量子计算的特性范文

时间:2023-12-27 17:55:00

导语:如何才能写好一篇量子计算的特性,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量子计算的特性

篇1

摘要:总结卷云冰晶粒子常用的物理参数如形状尺寸以及谱分布,论述卷云冰晶粒子散射特性的常用计算算法,重点介绍毫米波波段冰晶粒子散射特性的计算方法如DDA、T矩阵、FDTD方法并研究各种方法的优缺点。总结国内外气象粒子的实验测量方法如微波后向散射测量装置、FP腔、双站RCS快速测量技术、

微波暗室测量方法,最后对该领域内研究动向进行概述。

关键词:卷云;冰晶粒子;物理参数;理论计算;实验测量

中图分类号:TN011 文献标识码:A

1引言

卷云平均覆盖了地球上空20%-30%,其水平范围从几公里到上千公里,由于卷云既反射太阳的短波辐射又吸收地面的长波辐射, 对地球-大气系统的辐射收支有着重要的影响[1],因此对卷云的辐射特性进行研究,建立各种非球形冰晶粒子的散射特性数据库具有十分重要的意义[2]。

目前对云的探测手段主要有卫星遥感、天气雷达、激光雷达、云幂测量仪以及高空气球等。卫星遥感探测间隔时间长,空间分辨率低;天气雷达对浅薄云不敏感;激光测云雷达、云幂测量仪以及气球只能探测空间某一点的云信息。因此,常规的探测云手段虽然可以获取云信息,但是时间分辨率和空间分辨率都较低,不能探测云内部结构,难以准确反映时刻变化的云参数信息[3]。作为新型的云探测工具,毫米波测云雷达具有很高的灵敏度和分辨率,可以探测云的内部结构,弥补了常规云探测的不足。

为了利用毫米波测云雷达的回波特性评估冰云,必须对毫米波波段云中冰粒子的散射特性进行理论和实验研究[4]。目前理论研究卷云中冰晶粒子散射的方法多集中在FDTD[5]、DDA[6]、T矩阵[7]等,常用的实验方法主要有微波后向散射测试方法、FP腔法、双站RCS快速测量方法、微波暗室测量。本文结合国内外相关资料对冰晶粒子散射理论计算方法以及实验方案进行综述,以此为研究毫米波波段卷云冰晶粒子的散射特性提供部分的参考依据。

2卷云冰晶粒子的物理参数

冰云主要由比球形粒子复杂的各种形状的冰晶粒子组成, 卷云、高积云、高层云上部及雨层云上部等一般由冰晶组成,所以属于冰云。冰晶粒子的散射特性与其形状、大小、组成成分、取向以及入射波长等因素有关,毫米波散射特性的研究目的,就是分析冰云的特性和云粒子的后向散射特性的关系,从而利用毫米波雷达的回波来准确反演云的特性。

2.1卷云单个冰晶粒子的尺寸以及形状

冰晶粒子的形状和大小是多种多样的,随高度变化,它取决于温度、相对湿度以及在云中是否经历了碰撞与合并过程[8],中纬度卷云冰晶粒子的典型尺度变化范围为10~4000um[9],Hong gang在研究94GHz频率下非球形冰晶粒子的散射特性时将冰晶云的粒子分成了6种形状,包括六角棱柱、中空六棱柱、六角平板、子弹花环、聚合物以及过冷水滴,粒子的尺度范围为2~5500um[10]。Ping Yang等在计算冰晶粒子单次散射特性时将冰晶粒子分成了聚合物、实心以及空心六棱柱、椭球形、六角平板状、过冷水滴以及子弹花环,计算中粒子的尺度范围为2~10000um[2]。

2.2卷云冰晶粒子的谱分布

云物理中把云中冰晶浓度(单位体积中冰晶的个数)随尺度的变化叫做冰晶谱,冰晶谱N(D)代表了冰晶的大小D与数量N的对应关系,它是一种反映云特征的微物理参量。冰晶谱分布主要有对数正态分布、伽玛分布、双峰伽玛分布、幂指数分布等[11],目前云粒子计算中最常用的是伽玛粒子谱分布[12],形式如下所示:

3冰晶粒子的散射理论计算与实验标定

3.1卷云冰晶粒子散射的计算方法

卷云冰晶粒子散射计算的方法有限时域法(FDTD)、离散偶极子近似法(DDA) 、T矩阵(T- Matrix)、有限元法(FEM) 、矩量法(Mom)、几何光学法(GOM)、异常衍射理论(ADT)等。在毫米波波段下,计算卷云冰晶粒子最常用的是FDTD、DDA以及T矩阵方法,故对这三种方法做简单的介绍:

3.1.1时域有限差分(FDTD)法

自1966年Yee首次提出时域有限差分方法以来,该方法已经得到了迅速地发展以及应用。目前公开的FDTD软件主要有FDTDA、XFDTD、EMA3D、AutoMesh、A Conformal FDTD Software Package等[13],FDTD方法可以应用于各种形状的粒子,但是当尺度参数χ(χ=2πr/λ,r为粒子的等效半径,λ为入射电磁波的波长)大于20时,计算所需的CPU的时间和内存空间变得有点不切实际[2]。

3.1.2离散偶极子近似DDA方法

DDA方法最早是由Purcell和Pennypacker于1973年首次提出,后经过Draine等人的进一步改进,现已经发展成一种成熟的算法,其最大的优点是可以计算任意形状、非均匀和各向异性粒子的散射问题。DDA的基本思想是用有限个离散的、相互作用的小偶极子的阵列来近似实际的粒子,这些小偶极子必须在形状上和电磁特性上足够描述它们所模拟的粒子,即两者具有相同的离散关系从而对实际粒子的研究转化为对这些小偶极子的研究。任给一粒子,设其可离散为N个小立方体,每个小立方体的散射特性可用一个偶极子表示。整个粒子成为含有N个偶极子的阵列。N越大计算结果越精确,但对计算要求越高。用这种方法时离散偶极子的数目随散射体的尺度参数以指数形式增加,从而进行随机取向的运算量也将快速增大。

