因改造新技术:lsODN(long single-stranded oligodeoxynucleotide)和2H2OP(Two-hit two-oligo with plasmid)),来完成相对较长的DN段,如GFP(Green fluorescent protein)序列的靶向基因敲入,提高基因编辑的效率。第一种方法是利用lsODNs作为靶向供体。第二种方法是共同注射两个gRNAs作为“剪刀”切割基因组DNA和供体质粒DNA中的靶位点,两个短ssODNs作为“浆糊”连接切割位点的末端。利用开发出的两种基因改造方法,该研究小组成功实现了高效、精确敲入GFP基因,导入了近200 kb的大片段基因组区域,这是采取传统方法不可能做到的。并用人源基因替代了大鼠基因,构建出了基因人源化的动物。这两种基因敲入方法将会提高遗传工程改造的效率。研究人员高度期待这些遗传工程生物将用于药物研发、转化和再生医学等广泛的研究领域。

1.10 研究蛋白质工程

Hess等[33]开发了一种称为重利用体细胞超突变的原位蛋白质工程新技术,命名为CRISPR-X。研究人员利用dCas9召集胞嘧啶氨酶(AID)变异体,其携带有经过MS2修饰的sgRNAs,能特异地诱变内源靶标,限制脱靶伤害。它能产生不同点突变的多样文库,同时靶向多个基因组位点,结果从中找到了引发Bortezomib耐药性的已知和新突变。还利用超活化AID变异体,同时诱变了转录起始位点上游和下游的位点。这些结果均表明 CRISPR-X是一种强大的工具,能帮助科学家们创建复杂的原始遗传突变文库,分析完善蛋白质工程。

2 CRISPR-Cas9系统在猪中的研究进展

Cas9系统出现之前,已经有文献报道了其他技术的基因组编辑猪[34],现在利用Cas9系统的报道层出不穷。这里重点综述Cas9系统在猪研究中的进展,因为猪不仅提供肉食,同时其在生理学、免疫学和基因组学上与人高度相似,器官大小也比啮齿动物有优势。

2.1 功能基因研究

Su等[35]合成sgRNA时用猪U6启动子代替人U6启动子,获得更佳的打靶效率;Wang等[36]显微注射Cas9 mRNA和sgRNA至猪原核期胚胎,筛选出打靶效率最高的sgRNA;He等[37]将携带GFP和红色荧光蛋白(RFP)的Cas9质粒先后转染猪胎儿成纤维细胞,通过双重荧光筛选提高打靶成功效率;吴金青等[38]应用SSA(Single-strand annealing)报告载体,使Cas9系统对猪胎儿成纤维细胞的打靶效率提高5倍左右。八聚体结合转录因子4(OCT4)是参与调控胚胎干细胞自我更新和维持其全能性的重要转录因子之一。Kwon等[39]研究表明Cas9系统可针对孤雌胚胎实现基因OCT4的敲除和敲入。Lai等[40]构建了一个猪OCT4的报告系统,其内源性OCT4启动子可直接控制RFP,因此荧光能准确地显示内源性OCT4的激活,并获得了在内源性OCT4基因启动子下游具有tdTomato基因敲入的猪胎儿成纤维细胞(PFF)系。Cas9系统编辑的PFFs被用作体细胞核移植(SCNT)的供体细胞,在SCNT胎儿的囊胚和生殖嵴中检测到了强大的RFP表达,并制备了两头有生命力的基因编辑猪。

