生物质能的优势范文

时间:2023-12-27 17:55:51

导语:如何才能写好一篇生物质能的优势,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生物质能的优势

篇1

    0 引言

    随着中国经济与社会发展的持续加速,能源资源短缺和环境污染问题日益突出。加快生物质能开发利用,开辟新型能源供应,对于缓解国家能源供需矛盾,减少化石能源消耗,有效保护生态环境,促进农村经济和社会可持续发展具有积极的推动作用。提高资源利用效率,发展可再生能源资源,加快发展循环经济,保障国家能源安全,将成为我国经济发展的一项重要战略任务。

    1 生物质能利用现状及发展目标

    1.1生物质能利用现状

    截至2006年10月,黑龙江垦区应用新型专利技术,建设了7处秸秆气化集中供气工程、3处大中型沼气工程、3700户户用沼气池、6套秸秆固化成型燃料机组、15套稻壳发电机组,建设总投资28400万元。秸秆气化工程年利用作物秸秆5800t,可节约常规能源折合标准煤900t,直接受益农户2196户。大中型及户用沼气工程年可处理畜禽粪便6万t,节约常规能源折合标准煤2200t,直接受益农户5100户。利用秸秆固化成型技术生产秸秆固化燃料年可替代原煤4200t。稻壳发电机组总装机容量达24800kW,年可利用稻壳21万t,年发电量4590万kW。应用生物质气化、固化及稻壳发电技术,提供新型清洁能源,改善了传统用能方式,提高了生活质量和用能品位,降低了生产和生活成本,防止了畜禽粪便污染,既取得了较好的经济效益,也带来了减少二氧化碳、二氧化硫、废弃物等污染物排放的环境效益,为垦区节约能源、保护生态环境走出了一条新路。

    目前存在的主要问题,一是受传统观念影响,农村能源开发利用与垦区经济社会总体发展水平差距较大,资源潜力没有得到有效开发,现代农业循环经济产业链还没有形成。二是生物质能源技术及装备处于较低水平,其可靠性和稳定性有待进一步提高。三是生物质能源项目初始投资较大,比较效益低下,难以实现市场化、商业化运作。

    1.2发展目标

    “十一五”期间,黑龙江垦区大力推进以生物质为原料的气化、固化、液化及发电工程建设,计划建设40个生物质气化站,生物质固化燃料年生产能力达到20万t、液化燃料5万t,装备20台套稻壳发电机组,装机容量4万kWh,建设2座生物质直燃发电、热电联产装置,装机容量5万kWh。生物质年利用量占一次能源消费总量的8%,发电装机容量占全国的2%。

    2 开发利用生物质能的优势与潜力

    黑龙江垦区地处东北三江平原,总面积5.62万km2。其中,耕地面积220万km2,农业机械总动力433.6万kW,总人口158.6万人,年粮食生产能力达1000万t,已成为国家重点商品粮基地和现代农业示范基地,因此,发展生物质能源具有独特优势与潜力。

    一是资源优势。黑龙江垦区年可利用作物秸秆量达800多万t。2005年末,大牲畜存栏80.5万头,生猪存栏174万头,年畜禽粪便量达622万t。集约化、规模化生产为生物质能利用提供了基础保证。有效利用作物秸秆及畜禽粪便等生物质能,可进一步调整生产用能结构、提高生活用能质量、改善当地生态环境、促进农民增收、实现农业和畜牧业可持续发展。

    二是机械化优势。现代农机装备作业区已达到160个,大马力作业覆盖面积约900万亩,农业综合机械化率达到93%,农机化总水平居国内领先,机械化作业为生物质收集利用提供了先决条件。

    三是农垦小城镇建设优势。按照垦区“十一五”规划,计划将原有2000多个生产队合并建成660个管理区,农业职工全部集中居住,住宅全部实现砖瓦化。利用小城镇基础设施完善、服务功能齐全、信息便捷的优势,使更多的农业富余劳动力向小城镇转移,壮大城镇经济规模和人口规模,为生物质利用提供了发展空间。四是典型示范优势。在国家和省有关部门积极支持下,已建成多处大中型沼气、秸秆气化、秸秆固化、稻壳发电等生物质能源示范工程项目,积累了丰富的建设经验,为生物质利用提供了技术支撑。

    3生物质能工程技术方案及可行性

    3.1大中型沼气工程

    3.1.1工艺方案

    综合考虑大中型养殖场物料特点及北方地区气候寒冷等因素,适宜采用底物浓度高、加热量小、运行费用低和沼液量少的“能源生态型”卧式池中温发酵工艺。工艺流程示意图如下(见图1)。

    3.1.2可行性

    发展大型沼气工程及沼气综合利用,是解决垦区规模化养殖粪便处理、发展生态有机农业的最有效途径。充分利用畜牧业废弃物生产清洁能源,可进一步改善农场职工生活条件,减少环境污染,探索和形成垦区“粮-畜-沼-肥-粮”的资源良性循环生态农业新模式。

    实践证明该工艺在北方地区运行稳定,产气效率平均高达0.6m3/(m3.d),沼气、沼渣、沼液应用前景广阔,具有较好的经济和社会效益,适宜在6000头猪以上的规模化养殖场及集中居民区附近建设。

    3.2秸秆气化集中供气工程

    3.2.1工艺方案

    推广使用下吸式固定床气化炉技术。下吸式固定床气化炉具有以下优点:(1)操作简便,运行可靠;(2)原料适应性强;(3)气化效率高;(4)热裂解充分,焦油含量低。工艺流程示意图如下(见图2)。

    3.2.2可行性

    以往农作物收获以后,除少量的秸秆粉碎后还田用于饲料及烧柴外,其余全部在田间烧掉,造成资源极大浪费,也给环境带来了污染。同时,随着煤炭、液化石油燃气价格不断上涨,居民生活用能成本不断增加。充分利用秸秆燃气,则可以更好地满足人们的生活需要,提高生活用能品位,带来良好的经济效益和社会效益。

    3.3生物质液化燃料工程

    3.3.1工艺方案

    根据黑龙江垦区地域及气候特点,重点发展甜高粱秸秆制取燃料乙醇。工艺流程示意图如下(见图3)。

    发展燃料乙醇有利于中国能源多元化、减少环境污染、发展畜牧养殖、增加农民收入。黑龙江垦区土地资源丰富,种植甜高粱产量高,成本低。生产甜高粱乙醇,可替代石油资源,减少车辆尾气污染,废渣废液可作优质饲料和液体肥料综合利用,是一项从种植到加工、从农业到能源的新型能源农业工程。

    目前,黑龙江垦区在已建成甜高粱良种繁育基地的基础上,又扩大试种面积3000km2,为生产燃料乙醇提供了原料保证。

    3.4生物质发电工程

    秸秆发电是一项新兴能源产业。据调查,黑龙江垦区粮食作物区25km半径内,大豆、玉米、水稻等秸秆剩余量达58万t。随着农业生产科学技术不断发展,粮食单产进一步提高,秸秆剩余量将进一步增加。发展秸秆发电,一是可以加快秸秆转化步伐,增加农民收入,实现经济协调发展;二是可以增加电力供应,拉动工业经济增长;三是可以提高资源利用效率,改善生态环境;四是可以拉动农区运输服务等相关产业发展。

    项目采用具有国际先进水平的生物质直燃发电技术,工艺系统主要包括机组、电气

    、热力、燃烧、燃料输送、水处理、除灰、采暖、通风、除尘、消防等装置。黑龙江农垦所属宝泉岭、红兴隆、建三江、牡丹江、九三等地区地质条件良好,水源充足,交通方便,电力接口便捷,可充分利用发电余热等优势,适宜建设25~50MW秸秆热电联产发电项目。

    4 发展生物质能源的对策措施

    (1)进一步加大《可再生能源法》的宣传力度。通过典型示范,提高开发生物质能源的认识,加快农村能源项目的推进和落实,形成全社会支持生物质能发展的良好氛围。

    (2)全面开展生物质能资源评价。制定农业生物质资源评价技术规范,调查生物质资源量、能源作物适宜土地资源量,选育能源作物优良品种。

篇2

[关键词] 急性肺动脉栓塞;右心功能;心电图;肌钙蛋白;B型利钠肽

[中图分类号] R563.5 [文献标识码] A [文章编号] 1672-4208(2010)21-0001-03

APE已成为我国常见心血管疾病”,在美国也是三大致死性心血管疾病之一,随着临床医师诊断意识的不断提高,肺栓塞已成为一种公认的常见心血管疾病。肺血栓栓塞症一旦发生,肺动脉管腔阻塞,血流减少或中断,导致肺循环阻力增加,肺动脉压升高,最终发生右心功能不全。右心室功能的早期诊断对于患者治疗方案的制定及其预后都极为重要。以往研究认为,右室超负荷可导致BNP或氨基末端BNP前体(NT―proBNP)及cTnI等血清标记物升高,预示患者预后较差。但上述生物标志物检测成本较高,较多基层医院并不能开展上述检测。心电图应用广泛,操作简单,成本低,在APE中有相对特异性的改变。笔者对比心电图和心脏生物标志物BNP及cTnI对于识别APE患者右心功能和短期预后的价值做了临床研究,报道如下。

1 资料与方法

1.1 临床资料选择2006年1月~2010年1月在我院住院的APE患者36例,回顾性分析心电图和心脏生物标志物与右心功能的关系。其中男12例,女24例,平均年龄58.4岁,所有患者均经肺动脉加强CT确诊。排除标准是慢性阻塞性肺疾病或肺心病,扩张型心肌病,长期右心负荷过重导致的右心室肥大。分为右心功能不全给20例,右心功能正常组16例。

1.2 研究方法所有患者均在发病24 h内行超声心动图和心电图检查,有下列1项或1项以上者认为有右心功能不全:(1)右心室扩张(胸骨旁长轴切面右心室舒张末期内径>30 mm);(2)右心室游离壁运动功能减退;(3)收缩期室间隔矛盾运动。与肺动脉栓塞有关的心电图表现:(1)胸前导联V1~V3T波倒置;(2)S。Q,T3;(3)完全或不完全性右束支传导阻滞;(4)窦性心动过速;(5)QRS波群低电压;(6)肺性P波。所有患者入院24 h内从肘静脉采集静脉血,cTnI和BNP的检测采用免疫测定法,cTnI正常

1.3 统计学方法所有数据用均数±标准差表示,连续变量采用t检验,分类变量采用卡方检验。以P

2 结果

2.1 临床特点所有患者中有20例出现右心功能不全,占55.6%,住院期间6例死亡,其中5例有右心功能不全。右心功能不全组患者的cTnI水平明显高于无右心功能不全组患者(p0.05)。见表1。

