智能电网研究分析范文

时间:2023-12-27 17:55:36

导语:如何才能写好一篇智能电网研究分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

智能电网研究分析

篇1

【关键词】智能电网;通信技术;电子技术

一、智能电网发展现状及挑战

美国智能电网发展里程碑:2001年,美国电力研究院开始智能电网Intelligrid研究;2003年,美国能源部Grid 2030能源发展战略;2004年美国能源部启动电网智能化项目Grid Wise,并与美国国家能源技术实验室合作发起了现代电网研究MGI;2005年研究机构、信息服务商和设备制造商与电力企业合作,纷纷推出各自的智能电网方案;2009年1月奥巴马将智能电网提升为美国国家战略,5月美国宣布了智能电网建设的第一批标准。美国发展智能电网的驱动力和挑战:(1)现有电网基础设施的升级和更新,提高供电的可靠性;(2)将其突飞猛进的信息技术、通信技术和计算机技术与传统电网紧密结合;(3)利用先进的表计基础设施和需求响应等技术,实现电力公司与用户之间的双向互动,促进电力公司在不断开发的电力市场中更好的为客户服务。欧洲智能电网发展里程碑:2005年成立智能电网欧洲技术论坛;2006年提出智能电网目标,了《欧洲未来电网的远景和策略》、《战略性研究议程》、《战略部署文件》。欧洲发展智能电网的驱动力和挑战:(1)供电安全性问题,包括一次能源的缺乏、提高供电能力、供电可靠性和电能质量;(2)环境问题,包括实现京都协议,关心气候变化,保护自然环境;(3)国际市场问题,包括提供低廉的电价和提高能效,进行创新和提高竞争力,有关垄断的管制规程等。我国电网面临的挑战:(1)适应新能源发电接入要求。风电等新能源发电加速发展,大量不稳定电源、分布式电源需要接入电网;(2)提高电力设备利用率。近年来,我国电力负荷峰谷差逐年加大,积极引导用户合理分时段用电减少峰谷差,提高电力设施利用率;(3)满足客户自主选择的需要。电力市场定价方式将从单一电价过渡到可变电价,电网在满足客户对电能质量和供电可靠性要求的同时,应能实现与客户的智能互动,以友好的方式适应客户的自主选择。

二、智能电网的特点及分析

发展智能电网的主要技术管理方向:(1)通信技术;(2)先

进的相量测量和广域测量技术;(3)先进的三维动态可视化电

网调度自动化技术;(4)可再生能源的接入和并入网技术;(5)

先进的表计基础设施和自动抄表系统;(6)支持配电系统“自

愈”功能的先进配电自动化;(7)分布式发电、微电网技术以及储能技术;(8)需求侧管理。建立高速、双向、实时、集成的通信系统是实现智能电网的基础,智能电网的数据获取、保护和控制都需要这样的通信系统的支持,因此建立这样的通信系统是迈向智能电网的第一步。通信系统要和电网一样深入到千家万户,这样就形成两张紧密联系的网络——电网和通信网络,只有这样才能实现智能电网的目标和主要特征。我们可以直接使用电力线路进行通信,同时在配电、用电、量测端加装调制解调器,但是由于输电线路的干扰较大,给调制解调带来很大困难。先进的表计基础设施是实现智能电网自动化管理检测的关键,没有先进的表计基础设施和自动抄表系统,就不能实现电网的智能自动化。参数量测技术是智能电网基本的组成部件,先进的参数量测及时获得数据并将其转换成数据信息,以供智能电网的各个功能部分使用。测量参数用来评估电网设备健康状况,线路检修,表计读取,进行合理计价收费,防止窃电以及与用户沟通等。未来智能电网将取消所有电磁表计及其读取系统,取而代之的是可以是电力公司与用户进行双向通信的智能表计。基于微处理器的智能表计将有更多的功能,除了可以计量每天不同时段电力的使用和电费外,还有存储电力公司下达的高峰电力价格信号及电费费率,通知用户实施什么样的费率政策。更高级的功能有用户自行根据费率政策编制时间表,自动控制用户内部电力使用策略,甚至支持用户向电网供电。对电力公司来说先进的表计参数测量技术给电力系统运行和规划人员提供更多的数据支持。智能电网要广泛应用先进的技术设备,极大地提高输配电系统的性能。未来智能电网将主要应用三个方面的先进技术:电力电子技术、超导技术已经大容量储能技术。先进的控制技术可以对智能电网状态进行分析、诊断和预测并确定和采取适当的措施以消除、减轻和防止供电中断和电能质量扰动。

篇2

1 智能配电网大数据理论 

随着信息技术的发展,电力系统也在不断地走向智能化发展的道路,智能的变电站、智能的电表,以及实时性的电力监测系统都在不断地涌现,共同组成了一个智能配电网的大数据应用时代。智能配电网融合了大量数据信息,使电力系统能够自动化、智能化发展,根据数据信息的来源情况的不同,能够将智能配电网中的大数据分成电力系统发电数据、电力系统运行的数据和电力系统外界的数据,所有数据共同作用,保证了智能配电网的正常运行。 

智能配电网大数据的特点有很多,其中有数据的来源非常广的特点,而且各数据之间的关系比较复杂,数据间的结构多样变化,而且数据生产的速度非常快,这些都是智能配电网大数据的特点。根据智能配电网大数据的特点,使得智能配电网大数据的体积十分庞大,信息量十分丰富,不过智能配电网中大数据的处理过程变得十分困难,智能配电网中的数据主要来自各相关配电的设备、智能的电表,或者说是机动汽车内的GPS系统[1]。不同数据之间的生产方式也不尽相同,随着智能配电网大数据系统的不断发展与应用,许多的数据还可以由图像、视频和语音等不是文本型的数据构成,所以需要寻找适合各种数据管理的大数据应用技术。 

2 智能配电网大数据应用需求分析 

在我国智能配电网大数据的整体应用需求分析中,电力系统的正常运行工作、用电策略的营销工作,以及社会互联网信息的数据管理,都可以产生许多的应用需求,从而促进新技术手段的产生,还可以优化电力系统的运行方式,进而降低了电力系统管理的成本,对提升电力企业的经济效益具有重要意义,与此同时还能够有效地提高电力系统的综合服务性水平。智能配电网大数据应用中主要包括了配电网的运营以及整体规划服务,并且对客户的用电进行了相应的服务和管理,这些对大数据的应用需求必须要涵盖各电力系统运营环节中的信息数据,还有客户的用电数据以及电力营销数据的信息等,综合管理智能配电网中供电环节的所有数据,可以在最大程度上发挥大数据的价值[2]。电力系统和用电用户都是重要的组成部分,电力系统内部要不断地提高综合管理水平,加强对用电客户的服务性水平,通过对用电数据的总结可以让政府了解到当地的经济发展情况,从而为电力系统发展提供更多的政策扶持,对电力系统进行合理的规划发展,加强分布式电源的接入,对充电设备进行合理的布局规划等[3]。 

3 智能配电网大数据应用场景分析 

3.1 用电行为分析 

智能配电网大数据的应用场景之一是针对客户的用电行为进行分析,了解客户的用电模式,深层次地了解到客户的用电行为产生的具体原因。首先要对收集到的用电数据进行聚合管理,使用数据收集、储存以及大数据处理技术,整合客户的用电数据,还要考虑到客户的服务性数据等,综合考虑当地的人口、地理、以及天气环境数据的收集,将所有的数据统一地综合为一体,思考各数据之间的内在联系。下一步对客户用电的行为模式进行分析,总结出客户的用电规律,对客户的用电负荷、用电电量、电费情况,以及当地的电价价格数据建立一个综合性的用电行为系统模型,在不一样的专业视角上面,整体而又全面性地刻画出客户的用电行为模式,综合利用各数据信息技术论文,将用电行为相类似的客户综合起来,加强了对客户用电行为模式的理解[4]。 

3.2 用电行为理解 

正因为影响客户用电行为的原因有很多,需要综合考虑时间上、空间上以及客户的用电类型上的区别,因此可以深度讨论各数据因素与客户用电行为之间的内在联系。在深刻地了解客户的用电行为后,可以科学地掌握客户的用电规律,进而对客户的用电需求进行管理,下一步可以对用电负荷进行预测,对智能配电网的运行管理具有重要意义,了解客户的用电需求,可以为客户提供更好的配电服务。 