3.1.3Tmatrix

该方法最早是由P.C.Waterman提出的,原用来求解导体的散射问题,后来推广应用到求解介质体,该方法多用于计算轴对称粒子的散射问题,因为散射体具有轴向对称(或在空间随机取向)时,可以用互易性定理,即入射光和散射光是可以互易的,这时T矩阵化为由6个独立元素组成的对角矩阵,且每个子矩阵都可独立计算。T矩阵中的每一个矩阵依赖于散射体的形状、大小和折射指数,而与入射场和散射场没有关系,因此只要计算一次T矩阵就可用于任意距离处光散射的计算。T矩阵方法的优点是程序中有自动收敛检测使计算结果比较准确,速度也很快,但目前的代码只能用于计算轴对称物体(如椭球体、圆柱体等)的散射。对尺度参数较大的粒子,计算结果不收敛,对于取向比远偏离1的粒子,T矩阵也只能计算小尺度参数粒子的散射[14][11]。

总之,各种计算方法有各自的优缺点和适用范围,而目前还没有一种方法可以精确快速地求解任意形状,任意尺寸的非球形粒子散射特性。实际应用中,我们只能根据粒子的实际特征来选取合适该类粒子的计算方法。其中,FDTD 、DDA适用于任意形状及非均匀的粒子,但是由于计算机内存和速度的限制,当尺度参数大于 20 的时候就不可以使用 FDTD 和 DDA 算法进行计算了,T矩阵精度远胜过FDTD和DDA方法,但是这种方法仅适用于计算轴对称的粒子,比如球、椭球、圆柱以及切比雪夫粒子。GOM、ADT适用于尺寸比入射波长大的粒子,但精度较低,而且这两种方法在仿真不均匀粒子或者复杂的粒子模型时存在着一定的难度[15]。

目前一些常用的商业软件也可对粒子的后向散射进行仿真计算,如HFSS(基于有限元)、CST软件(基于时域有限差分)、FEKO(基于矩量法)。

3.2卷云冰晶粒子散射的实验测量技术

国内外对气象目标物如云冰晶粒子、冰雹以及降水粒子散射测量的实验方法主要有(1)微波后向散射测试方法(2)FP腔方法 (3)双站RCS快速测量方法(4)微波暗室测量法等,下面分别对其进行简述:

4结论与展望

卷云的辐射特性研究在国际上是一个研究的热点,世界各国一直非常重视卷云的研究,但是卷云的辐射强弱仍然是一个尚不能精确确定的影响因子。本文对卷云中常用的物理参数进行总结归纳,认为卷云冰晶粒子的典型尺度变化范围为10um~4000um,形状模型主要有六角棱柱、中空六棱柱、六角平板、子弹花环、聚合物以及过冷水滴这几种。实际的探测资料表明,云中的粒子远比这些模型复杂,无法用简单的数学模型来描述,而且目前的研究中大都认为冰晶粒子为均匀各向同性的介质,缺少对各向异性且非均匀情况下的计算。粒子散射理论计算中,目前还没有一种方法可以精确快速地求解任意形状,任意尺寸的非球形粒子散射特性,因此设计一种混合的算法具有十分重要的意义。在实验室测量冰晶粒子的散射特性中,本文主要介绍了微波后向散射测量装置、FP腔、双站RCS快速测量技术、微波暗室测量技术,这些测试的方法都存在着缺点,如何克服这些缺点,如何真实地模拟大气中云的冰晶粒子以及如何利用相关的测试仪器准确地测量冰晶粒子的散射特性将是一个极具挑战性的课题。南京信息工程大学电子与信息工程学院与中国气象局气象探测技术工程中心共建的“毫米波气象雷达系统重点实验室”配有毫米波雷达研究测试所需的各种实验装备,建有大型微波暗室、准3m法EMC电磁兼容实验室、电磁仿真实验室,除此之外还建有风洞实验室,如何利用微波暗室以及风洞实验室完成大气粒子的散射实验测量将是本人博士期间研究的一个重点方向。

参考文献

[1]Dowling D R, Lawrence F R. A summary of the physical properties of cirrus cloud [J].Journal of Applied Meteorology, 1990, 29:970-978.

[2]Ping Yang, Heli Wei et al. Scattering and absorption property database for nonspherical ice particles in the nearthrough farinfrared spectral region [J]. Applied Optics,2005,44(26): 5512-5523.

[3]仲凌志,刘黎平,葛润生. 毫米波测云雷达的特点及其研究现状与展望[J].地球科学进展,2009,24(4):383-391.

[4]Sassen,K., Z.Wang, V.I. Khvorostyanov et al. Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model[J]. J.Appl.Meteorol. 2002,41:620-628.

[5]Yang. P., and K. N. Liou. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J].J. Opt. Soc. Am. A, 1996a ,13:2072-2085.

[6]Draine, B.T., and P.J. Flatau. Discrete-dipole approximation for scattering calculation[J]. J. Opt. Soc. Am. A, 1994, 11:1491-1499.

[7]Mishchenko, M. I., L. D. Travis, and D. W. Mackowski. T-matrix computations of light scattering by nonspherical particles: A review[J]. J.Quant. Spectrosc. Radiant. Transfer, 1996,55: 535-575.

[8]Gallagher, M. W., J. Whiteway, M. J. Flynn, P. J. Connolly et al. An overview of the microphysical structure of cirrus clouds observed during EMERALD-1[J]. Q. J. R. Meteorol. Soc., 2004,131: 1143-1169.

[9] Anthony J. Baran. A review of the light scattering properties of cirrus[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009:1239-1260.