2.2 心电图表现所有患者中只有3例心电图正常,7例为房颤,2例出现肺部P波。16例(44.6%)V,~V3导联出现T波倒置,5例(13.9%)出现QRS波群低电压。有右心功能不全患者V。~V,导联出现T波倒置的比例明显高于无右心功能不全患者(P

2.3 T波的正常化和右心室功能的改善在16例V1~V3导联T波倒置伴有右心功能不全的患者中,9例住院期间出现T波逐渐正常。在这些患者中,8例患者超声心动图发现右心功能改善。说明T波的逐渐正常与右心室功能的改善有关。

3 讨论

在本研究中,我们比较了心电图特征和心脏生物标志物对识别APE患者右心室功能不全的价值。发现胸前导联T波倒置对于APE患者右心室功能不全具有很高的特异性和敏感性。

肺动脉栓塞目前已经成为重要的医疗保健问题,其发病率高,病死率亦高。引起肺动脉栓塞的血栓可以来源于下腔静脉路径、上腔静脉路径或右心腔,其中大部分来源于下肢深静脉。栓子阻塞肺动脉及其分支达到一定程度后,通过机械阻塞作用,加之神经体液因素和低氧所引起的肺动脉收缩,导致肺循环阻力增加,肺动脉高压;右心后负荷增高,右室壁张力增高,右心扩大,可引起右心功能不全。右心扩大致室间隔左移,使左室功能受损,导致心输出量下降,进而可引起体循环低血压或休克。

分析发现多数APE患者超声检查提示合并右心功能不全,且该类患者死亡率增加2倍。右心功能不全的超声诊断标准在的研究中各不相同,包括右心扩张、运动功能减退、RV/LV比值增加、三尖瓣反流速度增快等。这使超声心动图检查对于诊断右心功能不全缺乏一个共同的标准。本研究中我们采用了Kwak MH等人的标准,这也是目前大家比较公认的标准。

研究发现APE患者cTnI明显升高,与APE患者预后较差相关。一项大规模治疗试验研究数据分析,eTnI升高可使死亡的风险增加3.5倍(95%置信区间,1.0~11.9)。心室功能障碍与心肌扩张相关,心肌扩张能导致BNP的释放。APE患者BNP或氨基末端BNP前体(ArT―proBNP)水平能反应RVD严重程度和血流动力学状况。尽管BNP或NT―proBNP升高后提示预后较差,但其阳性预测值较低(12%~26%)。另外低水平的BNP或NT―proBNP提示患者短期死亡率和复杂临床结果的预后较好(阴性预测值94%~100%)。虽然上述研究发现eTnI和BNP对于识别APE患者右心室功能不全具有一定的价值,但是我们的研究却发现cTnI和BNP的水平与患者右心室功能不全并不相关。

篇3

关键词:林业生物质能源;开发利用;发展前景;利用对策

中图分类号:TK6

文献标识码:A 文章编号:16749944(2017)10016002

1 林业生物质能源的含义及优点

1.1 林业生物质能源

林业生物质能由太阳能转化而成,贮藏于林业生物质中,一般通过直接燃烧、热化学转换、生物转换、液化等技术加以利用,主要用于气化发电、燃料、供热等[1]。林业生物质是指以木本、草本植物为主的生物质,主要包括林木、林业、林副产品及废弃物、木制品废弃物等[2]。

1.2 林业生物质能源的优点

林业生物质能源在生物质能源中占据主体地位,和石油、煤炭、天然气等化石能源相比,主要有以下几点突出的优势。

1.2.1 清洁能源

传统化石能源在燃烧过程中释放大量温室气体,使大气中温室气体浓度增加,90%以上的人为排放的温室气体都由化石能源燃烧产生,大量的温室气体以及有害气体的排放无疑加重了环境的负担,使环境逐渐恶化。林业生物质能源是一N清洁能源,能有效降低CO2的排放量,并能提高能源的燃烧效率[2]。生物质能源的利用方式与转化途径多样,可通过生物转化、热化学转化以及液化转化为柴油、乙醇等燃料。

1.2.2 可持续、可再生能源

据测算,世界上煤、石油、天然气分别可开采220年、40年和60年[3],如果不开发可再生能源,人类的能源将面临枯竭。林业生物质能源可再生,能满足人类对能源日益增长的需求。

2 国内外林业生物质能源的应用现状

2.1 国外林业生物质能源应用现状

美国、芬兰、瑞典和奥地利等国家将生物质能转化为高品位能源利用已具有可观的规模,依次占该国一次能源消耗量的4%、18%、16%和10%[4],走在世界前列。

2.2 国内林业生物质能源应用现状

20世纪80年代以来,生物质能源应用技术一直受到政府和科技人员的重视。国家从“六五”计划就开始设立重点攻关项目,主要在气化、固化、热解和液化等方面展开研究工作[5~10],虽然取得了很大进步,但与国外差距还较大。随着高新技术的飞速发展,林业生物质能源工程朝着以绿色化学洁净转化为高效率、高附加值、精深加工、定向转化、功能化、环境友好化等方向发展[4]。

3 林业生物质能源的发展优势及瓶颈

3.1 林业生物质能源的发展优势

3.1.1 资源优势

我国幅员辽阔,有大面积尚未利用的适合造林的荒地。我国未利用土地现有2.45亿hm2,其中不适宜耕种的宜林荒地占23%,按利用其中20%种植高能源植物计算,每年产生的生物质量可替代1亿t标准煤[11]。而且我国林下资源也非常丰富,资源上的优势为我国大力发展林业生物质能源提供了物质保障。

3.1.2 技术日趋成熟

我国在能源林树种选择和造林模式等方面已有较为丰富的技术储备。且在转化工艺上也有突破,随着现代科技的不断发展,开发林业生物质能源的方式逐步多样化,林业生物质能源通过物理转化可得到固体成型燃料;通过化学转化可得到高压蒸汽、燃料油等;通过生物转化可得甲烷气。

3.2 林业生物质能源的发展瓶颈

3.2.1 林业生产自动化程度低

我国目前大部分地区林业生产自动化程度较低,林木采集基本依靠人工,而大多数造林地环境恶劣,加大了采集、运输难度,从而提高了成本。

3.2.2 转化成本高,转化效率低

虽然目前转化技术手段日趋成熟,但依旧面临成本偏高,投入与产出不成正比的问题,因此难以形成规模化产业,不利于林业生物质能源应用的普及。

4 林业生物质能源的利用对策和措施

结合我国具体的国情林情,针对目前我国生物质能源利用的情况,为推动林业生物质能源的大力发展,应从以下方面入手。

4.1 加大财政投入,加强政策倾斜

林业生物质能源作为能源开发的一个新兴领域,需要国家财政的大力扶持。政策引导和资金扶持是使林业生物质能源应用逐步壮大的必要条件。

4.2 充分利用企业资源,拓宽生物质资源开发的途径

利用生物质能源的开发与利用是一项高投入的工程,要实现长远的发展,除了国家的大力扶持外,还需要社会各界的支持。吸引企业资源,动员社会力量,充分发挥民间资本的力量意义重大。

4.3 加大创新力度,提高转化效率

目前由于设备以及转化方式的局限性,使得生物质能源的开发与转化成本偏高,相对来说产出较低,而技术上的创新能有效降低成本,提高转化效率。

参考文献:

[1]

张 军,丁兆柱.浅议林业生物质能源的开发利用[J].林业科技,2001(3):57.

[2]李顺龙,王耀华,宋维明.发展林木生物质能源对二氧化碳减排的作用[J].东北林业大学报,2009,37(4):83~85.

[3]徐庆福.林业生物质能源开发利用技术评价与产品结构优化研究[D].哈尔滨:东北林业大学,2007.

[4]蒋剑春,应浩.中国林业生物物质能源转化技术产业化趋势[J].林产化学与工业,2005,25(S1):5~9.

[5]袁 权.能源化学进展[M].北京:化学工业出版社,2005:165~230.

[6]周建伟,周勇,苗郁.生物质资源的能源转化技术的研究进展[J].河南化工,2005,22(11):7~9.

[7]米 铁,唐汝江,陈汉平,等.生物质气化技术及其研究进展[J].化工装备技术,2005,26(2):50~56.

[8]田成民.我国生物质气化技术研究概况[J].化工时刊,2004,18(12):19~21.

[9]张无敌,宋洪川,钱卫,等.我国生物质能源转换技术开发利用现状[J].能源研究与利用,2000(2):3~6.

篇4

一、生物质能发展的天然优势与政策法规的有效性

1.生物质能发展的天然优势

(1)生物质能可再生性能有效保障国家能源安全。生物质能通过植物的光合作用可以循环再生属于可再生能源,能有效缓解能源短缺带来的压力,促进我国能源战略科学、有效地实施, 完善能源结构,保障国家能源安全。

(2)生物质能的低污染性能有效防止全球变暖。生物质能硫含量、氮含量相对较低、燃烧过程中生成的污染物较少,因而可有效地减轻温室效应,遏制全球变暖的局面。

(3)生物质能易于储存和运输便于推广和利用。生物质能可以转化为固、液、气三种形态具有良好的可储存性,便于加工转换与连续使用,降低了成本从而更利于代替常规能源。

2.政策法规是推动生物质能发展的有效手段

尽管促进发展生物质能的发展方法多种多样,但相比较而言,政策法规措施则是一种更为有效的措施。这一方面因为法律规定人们的权利和义务,保障生物质能发展措施的有效实施,促进生物质能顺利发展。另一方面,推动生物质能发展的措施只有通过立法,上升到法律的地位,才能具有权威性,更易于贯彻执行。

二、国外在生物质能政策法规建设方面的探索

20世纪70年代~80年代世界范围内出现的能源危机促使各国积极投身于生物质能的开发研制工作,90年代后期生物质能产业基本形成,伴随着生物质能产业的蓬勃发展,相应的政策法规体系也随之建立起来。

1.德国—生物质能政策法规的探路者

(1)对生物质能政策法规采取鼓励扶持政策。德国每年安排大笔资金用于生物质能研究,示范和推广。仅2000年,财政拨款就高达5100万马克。(2)制定专门法,使生物质能产业有法可依。如2001年颁布的《生物质条例。(3)明确发展重点、制定发展计划、有序推进生物质产业发展。大力发展被的生物柴油、乙醇汽油,在《生物质条例》和2004年颁布的《可再生能源法》中都有对其进行财政支持的条款。

2.美国——完善生物质能政策法规的中坚力量

美国1999年8月美国了“关于开发和推进生物质产品和生物能源”的总统令,提出了到2010年生物质产品和生物能源增加3倍,2020年增加10倍,以及每年为农民和乡村经济新增200亿美元的收入和减少1亿吨碳排放量的宏大目标 。