3.3 用电负荷预测 

对用电负荷进行预测在智能配电网大数据的应用管理中具有重要的意义,负荷预测是整个智能配电网用电调度计划、配电市场交易、智能配电网规划的重要基础,与此同时,负荷预测为智能配电网的运行管理和智能配电网的整体规划等提供了数据依据,可以说,负荷预测直接关系着智能配电网的安全运行,负荷预测可以影响到智能配电网规划当中所有的配电电源的安全布置点,还可以对配电目标网架的整体结构和规模进行调整。因此,在智能配电网大数据应用的场景分析中,有关专家和学者还可以建立一个新型的负荷预测模型,从而提高负荷预测的精度。用电负荷的变化是具有一定的周期性的,但是这种周期性又受到其他数据的影响制约,而且用电负荷本身也有着不断变化的特点,从而使得负荷预测的精确性存在一定程度上的误差,在智能配电网大数据应用的环境背景下,配电电源的形式变得更加多样化,电力系统和用电客户之间可以互相控制并且进行互动管理,提高了负荷预测的可能性[5]。

负荷变化规律是提高负荷预测的主要手段,而负荷数据是基础,负荷数据主要分为实时性的负荷数据和历史性的负荷数据,而实时性的负荷数据是当时电力系统电量负荷的实际值,而历史性的负荷数据则是指电力系统负荷中的历史数据值,通过对历史性的负荷数据来研究负荷的变化趋势,对于客户的负荷数据,可以分别进行研究分析,通过对负荷数据的分析可以更好地掌握负荷的需求量以及负荷的变化特点。 

而天气变化的数据也可以影响到客户的用电行为,在负荷预测管理中,还要综合考虑天气变化的数据,天气数据通常包括当地的气压、湿度、温度、风力以及降雨量,将天气数据与负荷预测结果进行分析,而除了天气数据外,人口数据以及市场经济的变化数据都可能会对负荷预测的结果产生数据影响。根据负荷数据预测的对象不同,可以分为系统负荷预测、母线负荷预测以及空间负荷预测等,而按照预测时间长度的不同,还可以分为短期、中期和长期负荷预测。智能配电网大数据应用的场景分析中为负荷数据、气象数据以及地理信息各数据建立了不同类型的模型,通常采用大数据分析和预测的方法,进而对智能配电网大数据负荷进行预算管理,将负荷预算的结果应用到智能配电网的规划当中。 

3.4 智能配电网运行情况的评估 

以大数据技术在智能配电网中的应用为基础,可以对智能配电网进行安全性的评估,对发电的频率、各环节点的电压水平以及主要线路的负荷水平进行评估管理,考虑智能配电网供电的容载比,从而提高各线路间负荷的转移能力,当出现供电不足的情况时,要根据负荷的能力来改变电压负荷,进行甩负荷管理。在对智能配电网的可靠性管理评估过程中,可以对配电网各方面的综合因素进行考虑,改进了负荷点的故障率,减少了电力系统停电的频率,并对电压的波动以及闪变等情况进行了调整,实现了大数据在智能配电网应用场景中的探索工作。 

4 大数据在智能配电网的应用前景 

大数据在智能配电网的应用中具有非常广阔的发展前景,用电预测以及协同调度方面都可以影响智能配电网的发展前景,精确的用电负荷预测对智能配电网的发展规划具有重要意义。要在未来的发展规划里,进一步完善并规划智能配电网的数据管理体系,完善数据一体化应用系统,并且要加快提高智能配电网大数据的数据质量以及各数据之间的融合程度,从而扩大各数据之间的融合范围,在智能配电网的在其他方面共同开展大数据应用[6]。 

综合智能配电网各方面大数据的应用需求,构建适合智能配电网的大数据应用框架,结合电力系统内部和外部的所有信息数据,建立智能配电网数据系统, 在大数据处理中,整合数据的储存、整体和分析工作,使得大数据系统中的数据保存具有一定的安全性,使大数据支持智能配电网中的各项应用。 

5 结语 

智能配电网是大数据应用的重要场景,随着智能配电网的不断发展,有大量数据需要监测管理,尤其是客户的用电行为分析和理解以及负荷预测的数据监控,如何处理这些监测到的数据已经成为了智能配电网大数据应用管理的主要内容,科学采用大数据应用技术,可以提高电力系统的发展水平,进而提升整个电力系统的经营效益,针对大数据在智能配电网中的应用需求,设计合理的应用场景,使智能配电网的发展前景变得更加广阔。 

参考文献 

[1] 王继业,季知祥,史梦洁,等.智能配用电大数据需求分析与应用研究[J].中国电机工程学报,2015,35(8):1829-1836. 

篇3

关键词:智能电网 建设 问题 前景

中图分类号:TM72 文献标识码:A 文章编号:1672-3791(2012)12(a)-0118-01

伴随着我国社会经济的飞速发展,我国的电力事业也在突飞猛进,一方面为更好地服务我国的经济建设,大力发展电力事业,拓展电网的覆盖面和承载力,提高供电的运行质量和效率;另一方面,国家构建几大电网,推进电力企业改革,为更好地的适应电力市场竞争,各大电网公司都在锐意改革,积极创新,提高我国电网的运行质量和管理水平。其中智能电网建设就是我国目前电力系统建设和发展的主要趋势,我们一方面看到了国家智能电力网建设的发展速度和突出成就,另一方面也应清醒地认识到目前我国智能电网建设和运行管理还存在的诸多亟待解决和完善的问题,寻求建设运行的新突破。本文根据我国智能电网建设和运行的现状和实践,根据现实分析阐述我国智能电网建设和运行所面临的一些挑战,并探究了我国智能电网运行建设在信息化发展的未来趋势。

1 智能电网的理论认知

今天,智能电网正以巨大的发展前景吸引着世界各国的电力运营企业,以前所未有的发展速度在各地推进,给传统电网以极大的冲击,带来了新型电力建设和运行的革命性改变,是信息化建设在电力运营领域的突出表现,是人类社会信息化的重要标志,实现了电力企业的信息化,提高了电力运行企业的安全性和可靠性,给电力企业带来极大的管理效率和运行效率和经营效益。进一步推进电力智能化建设,进一步完善智能化管理,是我国当前电网改造和建设的主力要任务。

首先,智能电网顾名思义就是电网智能化,在电网的改造和建设中,运用信息技术改造传统电网,建设新型现代化电网,是一种新型的电网建设和运行模式,建立在原有电网的基础上,实施信息化改造,调整、提升和优化电网运行和管理的各项性能。在具体实施过程中,主要是运用高速集成双效通信网络技术,借助先进的传感、测量技术和设备,运用高端网络和技术,把传统电网和信息技术有机融合,实现电力运营企业对电网高性能、更安全、更可靠、更稳定的需求目标,适应和满足经济和社会发展的更高要求。

其次,从理论和实际运行特点来看,一方面可以很好的利用自身的信息化智能元件和设备提高自身运行的安全性可靠性,避免实际运行过程外在环境、自然灾害以及人为因素的侵袭,并能根据情况迅速做出信息反馈,以便及时采取有效措施,甚至可以自行修复等自我排除故障。另一方面,智能电网利用自身的高科技为更多的新型电力产品提供必要的助益,从而更好地有效满足各种电力产品对电力负荷的需求,提升各种电力产品的使用性能。再者,智能电网也会根据自身的先进网络软件和高端网络应用平台进行快速有效的信息采集和分析处理和传输,从而实现电力运行的可视化、快捷化管理。

2 智能电网面临的问题和挑战

智能电网从理论设想到实践验证已经走过了几个年头,取得了很大的突破和进步,很好地补充和完善着电力运行系统和电网管理工作,但是,在实际的运行过程中,由于时代、环境、相关科技领域的变化和影响都会出现一系列的问题和挑战。具体表现为以下三个方面。