[10]Gang Hong. Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies[J]. Journal of Geophysical research, 2007, 112: D11208,1-11.

[11]张琳.卷云的辐射传输与散射特性研究[D]. 西安:西安电子科技大学硕士论文,2010:7-39.

[12]Gang Hong. Radar backscattering properties of nonspherical ice crystals at 94GHz[J]. Journal of Geophysical Research, 2007, 112:D22203,1-11.

[13]葛德彪 闫玉波. 电磁波时域有限差分方法(第三版)[M]. 西安:西安电子科技大学出版社,2011:3-4.

[14]Rosalba Saija et al. Backscattered intensity from model atmospheric ice crystals in the millimeterwave range [J]. Optical Society of America ,2001,40( 30 ): 5337-5342.

[15]ZHIBO zhang. computation of the scattering properties of nonspherical ice crystals [D].A Thesis of degree of MASTER OF SCIENCE , Texas A&M University ,2004:57-78.

[16]Gerhardt. J.R. etc., Experimental determinations of the backscattering crosssections of water drops and of wet and dry ice spheres at 3.2 centimeters[J].J. Met., 1961,2:340-347.

[17] 王庆安 钱珉 王景岚. 水滴和冰球后向散射截面的实验研究[J]. 南京气象学院学报,1987,10(3):268-275.

[18] L.J. Auchterlonie , B.Sc., D.phil., M. Inst.p. et al. Experimental study of Millimeterwave scattering from simulated hailstones in an open resonator[J]. IEE Proc.128,Pt.H, 1981, No.5:236-242.

[19]Bryant, D.L., and Auchterlonie,L.J. Measurement of the extinction Cross-section of dielectric spheres using an open resonator[J]. Electron. Lett. 1978,14:475-476.

[20]B. Mahmid and L.J. Auchterlonie. Measurement of mutual scattering effects Between spheres by using a microwave open resonator[J]. Elecron. Letter.,1981,17:977-978.

[21]张尧培 钱鉴. 双站雷达散射截面快速测量技术[J]. 南京大学学报, 1991,27(1):49-55.

篇2

关键词:量子阱 界面声子 色散关系 电声相互作用

我们知道在室温和较高的温度下,电子与光学声子作用对半导体的电学特性具有重要的作用。在量子异质结中,电声相互作用影响其他主要的性质,象热电子的驰豫率,子带迁移率,室温激子的寿命等。纤锌矿量子异质结中的光学特性和输运特性也会被电声相互作用所影响。所以研究纤锌矿半导体异质结中的电子与声子相互作用,具有重要的物理意义。

1、纤锌矿结构量子阱中的电子-界面声子相互作用哈密顿

电子与声子相互作用的Fr?觟hlich哈密顿可以通过把在r处的电子与声子相互作的能量量子化得到。对于界面光学声子的电声相互作用的哈密顿,我们可以通过标准的量子化过程,得到电子与界面声子相互作用的Fr?觟hlich哈密顿

以上的方程具有普遍的意义,我们可以用来研究任意层纤锌矿结构多异质结、量子阱中的界面声子与电子的相互作用,对进一步研究纤锌矿结构多量子阱中的极化子效应、激子与声子的相互作用具有重要的意义

2、计算结果与讨论

在介电连续模型和单轴晶体模型传递矩阵的方法下,我们将界面光学声子场量子化,得到量子化的界面光学声子场,得出了任意多层纤锌矿结构量子阱中界面光学声子的电声相互作用的哈密顿。为了更清楚地了解电声相互作用的耦合强度,我们分别计算了纤锌矿结构单量子阱GaN/ZnO/GaN(厚度为∞/5nm/∞)和耦合量子阱ZnO/GaN/ZnO/GaN(厚度为∞/5nm/3nm/5nm/∞)中的电子与界面声子的耦合强度。计算中所用GaN和ZnO的参数见下表。

4 主要结论

通过了解纤锌矿量子阱中的界面声子与电子相互作用,计算了纤锌矿结构的单量子阱GaN/ZnO/GaN和耦合量子阱ZnO/GaN/ZnO/GaN中的电声相互作用。结果表明:随着波数的变化不同的界面声子对电声相互作用的贡献不同;低频界面声子的电声相互作用是大于高频界面声子的,且电声相互作用中长波界面声子有更大的贡献。我们的结论对进一步研究研究纤锌矿量子阱中的电声相互作用、极化子、激子与LO声子的相互作用具有重要的意义。

参考文献

篇3

关键词:量子纠缠;特征关联;认识论;波函数

量子信息研究领域在近几年发展迅速,并获得了诸多突破,推动着计算机和信息通信领域的发展,有非常乐观的应用前景。不同于经典的信息处理方式,量子信息处理利用了粒子的量子力学特性。而量子纠缠理论被认为量子信息处理的重要理论,是区别于经典力学的本质特性[1]。深入认识和理解量子纠缠的构建机制,能够为量子信息领域的理论和技术研究提供全新的思路,为科技哲学的认识论带来深层次的理论依据,为信息思维、能力思维、物质思维和客观世界的复杂性思维提供系统的认识方法。

一、量子纠缠的构建

按照量子纠缠的定义[2],如果复合系统的纯态不能写成子系统纯态的直积,即,那么这个态为纠缠态,即

式中,表示子系统的基本属性簇;由n个微观粒子子系统组成复合纯态系统

其中,为希尔伯特空间的直积态或非纠缠,假设存在

,,…,

使得不成立,那么就称这n个微观粒子之间纠缠。

如果存在n个不同的态,当tt0时,假设这些态之间发生相互作用,形成更大的复合系统Hi,Hi =H1H2×…Hn,这一系统的状态特征可用波函数表征。若无法将独立的状态特征分立出来,那么该表征仅仅是描述复合系统的特征概率。这意味着,若发生纠缠态,则至少存在不少于两个的量子态的叠加,构成一个复合的整体。这种量子纠缠理论说明,发生相互纠缠的量子态之间存在特定的关联作用,当对某一实在进行操作时,与其发生纠缠的其他实在的特征也会发生变化[3]。这种纠缠关联关系不仅呈现某一实在的固有属性,并且描述了纠缠关联的复合系统的整体特征。