2005年10月6日,美国农业部和能源部联合宣布11个生物质能研发、示范项目获得政府生物质能研发计划1260万美元的资助,加上来自私营伙伴的投入,总经费为1900万美元,集中体现了美国生物质能研究的重点领域 。

3.巴西——政策推动生物质能发展实现能源平衡

巴西把立法作为推广乙醇燃料的必要手段,通过法律形式保障乙醇燃料、汽车生产商及消费者的利益。1975年,巴西颁布法令并授权石油公司在汽油中按一定比例添加乙醇,1991年再次颁布法令,规定在全国加油站的汽油中添加20%~24%的乙醇。2006年巴西政府在历史上首次实现能源平衡,即燃料的进出口相抵。

综上所述,国外的生物质能政策法规主要有以下几点:(1)制定中长期的生物质能发展计划和发展目标。(2)对开发生物质能采取鼓励和补贴制度,费用由全国均摊。(3)以科技创新不断推动生物质能的发展。 转贴于  三、我国生物质能政策法规发展的现状及特点

1.我国生物质能政策法规发展的现状

伴随着生物质能产业的发展,中国政府也从多角度、多层次制定了包括生物质能在内的可再生能源发展政策。《中华人民共和国可再生能源法》和《中华人民共和国节约能源法》以及《可再生能源的中长期发展规划》是其代表。

(1)明确了生物质能的法律定义。《可再生能源法》第二条第一款规定:本法所称可再生能源,是指风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。明确将生物质能纳入法律规制范围之内。并于第三款排除了用直接燃烧方式利用生物质能。(2)总体上列举了支持包括生物质能在内的可再生能源发展政策。《节约能源法》第五十九条规定:国家鼓励、支持在农村大力发展沼气,推广生物质能、太阳能和风能等可再生能源利用技术,按照科学规划、有序开发的原则发展小型水力发电,推广节能型的农村住宅和炉灶等,鼓励利用非耕地种植能源植物,大力发展薪炭林等能源林。

(3)制定了生物质能的中长期发展规划。2007年6月7日国务院常委会议审议并通过了《可再生能源的中长期发展规划》,具体到生物质能方面,将根据我国经济社会发展需要和生物质能利用技术状况,重点发展生物质发电、沼气、生物质固体成型燃料和生物液体燃料。

2.我国生物质能政策法规的特点

(1)既明确了生物质能在整个能源结构中的战略地位,又规定了实现发展目标和建立市场的具体措施,易于将战略地位落到实处。(2)规定政府为生物质能发展的组织者和推动着,明确其职责所在。(3)以农村和偏远地区为生物质能发展的重要区域,凸显出我国农业大国的特点,以及政府解决“三农”问题的决心。

四、我国生物质能政策法规建设的建议

我国政府制定了一系列的生物质能政策法规,但是由于立法时间过于紧迫,立法过程过于仓促,仍然存在相当多的问题需要我们解决,政策法规完善过程任重而道远。

1.逐步完善生物质能政策法规,构建完备立法体系

尽管我国针对生物质能的发展已经出台和了一系列有关法规和政策,从总体上只是框架性的政策法规。因此,当务之急应当是制定和完善诸如《可再生能源法实施细则》等相关配套性规定,并以此为基础出台生物质能专门立法,提高政府、企业和社会的生物质能法制意识,促进相关立法的有效实施。

2.积极发展生物质能NGO,实现以政府力量为主导,NGO相配合的双层体制

我国生物质能政策法规对民间力量在生物质能发展过程中扮演的角色没有清晰界定,这样既难以全面调动民众发展生物质能的积极性,同时也使现有的生物质能NGO的行为缺乏相应的理论依据。为此NGO组织要做到以下几点:(1)明确自身定位,在充分发挥主观能动性时遵从政府的指导建议,坚持政府的核心地位。(2)动员吸收高素质人才加入NGO组织,提高NGO的整体实力,使组织运行更加制度化规范化。(3)有效发挥NGO的宣传、示范、指导作用,使政府在生物质能方面的政策法规迅速及时传达到民众中,并得到有效贯彻。

3.加大技术创新力度,降低生物质能产业化成本

我国生物质能技术创新实力较弱,当前先进的技术设备和高科技材料基本来自国外。加大技术创新力度是当务之急。为此我们要做到以下几点:(1)政府要加快生物质能源技术研究,加大开发经费的投入,为自主研发生物质能先进提供更加广阔的空间和资金支撑。(2)完善生物质能技术独立研发自主创新的基本体制建立政府民间双层生物质能源研究开发管理机构。(3)建立生物质能技术创新专项资金由政府和企业建立生物质能技术创新专项资金,提高从事科研工作的积极性。

篇5

从14下降到151名

发展生物质能符合能源战略

2010年我国已成为全球第一能源消费大国。能源结构调整中将优先发展可再生能源,生物质能由于其多种天然优势已成为可再生能源中发展前景最明朗的能源。国家能源局拟定到2015年生物质发电装机达1300万千瓦,相比2010年底约550万千瓦的生物质装机,年复合增长率约18.77%。

国外产业渐成熟,国内扶持力趋强

生物质能在北欧和美国已得到一定发展。推动其发展的政策体现在价格补贴,投资鼓励和税收优惠等方面。全国范围来看,生物质能相关产业目前仍处在政策引导扶持期。从《可再生能源法修正案》的颁布到产业扶持政策的不断出台,规范和扶持行业有序加速发展的产业政策力度逐渐加大。

大股东独具慧眼,项目储备先行一步

公司控股股东凯迪控股,自2004年开始进军生物质发电市场,先后在国内1500多个县市就绿色能源项目开展了大量的调研工作,并与266个县市签订了生物质原料供应合作框架协议,拿到了最为优质的项目储备。已经成立生物质能项目公司111个,其中23个已经出售给上市公司。目前获准开展项目前期工作(取得路条)的项目达到66个,取得批文的项目32个,建成运行的成熟项目13个。

公司生物质发电项目盈利目前已得到初步验证,后续即将投产的项目采取高温超高压循环流化床,盈利能力更为突出。按电厂全年KPI考核指标7000小时和14%的厂用电率简单测算,在不考虑CDM收益情况下,单个电厂全年正常运行包含增值税返还的净利润约为2700万元(不包含增值税返还情况下净利润约1900万元)。

宽厚护城河,新投产生物质项目盈利突出

公司宽厚的护城河主要在于前期丰富的项目储备,明显的技术优势以及独特的燃料采购模式。在公司具备明显先发优势的情况下,公司所掌握的技术优势将在未来项目盈利中得到逐步体现,而其独特的燃料采购模式也完全排除了中间商利润空间的存在。未来随着上市公司投产的生物质发电项目逐渐增多,以及不断收购控股股东成熟电厂,公司将步入良性发展的快车道,我们看好公司转型生物质能的广阔前景。

风险提示

篇6

[关键词] 生物质能源 开发利用 对策

[中图分类号] S216 [文献标识码] A [文章编号] 1003-1650 (2016)11-0132-01

生物质能源是以植物为原料生产的可再生能源,是可再生能源中惟一可运输并储存的能源。当今世界能源和环境问题是制约经济发展的突出问题。人类目前使用的主要化石能源有石油、天然气和煤炭3种。开发新能源已成关系经济社会可持续发展的重大课题。发展生物质能源,对保障我国未来能源安全具有重要作用。

1 发展生物质能源的重要性

生物质能源是倍受世界各国重视的可再生能源。国内许多专家提出了“发挥灌木优势推动我国能源林业的发展,集约经营短轮伐期乔灌木能源林是发展生物质能源的基础。”我国林木生物质能源原料资源比较丰富,发展的潜力和空间巨大,为我国林业的发展提供了新契机。灌木具有抗逆性强,用途多等优势,我国广大的干旱、盐碱地、荒山秃岭皆可发展灌木林,发挥生态效益,收割后还能自然萌生更新,是能源建设和生态建设的最佳结合模式。开发灌木能源既可以推动我国生物质能源工业的发展,又能促进生态脆弱地区植被的恢复和重建,改善生态环境。把握生物质能源发展的战略机遇,以林木生物质能源对油汽的替代或部分替代,使我国林业全面介入能源领域,形成林业新的战略增长点,缓解我国能源紧缺的局面具有重要作用。

2 生物质量能源发展现状

世界上,生物质能源开发最早且成功的是生物柴油和乙醇。德国、美国、巴西在生物柴油和乙醇替代汽油方面处于世界领先地位。作为世界上最大的乙醇出口国的巴西,其60%的汽车燃料是甘蔗提炼出来的乙醇。美国提出到2025年要用生物燃油替代25%的化石运输燃料口号。

我国的乙醇燃料开发启动较早,从2001年4月开始,就已在全国推广使用燃料乙醇,河南、黑龙江、吉林作为试点省份,建立了四大酒精厂以利用陈化粮生产酒精。2006年,国家提出中国将大力支持生物质能源、太阳能、风能等可再生能源的研究开发和推广应用,并将生物质能源放在了首位。

来自国家发改委的数据显示:目前我国燃料乙醇年生产能力达102万吨,乙醇消费量占全国汽油消费市场的20%,成为仅次于巴西、美国的第三大燃料乙醇生产和使用国。

3 中国生物质能源储备概况

我国生物质资源比较丰富。据初步估计,我国仅现有的农林废弃物实物量为15亿吨,约合7.4亿吨标准煤,可开发量约为4.6亿吨标准煤。

我国现有木本油料林总面积超过600多万公顷,主要油料树种果实年产量在200多万吨以上,其中,麻疯树、黄连木等树种果实是开发生物柴油的上等原料。有150多种植物含油量超过40%。作为生物柴油开发利用较为成熟的有小桐子、黄连木、光皮树、文冠果、油桐和乌桕等树种。初步统计,这些油料树种面积超过135万公顷,年果实产量在100万吨以上,如能全部加工利用,可获得40余万吨生物柴油。

我国北方有大面积的灌木林,估计每年可采集木质燃料资源有1亿吨左右;全国有5700多万公顷为中幼龄林,如正常抚育间伐,可提供1亿多吨的生物质能源原料,同时,木材采伐、加工剩余物还能提供可观的生物质能源原料。云贵川等省区大力培育发展生物柴油小桐子资源,小桐子种植面积已达50万亩。河北、河南、安徽、陕西等地人工种植黄连木近5万亩。

我国现有300多万公顷薪炭林,每年约可获得近1亿吨高燃烧值的生物量。适宜发展能源林的有宜林荒山荒地5400多万公顷。有近1亿公顷的盐碱地、沙地以及矿山、油田复垦地等不适宜农耕的土地大都适宜培育特定的能源林。