2.1 智能电网与传统电网设施的深度对接

从目前的智能电网改造和建设来看,电力系统一般都是在原有电网的基础之上运用一些与之相关的智能技术。智能电网若要对现有电网设施进行跟高程度、更深层次、更宽领域的优化提升,就必须对原有的电网设施和布局进行全方位、深层次的分析研究,以便更好地找到信息化智能化对接的着力点和突破口,实现更深层次的科学有效对接,使电网的运行更加高效安全。从目前对电网运行的新型数字元件的建模研究分析来看,智能电网还未能对这一问题达成统一认识,在电网运行的数学理论的研究分析仍然处在一个较为低端的阶段,新时期智能电网改造建设必须加深这一问题的研究,以期实现电网运行的更加智能化。

2.2 先进技术设备与智能电网的有效供给

从当前的智能电网建设实践来看,智能元件和先进的测量设备对工程建设速度和质量至关重要,是实现智能电网的必备物质基础,智能电网要实现技术突破,必须从智能元件和测量设备着手,以便对电网进行更好地智能优化。例如,先进的自控理论、现代传感技术先进仪表等智能元件和先进的测量装置。智能电网建设一方面需要新时期的运行能够对各种元件发出的各种指令进行迅速有效的分析,归类传输处理,实现智能化的及时实现;另一方面,智能电网还需要和各种先进测量设备配合使用,实现测量设备对元件的属性和物理状态及准确快速分析,能够第一时间传输元件的相关信息,保证网络和各级控制工作的高效运行。

2.3 网络通讯方式为智能电网提供有效支撑

网络平台和先进通信技术是智能电网顺利建设和运行的必要设备支撑。智能电网的建设和运行必须改变传统的互联网络的限制,应用更加广阔的混合型拓补形式的广域网,实现智能电网实时精确分级通信,保证电网高速高效信息传输,提高信息容量和准确度,保证智能电网完全、高效运行。

3 我国智能电网发展的前景展望

我国对智能电网建设起步较晚,各种技术设施和服务水平还处于较低水平,但是,我国对智能电网的认识和重视程度非常高,电网将在我国未来的建设和发展速度将更加快速。智能电网是信息化在电力事业的应用,随着我国科技的不断进步,数字化技术和自动化技术将不断发展,我国的智能电网建设将会向着信息化、数字化和自动化的方向发展,同时,在我国节能减排、科学发展等政策和方针的指导下,我国智能电网将向节电管理和用电管理融合因此,我国的智能电网建设将会实现数字化和自动化的技术融合,从而使我国的电网改造和建设运行处于一种更加安全、更加可靠、更加高效的新型智能模式。

参考文献

篇4

【关键词】继电保护技术;智能电网;电力系统;应用

1.引言

智能电网是电网发展过程中的必然趋势,它无可比拟的各项优势在建设高性能电网的过程中,带来了不断更新的新技术和新设备。随着智能电网运行研究的不断深入,继电保护技术也相对快速发展起来,迈入了一个新的阶段,继电保护装置越来越广阔的功能和应用范围同时也为智能电网提供了稳定的发展基础。文章通过对继电保护与智能电网之间相互作用关系的技术应用分析,深入探讨了继电保护技术在智能电网中的应用,为继电保护装置的正常运行提供了有效的参考价值。

2.浅析继电保护装置技术

(1)继电保护装置的发展现状

目前,电力系统的发展趋势朝着超高压电压和大联网系统的方向发展,在发展过程中有效提高继电保护的可靠性、灵敏性、快速性和选择性是重要的研究课题。近年来经过我国电力技术人员的实践研究,继电保护理论和实践都积累了大量的经验,充分组建了一个由电能产生、输送、分配和用电环节组成的现代电力系统。

(2)继电保护装置的任务

继电保护是保护电力系统中的元件,避免元件发生短路或异常,通过这些情况的控制来实现电气量的变化保护措施。在供电系统运行正常时,继电保护就需要完整的监视各种电力设备的运行状况,使之安全的正常运转,并及时切除供电系统发生故障时的故障部分,保证其他电力设备能够正常运行,并能够及时发出警报,促使相关工作人员尽快处理故障部分。在这过程中继电保护有效的为值班人员提供了可靠的运行依据。

(3)继电保护装置的基本特性

继电保护装置在运行过程中有着十分明显的基本特征,例如选择性、灵敏性、速动性、可靠性等。在智能电网的运行中,先进的科技水平更进一步强化了继电保护的各种性能,使之更加合理有效。

3.关于智能电网的分析认识

(1)智能电网的含义

智能电网又被称为电网的智能化,它是在高速通行、集成系统的基础上进行双向信息处理的,以特高压电网为主干网架,利用先进的电子传感技术,通过灵敏的控制方法和有效快捷的管理手段对电网信息进行统一收集、处理,使之安全、高速运行的运行方式。职能电网包含着整个电网的数字化、互动化、信息化,通过全面,先进的技术来解决多个设备以及变电站网络的具体问题,从而满足高性能、高质量的电能供应,实现继电保护的高起点、快发展的基础条件。在继电保护技术的深入研究中,也能保证智能电网的安全运行。

(2)智能电网中的继电保护发展

在智能电网继电保护的过程中,智能电网的交互式供电、分布式发电的特点对继电保护系统的影响很大。在数字化技术和信息技术普及的时代,智能电网的运用完善了继电保护原理,智能传感器还对输电、发电、供电以及配电系统进行了实时监控。所有监控数据进行整理、审核、分析后就可以看到全体设备的运行状况,实时监测保护定值和保护功能的远程动态。

智能电网的技术针对现有的继电保护系统来说,具有数字化,网络化、广域化特性的深刻影响,智能电网中的新技术和新方法使得继电保护的整体配置和相关软件能够快速适应智能电网的新需求。智能电网数字化的特征让继电保护技术实现了测量手段和信息传输方式的数字化,同时网络化特征让继电保护中的相关信息完成了数据共享和统一建模的智能数字信号的网络传输,特别是WAMS网络和智能信息系统的设定为继电保护服务提供了广域信息的收集和处理,充分提高了继电保护安全自动装置的性能。

4.继电保护技术在智能电网中的应用

高智能化电网的出现,意味着在电力系统领域继电保护的研究和发展不可忽视。在智能电网建设中,继电保护的应用过程越来越难以掌握,在研究过程中,继电保护的应用技术越发囊括了信息技术、网络技术、电子技术、控制技术等多专业技术的优势,通过技术的相互融合和发展创新,我国继电保护装置得到了很好地发展。

当继电保护应用于智能电网时,我们需要考虑多个问题,从原理上实现继电保护技术在智能电网中的应用。

(1)综合考虑继电保护灵活的运行方式以及不确定的潮流流向,在实现距离保护、电流保护原理时要做好实时的调整,确保定值具有适应功能。

(2)保护装置的定值、保护范围、保护功能要根据运行方式的变化做相应的调整,综合电网中的所有信息对保护定值进行实时修正。

(3)智能电网是通过散布在电网中的传感器获得最及时的信息监控输电线路的温度和容量,合理调整功率使其接近运营极限。在这过程中必须调整输电线路的负荷保护定值,从而适应温度和容量变化带来的影响。

(4)智能电网信息化和数字化的特点推动着继电保护技术不断发展,近年来,智能电网随着遗产算法、神经网络、模糊逻辑以及进化规划等人工智能技术的出现,也被广泛运用到继电保护的应用领域。智能电网继电保护系统在实际工作中运用人工智能技术,解决了很多复杂的非线性问题,推动着继电保护技术向着更高层次的方向发展。

(5)智能电网继电保护系统的自适应控制技术主要是根据电力系统的运行方式和电气故障状态的变化实行改变保护特性、性能以及定值等内容的技术。自适应继电保护作为一种新型的继电保护技术,它的应用让继电保护技术在很短的时间里适应了电力系统的各项变化,不仅增强了智能电网继电保护的可靠性,改善了系统的保护作用,同时也提高了经济效益。

5.智能电网与传统电网继电保护的区别

传统电网继电保护中电源点的潮流流向通常是朝着同一个方向发展的,它在保护输入过程中通常针对的是本侧电气量,特别是三相电流和三相电压的判别保护需求。通过对实际情况的分析和研究可以知道,传统继电保护的电气判别量基本上是固定不变的,基本上也只需要输入被保护线路对策的电流,保证保护对象的电气量不被影响。