物质实在的本体具有特殊性的物理属性,物质本体固有属性的认知过程与物理本体有一定区别。对于微观物质来说,它除了拥有宏观物质的基本特性以外,还具有波动性特征,构成微观物质的双重属性。量子力学中的波函数公设认为:“一个微观粒子的状态可以用波函数来完全描述”[4]。从认识论来看,微观粒子的波函数具有两个维度的涵义:第一,波函数包含了微观粒子的全部状态特征信息,操作波函数的过程就是对微观粒子的现有状态和固有属性的认识过程;第二,操作波函数时,不同波函数所表征出来的特性有所区别,只有对波函数进行多次操作,才能得到微观粒子的全部特征。

大量的实验研究表明,任何实在本体都具备两种基本属性:本体客观存在的直接属性和基于或然存在的间接属性[5]。这两种基本属性共同构成实在本体的特征,可通过波函数进行表述。同样地,复合系统通过纠缠关联建立系统的整体特征,用复合系统的波函数来描述。对于完全独立的多个实在本体所组成的复合系统,可以通过波函数来表征每个实在的属性。当对复合系统进行某种操作后,系统不能将每个实在的属性孤立地表征出来,此时复合系统的整体特征通过纠缠的实在间的关联作用来表征。对纠缠系统某个子系统的操作会使得其他子系统的特征发生变化,表明量子纠缠是一个由本体属性过渡到整体特征的认识过程。

二、量子纠缠的特征关联

量子信息理论的本质属于哲学范畴[6],对量子纠缠的认识,不光要对实在本体产生全新的认识,也要对实在个体到整体关联运用新的研究思路。

量子纠缠的关联特性凸显了复合系统中原独立实在之间的相互作用关系。狄拉克曾在1931年断言存在理论上的“磁单极子”[7],但至今仍未找到足够的实证。由单极子组成的磁体所体现的实在,对“磁单极子”本体的认识远远少于由单极子组成的磁体实在的整体特征的认识。也就是说,量子纠缠在整体表象与特征关联的关系上,一方面揭示了实在本体的关联与内在的依存关系,另一方面体现了本体的固有属性。

为了量测相互纠缠的实在之间的关联程度,由此出现了纠缠度的概念[8]。从认识论来看,它界定了局域空间的有限性,不同的实在本体在多个空间形成纠缠关联,从而构建我们的世界观。相互纠缠的实在之间的纠缠度越大,则边界越模糊,局域越稀疏,实在特征属性的描绘就越复杂;反之,纠缠度越小,则边界越明确,局域越紧促,实在特征描绘越简单。量子纠缠是非局域的,是客观实在之间主体介入的间接存在。每个实在本体包含特征信息,利用纠缠操作实现信息的传递。所以说,量子纠缠拥有识别和存储实在本体的特性,体现了对整体关联的认识,代表了统一认识论观点的形成过程,是哲学理论在量子信息科技领域的拓展和延伸。

量子纠缠关联是客观实体最本质的特征,通过这种关联,搭建了实在本体与主观存在之间的关系。从理论技术的角度来说,如果缺少了量子纠缠关联的研究,那么量子通信只会是现代信息理论技术的简单发展。量子纠缠的构建机制与特征关联的研究,向人们展现了经典力学无法描绘的图景,表明微观粒子不存在孤立的特征[9]。深入探究量子纠缠的认识论,挖掘新的认知方法,对人类认知思维的进步具有深刻的意义。

参考文献:

[1] Schr dinger E. Proc. Cambridge Philos. Soc., 1935, 31:555.

[2] 李承祖等. 量子通信和量子计算[M].长沙:国防科技大学出版社,2000:92.

[3] 喀兴林. 高等量子力学(第二版)[M]. 北京:高等教育出版社,2001,8,1935.

[4] 张永德. 量子力学[M].北京:科学出版社,2002:19.

[5] 潘平,周惠玲,兰立山等. 对物理实在本体的深层认识[J].贵州社会科学,2014,(4):33-35.

[6] 潘平. 量子信息的哲学问题浅析[J].贵阳:贵州工业大学学报(社科版),

[7] P. A. M. Dirac, Proc. Roy. Soc. A133, 60(1931)[J].Phys. Rev. 74, 883(1948).

篇4

【关键词】 计算机发展方向;微型化计算能力;新型计算机智能

计算机在最近的几十年发展突飞猛进,是在众多行业中发展最快的高新领域之一。上世纪九十年代的人还难以预料今天计算机会如此强大,而今天的我们所预见的未来的计算机又将有几分准确性呢。不管未来的计算机是什么样的,根据现在的研究以及人们的需要来看,有几个特点可能会在较近的未来实现。计算机将会更加微型化,计算能力还会更加强大,而随着计算机与诸多领域的相互渗透,新型计算机也会应运而生。此外,计算机的智能化也是人们研究的热点话题。

美国计算机市场在2009年第四季度打破记录,共售出了2070万台计算机,比2008年同期上升了24%。继2009年上半年全球个人电脑市场发展遭遇重重限制之后,下半年全球经济进一步复苏,加上个人电脑打出大幅折扣,使全球个人电脑市场出现反弹。全球个人电脑市场2009年全年增长率为2.9%。实际上,全球范围内计算机销量都出现了一致性的增长,这自然受益于计算机售价的整体下调。2009年第四季度,全球计算机市场销量较2008年同期增长了15.2%。计算机销量的增长直接让很多与计算机市场相关的厂商获得了巨大利益,比如Intel、微软和惠普。同时上网本的大受欢迎和Windows 7的都刺激了计算机市场的增长。

日益更新的计算机,未来将会是什么样子?