2.2 提高生产性能

肌肉生长抑制素(Myostatin,MSTN)基因对肌肉生长发育具有重要调控作用。Crispo等[41]、Cyranoski[42]、Wang等[43]和张冬杰等[44]利用Cas9系统获得了MSTN基因的双等位基因敲除猪。湖北省农业科学院畜牧兽医研究所Bi等[45]应用Cas9系统制备了无选择标记的MSTN基因敲除克隆猪。首先,利用Cas9系统介导的同源重组敲除猪初生细胞中MSTN的一个等位基因。然后,用Cre重组酶来切除选择标记基因,有效率为82.7%。免疫印迹显示,克隆猪MSTN大约有50%的降低,同时肌原性基因在肌肉中的表达有所增加。组织学显示,肌纤维数量增加,但是肌纤维大小保持不变。超声波检测显示,最长肌大小增加,背部脂肪厚度降低。该研究提供了一种可靠的途径用于家畜良种生产,也提出了一种策略来减少潜在的生物学风险。中国农业科学院北京畜牧兽医研究所的李奎教授领导研究团队,首次利用Cas9系统获得了位点特异性的基因敲入猪模型[46],得到一个新的基因组“安全港”位点:pH11位点,通过Cas9系统分别在细胞、胚胎和动物体内的该位点插入了大于9 kb的基因片段,实现了稳定高效的基因表达。

分化簇 163(Cluster of differentiation 163,CD163)被认为是猪繁殖与呼吸综合征病毒(PRRSV)的受体基因,分化簇1D(CD1D)是一类抗原递呈因子。Whitworth等[47]利用Cas9系统分别敲除CD163和CD1D的基因编辑猪;经过蓝耳病毒株攻毒后CD163双等位基因敲除猪未表现出临床症状,具有良好的抗蓝耳病能力。中国农业科学院北京畜牧兽医研究所利用Cas9系统进行抗PRRSV和抗猪传染性胃肠炎(PEDV)的CD163和CD13双基因编辑猪的制备,正在开展相关验证鉴定工作。这些研究在养猪业引起了高度关注。

2.3 研究人类疾病的动物模型

猪是人类医学研究极佳的动物模型。vWF(von Willebrand factor)的基因是引起人血管性血友病的主因。Hai等[48]应用Cas9系统靶向猪vWF外显子,目的基因插入/缺失突变效率达到 68.8%(11/16);单等位基因突变和双等位基因突变的vWF抗原水平均极显著低于野生型个体(P

再如,去除所有主要淋巴细胞的猪是研究人X-染色体连锁的严重联合免疫缺陷(SCID)患者病毒感染和免疫受损发病机理的理想动物模型。破坏IL2RG的猪比啮齿动物敲除IL2RG模型更接近于SCID表型。Lei等[50]利用Cas9系统快速生成双基因RAG2/IL2RG敲除猪,成功建立了人诺如病毒(HuNoV)感染的免疫缺陷的猪模型,因为RAG2/IL2RG缺陷猪缺乏B细胞、T细胞和自然杀伤细胞。Yu等[51]成功地通过Cas9系统在滇南小型猪产生人类DMD疾病动物模型。

2.4 医学生物反应器

猪除了作为人类疾病模型外,也可作为生产人类需要的产品反应器。例如,赖良学课题组利用精确Cas9系统对猪胰岛素基因进行了无痕定点修饰,3头可以分泌人胰岛素的克隆猪,其中2头完全分泌人胰岛素,而不含猪胰岛素;另一头既分泌人胰岛素也分泌猪胰岛素。牛泌乳量大、乳汁活性蛋白的产量高,因此其乳腺是理想的生物反应器,Peng等[52]通过CRISPR技术建立了人血清白蛋白的生物生产器。人成纤维细胞生长因子2(hFGF2)是一种多功能生长因子,在促进组织生长发育、新血管形成和参与组织修复过程中起着重要的作用,但其在人体内的表达量较低。Jeong等[53]借助Cas9系统将该基因导入到牛成纤维细胞的β-casein基因内含子中,为获得表达hFGF2蛋白的基因编辑牛奠定了基础。谷氨酸棒杆菌是工程化应用传统方法(同源重组)批量生产氨基酸的重要生物机体。Cleto等[54]采用CRISPRi降低该菌的基因PGI和PCK的表达高达98%,降低基因PYK高达97%,从而大大增强了L-赖氨酸和L-谷氨酸产品滴度的比率。这种新谷氨酸代谢工程方法只需要3 d时间,表明CRISPRi可用于快速且有效地代谢途径改造,而不需要对基因缺失或突变。