在智能电网的继电保护中,则需要全面考虑灵活的运行方式、不确定的潮流流向,并要求保护定值具有自适应功能。通过对智能电网继电保护构成的分析,利用传感器对发电,输电、配电、供电等关键设备的运行状况进行实时监控,通过对智能电网电源点和电网相连线路的连接实现距离保护和电流保护,确保智能电网中的保护定值能根据继电保护运行方式的变化进行实时调整。

6.继电保护技术在智能电网中所起的作用

随着智能电网越来越快的发展,继电保护承担着更多更重的任务。继电保护装置在电力系统中需要随时防备设备出现亚健康的预警、提高输电断面的安全性、全面控制系统出现故障的频率。

(1)要发展继电保护的“预保护功能”,增强预防事故发生的功能,提高事故预警、保护两项保护功能,满足智能电网的新要求,则要注意智能电网子系统的不平衡功率,发展失步解列控制系统,减少事故发生的损失。

(2)为提升输电断面的安全性保护要全面发展输电线路的过负荷保护措施,自动避免连锁过载跳闸,全面停电的事故,强化电网的保护力度。充分利用现代技术,最大程度满足电网安全运行,实现智能电网中继电保护装置的作用。

(3)合理运行继电保护技术和继电保护装置。继电保护技术包含了一个完整的体系,它通过对电力系统故障分析、各种继电保护原理及实现方法、继电保护的设计、继电保护运行及维护等技术的完善和利用杜绝电气元件发生故障或不正常运行状态。

(4)智能电网继电保护的构成促进了继电保护技术的升级。智能电网的智能化特点和电网的发展为网络技术、信息技术在电力领域的应用起到了强而有效的作用。通过对智能网络系统利用智能传感器收集的相关数据进行智能化处理,使智能电网的继电保护装置不仅仅具备基本的继电保护功能,还有着智能化的故障诊断和自我修复、快速隔离的功能。

(5)智能电网的建设及规划使继电保护技术具有更全面的特点。数字化、信息化的智能电网与继电保护技术交相呼应,也随之升级换代,继电保护技术在智能电网时代具备了数字化、网络化、自动整定技术等多项特点。在智能电网之中,新一代的继电保护装置提高了装置性能。为电气量信息的传输带来了更为便利的基础条件。继电保护系统和互联网相互连接,对电网中的继电保护装置进行了智能化的配置。

7.结束语

智能电网是电网未来的发展方向,而继电保护将随着智能电网的发展不断前进,为智能电网的建设提供坚实的技术设备。与此同时,智能电网的发展将推动继电保护技术朝着网络化、计算机化、信息化以及控制、保护、测量和数据通信一体化的方向发展,尽力维护继电保护装置的安全稳定运行,强化继电保护装置在电网故障与电力控制系统中的隔离功能,促使电力系统成为更加安全、更加稳定、更加可靠的保护系统,为我国智能电网的建设垫定基础,进而提升我国的继电保护管理水平。

参考文献

[1]庄伟,牟龙华.智能配电网信息物理融合保护系统的研究[J].电力系统保护与控制,2012,40(4):113-118.

[2]米雪峰,张全娥,孟建军等.浅析智能电网对继电保护及其整定软件的影响[J].电力安全技术,2012,14(5):26-29.

[3]林利锋,黄景亮.浅谈电力系统中智能电网继电保护相关技术[J].北京电力高等专科学校学报(自然科学版), 2012,29(4):250-250.

[4]张保会,郝治国,Zhiqian BO等.智能电网继电保护研究的进展(三)——保护功能的发展[J].电力自动化设备,2010,30(3):1-6.

[5]刘京津.基于多智能体的故障诊断技术在智能电网中的应用展望[C].2011年江苏省城市供用电专业学术年会论文集,2011:39-45.

[6]汪旸.高压电网有限广域智能保护研究[D].华中科技大学,2009.

篇5

关键词:需求响应 智能电网 研究 合作发展

智能电网与需求响应(简称DR)是当今电力行业极为感兴趣而且重视的研究内容。作为21世纪有着重大科技改革的智能电网,在不知不觉中正与DR竞争市场共同发展、进步、完善,并开始相辅相成地交融在一定的科学领域。智能电网作为当今世界电力系统发展的必然选择,有着最先进、最科学、最系统的技术,而DR在市场环境当中的成长,已经成为了智能电网的最佳应用选择之一.并逐步成为智能电网的主流选择。

一、智能电网概论

(一)智能电网的基本含义

由于智能电网是电力科学当中提出的一种新的电网系统结构,因此在对其定义方面还存着一定争议。但从智能电网安全可靠、先进技术的角度来看,智能电网通过广泛的宽带通信并凭借智能模式控制的自动化系统已经能够保证电网系统中的各个成员之间进行有效的互动与使用,并能够完成传统电网难以完成的高质量任务。

(二)智能电网的特点

1、高度智能化:当电网当中的部分系统发生故障时,智能电网能通过一定的自我修复功能和安全分析功能对其他未受害地区的电网进行继续传送,而不会导致其他用户的供电质量受到影响。

2、良好的兼容性:智能电网不仅对集中式发电的模式能够通过自我调节进行有效的兼容,同时,对分布式发电模式也同样能适应。

3、强大的整合性:智能电网通过高端统一的电网平台对整个电力系统进行有效整合,并以最佳的电能质量和供电可靠性来激励电力市场的安全管理,从而提升整个电力系统的可操控性。

二、智能电网与DR的关系

(一)DR的定义

简单来说,DR就是电力需求响应的简称。DR作为需求侧管理的解决方案之一,可以让电力用户根据市场的价格情况或者相关供电部门做出的诱导性方针来改变自身原本的用电习惯,从而避免在短时间内出现电价上涨或某段时间内的用电量过大等问题。

(二)有关DR的智能电网技术

智能电网技术一方面可以让DR项目变得更加容易实施和推广,另一方面还能让电力用户选择最佳用电方案来提升用电效率。“智能电表”作为智能电网技术当中重要的系统结构,不仅改善了传统电表的可操作性低、容易发生故障等诸多问题,还在原有基础上结合DR项目,使用户可以更加了解自己的用电情况,改变一些不好的用电习惯。另外,双向通信、用户门户、家域网、计量数据管理、客户服务的改进都是与DR密切相关的智能电网技术。他们同智能电表一样从根本上改变了电力用户的用电习惯,形成了更为科学、系统的用电环境。

(三)智能电网与DR合作的意义

通过智能电网与DR的相互合作,不仅可以使电力用户更为直接有效地参与到DR项目中来,还能让用户本身更加直观地理解DR项目与智能电网之间的关系,从而选择更合理的用电方式以降低自身的用电成本。另外,通过智能电网的尖端技术,可以在一定程度上刺激电力市场的发展,并借助DR资源,寻找到更为科学的新型运作模式,大大优化电力结构体系。

三、智能电网与DR的未来发展

(一)智能电网的研究方向

由于我国在智能电网方面还没有比较成熟的系统法规,因此在智能电网技术方面还有待进一步提高。虽然在个别发达地区已经采用了智能电网模式,并在一定程度上结合了DR项目的发展经验,但依旧需要更多实践性的探索。根据国外的先进经验,我们可以先从分布式能源的接入点这一块进行深入研究,并找到适合我国电力结构系统的智能电网体系,从而进一步探索、研究“多网合一”的关键技术。智能电网的最终目的是希望能够在输配用电的安全性与经济运行的持久性方面做出本质上的提高,而我国的智能电网研究才刚刚起步,未来的发展路程任重而道远。

(二)DR项目的未来构想

DR项目作为电网结构体系中不可或缺的一项重要元素,关系着智能电网的整体优化,因此,对DR项目的改善需要政府部门、供电方通力合作,并进一步加大力度来完善相关政策体系,使DR项目能够做到有法可依,避免用电管理的混乱。另外,由于DR项目与智能电网的实施或许会减少电力部门的收入,因此为了鼓励相关部门的投入积极性,政府在条件允许的情况下应该加大资金投入量,切实保证电力部门的正常运行。