1 量子计算机

量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表小开与关的状态,利用激光脉冲来改变分子的状态,使信息沿着聚合物移动,从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的PcntiumIII晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核白旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。预计2030年有可能普及量子计算机。

2 光计算机

光计算机是用光子代替半导体芯片中的电子,以光互连来代替导线制成数字计算机。与电的特性相比光具有无法比拟的各种优点:光计算机是“光”导计算机,光在光介质中以许多个波长不同或波长相同而振动方向不同的光波传输,不存在寄生电阻、电容、电感和电子相互作用问题,光器件有无电位差,因此光计算机的信息在传输中畸变或失真小,可在同一条狭窄的通道中传输数量大得难以置信的数据。

3 化学、生物计算机

在运行机理上,化学计算机以化学制品中的微观碳分子作信息载体,来实现信息的传输与存储。DNA分子在酶的作用下可以从某基因代码通过生物化学反应转变为另一种基因代码,转变前的基因代码可以作为输入数据,反应后的基因代码可以作为运算结果,利用这一过程可以制成新型的生物计算机。生物计算机最大的优点是生物芯片的蛋白质具有生物活性,能够跟人体的组织结合在一起,特别是可以和人的大脑和神经系统有机的连接,使人机接口自然吻合,免除了繁琐的人机对话,这样,生物计算机就可以听人指挥,成为人脑的外延或扩充部分,还能够从人体的细胞中吸收营养来补充能量,不要任何外界的能源,由于生物计算机的蛋白质分子具有自我组合的能力,从而使生物计算机具有自调节能力、自修复能力和自再生能力,更易于模拟人类大脑的功能。现今科学家已研制出了许多生物计算机的主要部件—生物芯片。

4 神经网络计算机

人脑总体运行速度相当于每妙1000万亿次的电脑功能,可把生物大脑神经网络看做一个大规模并行处理的、紧密耦合的、能自行重组的计算网络。从大脑工作的模型中抽取计算机设计模型,用许多处理机模仿人脑的神经元机构,将信息存储在神经元之间的联络中,并采用大量的并行分布式网络就构成了神经网络计算机。

结束语:

关于计算机未来的发展趋势,不同的人有不同的看法,不同的人也会从不同的方面去探讨,但无论如何,出发点都是为了能够更好地帮助人学习、工作、计算、娱乐等等为了更能方便人的生活,更好地完成更加艰巨复杂的任务。所以,计算机会基于这些进行不断地改造与创新,当一种技术或基本架构遭遇瓶颈时,新的技术就会诞生,这就是计算机不断改进和创新的动力。对于上文的诸多方面,很多已经即将或是快要实现,而有一些则距离现实还有很大距离,甚至有些研究会是失败的,但这完全不能阻挡计算机的发展,也不会阻止与计算机有关的新技术的产生。

参考文献:

[1]蔡芝蔚.计算机技术发展研究[J].电脑与电信,2008(02).

[2]张洁.未来计算机与计算机技术发展展望[J].广东科技,2006(10).

[3]何文瑶.应用计算机技术发展态势分析[J].科技创业月刊,2007(05).

篇5

关键词: 信息安全;密码学;量子计算;抗量子计算密码

中图分类号:TP 183 文献标志码:A 文章编号:1672-8513(2011)05-0388-08

The Challenge of Quantum Computing to Information Security and Our Countermeasures

ZHANG Huanguo, GUAN Haiming, WANG Houzheng

(Key Lab of Aerospace Information Security and Trusted Computing of Ministry of Education, Computer School, Whan University, Wuhan 430072, China)

Abstract: What cryptosystem to use is a severe challenge that we face in the quantum computing era. It is the only correct choice to research and establish an independent resistant quantum computing cryptosystem. This paper introduces to the research and development of resistant quantum computing cryptography, especially the signature scheme based on HASH function,lattice-based public key cryptosystem,MQ public key cryptosystem and public key cryptosystem based on error correcting codes. Also the paper gives some suggestions for further research on the quantum information theory,the complexity theory of quantum computing,design and analysis of resistant quantum computing cryptosystems .

Key words: information security; cryptography; quantum computing; resistant quantum computing cryptography

1 量子信息时代

量子信息技术的研究对象是实现量子态的相干叠加并对其进行有效处理、传输和存储,以创建新一代高性能的、安全的计算机和通信系统.量子通信和量子计算的理论基础是量子物理学.量子信息科学技术是在20世纪末期发展起来的新学科,预计在21世纪将有大的发展[1].

量子有许多经典物理所没有的奇妙特性.量子的纠缠态就是其中突出的一个.原来存在相互作用、以后不再有相互作用的2个量子系统之间存在瞬时的超距量子关联,这种状态被称为量子纠缠态[1].

量子的另一个奇妙特性是量子通信具有保密特性.这是因为量子态具有测不准和不可克隆的属性,根据这种属性除了合法的收发信人之外的任何人窃取信息,都将破坏量子的状态.这样,窃取者不仅得不到信息,而且窃取行为还会被发现,从而使量子通信具有保密的特性.目前,量子保密通信比较成熟的技术是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按传统的“一次一密”方式加密.量子纠缠态的超距作用预示,如果能够利用量子纠缠态进行通信,将获得超距和超高速通信.

量子计算机是一种以量子物理实现信息处理的新型计算机.奇妙的是量子计算具有天然的并行性.n量子位的量子计算机的一个操作能够处理2n个状态,具有指数级的处理能力,所以可以用多项式时间解决一些指数复杂度的问题.这就使得一些原来在电子计算机上无法解决的困难问题,在量子计算机上却是可以解决的.