2.5 异种器官移植

据不完全统计,全世界大概有200万人需要器官移植,而器官捐献的数量远远低于需求数量[55]。尤其是老龄化和慢性疾病的多发,更加导致供体器官严重不足。猪被认为是人体异种器官来源的首选动物,因为猪与其他哺乳动物比较,无论从器官大小、生理结构和基因组相似度都更接近于人,因此,上世纪90年代应用猪生产人类器官项目一度在全球受到追捧,但受阻于猪内源性逆转录病毒(Porcine endogenous retrovi-ruses,PERVs)造成的重大医疗风险。哈佛大学利用Cas9系统对猪肾细胞系PK15中所有62个拷贝的PERV pol(多聚酶)基因敲除,使内源性病毒传递给人的风险降低了1 000倍以上[56]。该研究扫除了猪器官用于人体移植的安全障碍,为全世界亟需器官移植的上百万病人带来希望,也重新燃起了大家对异种器官移植的信心。

免疫排斥反应是猪器官移植另一障碍。α-1,3-半乳糖基转移酶(GGTA1)基因与异种器官移植后的超急性免疫排斥反应显著相关,Sato等[57]在猪胎儿成纤维细胞中通过Cas9系统获得了GGTA1双等位基因敲除的细胞系。Li等[58]针对3个与免疫排斥相关的基因GGTA1、胞苷单磷酸N-乙酰神经氨酸羟化酶(CMAH)和异红细胞糖苷酯合成酶(iGb3S)基因,共转染靶向这2个或3个基因的CRISPR/Cas9-PX330构质粒,最终获得了敲除单个基因及同时敲除2个或3个基因的胎儿或仔猪。利用类似的方法,Estrada等[59]对猪肝脏细胞分别敲除GGTA1、GGTA1/CMAH和GGTA1/CMAH/β4GalNT2(β-1, 4-N-乙酰半乳糖胺基转移酶2)基因。

3 CRISPR-Cas9系统的前景

CRISPR-Cas9系统在如此短的时间内极大地推动了生物学的各个方面研究,例如基因功能解析、基因治疗、人类疾病动物模型、生物生产反应器和农业动植物优质遗传育种。该技术生成的产品,定向改变但不含外源基因/片段,在验证其安全性的基础上,这种经过“基因组编辑”的产品更容易被消费者接受。理论上它不会带来健康或环境方面的风险,但是否应该受到转基因相关法律的约束,美国和欧盟的态度不一致。作为新兴的基因组编辑技术,有必要进一步完善其特异性、脱靶效应和输送方法,以及如何更好地激活细胞自身的同源重组,并探索新型基因组编辑技术及其应用,例如,新CRISPR-Cpfl系统[60]、新型NgAgo系统[61];无序列限制的DNA编辑新工具[62]、纳米颗粒技术[63]等等。

r业动植物改良从来都是一个漫长而繁琐的过程,而如今,科学家因为有了CRISPR技术能够快速而轻松地实现。近两年,许多实验室将这种工具应用在动植物和微生物中,以期获得更高产、更适应环境和更优质的品种。有理由相信,CRISPR-Cas9系统将更好的服务于人类,包括动植物育种。

参考文献:

[1] MOHANRAJU P,MAKAROVA KS, ZETSCHE B,et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J].Science,2016,353(6299):5147.

[2] CHAVEZ A, SCHEIMAN J,VORA S,et al. Highly efficient Cas9-mediated transcriptional programming[J].Nat Methods, 2015,12(4):326-328.

[3] DIDOVYK A,BOREK B,TSIMRING L,et al. Transcriptional regulation with CRISPR-Cas9:Principles,advances, and applications[J].Curr Opin Biotechnol,2016,40:177-184.