(三)智能电网与DR合作设想

智能电网要充分利用DR项目的能动性大力宣传智能电网的互动性、高效性、科学性,使大家对智能电网能有一个正确的理解和认识。另外,相关部门要有意开展一些宣传教育活动,使智能电网与DR项目能够深入到群众中去,让群众感受到两者合作能够带来的好处。其次,智能电网与DR内部要通力合作,相辅相成,在智能化技术与市场运作手段方面进一步加深相互的了解,使两者能够将智能化电网进行更大范围的普及。

四、结束语

综上所述,智能电网的发展已经成为全世界电力行业共同进步的需要,其智能化的手段与全新的管理模式都将给世界带来新一轮的电力变革。从DR的视角来看,我国需要在传统电网系统的基础上,加强统筹兼顾的思想,改变电网结构的单一性,优化电网系统的操作手段,改善电力结构基础,并结合国内外成功的优秀方案来建设出具有中国特色的智能电网,并同时促进DR项目的实施,让企业参与到市场运作的实践中来,努力实现电网的智能化操作,从而保证智能电网高速的发展。

参考文献:

篇6

智能配网能够提高智能电网配电效率,实现了配网的高效运行并能分段提取各段数据进行分析,增加了供电的科学性并有效提高了供电可靠性。运用智能电网,能够在出现电网故障时有效地缩小停电范围,提高用电客户端的满意度并减轻了基层运维人员的负担。智能电网的设计施工科学性能提高配电可靠性,从而更稳定地为社会创造显著经济效益,同时为人们的生产生活带来便利。规范智能电网中自动化配电技术的设计施工,能够促进中国电力事业进一步发展。同时为自动化配电技术的进一步发展提供了技术支持,促进中国的电力实业稳健发展。

2中国配电自动化技术的发展现状

2.1智能电网总体结构设计缺乏严谨性

智能电网设计缺乏一个较为科学合理的设计方案来对电网建设进行规划调整,在进行智能电网设计时没有进行全面、系统的电力分析,导致了部分智能电力电网的设计不严谨,实用性上存在不足,从而对电力负载的运行转供有了误差影响,降低了智能电网运行的稳定性。

2.2智能电网分布不均衡

在中国的中部、西部地区,智能电网的分布较不平衡,妨碍了整体电力电网事业的发智能配电网建设中配电自动化技术的研究与应用探讨文/邓雄在智能配电网的建设中,配电自动化技术起着重要的作用,是控制整个智能配电网稳定运行的技术基础。因此,加强对配电自动化技术的研究力度能有效加强中国智能电网的建设发展。结合我国电力信息技术系统的发展形势,从创新性的角度对智能配电网建设中配电的自动化技术进行了探讨和研究。摘要展进步。智能电网的分散建设造成了光纤覆盖率不均衡等情况。

2.3自动化配电技术发展不完善

从技术角度出发来看,中国的配电自动化技术发展落后于世界领先水平,尤其是自动配电装置的研发尚不具备自主独立的技术基础,造成了在智能电网的建设中不能对电力大小的调配进行及时准确的控制,造成了智能电网运行共组的不稳定性。

3对于中国智能配电网建设中自动配电技术发展建议

目前中国的智能配电网建设具有较大的发展潜力,需要相关电力技术人员加强对配电自动化技术的研究力度,在政策的鼓励以及相关设备得到及时财政支持的同时,加速推进在智能电网建设中的配电自动化技术发展。通过研究分析,笔者对加强在智能电网建设过程中的自动化配电技术的应用提出了几点建议。

3.1建立电力信息技术信息系统的统一管理

首先要建立起电力信息技术信息系统的统一管理,以便于各个分部之间能够更好更快的进行交流。提升配电自动化中的自动化策略中电力信息技术的比重,提升配电自动化中电力信息技术的比重,更好更有效的发展电力系统和配电自动化中的自动化策略。更好更有效的发展电力系统和配电自动化中的自动化策略。实现了统一管理,各部门的行为判断会得到高度的统一,从而实现在智能电网的运行中能够起到集中管理。及时对电网的运行做出科学化指示,统筹主计算机端的计算数据对电网运行进行控制。

3.2分配好电力系统各部门间的信息自动化领域

让部门和企业之间的信息共享问题成功解决,提高电力信息技术信息系统的统一管理能有效地提高配电自动化中的自动化策略的稳定性,并将电网的运行环境进行合理科学的调控,从而确保配电自动化中的自动化策略的安全可靠性。同时,实现电力信息技术信息系统的统一管理也让数据的传递速度有所提升,信息失真的问题也会有所减少和降低,继而进一步的让配电自动化中的自动化策略的安全度在整体上面得以提升,让电路系统的优质运行得到保证。此外,电力信息技术信息系统的统一管理也使得浪费成本的问题得到了很大的改善。

3.3充分运用互联网技术

运用互联网技术使得智能电力系统趋以完善,真正实现低投资,高收益。对互联网进行有效利用的使用和构建,对电力系统以及相关网络的安全性有保证,并使得安全性有所加强,以此会让配电自动化中的自动化策略中电力信息技术的应用收效更加显著。同时必须要让网络的漏洞可以得到组织,否则有可能会受到严重的损失。此外,以互联网为前提,能够让每个片区以及部门的管理者,都可以对整个电网和整条线路实时了解,因此集成网络技术系统的应用,还能够通过互联网技术的纳入使得整个电网信息的集中度得到有效提升。

4智能电网中的自动化配电技术应用实例分析

现以贵州省贵阳市某智能电网建设中心为例,贵州省的智能电网行业发展落后于国内平均水平,技术层面上存在着一些缺陷,不能满足贵州人民对于智能电网的需求,因此需要加强自动化配电技术在智能电网建设中的应用,分析其在智能电网建设过程中对配电自动化技术的应用。贵州省目前该电力企业首先明确了配电自动化在智能电网的运行中具有十分重要的作用,并引进了一批较为先进的自动配电装置,以及与之配套的安全保护装置。其中安全自动装置是在智能电力系统发生故障和不正常运行的情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备,以保证智能电网运行的安全性的一种装置。贵州省该电力企业成立了专门的自动化配电技术控制中心研究小组,致力于研究继电系统能以最短时限将故障或异常从系统中切除的可能性,实现配电自动化中的自动化策略的高度安全和可靠性。因此该电力公司的智能电网一直处于稳定状态,其引进的安全保护装置能及时对智能电网进行故障监控。同时该企业引进的自动化配电装置能对输出电压进行敏锐感知,智能调整电压值,从而确保电能不会被过多损耗。

5结语

篇7

【关键词】智能电网;继电保护;电力系统

智能电网环境影响了我国电力系统运行的各个环节,并给继电保护工作带来挑战,继电保护作为安全运行的第一道防线,在智能电网影响下,传统继电保护暴露出很多不足。智能电网的优秀信息系统,能给继电保护工作奠定良好的基础,相关人员应积极利用合理的保护系统,促进电网改革。

1 智能电网环境

21世纪电力工矿业的新举措是提出和建设智能电网,这也是全球范围内,提升电网运行质量的有利手段。智能电网在发展中具有以下特征:在发电发面,燃煤火电机是发电机的主要组成部分。但是化石能源供需矛盾较大,会污染环境,生态环境的恶化问题逐渐突出。相关人员应积极开发电、风、太阳能等再生能源,对能源供应结构进行优化,使节能减排的压力减低;在输电方面,我国能源与负荷呈现反向分布,能源中心和负荷中心的位置经常相距较远,所以需要建设超高压或特区的输电网络,确保能源能够优化配置,使经济效益得到提高;针对配用电,相关人员应接入的分布式电源,配网从单电源模式逐渐变为多电源模式,潮流分布有很大改变。智能电网环境,还促进了电网和用户之间的互动交流,转变了电能的收费方式。

2 继电保护的具体情况

2.1 智能电网影响下,提高了对继电保护的要求

继电保护在智能电网的影响下,面临着机遇和挑战。特高压电网在发生故障时,谐波分量很大,非周期分量衰减很慢,有明显的暂态过程。这种情况影响了继电保护的可靠性和快速性,使电压和电流互感器在暂态下的传变性能变差,在发生故障时,会导致保护误操作。智能电网中超高或特高压长线路分布,容易使按照集中参数形成的保护产生不好影响。变压器保护需要增大谐波含量区分内部故障,利用励磁涌流。电网之间的相互影响,加大了故障的复杂性,所以增加了故障的计算误差。相关人员要提高对继电保护设备的要求,提高其安全性和可靠性,并增加电磁兼容能力。