2 量子计算机对现有密码提出严重挑战

针对密码破译的量子计算机算法主要有以下2种.

第1种量子破译算法叫做Grover算法[3].这是贝尔实验室的Grover在1996年提出的一种通用的搜索破译算法,其计算复杂度为O(N).对于密码破译来说,这一算法的作用相当于把密码的密钥长度减少到原来的一半.这已经对现有密码构成很大的威胁,但是并未构成本质的威胁,因为只要把密钥加长1倍就可以了.

第2种量子破译算法叫做Shor算法[4].这是贝尔实验室的Shor在1997年提出的在量子计算机上求解离散对数和因子分解问题的多项式时间算法.利用这种算法能够对目前广泛使用的RSA、ECC公钥密码和DH密钥协商体制进行有效攻击.对于椭圆曲线离散对数问题,Proos和Zalka指出:在N量子位(qbit)的量子计算机上可以容易地求解k比特的椭圆曲线离散对数问题[7],其中N≈5k+8(k)1/2+5log 2k.对于整数的因子分解问题,Beauregard指出:在N量子位的量子计算机上可以容易地分解k比特的整数[5],其中N≈2k.根据这种分析,利用1448qbit的计算机可以求解256位的椭圆曲线离散对数,因此也就可以破译256位的椭圆曲线密码,这可能威胁到我国第2代身份证的安全.利用2048qbit的计算机可以分解1024位的整数,因此也就可以破译1024位的RSA密码,这就可能威胁到我们电子商务的安全

Shor算法的攻击能力还在进一步扩展,已从求广义解离散傅里叶变换问题扩展到求解隐藏子群问题(HSP),凡是能归结为HSP的公钥密码将不再安全.所以,一旦量子计算机能够走向实用,现在广泛应用的许多公钥密码将不再安全,量子计算机对我们的密码提出了严重的挑战.

3 抗量子计算密码的发展现状

抗量子计算密码(Resistant Quantum Computing Cryptography)主要包括以下3类:

第1类,量子密码;第2类,DNA密码;第3类是基于量子计算不擅长计算的那些数学问题所构建的密码.

量子保密的安全性建立在量子态的测不准与不可克隆属性之上,而不是基于计算的[1,6].类似地,DNA密码的安全性建立在一些生物困难问题之上,也不是基于计算的[7-8].因此,它们都是抗量子计算的.由于技术的复杂性,目前量子密码和DNA密码尚不成熟.

第3类抗量子计算密码是基于量子计算机不擅长的数学问题构建的密码.基于量子计算机不擅长计算的那些数学问题构建密码,就可以抵御量子计算机的攻击.本文主要讨论这一类抗量子计算密码[9].

所有量子计算机不能攻破的密码都是抗量子计算的密码.国际上关于抗量子计算密码的研究主要集中在以下4个方面.

3.1 基于HASH函数的数字签名

1989年Merkle提出了认证树签名方案(MSS)[10]. Merkle 签名树方案的安全性仅仅依赖于Hash函数的安全性.目前量子计算机还没有对一般Hash函数的有效攻击方法, 因此Merkle签名方案具有抗量子计算性质.与基于数学困难性问题的公钥密码相比,Merkle签名方案不需要构造单向陷门函数,给定1个单向函数(通常采用Hash函数)便能造1个Merkle签名方案.在密码学上构造1个单向函数要比构造1个单向陷门函数要容易的多,因为设计单向函数不必考虑隐藏求逆的思路, 从而可以不受限制地运用置换、迭代、移位、反馈等简单编码技巧的巧妙组合,以简单的计算机指令或廉价的逻辑电路达到高度复杂的数学效果.新的Hash标准SHA-3[11]的征集过程中,涌现出了许多新的安全的Hash函数,利用这些新的Hash算法可以构造出一批新的实用Merkle签名算法.

Merkle 签名树方案的优点是签名和验证签名效率较高,缺点是签名和密钥较长,签名次数受限.在最初的Merkle签名方案中, 签名的次数与需要构造的二叉树紧密相关.签名的次数越多,所需要构造的二叉树越大,同时消耗的时间和空间代价也就越大.因此该方案的签名次数是受限制的.近年来,许多学者对此作了广泛的研究,提出了一些修改方案,大大地增加了签名的次数, 如CMSS方案[12]、GMSS方案[13]、DMSS方案等[14].Buchmann, Dahmen 等提出了XOR树算法[12,15],只需要采用抗原像攻击和抗第2原像攻击的Hash函数,便能构造出安全的签名方案.而在以往的Merkle签名树方案中,则要求Hash函数必须是抗强碰撞的.这是对原始Merkle签名方案的有益改进.上述这些成果,在理论上已基本成熟,在技术上已基本满足工程应用要求, 一些成果已经应用到了Microsoft Outlook 以及移动路由协议中[16].

虽然基于Hash函数的数字签名方案已经开始应用,但是还有许多问题需要深入研究.如增加签名的次数、减小签名和密钥的尺寸、优化认证树的遍历方案以及如何实现加密和基于身份的认证等功能,均值得进一步研究.

3.2 基于纠错码的公钥密码

基于纠错码的公钥密码的基本思想是: 把纠错的方法作为私钥, 加密时对明文进行纠错编码,并主动加入一定数量的错误, 解密时运用私钥纠正错误, 恢复出明文.