[4] WRIGHT A,NUNEZ J,DOUDNA J. Biology and applications of CRISPR systems:Harnessing nature's toolbox for genome engineering[J].Cell,2016,164:29-44.

[5] CHENG A,JILLETTE N,LEE P,et al.Casilio:A versatile CRISPR- Cas9-Pumilio hybrid for gene regulation and genomic labeling[J].Cell Research,2016,26:254-257.

[6] KONERMANN S,BRIGHAM M,TREVINO A,et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J].Nature,2015,517(7536):583-588.

[7] CHAVEZ A,TUTTLE M,PRUITT B,et al. Comparison of Cas9 activators in multiple species[J].Nature Methods,2016,13:563-567

[8] DAIMON T,KIUCHI T,TAKASU Y.Recent progress in genome engineering techniques in the silkworm,Bombyx mori[J].Dev Growth Differ,2014,56:14-25.

[9] NIU Y,SHEN B,CUI Y,et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J].Cell,2014, 156: 836-843.

[10] MA H,TU L,NASERI A,et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow[J].Nat Biotechnol,2016,34(5):28-30.

[11] ZALATAN J,LEE M,ALMEIDA R,et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J].Cell,2015,60:339-350.

[12] KEARNS NA,PHAM H,TABAK B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J].Nat Methods,2015,12(5):401-403.

[13] XU X,TAO Y,GAO X,et al. A CRISPR-based approach for targeted DNA demethylation[J].Cell Discov,2016,2:16009.

[14] CHOUDHURY S,CUI Y,LUBECKA K,et al. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter[J].Oncotarget,2016,DOI:10.18632/oncotarget.10234.

[15] LAUFER B,SINGH S. Strategies for precision modulation of gene expression by epigenome editing: An overview[J].Epigenetics Chromatin,2015,8(1):1-12.

[16] SHALEM O,SANJANA N,ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J].Nat Rev Genet,2015, 16(5):299-311.

[17] WONG A, CHOI G, CUI C, et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM[J]. Proc Natl Acad Sci USA,2016,113(9):2544-2549.

[18] MA Y,ZHANG J,YIN W,et al. Targeted AID-mediated mutagenesis(TAM) enables efficient genomic diversification in mammalian cells[J].Nat Methods, 2016, DOI:10.1038/nmeth.4027.

[19] ZHU S,LI W,LIU J,et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library[J].Nat Biotechnol,2016.DOI:10.1038/nbt.3715.

[20] NIHONGAKI Y,KAWANO F,NAKAJIMA T,et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J].Nat Biotechnol,2015,33(7):755-760.

[21] POLSTEIN L,PEREZ-PINERA P,KOCAK D,et al. Genome-wide specificity of DNA binding, gene regulation,and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators[J].Genome Res,2015,25(8):1158-1169.

[22] HEMPHILL J,BORCHARDT E K,BROWN K,et al. Optical Control of CRISPR/Cas9 Gene Editing[J].J Am Chem Soc,2015,137(17):5642-5645.

[23] DENG W,SHI X,TJIAN R,et al. CASFISH:CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells[J].Proc Natl Acad Sci USA,2015,112(38):11870-11875.

[24] KIANI S,CHAVEZ A,TUTTLE M, et al. Cas9 gRNA engineering for genome editing, activation and repression[J].Nature Methods,2015,12(11):1051-1054.

[25] XIE K,MINKENBERG B, YANG Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J].Proc Natl Acad Sci USA,2015,112(11):3570-3575.

[26] QI W,ZHU T,TIAN Z,et al. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize[J].BMC Biotechnol,2016, 16(1):58.

[27] LI H, FUJIMOTO N, SASAKAWA N, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9[J]. Stem Cell Reports,2015,4:1-12.

[28] NIU X, HE W, SONG B, et al. Combining single-strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in β-thalassemia-induced pluripotent stem cells[J].J Biol Chem,2016,291(32):16576-16585.