4 国家对生物质能源开发规划

木本生物质能源属于我国科技发展的能源及环保两大重点,是我国“十一五”规划重要研究对象,也是世界林业发展的新亮点。国家林业局和中国石油天然气股份有限公司在云南、四川启动第一批林业生物质能源林基地建设,基地面积60多万亩,可实现约六万吨生物柴油原料供应能力。“十一.五”期间,我国将培育林业生物质能源林1200多万亩,以满足600万吨生物柴油和装机容量1500万千瓦年发电原料供应的林业生物质能源发展目标;未来15年,国家林业局将进一步推进林业生物质能源发展,全面规划全国能源林培育工作,并计划在2020年完成额定规模的能源林培育基地建设任务。

财政部、发展改革委、农业部、税务总局、国家林业局联合印发的《关于发展生物能源和生物化工财税扶持政策的实施意见》,国家将在“建立风险基金制度,实施弹性亏损补贴、对原料基地补助、进行项目示范补助、减免税收“等四项财税政策上扶持生物质能源的发展。

5 发展生物质能源对策

我国发展生物质能源应采取的主要对策为:

5.1 制定生物质能源发展纲要和实施方案,开展可利用土地资源和植物资源的调查评估,制定能源植物种植规划,发展和建立能源树种、能源作物良种基地,启动生物质能源产业化项目,促进新农村建设。

5.2 与建立节约型农村结合发展成型燃料。要鼓励和扶持发展农林废弃物致密固化成型燃料生产企业,引导农民将农林废弃物加工成成型燃料,作为煤炭替代品。

5.3 与生态环境治理结合发展能源林业。山地和高原应以发展薪炭林和木本油料林为主,平原建立生物柴油木本油料原料基地,沿海滩涂种植以柽柳为主的耐盐碱树种和可以提炼生物柴油的滨海锦葵。

5.4 与调整农业产业结构结合发展能源农业。以不与粮食争地、确保粮食安全为前提,调整农业种植结构,发展油料作物和高糖作物。

5.5 与养殖场结合推行沼气规模化生产。发展农业生物质能源,不仅能改善能源结构、实现能源多元化、缓解能源紧张局面,而且能够治理和保护生态环境、调整农业产业结构、促进农民增收。

篇7

关键词:生物质;生物质能;产业;沼气;生物质发电;生物质燃料;能源作物

1  概 述

近年来,在能源危机、保护环境和可持续发展的呼声中,可再生的清洁能源以及能源的多元化倍受关注,生物质能成为其中的一个新亮点。

为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,中国已经制定并实施了《可再生能源法》。可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。根据《可再生能源法》的定义,目前主要包括太阳能、风能、水能、生物质能、地热能和海洋能等非化石能源[1]。中国可再生能源资源非常丰富,开发利用的潜力很大,其中生物质能的开发潜力更大。

生物质能一直是人类赖以生存的重要能源,它目前是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位[2]。据有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能,直接燃烧生物质的热效率仅为10%~30%[3]。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。

目前世界各国正逐步采用如下方法利用生物质能:1)热化学转换法,获得木炭、焦油和可燃气体等高品位的能源产品,该方法又按其热加工的工艺不同,分为高温干馏、热解、生物质液化等方法;2)生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;3)利用油料植物所产生的生物油;4)把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。

“为了缓解中国能源短缺问题,保证能源安全,治理有机废弃污染物,保护生态环境,建议国家应大力开发生物质能,实施能源农业的重大工程。”中国作物学会理事长路明研究员在接受记者采访时说[4],“生物能源开发工程应主要包括:沼气计划、酒精计划、秸秆能源利用计划和能源作物培育计划等。”

在2006年8月召开的全国生物质能源开发利用工作会议上,国家发展与改革委员会副主任陈德铭提出,今后15年,中国在生物质能源方面将重点发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域,开拓农村发展新型产业,为农村提供高效清洁的生活燃料,并为替代石油开辟新的渠道。

综上所述,目前,中国生物质能源的产业化利用途径主要包括以下方面:沼气利用工程、农林生物质发电、生物固体成型燃料、生物质液体燃料、能源作物培育利用等。

2 中国生物质能产业发展目标

中国农村生物质能是一座待开发的宝藏。根据《可再生能源中长期发展规划》确定的主要发展目标,到2010年,生物质发电达到550万千瓦(5.5GW),生物液体燃料达到200万吨,沼气年利用量达到190亿立方米,生物固体成型燃料达到100万吨,生物质能源年利用量占到一次能源消费量的1%;到2020年,生物质发电装机达到3000万千瓦,生物液体燃料达到1000万吨,沼气年利用量达到400亿立方米,生物固体成型燃料达到5000万吨,生物质年利用量占到一次能源消费量的4%[5]。

开发利用生物质能是当前国内外广泛关注的重大课题,既涉及农业和农村经济发展,又关系到国家的能源安全。今后5~10年,中国农村生物质能发展的重点是沼气、固体成型燃料和能源作物。《农业生物质能产业发展规划》确定的主要发展目标是[6,7]:到2010年,全国农村户用沼气总数达到4000万户,新建大中型养殖场沼气工程4000处,生物质能固体成型燃料年利用量达到

100万吨,能源作物的种植面积达到2400万亩左右。

据统计,全世界每年通过光合作用生成的生物质能约50亿吨,相当于世界主要燃料消耗的10倍,而作为能源的利用量还不到其总量的1%,中国的利用量更是远远低于世界平均水平[8]。2005年,中国可再生能源开发利用总量约1.5亿吨标准煤(tce),为当年全国一次能源消费总量的7%(其中非水电可再生能源利用占1%),根据政府的规划目标,到2010和2020年可再生能源利用总量将达到2.7亿tce和5亿tce,分别占届时能源消费总量的11%和16%(其中非水电可再生能源利用占2%和5%)[9]。因此,中国生物质能的发展利用空间很大。

3 中国生物质能产业化的发展前景

3.1沼气利用工程的发展空间

沼气的利用主要包括沼气燃气和沼气发电。目前,中国农村生物质能开发利用已经进入了加快发展的重要时期。统计显示,截至2005年底,中国农村中使用沼气的农户达到1807万多户,建成养殖场沼气工程3556处,产沼气约70亿立方米,折合524万吨标准煤,5000多万能源短缺的农村居民通过使用了清洁的气体燃料,生活条件得到根本改善[5]。中国已经建成大中型沼气池3万多个,总容积超过137万立方米,年产沼气5500万立方米,仅100立方米以上规模的沼气工程就达到630多处[10]。距离2010年预定目标的发展空间还很大。

中国经过二十多年的研发应用,在全国兴建了大中型沼气工程和户用农村沼气池的数量已位居世界第一。不论是厌氧消化工艺技术,还是建造、运行管理等都积累了丰富的实践经验,整体技术水平已进入国际先进行列。

沼气发电发展前景广阔,但目前还存在一些障碍,如技术障碍、市场障碍、政策障碍等,通过制定发展规划、加强技术保障体系建设、引入竞争机制,创新投资体系,研究制定促进沼气发展利用的国家级配套政策,等等。当技术、市场、政策等壁垒被克服后,沼气发展前景广阔,产业空间巨大。

3.2生物质能发电的发展前景

目前,生物质发电主要包括沼气发电、生物质直燃发电、生物质混燃发电、农林秸秆生物质气化发电、生物质炭化发电、林木生物质发电等。

生物质能源转化为电能,正面临着前所未有的发展良机:一方面,石油、煤炭等不可再生的化石能源价格飞涨;另一方面,各地政府顶着“节能降耗20%”的军令状,对落实和扶持生物质能源发电有了相当大的默契和热情。国家电网公司担任大股东的国能生物质发电公司目前已有19个秸秆发电项目得到了主管部门批准,大唐、华电、国电、中电等集团也纷纷加入,河北、山东、江苏、安徽、河南、黑龙江等省的100多个县、市开始投建或是签订秸秆发电项目[8]。

煤炭作为一次性能源,用一吨少一吨。而中国小麦、玉米、棉花等农作物种植面积很大,产量很高,而且农作物是可再生资源,相对于现在电厂频频“断煤”、不堪煤价攀升的尴尬局面,推广秸秆发电具有取之不尽的资源优势和低廉的成本优势。

生物质直接燃烧发电(简称生物质发电)是目前世界上仅次于风力发电的可再生能源发电技术。据初步估算,在中国,仅农作物秸秆技术可开发量就有6亿吨,其中除部分用于农村炊事取暖等生活用能、满足养殖业、秸秆还田和造纸需要之外,中国每年废弃的农作物秸秆约有1亿吨,折合标准煤5000万吨。照此计算,预计到2020年,全国每年秸秆废弃量将达2亿吨以上,折合标准煤1亿吨,相当于煤炭大省河南一年的产煤量。

为保障生物质发电原料供应,在强化传统农业生产的基础上,应大力开发森林、草地、山地、丘陵、荒地和沙漠等国土资源,充分挖掘生态系统的生物质生产潜力。重点加强高效光合转化作物、速生林木与特种能源植物的培育推广,大幅度扩大生物质资源的生产规模,逐步建立多样化的生物质资源生产基地。

大力发展生物质发电正当其时。中国“十一五”规划要求:建设资源节约型、环境友好型社会,大力发展可再生能源,加快开发生物质能源,支持发展秸秆发电,建设一批秸秆和林木质电站,生物质发电装机达550万千瓦。中国可再生能源发电价格实行政府定价和政府指导价两种形式。其中生物质发电项目上网电价实行政府定价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加每千瓦时0.25元补贴电价组成[11]。 作为《中华人民共和国可再生能源法》配套法规之一的《可再生能源发电价格和费用分摊管理试行办法》规定,生物质发电项目补贴电价,在项目运行满15年后取消。自2010年起,每年新批准和核准建设的发电项目补贴电价比上年批准项目递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,不享受补贴电价[11]。通过招标确定投资人的生物质发电项目,上网电价按中标确定的价格执行,但不得高于所在地区的标杆电价。

2010年,中国生物质能产量将达到22TWh,生物质发电装机容量5.5GW,占全国总发电量的0.78%;2020年,中国生物质能产量达到120TWh,生物质发电装机容量30GW,占全国总发电量的2.6%;2010年和2020年可再生能源发电占发电总量的比例仍然较小,分别为8.63%和11.86%[12]。国家发展与改革委员会计划到2020年底将可再生能源发电的比例提升到15%~16%。