McEliece利用Goppa码有快速译码算法的特点, 提出了第1个基于纠错编码的McEliece公钥密码体制[17].该体制描述如下, 设G是二元Goppa码[n;k;d]的生成矩阵,其中n=2h;d=2t+1;k=n-ht,明密文集合分别为GF(2)k和GF(2)n.随机选取有限域GF(2)上的k阶可逆矩阵S和n阶置换矩阵P,并设G′=SGP,则私钥为,公钥为G′.如果要加密一个明文m∈GF(2)k,则计算c=mG′+z,这里z∈GF(2)n是重量为t的随机向量.要解密密文c, 首先计算cP-1=mSGPP-1+zP-1=mSG+zP-1,由于P是置换矩阵, 显然z与zP-1的重量相等且为t,于是可利用Goppa的快速译码算法将cP-1译码成m′= mS,则相应明文m= m′S-1.

1978年Berlekamp等证明了一般线性码的译码问题是NPC问题[18],McEliece密码的安全性就建立在这一基础上.McEliece密码已经经受了30多年来的广泛密码分析,被认为是目前安全性最高的公钥密码体制之一.虽然McEliece 公钥密码的安全性高且加解密运算比较快, 但该方案也有它的弱点, 一是它的公钥尺寸太大,二是只能加密不能签名.

1986年Niederreiter提出了另一个基于纠错码的公钥密码体制[19]. 与McEliece密码不同的是它隐藏的是Goppa码的校验矩阵.该系统的私钥包括二元Goppa码[n;k;d]的校验矩阵H以及GF(2)上的可逆矩阵M和置换矩阵P.公钥为错误图样的重量t和矩阵H′=MHP.假如明文为重量为t 的n 维向量m, 则密文为c=mH′T .解密时,首先根据加密表达式可推导出z(MT )-1=mPTHT,然后通过Goppa码的快速译码算法得到mPT,从而可求出明文m .1994年我国学者李元兴、王新梅等[20]证明了Niederreiter密码与McEliece密码在安全性上是等价的.

McEliece密码和Niederreiter密码方案不能用于签名的主要原由是,用Hash算法所提取的待签消息摘要向量能正确解码的概率极低.2001年Courtois等提出了基于纠错码的CFS签名方案[21].CFS 签名方案能做到可证明安全, 短签名性质是它的最大优点. 其缺点是密钥量大、签名效率低,影响了其实用性.

因此, 如何用纠错码构造一个既能加密又签名的密码, 是一个相当困难但却非常有价值的开放课题.

3.3 基于格的公钥密码

近年来,基于格理论的公钥密码体制引起了国内外学者的广泛关注.格上的一些难解问题已被证明是NP难的,如最短向量问题(SVP)、最近向量问题(CVP)等.基于格问题建立公钥密码方案具有如下优势:①由于格上的一些困难性问题还未发现量子多项式破译算法,因此我们认为基于格上困难问题的密码具有抗量子计算的性质.②格上的运算大多为线性运算,较RSA等数论密码实现效率高,特别适合智能卡等计算能力有限的设备.③根据计算复杂性理论,问题类的复杂性是指该问题类在最坏情况下的复杂度.为了确保基于该类困难问题的密码是安全的,我们希望该问题类的平均复杂性是困难的,而不仅仅在最坏情况下是困难的.Ajtai在文献[22]中开创性地证明了:格中一些问题类的平均复杂度等于其最坏情况下的复杂度.Ajtai和Dwork利用这一结论设计了AD公钥密码方案[23].这是公钥密码中第1个能被证明其任一随机实例与最坏情况相当.尽管AD公钥方案具有良好的安全性, 但它的密钥量过大以及实现效率太低、而缺乏实用性.

1996年Hoffstein、Pipher和Silverman提出NTRU(Number Theory Research Unit)公钥密码[24]. 这是目前基于格的公钥密码中最具影响的密码方案.NTRU的安全性建立在在一个大维数的格中寻找最短向量的困难性之上.NTRU 密码的优点是运算速度快,存储空间小.然而, 基于NTRU的数字签名方案却并不成功.

2000年Hoffstein等利用NTRU格提出了NSS签名体制[25], 这个体制在签名时泄露了私钥信息,导致了一类统计攻击,后来被证明是不安全的.2001年设计者改进了NSS 体制,提出了R-NSS 签名体制[26],不幸的是它的签名仍然泄露部分私钥信息.Gentry 和Szydlo 结合最大公因子方法和统计方法,对R-NSS 作了有效的攻击.2003年Hoffstein等提出了NTRUSign数字签名体制[27].NTRUSign 签名算法较NSS与R-NSS两个签名方案做了很大的改进,在签名过程中增加了对消息的扰动, 大大减少签名中对私钥信息的泄露, 但却极大地降低了签名的效率, 且密钥生成过于复杂.但这些签名方案都不是零知识的,也就是说,签名值会泄露私钥的部分相关信息.以NTRUSign 方案为例,其推荐参数为(N;q;df;dg;B;t;N)= (251;128;73;71;1;"transpose";310),设计值保守推荐该方案每个密钥对最多只能签署107 次,实际中一般认为最多可签署230次.因此,如何避免这种信息泄露缺陷值得我们深入研究.2008 年我国学者胡予濮提出了一种新的NTRU 签名方案[28],其特点是无限制泄露的最终形式只是关于私钥的一组复杂的非线性方程组,从而提高了安全性.总体上这些签名方案出现的时间都还较短,还需要经历一段时间的安全分析和完善.

由上可知,进一步研究格上的困难问题,基于格的困难问题设计构造既能安全加密又能安全签名的密码,都是值得研究的重要问题.

3.4 MQ公钥密码

MQ公钥密码体制, 即多变量二次多项式公钥密码体制(Multivariate Quadratic Polynomials Public Key Cryptosystems).以下简称为MQ密码.它最早出现于上世纪80年代,由于早期的一些MQ密码均被破译,加之经典公钥密码如RSA算法的广泛应用,使得MQ公钥算法一度遭受冷落.但近10年来MQ密码的研究重新受到重视,成为密码学界的研究热点之一.其主要有3个原因:一是量子计算对经典公钥密码的挑战;二是MQ密码孕育了代数攻击的出现[29-31],许多密码(如AES)的安全性均可转化为MQ问题,人们试图借鉴MQ密码的攻击方法来分析这些密码,反过来代数攻击的兴起又带动了MQ密码的蓬勃发展;三是MQ密码的实现效率比经典公钥密码快得多.在目前已经构造出的MQ密码中, 有一些非常适用于智能卡、RFID、移动电话、无线传感器网络等计算能力有限的设备, 这是RSA等经典公钥密码所不具备的优势.