[29] OU Z,NIU X,HE W,et al. The combination of CRISPR/Cas9 and iPSC technologies in the gene therapy of human β-thalassemia in mice[J]. Sci Rep,2016,6:32463.

[30] SONG B, FAN Y, HE W, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system[J]. Stem Cells Dev,2015,24(9):1053-1065.

[31] SHECHNER D, HACISULEYMAN E, YOUNGER S, et al. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display[J]. Nat Methods,2015,12(7):664-670.

[32] YOSHIMI K, KUNIHIRO Y, KANEKO T, et al. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes[J]. Nat Commun,2016,7:10431.

[33] HESS G, FRéSARD L, HAN K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods,2016,DOI:10.1038/nmeth.4038.

[34] WEST J, GILL W. Genome Editing in Large Animals[J]. J Equine Vet Sci,2016,41:1-6.

[35] SU Y, LIN T, Huang C, et al. Construction of a CRISPR-Cas9 system for pig genome targeting[J].Anim Biotechnol,2015, 26(4):279-288.

[36] WANG X, ZHOU J, CAO C, et al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs[J]. Sci Rep,2015,5:13348.

[37] HE Z, SHI X, DU B. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection[J]. J Biotechnol,2015,214:69-74.

[38] 墙鹎啵梅 瑰,刘志国,等.应用SSA 报告载体提高ZFN和 CRISPR/Cas9对猪IGF2基因的打靶效率[J].遗传,2015,37(1): 55-62.

[39] KWON J, NAMGOONG S, KIM N. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development [J]. PLoS One,2015,10(3):e0120501.

[40] LAI S, S WEI, B ZHAO, et al. Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering[J]. PLoS One,2016,11(1):e0146562.

[41] CRISPO M, MULET A, TESSON L, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One,2015, 10(8): e0136690.

[42] CYRANOSKI D. Super-muscly pigs created by small genetic tweak[J]. Nature,2015,523:13-14.

[43] WANG K, OUYANG H, XIE Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep,2015,5:16623..

[44] 张冬杰,刘 娣,张 旭,等.利用CRISPR-Cas9系统定点突变猪MSTN基因的研究[J].畜牧兽医学报,2016,47(1):207-212.

[45] BI Y, HUA Z, LIU X, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J]. Sci Rep,2016, 6:31729.

[46] RUAN J, LI H, XU K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Sci Rep,2015,5:14253.

[47] WHITWORTH K, ROWLAND R, EWEN C, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol,2014,34(1):20-22.

[48] HAI T, TENG F, GUO R, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res,2014,24:372-375.

[49] ZHOU X, XIN J, FAN N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J].Cellular and Molecular Life Sciences,2015,72(6):1175-1184.

[50] LEI S, RYU J, WEN K, Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency[J]. Sci Rep,2016,6: 25222.

[51] YU H, ZHAO H, QING Y, et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy[J]. Int J Mol Sci,2016,17(10):1668.

[52] PENG J, WANG Y, JIANG J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep,2015,5:16705.

[53] JEONG Y, KIM Y, KIM E, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination[J]. Zygote,2015,22:1-15.

[54] CLETO S,JENSEN J V,WENDISCH V F, et al. Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi)[J]. ACS Synth Biol,2016,5(5):375-385.

[55] COOPER D,EKSER B, RAMSOONDAR J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol,2016,238(2):288-299.

[56] YANG L, G?BELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015,350(6264):1101-1104.

[57] SATO M, MIYOSHI K, NAGAO Y, et al. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the a-1,3-galactosyltransferase gene in porcine embryonic fibroblasts[J]. Xenotransplantation,2014,21:291-300.

[58] LI P, ESTRADA J, BURLAK C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation,2015,22(1):20-31.

[59] ESTRADA J, MARTENS G, LI P. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J].Xenotransplantation,2015, 22(3):194-202.

[60] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O ,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system[J]. Cell,2015,163(3):759-771.

[61] GAO F, SHEN X, JIANG F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nat Biotechnol,2016,34(7):768-773.