据农业部提供的数据[13],中国拥有充足的可发展能源作物,如农作物秸秆年产6亿吨、畜禽粪便年产21.5亿吨、农产品加工业如稻壳、玉米芯、花生壳、甘蔗渣等副产品的年产量超过1亿吨、边际土地4.2亿公顷,同时还包括各种荒地、荒草地、盐碱地、沼泽地等。据中国科学院石元春院士估计,如果能利用现有农作物秸秆资源的一半,生物质产业的产值就可达近万亿元人民币。截止到2005年底,中国生物质发电量2GW,距离2010年的5.5GW和2020年的30GW还有很大的发展空间。作为唯一可运输并储存的可再生能源,凭其优越的先天条件,中国生物质能发电产业具备广阔的发展空间,拥有巨大的投资价值。

3.3 生物质固体燃料的发展模式

生物质固体成型燃料也是农业部今后的重点发展领域之一。农业部将重点示范推广农作物秸秆固体成型燃料,重点在东北、黄淮海和长江中下游粮食主产区进行试点示范建设和推广,发展颗粒、棒状和块状固体成型燃料,并同步开发推广配套炉具,为农户提供炊事燃料和取暖用能。

丰富、清洁、环保又可再生的生物质能源过去却没有得到重视,而被白白浪费掉。河南农业大学张百良教授分析指出,除去饲养牲畜、工业用和秸秆还田,中国每年还具有4亿吨制作成型燃料的资源可以生产1.5亿吨成型燃料,可替代1亿吨原煤,相当于4个平顶山煤矿的年产量[8]。以农作物秸秆为原料的生物质固体燃料产业规模虽然不是很大,但因目前开发程度低,发展空间仍巨大。

3.4生物质液体燃料的发展模式

3.4.1 生物液体燃料生产大国的典型模式

生物液体燃料具有替代石油产品的巨大潜力,得到了各国的重视,主要包括燃料乙醇和生物柴油。国际油价的持续攀升,提高了生物液体燃料的经济性,在一些国家和地区已经具有了商业竞争力。目前,巴西燃料乙醇折合成油价约25美元/桶,低于原油价格。2005年,巴西和美国仍然是燃料乙醇的生产大国,分别以甘蔗和玉米为原料,掺混汽油,占其国内车用交通燃料的50%和3%,比2004年分别提高6%和1%。美国在2001~2005年,燃料乙醇产量已经翻了一番,2005年最新的能源法案中又提出,到2010年燃料乙醇产量再增加一倍的目标。欧盟确定了到2010年生物液体燃料在总燃料消耗的比例达到6%的目标[14]。

目前,生产生物液体燃料比较成功的典型模式有巴西模式和美国模式。

1)巴西甘蔗-乙醇模式

巴西是推动世界生物燃料业发展的先锋。它利用从甘蔗中提炼出的蔗糖生产乙醇,代替汽油作为机动车行驶的燃料。如今巴西乙醇和其他竞争燃料相比,价格上已具有竞争性。这也是当前生物燃料业发展最为成功的典范。巴西热带地区的光照使得那里非常适合种植甘蔗。现在,巴西已经是世界上最大的甘蔗种植国,每年甘蔗产量的一半用来生产白糖,另一半用来生产乙醇。

最近几年,由于过高的汽油价格和混合燃料轿车的推广,巴西燃料乙醇工业更是得到了长足的发展。混合燃料轿车能够以汽油和乙醇的混合物为燃料,自从2003年在巴西大众市场销售后,销量节节攀升,目前已经占据了巴西轿车市场的半壁江山。在混合燃料轿车需求的拉动下,巴西燃料乙醇的日产量从2001年的3000万升增加到2005年的4500万升,已能满足国内约40%的汽车能源需求[14]。

用蔗糖生产乙醇是目前世界上制造乙醇最便宜的方法。在未来4年中,巴西计划将新建40~50家大型乙醇加工厂。为了保证原料供应,甘蔗的种植面积也将不断扩大。

当前巴西生物燃料发展战略的成功,并不意味着巴西的蔗糖乙醇会成为世界生物燃料业未来的选择。因为即使只替代目前全球汽油产量的10%,也需要将巴西现有的甘蔗种植面积扩大40倍。巴西不可能“腾”出这么多土地用于种植甘蔗。另外,由于甘蔗的品种有强烈的地域性,巴西的技术路线在别的国家很难走得通。就连非洲、印度、印度尼西亚都无法照搬,更别说主要地处温带的中国了。

因此,巴西模式尽管取得了迄今最大的成功,但却不是未来世界生物燃料业发展的方向,更不适合地处温带、缺少耕地的中国。探索适合中国国情的生物液体燃料发展模式成为当务之急。

2)美国玉米-乙醇模式

美国是主要的燃料乙醇生产国之一,但与巴西不同,它用的不是甘蔗而是玉米。尽管有不少反对的声音,但美国燃料乙醇的日产量仍从1980年的100万升增加到现在的4000万升。目前,美国已投入生产的乙醇生产厂有97家,另外还有35家正在建设当中。这些工厂几乎都集中在玉米种植带。

玉米中用于生产乙醇的主要成分是淀粉,通过发酵它可以很容易地分解为乙醇。这正是用玉米生产乙醇的优势,但这也是人们反对的原因,因为淀粉是一种重要的粮食。2007年美国计划投入4200万吨玉米用于乙醇生产,按照全球平均食品消费水平,同等数量的玉米可以满足1.35亿人口一年的食品消耗[14]。

中国现在80%的乙醇的原料是谷类,由于原本过剩的谷物在2000年后产量快速减少,使得燃料乙醇的发展再次面临挑战[15]。玉米加工燃料乙醇业过快发展,一些地区甚至玉米主产区已在考虑进口玉米了。国家已经制定相关政策,对玉米加工燃料乙醇项目加以限制,强调发展燃料乙醇要以非粮原料为主,因为谷类供给安全问题对于拥有巨大人口的中国来说,始终应该放在首位。粮食安全始终是国家重大战略问题。中国粮食不能承受“能源化”之重。中国国情和美国、巴西不一样,其成功经验虽有可资借鉴之处,但不能照搬他们的模式。

生物液体燃料方面新技术的研发,在很大程度上取决于解决生物燃料生产的原料供应问题。目前生产液体燃料大多使用的是粮食类作物,如玉米、大豆、油菜籽、甘蔗等。但是从能源的投入、产出分析,利用粮食类作物生产液体燃料是不经济的。因此,利用木质纤维素制取燃料乙醇将是解决生物液体燃料的原料来源和降低成本的主要途径之一。

3.4.2中国生物质液体燃料的产业化发展途径

中国生物液体燃料的发展已初具规模。当前,中国以陈化粮为原料生产燃料乙醇的示范工程,年生产能力已达102万吨,生产成本也达到了消费群体初步接受的水平。在非粮食能源作物种植方面,中国已培育出“醇甜系列”杂交甜高粱品种,并建成了产业化示范基地,培育并引进多个亩产超过3吨的优良木薯品种,育成了一批能源甘蔗新品系和能糖兼用甘蔗品种。具备了利用菜籽油、棉籽油、木油、茶油和地沟油等原料年产10万吨生物柴油的生产能力[16]。

1)油菜籽-生物柴油模式

中国农科院油料作物研究所所长王汉中研究员呼吁:国家应大力推广“油菜生物柴油”。生物柴油相对于矿物柴油而言,是通过植物油脂脱甘油后再经过甲脂化而获得。发展油菜生物柴油具备三大优点:一是可再生;二是优良的环保特性:生物柴油中不含硫和芳香族烷烃,使得二氧化硫、硫化物等废气的排放量显著降低,可降解性还明显高于矿物柴油;三是可被现有的柴油机和柴油配送系统直接利用。因此,生物柴油在石油能源的替代战略中具有核心地位。

目前,发展生物柴油的瓶颈是原料。木本油料的规模有限,大豆、花生等草本油料作物与水稻、玉米等主要粮食作物争地,扩大面积的潜力不大。而作为生物柴油的理想原料,油菜具有其独特的优势。首先适应范围广,发展潜力大:长江、黄淮流域、西北、东北等广大地区都适宜于油菜生长;其次油菜的化学组成与柴油很相近:低芥酸菜油的脂肪酸碳链组成与柴油很相近,是生物柴油的理想原料;第三,可较好地协调中国粮食安全与能源安全的矛盾:长江流域和黄淮地区的油菜为冬油菜,充分利用了耕地的冬闲季节,不与主要粮食作物争地。

根据欧洲油菜发展的经验和油料科技进步的情况,王汉中预计,只要政策、科技、投入均能到位,经过15年的努力,到2020年,中国油菜种植面积可达到4亿亩,平均亩产达到200千克,含油量达到50%左右。届时,中国每年可依靠“能源油菜”生产6000万吨的生物柴油(其中4000万吨来源于菜油,2000万吨来源于油菜秸秆的加工转化),相当于建造3个永不枯竭的“绿色大庆油田”[17]。

2)纤维素-乙醇模式

在整个生物燃料领域,当前最吸引投资者的并不是用蔗糖、玉米生产乙醇,或是从油菜籽中提炼生物柴油,而是用纤维素制造乙醇。所有植物的木质部分--通俗地说,就是“骨架”--都是由纤维素构成的,它们不像淀粉那样容易被分解,但大部分植物“捕获”的太阳能大多储存在纤维素中。如果能把自然界丰富且不能食用的“废物”纤维素转化为乙醇,那么将为世界生物燃料业的发展找到一条可行的道路。

虽然因技术上的限制,目前还没有一家纤维素乙醇制造厂的产量达到商业规模,但很多大的能源公司都在竞相改进将纤维素转化为乙醇的技术。最大的技术障碍是预处理环节(将纤维素转化为通过发酵能够分解的成分)的费用过于昂贵。但是,要想用纤维素生产乙醇,预处理环节无法回避。技术上的不确定性,迫使制造乙醇的大部分投资仍集中在传统的工艺--通过玉米、蔗糖生产乙醇,但这些办法无法从根本上解决当前的能源危机。为了保证能源安全,美国总统布什说,美国政府计划在6年内把纤维素乙醇发展成一种有竞争力的生物燃料。

因为发展能源不可能走牺牲粮食的道路。尽管现在技术上还存在障碍,但大部分人仍相信,利用纤维素生产燃料乙醇代表了未来生物燃料发展的方向。中国生物质液体燃料的未来也同样寄希望于用纤维素生产燃料乙醇。一旦技术取得突破,纤维素乙醇产业化发展空间巨大,产值难以估量。但是,各国的国情与能源结构不同,不能寄希望于某个方面来解决,因为任何国家都不可能单靠技术引进发展本国的生物燃料产业。因此,需要因地制宜,多能互补。