2.2 继电保护的技术优化

在智能电网影响下,为了实现电力网络和相关设备的监测保护,继电保护要对其技术进行优化。智能电网应用了很多新技术,部分技术会对继电保护造成不利影响,从而使继电保护的可靠性降低。技术的优化为继电保护提供了新的发展机遇,促使继电保护能够进一步发展。相关人员应重视智能电网的自我修复功能和故障诊断功能,智能电网中继电保护具体构成如下图所示。

图1:智能电网中继电保护的构成

2.2.1 广域保护技术

这种保护技术主要是针对电力网络子集,并将子集作为处理电网和分析的障碍运行单位。在“域”的范围内选取子集的继电保护信息,并详细分析采集的信息,左后判断电网出现故障的原因,然后有针对性的处理问题。广域继电保护主要包括安全控制和继电保护两方面内容,要针对电网本身的故障进行安全控制,为电网故障提供更多的解决方案。广域继电保护技术能够使现有的继电保护有能力处理故障问题,最后实现继电保护自我适应能力的提高。

2.2.2 保护系统重构技术

智能电网的发展要求,促使继电保护拥有很强的适应能力,并改变智能电网的运行方式和结构。在电网的适应能力方面,继电保护应具有重构、自我诊断和修复功能。例如,在继电保护出现故障时,智能电网能自动寻找能够代替的原件,并对继电保护进行修复。传统的继电保护系统已经无法适应智能电网的发展,所以应重新构建继电保护系统,从而满意预期效果。

在继电保护系统中,智能设备和新型电子传感器的应用,与智能电网的智能控制设备有关,这个控制设备能控制系统中的各个元器件,并具有较大覆盖面,包括智能电网的发电、输电和变电的各个过程。在智能电网影响下,可以将智能传感器安装在运行设备上,能够收集数据信息,有助于分析和评估智能电网的运行状态,快速开展评估工作。在维修工作中,能提供大量数据,从而大规模提升继电保护系统的性能。

2.3 改变了继电保护的方式

目前继电保护中,光纤差动逐渐完善,在智能电网影响下,传统继电保护面临很多困难。为了保护运行设别的可靠性,应按照严格的配置信息进行整合,并保证在进行选择过程中,不会干扰设备的快速性和灵敏性。传统继电保护应利用本地信息,考虑相互配合的后备构成模式,继电保护的运行方式和网络拓扑无法适应智能电网的新形式,很多停电事故也表明,传统后备保护因为自身局限性,逐渐被淘汰。传统后备保护问题主要表现为:动作时间过长、整定配合复杂,可能无法满足系统稳定需要的时间,降低电网的安全性;这种保护设备受到系统运行的影响较大,无法适应运行方式的改变,难以兼顾保护的选择性和灵敏性;传统的继电保护不能良好的进行故障区分和故障切除,所以容易出现潮流转移,从而引起连锁跳闸。

智能电网环境为新型的继电保护提供了发展凭条。在信息采集方面,我国自实时动态监测系统建立以来,目前我国所有500kV变电站和大部分220V的变电站都安装了同步测量单元,并且广域测量系统已经具有比较完善的规模。在继电保护中,WAMS/PMU能够确保广域电网的同步在线测量,这种情况提升了数据的更新速度,使其能够用于实现同步信息的继电保护功能。在信息通信方面,我国电网500kV及以上的光纤覆盖率得到提高,220 kV覆盖率为和110 kV覆盖率均提到90%以上,这个电力通信网络形成过程主要以光纤为主要介质,主要特征是分层分级自愈环网络。基于IEC61850标准,数字化变电站能够实现站内的一次设备的数字化和二次装置的网络化,整个运行网络有统一的平台,能够是信息共享和互操作。在智能电网环境下,继电保护已经具备高速、实时和可靠的信息通信条件。

3 结束语

通过上文对智能电网环境下的继电保护的分析研究,能够得知继电保护拥有更高的要求,改变无法适应智能电网的部分,优化保护技术和结构。智能电网的信息平台,有覆冰监测、雷电监测等多个信息系统,相关人员应将多种类型的信息用于电网的继电保护中,从而改善传统继电保护中的问题,使保护变得更加全面,智能电网得到更好的运行。继电保护是电网工作中的卫士,具有隔离系统,解决故障,防止故障扩大的重大作用。在智能电网下,继电保护装置应适应最新的技术改革,并研究新的继电保护技术维持电网的正常运行。

参考文献:

[1]陈恒.智能电网下的继电保护技术探讨[J].科技信息,2010(9).

[2]陈勇军.智能电网中的继电保护技术分析[J].科技与企业,2012(12).

篇8

关键词:智能配电网;自愈;控制

中图分类号:TM76 文献标识码:A 文章编号:1006-8937(2015)08-0006-01

所谓的配电网自愈,是指配电网具备的自我预防、自我恢复的能力,它是配电网智能化的重要标志,也是智能配电网的重要特征。自愈能力源于监测电网重要参数,并对其进行有效控制的策略,当系统正常运转时,对电网进行实时评价和不断优化,以实现自我预防,并通过检测故障、隔离和恢复电力供应等措施来实现自我恢复。

1 配电网实施自愈控制的必要性

近年来,国家投入大量资金,对城市电网进行了大规模地改造,其信息化和自动化水平有了显著提高,但是,随着各种新能源发电技术的不断发展,给配电网的运行和控制保护带来新的机遇和挑战。

在传统的配电自动化技术的基础上,发展延伸出的自愈控制技术,不仅提高了供电的可靠性,也使配电资产利用率得到了极大提升,作为高级配电自动化的核心功能,其顺应未来电力的发展趋势,能够接入分布式发电、电动汽车充放电和储能等设备。长期以来,国内配电网存在线路损耗高、设备利用率不高和供电可靠性较差等问题,而需求侧响应等智能配电网自愈控制正是解决上诉问题的核心技术,也是解决大量接入的关键。

2 智能配电网自愈控制的技术体系

2.1 功能定位

不间断供电是配电网自愈控制最为基本的原则,首先需通过优化和预防措施,对配电网进行校正控制,以防止发生事故;如果一旦发生事故,为避免损失扩大,则必须采取紧急恢复控制,以及进行检修维护控制,若由于停电事故造成电网大面积瘫痪,那这就说明自愈控制未取得成功,电网自愈控制区域如图1所示。

2.2 技术体系

智能配电网的自愈控制技术体系分为三个层次,其中基础层居上,支撑层居中,应用层居下。

2.2.1 基础层—电网及其设备

电网实现智能化的前提是实体电网,其是智能电网的物理载体,而自愈控制的实现也是以其作为基础。但是我国配电网与国外相比,无论管理水平还是整体电力供应能力和可靠性,均低于国外同行;远低于先进国家配电自动化系统的覆盖率;我国配电网技术还未成熟,加之运行维护满足不了实际需要,以及频繁地调整网架结构,导致部分设备处于闲置状态,其实用化水平偏低;有些城市的配电变压器节未能充分发挥节能降耗技术的作用,其运行经济性不高。

2.2.2 支撑层—数据和通信

电力的传输以及其运行的安全性、高效性、可靠性,是以覆盖全电网的信息交互来实现的。而且,一次、二次设备的状态和表计计量等数据,是支撑自愈控制的基础,但是,这种数据的采集,不仅数量大、采集点多,而且较为分散,因此,就必须建立开放的通信结构,制定统一的技术标准,并完善安全防护措施,在此基础上,构建集成的、高速的双向实时通信系统。

配电网智能化的实现,是以集成的、高速的双向实时通信系统为基础的,其也是配电网自我预防、自我恢复的核心。通过通信系统,电网能够持续进行自我监测,并利用先进的信息技术不断校正,从而实现自愈能力,以提升对电网的驾驭能力,服务水平也随之提高,而且其也可对各种干扰进行监测补偿,并重新分配潮流,以防止事态扩大。