篇10

关键词:分子生物学;课程教学;改革研究;创新生物学人才

分子生物学的目标是在分子水平上阐明细胞活动的规律,从而揭示生命的本质[1]。虽然它在生物类专业课程体系中充当着重要角色,对生命科学的发展起着至关重要的作用,但是分子生物学的教学却因为课程内容多,学科交叉广,理解难度高,信息量大,知识更新快而使教学效果差强人意,集中表现为教师授课难和学生学习难。这种现状不但困扰着老师和同学,也与大学培养高素质创新型人才的目标不相适应。如何克服分子生物学课堂教学的“瓶颈”?本人在从事十多年的分子生物学教学过程中,努力研究和探索多种形式的教学改革,力求提升教学效果和教学质量。

一、教学内容的合理组织

分子生物学的教学除了选用好的教材,制定完善的教学大纲,如何组织教学内容是教学的一个非常重要环节[2]。教学内容呈现给学生的应该是完整、清晰的、有层次、条理的知识。我们在组织教学的过程中,首先从提高自身学科素养着手。“一本教材书,数种参考书”,除分子生物学国内、国外各类版本外,与分子生物学相互交叉和渗透的其他学科,如细胞生物学、生物化学、遗传学,我们也都进行了系统的学习和强化,不断夯实专业知识、拓展专业领域,基本构建了分子生物学完整的知识体系,具备了对教材处理的前提。既避免了教学中各学科的重复,也进一步凝练了知识。此外,我们还通过网络教学平台向全国优秀教师学习,在不断的探索中总结出了教学内容合理组织的一些思路。1.思维导学模式。在DNA复制教学环节,知识点多,并且较分散,很容易在教学中造成学习困难和知识混淆的现象,针对这章教学的特点,我们采用了思维导学模式,收到了非常好的教学效果。2.重点、难点解读。本科教学形式多样化,也更提倡学生的自主学习,但并不是淡化了教师的教学,反而对教师提出了更高的要求[3]。教师必须围绕每堂课的教学目的,合理组织和引导学生理解并掌握教学的重点和难点内容。比如在讲解染色体端粒末端修复机制中,教师首先要从教材的知识结构中梳理出重点。染色体端粒末端修复机制的知识点包括:(1)引物切除造成的遗传信息缺失;(2)端粒末端的特点;(3)体细胞和性细胞末端修复机制的不同;(4)DNA结构的变化;(5)端粒酶的修复机制。梳理知识点后,总结教学重点:一是引物切除后损伤修复在体细胞和性细胞中的不同;二是四链DNA结构;三是端粒酶的修复机制。其中端粒酶修复机制的讲授是学生学习的难点。难点集中在端粒酶的性质和修复发生的过程。经过对教学内容中重点和难点的准确把握和合理组织,教师才能在课堂教学中突出重点、突破难点,让学生的课堂学习无障碍。

二、教学方法和手段的改进

教学方法的推陈出新,是教学改革的重要内容[4]。为发挥学生作为教学主体的能动性,我们根据具体的教学内容设置了启发式、联想式、探究式等多种教学方法[5],让学生参与到教学过程中,不仅活跃了课堂气氛,而且在分享知识的同时,更注重教会学生灵活掌握学习的方法。

1.启发式教学。启发的目的在于举一反三,触类旁通。针对每一次的课堂教学,设计一些抛砖引玉的问题,供学生思考与讨论,这成为了分子生物学理论教学的重要组成部分。如进行到真核生物基因表达调控学习环节,提出甲基化修饰的生物学意义,这个问题覆盖范围广,涉及到了DNA复制的调节、蛋白质和DNA甲基化修饰对基因表达的调控,以及Epigenetic(表观遗传学)方面的知识。通过提出问题—讨论分析—不断启发—再讨论分析—归纳总结—解决问题这一系列的互动教学活动,充分调动了学生课堂学习的主动性和积极性,在不断的讨论分析中通过展示不同的思维、发表各自的观点,不但有利于促进学生在学习中发现问题、解决问题,而且有利于学生通过对基础知识的消化、理解来达到理论的升华、拓展[4]。