3)能源作物-生物液体燃料模式

石元春院士表示,在能源结构的历史转型中,中国发展生物质能源有很强的现实性和可行性。目前,中国对石油的进口依存度为近40%;SO2和CO2的排放量也分居世界第一和第二位。中国发展生物质能源不仅原料丰富,而且还有自行培养的甜高粱、麻疯树等优良能源植物;燃料乙醇、生物柴油等主产品工业转化技术基本成熟且有较大的改进空间,成本降幅一般在25%~45%,且目前在新疆、山东、四川等地已取得进展[4]。

发展能源作物不会威胁粮食安全与环保。曾有专家提出能源安全和粮食安全存在矛盾。解决这个问题需要充分认识到粮食安全和能源安全有统一性,发展能源农业将是促进农民增收、调动农民种粮积极性的有效措施。粮食作物和能源作物有很好的互补性。首先,能源作物大都是高产作物,既能满足粮食安全的需求,又是很好的能源作物。其次,能源农业开发的领域很广,可以做到不与或少与粮食争地。能源农业开发的领域,大多是利用农业生产中的废弃物,如利用畜禽场粪便、农产品加工企业的废水与废物开发能源,既能增加农民收入,又能为粮食生产提供优质肥料,是生产清洁能源、促进粮食生产、保证粮食安全和能源安全的双赢举措。

除粮食外,中国其他可用于生物质能生产的植物和原料还有很多,如甘蔗、甜菜、薯类等。广西科学院院长黄日波说,仅广西的甘蔗资源和木薯资源分别具备年产830万吨和1300万吨生物乙醇的生产潜力,加起来超过2000万吨[15]。

科技部中国生物技术发展中心有关专家指出,根据能源作物生产条件以及不同作物的用途和社会需求,估计中国未来可以种植甜高粱的宜农荒地资源约有1300万公顷,种植木薯的土地资源约有500万公顷,种植甘蔗的土地资源约有1500万公顷[15]。如果其中20%~30%的宜农荒地可以用来种植上述能源作物,充分利用中国现有土地与技术,生产的生物质可转化5000万吨乙醇,前景十分可观。

据农业部科教司透露,为稳步推动中国生物质能源的发展,并为决策和进一步开发利用土地资源提供可靠的数据,该司决定按照“不与人争粮,不与粮争地”的原则,开展对适宜种植生物质液体燃料专用能源作物的边际土地资源进行调查与评价工作,以摸清适宜种植能源作物边际土地资源总量及分布情况[18]。

以能源作物为原料的生物液体燃料模式发展潜力巨大,将是未来生物质能源发展的方向之一。

4) 林木生物质-生物柴油发展模式

利用中国丰富的林木生物质资源生产生物柴油,将薪炭林转变为能源林,实现以林木生物质能源对油汽的替代或部分替代,探索兼顾能源建设和生态环境建设的新模式,实现可再生能源与环境的可持续发展。开发林业生物质能产业是林业的一个很有潜力的新产业链,既是机会,也是创新,不仅具有巨大潜力和发展空间,更是林业发展新的战略增长点。

“森林具有可再生资源的属性。林业是天然的循环经济。生物质能技术是林业发展的新契机。”专家研究指出,中国生物质资源比较丰富,据初步估计,中国仅现有的农林废弃物实物量为15亿吨,约合7.4亿吨标准煤,可开发量约为4.6亿吨标准煤[19]。专家预测2020年实物量和可开发量将分别达到11.65亿吨和8.3亿吨标准煤。中国现有木本油料林总面积超过600多万公顷,主要油料树种果实年产量在200多万吨以上,其中,不少是转化生物柴油的原料,像麻疯树、黄连木等树种果实是开发生物柴油的上等原料。

中国现有300多万公顷薪炭林,每年约可获得近1亿吨高燃烧值的生物量;中国北方有大面积的灌木林亟待利用,估计每年可采集木质燃料资源1亿吨左右;全国用材林已形成大约5700多万公顷的中幼龄林,如正常抚育间伐,可提供1亿多吨的生物质能源原料;同时,林区木材采伐、加工剩余物、城市街道绿化修枝还能提供可观的生物质能源原料[19]。

中国发展林业生物质能源前景十分广阔。中国林业可用来发展生物质能源的树种多样,可作为能源利用的现有资源数量可观。在已查明的油料植物中,种子含油量40%以上的植物有150多种,能够规模化培育利用的乔灌木树种有10多种。目前,作为生物柴油开发利用较为成熟的有小桐子、黄连木、光皮树、文冠果、油桐和乌桕等树种。初步统计,这些油料树种现有相对成片分布面积超过135万公顷,年果实产量在100万吨以上,如能全部加工利用,可获得40余万吨生物柴油[19]。

目前全国尚有5400多万公顷宜林荒山荒地,如果利用其中的20%的土地来种植能源植物,每年产生的生物质量可达2亿吨,相当于1亿吨标准煤;中国还有近1亿公顷的盐碱地、沙地、矿山、油田复垦地,这些不适宜农业生产的土地,经过开发和改良,大都可以变成发展林木生物质能源的绿色“大油田”、“大煤矿”,补充中国未来经济发展对能源的需要[18]。国家林业局副局长祝列克介绍,“十一五”期间,中国主要开展林业生物质能源示范建设,到2010年,实现提供年产20万吨~30万吨生物柴油原料和装机容量为100万千瓦发电的年耗木质原料。到2020年,可发展专用能源林1300多万公顷,专用能源林可提供年产近600万吨生物柴油原料和装机容量为1200万千瓦发电年耗木质原料,两项产能量可占国家生物质能源发展目标30%以上,加上利用林业生产剩余物,林业生物质能源占到国家生物质能源发展目标的50%以上[19]。

可见,林木生物质能源的发展将逐步成为中国生物质能源的主导产业,发展空间巨大,前景广阔。

4 结 语

国家已出台的《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》及相关产业政策,明确提出“因地制宜,非粮为主”的发展原则,发展替代能源坚持“不与人争粮,不与粮争地”,要更加依靠非粮食原料。从大方向来看,用非粮原料能源替代化石能源是长远方向,例如薯类和纤维质以及一些植物果实来替代。为避免粮食“能源化”问题[20],必须开发替代粮食的能源原料资源。开发替代粮食资源,如以农作物秸秆和林木为代表的各类木质纤维类生物质,及其相应的生物柴油和燃料乙醇生产技术,被专家们认为是未来解决生物质液体燃料原料成本高、原料有限的根本出路。

生物质能源将成为未来能源重要组成部分,到2015年,全球总能耗将有40%来自生物质能源,主要通过生物质能发电和生物质液体燃料的产业化发展实现。

有关专家也对生物质能源的发展寄予了厚望,认为中国完全有条件进行生物能源和生物材料规模工业化、产业化,可以在2020年形成产值规模达万亿元。

虽然生物质能源发展潜力巨大、前景广阔,并正在逐步打破中国传统的能源格局,但是生物质能的产业化发展过程也并非一帆风顺,因为生物质原料极其分散,采集成本、运输成本和生产成本很高,成为生物质燃料乙醇业的致命伤,若不能妥善解决将可能成为生物质能产业发展的瓶颈。

生物质能的资源量丰富并且是环境友好型能源,从资源潜力、生产成本以及可能发挥的作用分析,包括生物燃油产业化在内的生物质能产业化开发技术将成为中国能源可持续发展的新动力,成为维护中国能源安全的重要发展方向。在集约化养殖场和养殖小区建设大中型沼气工程也将成为中国利用生物能源发电的新趋势。从环保、能源安全和资源潜力综合考虑,在中国推进包括以沼气、秸秆、林产业剩余物、海洋生物、工业废弃物为原料的生物质能产业化的前景将十分广阔。

[参考文献]:

[1] 中华人民共和国可再生能源法.china.org.cn/chinese/law/798072.htm.

[2] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。

[3] 生物质能的概况. (2006-11-22)[2007-04-02].

[4] 潘 希. 生物质能欲开辟中国农业“第三战场”。 科学时报,2005-04-30.

[5] 佚 名。我国确定农村生物质能发展战略目标[EB/OL]. (2006-10-13)[2007-03-18]. 来源: 新华网.

[6] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。

[7] 师晓京. 农业部正制定《农业生物质能产业发展规划》,今后重点发展沼气、固体成型燃料和能源作物[N]. 农民日报,2007-01-26.

[8] 王琼杰. 日生物质能源能挑起我国未来能源的“大梁”吗?中国矿业报,2007-03-06.

[9] 世界可再生能源发展现状及未来发展趋势分析.[EB/OL]

[10] 谭利伟,简保权. 生物质能源的开发利用[J]. 农业工程技术.新能源产业,2007,总291期,第3期:18-27.

[11] 《可再生能源发电价格和费用分摊管理试行办法》[S]. [2007-04-03].

[12] Hu Xuehao. The Development Prospects of Renewable Energy and Distributed Generation in Power System and the Requirement for Energy Storage Technology[R/OL]. 2006 International Conferences on Power System Technology, Chongqing, China, October 22-24, 2006.

[13]中国科学技术信息研究所. 农业生物质资源-待开发的金矿。2006[2007-04-2].

[14] 蔡如鹏. 生物燃料走在路上[J]中国新闻周刊,2006,第48期,第66页.

[15] 王一娟 徐时芬. 专家为中国生物能源发展献策--开发替代粮食原料,破解燃料乙醇困局[J]. 经济参考报,2005-09-30.

[16]农村生物质能利用大有可为[EB/OL] . (2007-02-25)[2007-04-04].

[17] 胡其峰.专家呼吁大力推广“油菜生物柴油”[N/OL].光明日报, 2005-08-02.

[18] 师晓京. 农业部开展适宜种植能源作物边际土地资源调查[N/OL]. 农民日报,2007-03-21.