2.2.3 应用层—监测与评估

电网、供电设施和数据通信是否完善,直接关系到自愈电网的各功能是否能够实现,在此基础上,电网的自我预防、自我恢复通过监测、预警、评估分析、控制以及决策、恢复等技术手段来实现。智能电网具有自愈能力,其在运行状态下,我们可将其分为正常、预警、临界、紧急以及恢复等状态。

电网的各种状态的划分,是以系统各参数指标是否在允许范围为界定,其中,各参数指标在允许范围内,则是正常状态;虽未越限,但有些指标已经处在警戒范围,则系统处于预警状态;当运行参数指标已接近上限,或轻度超越时,则是临界状态;而某些重要参数指标超越界限,则处于紧急状态;部分负荷电力供应中断,则是恢复状态。

3 智能配电网自愈控制关键技术

随着配电系统快速仿真和模拟、分布式计算以及保护装置的协调和自适应整定、智能分析和决策、与DG的协调控制等技术措施的发展应用,配电网自愈控制的方式也有所改变,其供电的效率和可靠性也随之提升。

3.1 含DG微网及储能装置的智能配电网建模与仿真技术

研究各种配电系统元件模型、电力电子装置、控制器以及DG、储能元件的仿真建模方法,其模型统一描述方法是以公共信息模型为基础,其研究内容包括动态等值和快速仿真与模拟等技术,还包括DG、微网及储能装置的智能配电网模型化简技术,以及电磁暂态仿真、多相潮流、稳定性仿真等算法,配电网元件类型多种多样,主要有配电线路、变压器、各种DG、储能设备和无功补偿装置,加之模型的适应性,这对智能配电网建模和仿真技术提出了更高的要求,基于用途不同,各配电元件的模型表达又分为稳定性仿真、稳态分析和暂态仿真,与此同时,针对网络重构的故障恢复技术,智能配电网必须提升仿真、计算的快速性,以适应技术的发展。

3.2 在线智能分析与决策技术

在智能配电网自愈控制方案中,基于预想事故的自动匹配技术,提供了实现有效控制和保护动作的方案,其对各种基于预想事故的智能电网的技术和方法进行了研究,如自愈控制的智能化学习、多重分析结果的多目标智能决策等最佳匹配技术以及预防控制连锁故障演变的方法,其中,无论自愈控制决策的协调、在线风险评估,还是冲突解决、优化,应针对智能配电网的某一运行控制目标。

在实际运行时,因受到某些因素的影响,会产生多种不同的控制预案,甚至相互之间发生冲突,基于此,要求自愈控制系统做出自我协调,以化解控制决策的矛盾,对各控制预案进行比较,在实施前做出在线分析评估和优化,预估可能产生的控制效果,并做好有效的后备控制方案。

3.3 智能配电网保护装置控制保护技术

通过局域网信息,多电源闭环供电的配电网能够形成网络式保护,因此,应在网络重构之后对网络式保护装置自适应的控制保护原理进行分析研究,对基于局域信息或全局信息等不同平台的各种保护装置进行协调配合,研发智能配电网保护测控一体化终端和故障指示设备(用于显示故障分支),智能化配电网在运行优化或者故障恢复时,其应用的网络重构技术以及实现即插即用,都对保护装置的整定和配合提出了更高的要求,因此,自愈控制系统应及时捕捉配电网网络拓扑的变化,准确感知DG的投切,保护装置必须相互配合,并在第一时间内完成在线自适应整定。

4 结 语

在建设实体配电网的过程中,必须具备长远的发展眼光,探索、规划和建设我国的配电网,并结合创新技术,在成熟的、先进的技术基础上,无论从技术装备还是电网架构上,构建未来的智能电网,以满足社会发展的需要。

参考文献:

李乃湖,倪以信,孙舒捷,等.智能电网及其关键技术综述.南方电网技术,2010,(3).

篇9

关键词:智能电网;需求响应;关键技术;研究

前言:智能电网的关键目标在于催生新的技术,以及新的商业模式。在智能电网体系中,需求响应、分布式洁净能源的并网发展,一方面能够有效的缓解输电和发电容量的扩建,另一方面能够促进社会能源可持续利用。实现智能用电是智能电网发展的基础,将供电侧应用到用户侧,借助灵活的计算机信息网络,在智能电网终端形成高效而完整的用户用电信息服务体系。基于需求响应的关键技术在智能电网中应用,能够有效的完善智能电网功能,对于智能电网的发展具有较为积极的意义。

1.需求响应内涵与影响因素

1.1需求响应

需求响应在智能网中的应用能够有效地发挥出其作用,提升电力市场的竞争力。需求响应从需求侧管理出发,针对电力市场上的价格、激励等产生响应行为。从广义角度分析,需求响应是指电力市场上用户能够针对价格信号、激励机制作出的一系列的响应,针对市场发展方向及时的调整市场参与行为,并且确定用户响应电价和激励信号[1]。

1.2需求响应影响因素

在智能电网下的需求响应受到诸多因素的干扰,从电力供求曲线分析中能够总结出以下观点:电力需求曲线与电力管制环境密切相关,用户所面对的是静止的电价,以及相对动态的电价,对电力需求曲线未产生较为明显的影响。如,对于发电市场而言,信息的充分透明、短期需求波动巨大,厂商的供应曲线可以直接被分为两个部分,一种是供应充足时间段,实现平均运营成本报价处理。另一种为供应约束时间段内,厂商根据固定成本平均成本进行报价[2]。

2.智能电网条件下的需求响应关键技术

2.1需求响应目标多层次优化

在智能电网需求响应项目中,在不同的项目目标中,其所需要的需求优化方案不同。在指定需求响应方案的过程中,根据需求响应参与主体、需求响应目标、决策变量、决策目标等变化,来执行多层次的需求优化。基于智能电网下的电力公司将基于激励的需求响应参与到发电调度优化决策当中,该种决策变量的应用,能够有效的削减负荷,并且削减决策时间。除此之外,还可以应用直接负荷控制的方式,确定目标函数,将发电成本定为最低,实现网损最小化。

在目标优化的过程中,将基于价格的需求响应才能参与优化时,保障决策变量能够满足削峰填谷要求等政策,保障在系统中所优化的目标是日负荷曲线最大峰荷最小化,在这样的基础上,才能够提升用户的满意度。当用户接到电力公司的需求响应项目要求时,通过智能交互终端或者是能量管理系统,对电力系统的运行方式进行重新安排。在实际的安排过程中,需要关注用户成本管理,主要包含:购电成本、服务成本、停电成本等。在响应系统侧信号传输过程中,需要综合考虑到生产班制、设备连续性、前驱后级关系等问题,以确定出最优化的电能管理方案[3]。

2.2需求响应效益评估

需求响应在智能电网中应用,能够针对电网中的负荷进行调整,维护电力市场的运行,该种方式能够能有效的提升电力系统资源利用率,并且保障电力系统运行效率。对需求响应进行效益评估,能够对电力工业以及经济发展提供推动作用,对环保项目的发展也有益处。需求响应项目效益评估主要包含了以下内容:经济补偿、电网侧购电成降低、用户侧电费节省等。

为了实现以上对象的需求响应定量表达,首先需要准确的把握智能电网模式下的发展潜力,明确需求响应项目所开展的实际意义。其次,从主体、时间、项目对需求响应综合效益的分析角度出发,对需求响应效益进行多维度的分析,借助解耦思想量化效益评价[4]。

2.3需求响应激励机制

在智能电网需求响应激励机制中,用户能够直接参与到需求响应中,并且能够获得一定的补偿额度,具体的需求响应激励机制有:1)基于独立系统运营商的评估方式。在独立系统运营商的ISO系统中,借助电力交易中心,实现智能电网对于用户的停电价格评估;2)由用户申报相应的可中断负荷容量,保障相应的缺电成本,在实际应用中,明确有策略性上报缺电成本倾向,借助相应的设计激励机制,确保用户能够获利;3)基于信用积分的激励理论,在该种理论中,计算出消费成本、奖惩积分,避免用电量过多。