2.联想式教学。分子生物学是在生物化学、细胞生物学和遗传学的基础上发展而来[6],因此知识相互交叉、相互渗透。在授课的过程中,教师一方面要避免重复,一方面要通过联想知识点适时培养学生的发散性思维,提高学生对知识的迁移能力和整合能力。如在讲解化学修饰对基因的表达调控时,将细胞生物学中的信号转导有机结合,使学生了解基因表达调控对细胞信号转导的作用机制。

3.探究式教学。在分子生物学教学中,每一个理论知识的背后都是科学研究的重大突破。如确定遗传物质是DNA的两大经典实验,我们以探究的形式呈现教学内容,从实验设计,到结果显示,再经过讨论分析并得出结论,以课题研究的角度,研究人员的身份引导学生进入学习角色,将学科概念、理论产生的起因和过程展示给学生,启发学生努力探索,走近科学,让学生从中领悟知识形成的探究性和科学性,逐渐培养具有创新意识和能力的高素质研究型人才。4.多媒体多样化教学。分子生物学的教学内容具有微观性、复杂性、抽象性和动态性。传统的教学手段无法满足教学的需求,而多媒体技术则具有声像俱佳、动静皆宜的特点[7],是传统教学无法比拟的。多年来我们不断补充和完善教学手段,逐渐形成了独具特色的多媒体教学课件。多媒体图像处理清晰直观,文字表述简洁明了、主题突出。课件中的图像来源于国内外的网络数据平台。如讲述DNA半保留复制机理时[8],首先将DNA可能存在的几种复制方式用图像展现,并利用Meselson和Stahl设计的DNA复制同位素示踪实验和密度梯度离心实验来进行结果验证,引导学生明确掌握DNA半保留复制特点,并结合文字,通过图文并茂的多媒体课件,将教学内容中的背景知识、基本概念、基本理论,以及静态、抽象的微观知识清晰讲解。多媒体课件动静结合、声像互动。对于生命过程中动态的知识点,比如DNA的复制、RNA的转录、蛋白质的翻译过程,可以将这些复杂的生命过程利用多媒体手段做成动画并配以文字和声像,形象直观地展现给学生,既加深了学生对知识的理解,也提高了其学习效率。

三、知识领域的拓展

分子生物学的教学内容除包含基础理论知识外,还有大量理论应用的研究方法部分。我们在教学中不仅仅将知识局限在教材中,利用课堂教学不断引导学生去了解本学科相关领域内的研究热点、最新进展、发展趋势[8],以及生物技术在生产实践中的广泛应用。

1.专题讲座与专题讨论。专题讲座是教师根据教学内容,自己组织参考资料对教学内容的延伸与拓展。比如在讲授“SNP技术”时,先从遗传标记分析的发展着手,把一代、二代的标记分析做知识性的回顾,再将纳入教材的第三代标记分析“SNP”做详细的讲解,引导大家理解什么是单核苷酸多态性,核苷酸多态性研究的生物学意义以及在医学、农业、畜牧等多种领域的发展与应用。通过这种方式激发了学生的学习热情和求知欲,也使教师不断地进行知识的更新,及时了解本学科当前发展的趋势、研究的热点以及争论的问题。专题讨论则是以学生为主体,根据课程教学内容,组织学生就某一个专题自行查阅、组织文献资料,并在课堂上展开讨论[9]。比如在讲授基因重组的教学内容时,设计“转基因的利与弊”供学生讨论。引导学生思考基因工程药物和转基因动植物对社会产生的巨大影响,让知识离开课本走进生活,从而唤起学生学习的兴趣和探索未知领域的欲望。这不仅使学生更加深入、系统地理解所学知识,并且培养了学生灵活运用知识的能力[10]。