篇8

关键词:海藻;生物燃油;能源;减排;

1引言

随着全球经济的发展,能源将日趋紧张。传统能源的迅速减少以及严重的污染问题,已经严重危害到全球的经济和环境。我们必须减少对化石资源的依赖,加大可再生能源的开发和利用。目前,生物质能生产主要以农作物为原料,对粮食、耕地、水等资源需求巨大,因为资源供给的限制,难以满足市场需求。海洋生物质能的开发为解决这一问题提供了出路。

2利用海藻发展生物燃料研究的背景和现状

生物质能是以生物质为载体,将太阳能以化学能形式贮存其中,能源主要依靠植物的光合作用产生。生物能可以转化为固态、液态和气态燃料形式,替代传统的化石燃料,具有环保和可再生双重属性。工程海藻的研究和开发,为生物质能产业提供充足和廉价的原料供给成为可能。

美国从1976年起就启动了微藻能源研究。目前,美国的科学家已经培育出富油的工程小环藻,这种藻类比自然状态下微藻的脂质含量提高3至12倍。2006年11月,美国亚利桑那州建立了可与1040兆瓦电厂烟道气相连接的商业化系统,成功地利用烟道气的二氧化碳,大规模光合成培养微藻,并将微藻转化为生物“原油”。2007年,美国启动“微型曼哈顿计划”,计划实现微藻制备生物柴油的工业化。美国能源局计划在各项技术全面进展的前提下,将微藻产油的成本于2015年降至2至3美元/加仑。

2007年,日本启动了大型海藻的能源计划项目,利用马尾藻生产汽车用乙醇。预计到2020年,栽培面积将达1万平方公里,每年可收获6500吨干藻,可以生产约200万升燃料乙醇,相当于现有日本汽车油耗量的三分之一。

今年,我国微藻能源方向首个国家重点基础研究发展计划(“973计划”)项目“微藻能源规模化制备的科学基础”,已经正式启动。该项目将以推动微藻能源规模化制备中核心技术的重大突破为目标,提高微藻能源规模化制备系统中各单元的效率为主线,研究从藻种选育到微藻能源规模化制备系统构建过程中亟待解决的生物学及工程学方面的关键科学问题。[1]

3 、海藻作为生物燃油原料的优点

海藻主要包括微藻和大型海藻,海藻的种植可以利用海洋、盐碱地等不适合粮食作物生产的空间进行生产,这样避免了传统生物质能对农业资源的需求。各国研究机构都在运用现代生物技术开发海洋工程微藻,因为海洋微藻本身具备以下特征。一是光合效率高,生长速度快。生长周期短、繁殖快。二是微藻个体小、木素含量低,易粉碎干燥,生产液体燃料所需处理工艺相对简单,生产成本较低。三是微藻内大量积累脂质,因而可以大量生产生物燃料。四是微藻在生长过程中又可以消耗大量的二氧化碳,能缓解温室气体的排放。五是综合利用价值较高。微藻在制备生物燃油的同时可以开发虾青素、活性蛋白、不饱和脂肪酸、天然色素、生物肥料等高值产品,以降低微藻产油的成本。[2]

4、我国海藻养殖优势和存在问题分析

目前,我国拥有世界上最大规模的海藻生产基地,不论是产业规模,还是出口贸易,在世界上都占有举足轻重的地位。我国海藻养殖业发展较早,并成功的掌握了紫菜、海带等海藻大规模培养的关键技术。在螺旋藻和小球藻等微藻的藻种选育、规模培养和产业化方面取得了大量技术成果,某些技术已经达到国际先进水平。

与国际上其他国家相比,我国在推动藻类能源规模化制备技术上有一定优势,主要表现为以下几点:一是我国拥有一定的高水平技术人员和技术储备,并在人力成本方面具有明显优势。二是海藻分类区系、藻种选育和基因工程等领域具备较强的科研力量。三是我国海洋环境富营养化和赤潮比较严重,可以通过大规模海藻栽培实现对海洋的生态修复。四是我国在海洋资源方面拥有明显的区位及环境优势。[3]

我国在海藻能源开发方面有很多不足之处,概括起来主要表现在以下几个方面:一是海藻的燃料转化技术研究投入不足,发展相对滞后。二是实现封闭式光生物反应器的规模化生产方面技术落后。三是我国海藻的栽培局限于近海小规模的试验场,试验项目的投入在技术和资金方面与发达国家相比明显不足。

5、海洋生物质能源发展趋势的必然性

5、1 发展海洋生物质燃料可以满足国家战略需求

我国1993年开始成为石油净进口国,能源安全已成为国家安全战略中最重要的一环,能源发展方向不但决定着能源安全,甚至影响到国家安全。同时,新能源工业必然要成为未来能源工业的制高点,谁有更大的竞争优势,谁就有更多的话语权。

目前,随着全球气候恶化,国际上很多领域对碳排放指标提出越来越明确的要求。在航空领域,欧盟去年公布自2012年起对所有抵达或离开欧盟国家的商业航班实施碳排放权配额制度。作为应对策略,德国开始试飞生物燃油的客机,在6个月试验期间,这架空客A321型客机预计减排二氧化碳1500吨。如果仍然使用传统燃料,我国民航业为购买碳排放权仅2012年一年需向欧盟支付8亿元人民币。[4]

另外,根据专门机构的数据和预言,按照目前的发展速度,不久的将来碳交易将发展成为全球规模最大的商品交易市场。种种迹象证明,无论是出于环境效益,还是经济效益,海洋生物质燃料的发展都已经刻不容缓。

5.2 利用海藻发展生物燃料在技术上可行

2006年全球研发海藻生物燃料的企业大约有4家,到2008年已超过50家,我国目前从事海藻生物柴油研发的企业已有5家。2009年6月,《美国生物燃料月刊》预测分析认为,到2014年,海藻生物柴油将达到6.13亿升的生产能力,每升的批发价格约为0.34美元。《生物燃料文摘》评论认为,从理论上看,海藻生物柴油的成本会像过去预计电脑的市场成本一样,很快会降下来。

6关于发展海洋藻类生物质能的几点建议

结合实际情况,就我国发展海洋藻类生物质能研究领域的资源配置及研究重点提出以下几点建议。一是从国家层面上设计和制定系统的科技发展路线图。二是明确关键科技问题,开展有针对性的技术攻关。三是开展海洋藻类基础生物学的研究。四是加快开展具有共性的关键技术研究的步伐,突破海洋生物质能产业化的技术瓶颈。五是建立健全海藻环境保护和海藻资源合理有序开发的有关法律法规,制定海藻能源产品的技术标准及相关产业扶持政策,保证海洋生物质能产业得到健康持续的发展。[5]

篇9

[关键词] 生物质能政策措施配额制度固定电价

生物质能指利用具有能源价值的植物和有机废弃物等生物质作为原料生产出各种形式的能源。随着现代生物质能技术的不断发展,生物质能将在未来的可持续能源系统中占有重要地位。因此,世界不少国家都在大力发展生物质能。

一、国外发展生物质能的政策措施

为了促进生物质能的发展,各国结合自身实际采取了积极务实的鼓励政策,主要有配额制度、固定电价、减免税费、财政补贴、重视研发等。

1.配额制度

配额制度是随着电力市场化改革逐步发展起来的一项新的促进可再生能源发展的制度,主要是对电力生产商或电力供应商规定在其电力生产中或电力供应中必须有一定比例的电量来自可再生能源发电,并通过建立“绿色电力证书”和“绿色电力证书交易制度”来实现。绿色电力证书是政府为了促进发展清洁电力而颁发给生产清洁电力企业的证书,该证书还可以进入市场交易。电力生产商或电力供应商如果自己没有可再生能源发电量或达不到政府规定的配额要求,可以通过购买其他可再生能源企业的“绿色电力证书”来实现,同时,可再生能源发电企业通过卖出“绿色电力证书”可以得到额外的收益,激发出企业发展清洁电力的动力,从而促进了可再生能源发电(包括生物质能发电)的发展。目前,欧盟的许多国家都在推行可再生能源配额制度。

2.固定电价

固定电价就是根据各种可再生能源的技术特点,制定合理的可再生能源上网电价,通过立法的方式要求电网企业按确定的电价全额收购。按照不同的电价水平进行收购,从而保证了各种可再生能源技术都能获得比较合理的投资收益,为可再生能源的发展创造了更加优越的政策环境。对于处于成长初期的生物质能发电产业,固定电价制度无疑有利于促进其发展。欧盟通过立法方式,规定电网企业必须高价收购可再生能源发电,特别的是生物质能发电。

3.税收优惠

税收优惠也是各国促进生物质能发展的重要鼓励政策。从1982年至今,巴西对酒精汽车减征5%的工业产品税。2002年,美国参议院提出了包括生物柴油在内的能源减税计划,生物柴油享受与乙醇燃料同样的减税政策。德国对可再生能源实行低税率的优惠政策,如对乙醇、植物油燃料免税,对生物柴油每升仅征收9欧分的税费(而汽油则每升征收45欧分)。

4.财政补贴

由于生物质能产业市场尚未成熟,企业投入较大,所以需要政府强有力的扶持。对此,各国纷纷出台补贴政策以推动生物质能产业的发展。如瑞典从1975年开始,每年从政府预算中支出3600万欧元,用于生物质燃烧和转换技术研发及商业化前期技术的示范项目补贴。丹麦从1981年起,制定了每年给予生物质能生产企业400万欧元的补贴计划,这一计划使目前丹麦生物质能发电的上网电价相当于每千瓦时8欧分。意大利从1991到1995年,对生物质利用项目提供了30%~40%投资补贴。

5.重视研发

生物能源技术研发的巨大投入促进了各国生物质能的发展。英国环境食品和农村事务部在“生物能源作物研发项目”投资90万英镑,研究能源作物的基因改良和农村环境保护。生物能源研发的巨大投入促进了英国生物质发电和生物燃料生产的快速发展。巴西经过30多年对酒精燃料的研发和应用,培养了一大批专业高科技人才,掌握了成熟的酒精生产和提炼技术,以及酒精汽车制造技术,建立了强劲的酒精动力机械体系和完善的酒精运输、分销网络。

二、我国发展生物质能的政策措施及完善建议

我国生物质能资源非常丰富,大力发展生物质能对于建立可持续发展的能源系统,促进我国社会经济的发展和生态环境的改善具有重大意义。我国政府运用了相关政策措施推进生物质能产业发展。但由于我国生物质能开发利用还处于起步阶段,出台的相关政策措施还不健全,与国外生物质能发展较好的国家相比,存在不够完备、落实不到位等问题。不妨借鉴国外的成功经验与先进做法,在原有政策措施框架的基础上,完善不足之处并推行新制度,从而更好地保障我国生物质能的发展。

1.配额制度

在国外推行配额制度并取得良好效果的大环境下,我国也决定引进并实施这一新的政策模式。在我国探索和实践这一政策模式的过程中不妨借鉴发达国家绿色电力配额制度的成功经验和做法,结合我国电力市场的不断完善,加快建立我国的“绿色电力证书”和“绿色电力证书交易制度”,通过合理的配额制度,扩大生物质能发电的市场空间,提升生物质发电项目的盈利能力,增强生物质能生产厂商的生产信心,从而最终达到加快生物质能发展的政策目的。应注意的是,我国推行配额制度不能一蹴而就,而必须分步骤有序进行,可以分准备、建立、完善三阶段来实施。

2.固定电价

我国在《可再生能源发电价格和费用分摊管理试行办法》中规定,可再生能源发电价格实行政府定价和政府指导价两种形式,其中生物质发电项目上网电价实行政府定价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加每千瓦时0.25元补贴电价组成。可见,我国已认识到固定电价制度的优势并加以运用。借鉴国外经验,我国在推行固定电价制度时,应该明确在产业发展初期要保持政策的持续性,减少电力生产商和供应商的市场风险,但绝不能完全脱离市场,应随着产业的逐渐成熟而适当调节价格额度直至最终融入市场,依靠市场机制来配置资源。