2.4需求响应在批发电力市场中的应用

由于电力工业和电力商品的特性,使得电力市场在一段时间内不能适应市场发展特征,出现了一定程度的行业垄断。在电力市场中,不能将需求侧和供应侧等同对待,难以产生良性运作的电力市场。而基于需求响应关键技术在批发电力市场中的应用,能够有效的提升单边市场的运行稳定性,为电力市场提供市场基础。此外,将需求响应引入到竞争市场当中,使得市场竞争更加的有效,其价格应用更加的合理。为了促进电力市场的良性发展,将需求响应当做减震器,发挥出电力需求响应的作用。

2.5需求响应支持技术

智能电网下的需求响应支持技术比较多,主要包含了以下技术:高级量测系统、电能公共服务平台、需求响应系统、智能用电设备等技术。对高级量测系统进行分析,该系统主要的作用就是能够实现电网公司范围内的用电数据信息采集,以及重要信息的存储、处理等,在实际应用中应用集中化的系统监控以及业务分析。在高级量测系统框架中,包含了智能终端层、通信信道层、主站层。对电能服务管理平台进行分析,包含了智能电网节能管理、能效检测与分析、有序用电以及负荷管理、需求响应、需求侧工作考核、能效知识库。在不同模块中,其所能够实现的功能不同,在节能服务管理模块中,包含了节能服务公司管理、节能项目管理、节能指标管理、动态信息等内容[5]。

结论:综上所述,在本文中介绍了智能电网下的需求响应内涵,研究了智能电网下的需求响应关键技术。在维护电力系统运行过程中,需求响应关键技术主要包含了以下内容:效益评估、激励机制、目标多层次优化等,希望相关的需求响应技术研究,能够促进智能电网发展。

参考文献:

[1]朱城香,杨俊华,陈思哲,罗志辉.智能电网背景下基于人工智能理论的需求响应技术[J].陕西电力,2015,(07):63-69.

[2]李乾.智能电网中的通信网络资源管理关键技术研究[D].北京邮电大学,2015.

[3]田世明,王蓓蓓,张晶.智能电网条件下的需求响应关键技术[J].中国电机工程学报,2014,(22):3576-3589.

篇10

关键词:智能化模式 电网调度 关键技术 控制管理

中图分类号:TM73 文献标识码:A 文章编号:1674-098X(2016)02(a)-0001-02

1 智能调度概述

随着科学技术的迅速发展,智能电网的应用逐渐普及开来。电网的发展更是朝着快速化、智能化的方向发展,对电网调度的能力提出了更高的挑战和要求,而传统的依靠经验进行电网调度的模式,已难以适应当前的发展需求。国家电网公司在坚持自主创新的基础上,加快了电网网架的建设速度,以促进各级电网的信息化、自动化发展,努力形成统一完善的智能电网。而在智能电网的建设中,智能调度是一项极为关键的内容,其功能相对于智能输电网的神经中枢。

不仅能够维系电力的生产,还能够保障智能电网的运行与发展。新的电网网架是以特高压电网为骨干的,强调的是各级电网之间的协调发展,以满足其安全运行的需求,为其提供可靠的技术支持。智能调度技术的应用,能够提高电网监控的质量和效率,对电网的状态能够做到预先感知,从而将风险降至最低程度。同时,还有着实时自愈的功能,能源接入的方式更加灵活,提高电网的经济运行效率、以及节能减排的水平,更好的为和谐社会建设服务[1]。

2 智能调度的架构

在输电网中采用智能调度,需要借助于各种先进的技术方法与智能化的手段,以达到对输电网的自动化、智能化的监控、分析、预警与处理控制,提供更为安全可靠、经济环保的技术支持。整体而言,智能调度具有感知能力强、自动化与精细化程度高、抗风险能力强、运行经济性好等特征。从应用的效果来看,智能调度应用于电网监控,不仅更为敏锐和具有前瞻性,且其自愈调整效果更佳,极大的提高了电网的运行经济效益。

对于调度中心内部来说,智能调度借助于智能化的手段,以可视化为主要特征。从测量分析、到建模计算、再到管理控制,服务于调度的各个环节,为其各个专业提供了更加精益化的服务。对于输电网来说,智能调度相当于输电网的大脑神经中枢。不仅能够对能源资源起到优化配置的作用,更提高了其他能源接入的技术支撑。无论是电网运行的监控能力,还是信息的自由交换与随需访问的能力,以及对特大电网的驾驭能力,都有了显著的提高。整个电网的输电能力得到了很好的挖掘,能够达到主动性、前瞻性、多周期、多防线的安全防御效果。

3 关键技术的控制管理

3.1 广域分布式网络架构

实现区域内广域网络的互联,是区域电网一体化建设的要求和基础,也是传统调度方式向自动化、智能化转变的体现。通过若干个级联交换机,将每个区域的后台主干网相连接,以实现双网冗余。双环形、双星形网是较为典型的系统网络架构,其中以环形网的投资更省。采用高效的网络拓扑分析方法,对一体化系统网络进行抽象,能够将大多数的平台模块与应用模块之间的差异进行屏蔽,有助于路径解析与解析效率问题的解决[2]。

从物理角度来看,在不同子系统的交换机之间,能够通过网络链接成环。充分考虑了网络本身所存在的冗余及其自身的可靠性,将部分通路设置为阻塞的状态,能够防止网络风暴的影响。当出现3点故障时,对于一体化系统来说,能够保证其网络的畅通,提高复杂条件下电网运行的稳定可靠。对于部分地区出现的网络带宽窄等情况,系统能够全过程的对数据传送进行分析,以便提供多种策略解决通信资源的占用率问题。将数据压缩技术应用于传输环节,可以实现大块数据的传输,大幅度提高了传输数据的压缩比。本地化数据在数据接收端的应用,进行数据的长期保存和区域内访问,使得数据流量大大减少。

3.2 一体化智能应用的技术支撑

智能调度的建设,离不开一体化智能应用的技术支撑。首先是模型与数据的管理技术,通过提供及时、准确、完整、可靠、一致的一体化模型与数据基础,以满足智能调度中所开展的新型业务的技术需求。其次是海量信息的存储管理,电网实现互联后,在空间和时间域中会出现海量信息。其处理、存储与读取的速度,关系到能否提供精确有效的海量基础数据。同时,可视化展示技术的应用,是以人机展示方式进行的,是智能化调度的重要体现。其对象不仅仅包括电网运行的信息,而是以调度中心为范围,包含了各个专业的人机界面。此外,地理信息的接入,不仅提高了智能电网的抗风险能力,更便于分布式能源的接入。

3.3 特大电网的智能运行控制

智能电网的一个关键性特征,就是特大电网的智能运行控制。通过构建智能电网的安全防御系统,以实现更为广域便捷、精确同步的量测感知,提高自适应智能决策的能力。一方面受到决策指令的控制,另一方面要与动态响应相协调,形成智能化的安全控制执行能力。当电网处于正常的运行状态时,如何通过优化调度以提高经济运行的效率。可以通过输电容量的提高,实现电网运行成本的降低,进而达到节能增效的目的。当电网处于警戒状态时,需要及时发现故障隐患,并采取有效的诊断和消除措施。以减小事故发生的概率和造成的损失,避免发生大规模停电的事故,达到控制和降低电网运行风险的目的。

3.4 一体化调度计划运作平台

智能电网的经济特征,主要体现在一体化调度计划运作平台上。该平台以节能减排为目标,通过优化模型和算法,使得一体化调度计划更加安全经济。一方面要对多时段能量计划进行研究,同时还应综合考虑到辅助服务计划,通过多层次的安全校核,对调度计划进行充分的评估分析。运作平台不仅先进实用,且可扩展、易维护。采用信息化的手段实施电力生产管理,能够提高电网的安全、稳定、节能、经济运行水平,更有助于资源的优化配置[3]。

3.5 一体化调度管理

在智能化的模式下,实施电网调度的一体化管理,不仅需要规范化、专业化的管理制度,更需要精益化、指标化管理措施。以调度中心为基础,纵向互联各类功能和数据,提高服务的窗口水平。调度管理类的功能涉及的方面较多,从调度门户的使用、报表的统计分析,到各个专业与生产控制的管理,再到业务流程的处理,以及运行值班的管理等,需要保证各个环节的紧密衔接。

参考文献

[1]李莹雯,周云峰.输配分离后电网调度管理模式研究[J].四川电力技术,2011(5):46-49.