2.生物信息技术与数据库。生物信息技术已经发展成为分子生物学研究方法中不可分割的一部分,比如在“PCR技术”的专题讲座中,不仅要对实验目的、原理、操作以及应用进行讲解,还要特别对引物设计的生物信息技术进行补充,介绍学生对一些常规的生物信息技术软件Primer6.0、DNAman、Olig6.0、DNAS-tar、Cluster等有一个基本的认知度。在整个分子生物学的教学中,学生需要自行查阅和组织各种文献资料,因此,必须特别强调互联网资源运用的重要性。教师通过介绍中国知网、维普、清华同方、NCBI等几个常用资源库,使学生了解如何利用资源库进行查询,对互联网资源的熟练应用使学生的知识体系得以完善,学生通过自身的努力来提高信息收集和辨别的能力,培养了学生的自学能力。

四、教学改革中应该注意的问题

1.教师的专业修养与教学基本功。教师在教学中具有双重身份,既是一名导演,又是一名演员。作为导演,首先需要有最新的教学理念,整个教学过程中适时设问、适时讨论、适时启发。其次要有较强的课堂组织能力,根据学生的学习情况,把握课堂节奏,调动学生课堂学习激情,使教学有的放矢。否则会在教学中出现“启而不发”和论证条理不清的现象;作为演员,还要有良好的课程驾驭能力,通过教师扎实的专业知识、广泛的认知领域、全面的知识结构,呈现给学生的是一个丰盛的知识大餐,而不是一锅夹生饭。因此作为教师,必须从理论水平、科研水平、思维水平这3个方面提高教师自身的专业素质,此外,还要掌握适合自己的各项教学技能。

2.多媒体教学的合理应用。多媒体教学只是一种提高教学效果的辅助手段,是为教师的教学和学生的学习服务的,只有运用合理才可能达到好的效果。因此尽量避免在多媒体教学课件上出现过多的文字,否则多媒体成了教学活动中的主体,老师由照本宣科转变为扮演放映员和播音员的角色。学生的学习兴趣不高,教学效果也就适得其反。多媒体和传统教学只有合理地结合,取长补短,才能在课堂教学中体现出其真正的价值。总之,教学改革的目标是帮助学生建立学科知识体系,培养学生良好的科学素养,提升学生后继学习的能力。正如叶圣陶先生所说:“教师的教学,不在于给学生搬去可以致富的金子。而在于给学生点金的指头。”目前,我们关于分子生物学课堂教学改革还处于不断探索和实践阶段,除了需要不断地提高教师自身的学科修养和科研素质外,也以“夯实基础、拓展知识、增强能力、提高素质”[8]作为教学的目的和人才培养目标,努力在今后把教学工作开展得更加有生有色,为社会培养更多高素质创新型人才。

作者:武晓英 乔宏萍 张猛 吴丽华 郝雪峰 单位:太原师范学院

参考文献:

[1]朱玉贤,李毅,郑晓峰,等.现代分子生物学[M].第4版.北京:高等教育出版社,2012:1.

[2]戚晓利,张丽敏,薜春梅.分子生物学教学改革的探索[J].生物学杂志,2003,20(6):51-52.

[3]朱虹.《分子生物学》教学改革的实践与思考———启发式教学和论证型教学的综合运用[J].安徽农学通报,2010,16(1):190-192.

[4]许崇波.《基因工程》课程教学改革初探[J].大连大学学报,2005,26(6):41-43.

[5]文静,申玉华,赵冰.高等学校分子生物学教学改革初探[J].吉林农业,2013,305(8):92-93.

[6]王荣,刘勇,姜双林.高等师范院校分子生物学课程教学改革与实践[J].生物学杂志,2012,29(1):100-102.

[7]张金岭.浅谈多媒体教学[J].教育与职业,2009,(30):189-190.

[8]徐启江,李玉花.分子生物学教学改革与高素质人才培养[J].黑龙江高教研究,2007,158(6):159-161.