3.税收优惠

目前,我国制定了一些税收优惠政策,以促进生物质能产业的发展,如对生物质能技术的产品进口采用低税率;对人工沼气的增值税按13%计征等。这些政策倾斜在一定程度上推动了生物质能产业的发展,但仍有很大的提升空间,可以借鉴生物质能产业发展较好的国家的经验,在一些环节上加以改进并做出新的尝试。如可以对生物质能生产企业实行投资抵免企业所得税的鼓励政策及其他减免税支持和鼓励性税收补偿。对于科研单位和企业研制开发出来的新的技术成果及产品的转让销售所得收入,在一定时期可以给予减免营业税和所得税照顾。

4.财政补贴

我国对生物质能项目提供财政补贴。2006年6月和8月,国家财政部和环保总局分别下发了《中央环境保护专项资金项目申报指南》和《国家先进污染治理技术示范名录(第一批)》,将生物质直燃发电技术作为秸秆资源化综合利用的一种方式,纳入补贴范畴。除出台政策文件外,我国还开展了单位试点工作,较有影响的是对黑龙江华润酒精有限公司等四家试点单位生产的燃料乙醇给予财政补助。这些明文规定和试点实践让我们看到政府的努力,但基于财力有限这一现实,我国在推行财政补贴政策时应做出选择:将技术先进、意义重大的项目作为扶持主体,推进重点产业的发展。

5.重视研发

我国政府一直支持生物质能技术的研究开发。自“六五”开始,国家通过科技攻关计划、“863计划”、“973计划”等安排了一定数量的资金,支持生物质能技术的研究开发,有力地促进了生物质能的发展。虽然有政策上的重视和支持,但在我国在技术研发方面还是面临着诸多现实困难。其中缺乏以专业机构为依托的研究平台,成为我国生物质能研发的制约因素。我们不妨参照国外,结合自身特点,建立生物质能研究中心、专业实验室等,并以这些专业机构为载体构筑出较为完备的研究平台,为专业人员参与研发活动提供良好的软硬件环境。

参考文献:

[1]沈顾孟迪:欧洲绿色证书交易机制及对我国的启示[J].环境保护,2007(9):70~73

[2]汪瑞清杨国正等:中巴发展生物质能源的比较研究[J].世界农业,2007(1):19~22

[3]朱增勇李思经:美国生物质能源开发利用的经验和启示[J].世界农业,2007(6):52~54

[4]钱能志尹国平陈卓梅:欧洲生物质能源开发利用现状和经验[J].中外能源,2007(3):10~14

[5]倪慎军:加强生物质能开发利用 实现经济社会持续发展――关于德国瑞典和丹麦生物质能开发和利用的考察报告[J].河南农业,2006(11):12~14

[6]张永宁陈磊:英国发展生物能源的政策及启示[J].化学工业,2007(6):12~15

篇10

关键词:木薯酒精;生物质;乙醇;燃料

文章编号:1005-6629(2008)10-0043-02中图分类号:O623.411文献标识码:E

生物质包括各种速生的能源植物、农业废弃物、林业废弃物、水生植物以及各种有机垃圾等[1]。生物质能源的开发利用不受地理条件限制,利用形态和传统能源的利用形态相似,将现有机器设备稍加改造即可使用,推广价值巨大。各国对发展生物质能源有不同的考虑,但能源替代和环境保护两个主要的原因相同。中国发展生物质能源相对滞后,但在国家政策的扶持下,大力发展燃料乙醇及生物柴油等生物质能源作为实施替代能源[2]。特别是2008年奥运会在北京召开,其倡导的“绿色奥运、科技奥运、人文奥运”的理念将促进中国生物质能源的全面发展。

1 生物质燃料乙醇的应用和效益

生物质燃料乙醇是目前世界上生产规模最大的生物质能源,联合国工业发展组织曾在维也纳乙醇专题讨论会上提出:“乙醇应该被当作燃料和化工原料永久的和可供选择的来源”[3]。据清洁发展机制(CDM)项目咨询机构测算,每吨生物燃料乙醇能够产生2吨的二氧化碳减排量。因此,许多国家将发展生物燃料乙醇列为实现温室气体减排的重要途径。我国已成为仅次于巴西、美国的第三大燃料乙醇生产和使用国。燃料乙醇是通过对乙醇进一步脱水,再加上适量变性剂制成。目前,中国试点推广的E10乙醇汽油是在汽油中掺入10%纯度达99.9%以上的乙醇制成[4]。乙醇燃烧值仅为汽油的三分之二,但其分子中含氧,抗爆性能好,取代传统MTBE为汽油抗爆、增氧添加剂,避免了其毒害性(致癌,地下水污染),具有优良能源、环保效益。如汽油中乙醇添加量≤l5%时,对机动车行驶性能无明显影响而尾气中温室气体的含量可降低30%-50%。添加10%,其辛烷值可提高2-3倍,还可清洁机动车引擎,减少机油替换并使其动力性能增加[3]。

与其他可再生能源和石油替代能源相比,燃料乙醇在中国发展最早,并经过系统有序的试点,市场规模较大,在政策法规、组织管理、生产供应、市场销售以及技术服务等方面都取得了宝贵的经验,而且在能源替代、环境保护和振兴农业三方面都具有突出作用。 既有现实基础,又具有综合发展价值,燃料乙醇得到了国务院能源领导小组的高度认可,并最终确定为中国中长期新能源战略中的重点发展方向[5]。根据我国《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,“十一五”期间,我国将生产600万吨生物液态燃料,其中燃料乙醇500万吨,生物柴油100万吨;到2020年,生产2000万吨生物液态燃料,其中燃料乙醇1500万吨。

2 生物质燃料乙醇的代价和制约

原料保证是生物质燃料乙醇的关键限制,它影响成本和规模生产的可行性。生产1吨燃料乙醇,耗水30m3左右,耗电200kwh左右,约耗标准煤0.6吨左右。大约需要3.3吨玉米或7吨木薯、10吨红薯、15-16吨甜高粱[6]。

中国人均耕地面积已降至1.39亩,不足世界平均水平的40%。粮食安全至关重要。发展生物质燃料乙醇一定要在确保国家粮食安全基础上稳步推进。生物质能源的发展不能依靠对粮食的占有和生产面积的挤压来实现, 也不能以破坏自然生态环境为代价[7]。2007年6月,国家发改委全面叫停粮食乙醇的开发,要求今后生物燃料的发展必须满足不占用耕地、不消耗粮食和不破坏生态环境为前提。中国生物质能源的发展结束了以玉米等粮食为原料的时代,开创了以木薯等非粮生物质能源产业的新时代,非粮生物质能源产业的优势日益凸显。

3 木薯酒精的优势

实践证明我国过去以粮食为原料生产燃料乙醇,不符合国情,利用木薯作为燃料乙醇生产原料,符合国家“非粮替代”的要求。木薯属非粮食农产品,是中国主要的热带作物之一,它对土质的要求低,耐旱、耐瘠薄,符合“不争粮,不争(食)油,不争糖,充分利用边际性土地(指基本不适合种植粮、棉、油等作物的土地)”的国家粮食发展战略,同时发展燃料乙醇也很符合当前国家生物质能源发展战略,有利于保障国家粮食安全和能源安全。种植木薯还有利于拉动农业,改善农村贫困人口的生产生活状况,可形成农业产业化和生态经济、循环经济的模式,促进区域经济的发展。

根据全国土地资源调查办公室统计,我国有荒草地7.39亿亩、盐碱地1.53亿亩,总量占耕地面积的一半。利用这些土地种植耐干旱、耐贫瘠的薯类、高粱、秸秆作物等,对发展非粮燃料的乙醇生产,潜力巨大。木薯是可再生资源,通过推广良种,木薯产量已由过去的亩产1.3吨提高到现在的亩产2~3吨,最高还可以达到5~7吨。

4 木薯酒精的生产及前景

到“十一五”末期,乙醇汽油将占我国汽油消费量的一半以上,形成以“非粮”原料为主、以技术进步为动力、经济效益为中心、缓解能源供应紧张压力和保护环境为目的的生物液体燃料产业链。 作为我国第一个非粮燃料乙醇试点项目,广西中粮生物质能源有限公司年产20万吨木薯燃料乙醇。主要采取生物法:纤维素、半纤维素,酸解或酶解或发酵单糖(五碳、六碳糖), 化学、 酶催化及微生物发酵乙醇。生物法具有选择性高、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适于不同反应条件,不能很好耦合。其制约因素是成本和寻找高效、廉价的催化剂、酶和合适微生物的开发等关键技术。

随着大力发展生物质能源,木薯作为燃料乙醇的最佳原料,需求量将会不断扩大。木薯酒精生产面临着原料市场不稳定的困难,还存在着木薯种植缺乏组织性,种植粗放,且品种单一、单产低等困难。木薯生产企业的核心竞争力和发展动力在于搞好木薯产业资源的循环利用,充分利用厌氧发酵技术,实现资源的循环利用,走循环经济发展之路。用鲜木薯生产1吨酒精约生成11m3的酒糟醪液,约含660的COD;经厌氧发酵处理可生成约350m3沼气;350m3沼气约等于0.54吨煤。经厌氧后的酒糟废水其COD指标可以达标用于直接农灌,废渣可作有机肥料还田或作食用菌的培养基生产食用菌。合浦当地的农民用木薯渣与鸡粪混合再发酵后作蛋白合成饲料喂猪,已取得良好的经济效益。

5结语

燃料乙醇直接打通了第一产业和第二产业。农民成了“新能源”提供者,这为几千年来以农为本的中国提供了一个新能源由梦想成为现实的可能。以木薯为原料生产燃料乙醇是一条资源消耗低、综合利用率高、环境污染少、经济效益好的可持续健康发展道路,在促进农业和农村发展,提高农民收入方面具有显著的社会效益。

参考文献:

[1]朱锡锋. 生物质热解原理与技术[J]. 合肥:中国科学技术大学出版社,2006:23.

[2]石元春. 一个年产亿吨的生物质油田设想[J].科学中国人,2007,(4):35-37.

[3]雷国光. 用纤维质原料生产燃料乙醇是我国再生能源发展的方向 [J]. 四川食品与发酵, 2007, 43 (135): 39-42.

[4]任波. 乙醇汽油转折 [J]. 财经, 2007, (178): 100-102.

[5]张远欣. 燃料乙醇的发展状况 [J].甘肃科技, 2005, (4):127-128.