MQ密码的安全性基于有限域上的多变量二次方程组的难解性.这是目前抗量子密码学领域中论文数量最多、最活跃的研究分支.

设U、T 是GF(q)上可逆线性变换(也叫做仿射双射变换),而F 是GF(q)上多元二次非线性可逆变换函数,称为MQ密码的中心映射.MQ密码的公钥P为T 、F 和U 的复合所构成的单向陷门函数,即P = T•F•U,而私钥D 由U、T 及F 的逆映射组成,即D = {U -1; F -1; T -1}.如何构造具有良好密码性质的非线性可逆变换F是MQ密码设计的核心.根据中心映射的类型划分,目前MQ密码体制主要有:Matsumoto-Imai体制、隐藏域方程(HFE) 体制、油醋(OV)体制及三角形(STS)体制[32].

1988年日本的Matsumoto和Imai运用"大域-小域"的原理设计出第1个MQ方案,即著名的MI算法[33].该方案受到了日本政府的高度重视,被确定为日本密码标准的候选方案.1995年Patarin利用线性化方程方法成功攻破了原始的MI算法[34].然而,MI密码是多变量公钥密码发展的一个里程碑,为该领域带来了一种全新的设计思想,并且得到了广泛地研究和推广.改进MI算法最著名的是SFLASH签名体制[35],它在2003年被欧洲NESSIE 项目收录,用于智能卡的签名标准算法.该标准签名算法在2007年美密会上被Dubois、Fouque、Shamir等彻底攻破[36].2008年丁津泰等结合内部扰动和加模式方法给出了MI的改进方案[37-38].2010年本文作者王后珍、张焕国也给出了一种SFLASH的改进方案[39-40],改进后的方案可以抵抗文献[36]的攻击.但这些改进方案的安全性还需进一步研究.

1996年Patarin针对MI算法的弱点提出了隐藏域方程HFE(Hidden Field Equations)方案[41].HFE可看作为是对MI的实质性改进.2003 年Faugere利用F5算法成功破解了HFE体制的Challenge-1[42].HFE主要有2种改进算法.一是HFEv-体制,它是结合了醋变量方法和减方法改进而成,特殊参数化HFEv-体制的Quartz签名算法[43].二是IPHFE体制[44],这是丁津泰等结合内部扰动方法对HFE的改进.这2种MQ密码至今还未发现有效的攻击方法.

油醋(OilVinegar)体制[45]是Patarin在1997年利用线性化方程的原理,构造的一种MQ公钥密码体制.签名时只需随机选择一组醋变量代入油醋多项式,然后结合要签名的文件,解一个关于油变量的线性方程组.油醋签名体制主要分为3类:1997年Patarin提出的平衡油醋(OilVinegar)体制, 1999年欧密会上Kipnis、Patarin 和Goubin 提出的不平衡油醋(Unbalanced Oil and Vinegar)体制[46]以及丁津泰在ACNS2005会议上提出的彩虹(Rainbow)体制[47].平衡的油醋体制中,油变量和醋变量的个数相等,但平衡的油醋体制并不安全.彩虹体制是一种多层的油醋体制,即每一层都是油醋多项式,而且该层的所有变量都是下一层的醋变量,它也是目前被认为是相对安全的MQ密码之一.

三角形体制是现有MQ密码中较为特殊的一类,它的签名效率比MI和HFE还快,而且均是在较小的有限域上进行.1999年Moh基于Tame变换提出了TTM 密码体制[48],并在美国申请了专利.丁津泰等指出当时所有的TTM实例均满足线性化方程.Moh等随后又提出了一个新的TTM 实例,这个新的实例被我国学者胡磊、聂旭云等利用高阶线性化方程成功攻破[49].目前三角形体制的设计主要是围绕锁多项式的构造、结合其它增强多变量密码安全性的方法如加减(plus-minus) 模式以及其它的代数结构如有理映射等.

我国学者也对MQ密码做了大量研究,取得了一些有影响的研究成果.2007年管海明引入单向函数链对MQ密码进行扩展,提出了有理分式公钥密码系统[50].胡磊、聂旭云等利用高阶线性化方程成功攻破了Moh提出的一个TTM新实例[51].2010年本文作者王后珍、张焕国给出了一种SFLASH的改进方案[39-40].2010年王后珍、张焕国基于扩展MQ,设计了一种Hash函数[52-53],该Hash函数具有一些明显的特点.同年,王后珍、张焕国借鉴有理分式密码单向函数链的思想[52],对MQ密码进行了扩展,设计了一种新的抗量子计算扩展MQ密码[54].这些研究对于扩展MQ密码结构,做了有益的探索.但是这些方案提出的时间较短,其安全性有待进一步分析.

根据上面的介绍,目前还没有一种公认安全的MQ公钥密码体制.目前MQ公钥密码的主要缺点是:只能签名,不能安全加密(加密时安全性降低),公钥大小较长,很难设计出既安全又高效的MQ公钥密码体制.

3.5 小结

无论是量子密码、DNA密码,还是基于量子计算不擅长计算的那些数学问题所构建的密码,都还存在许多不完善之处,都还需要深入研究.

量子保密通信比较成熟的是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按“一次一密”方式加密.在这里,量子的作用主要是密钥产生和密钥分配,而加密还是采用的传统密码.因此,严格说这只能叫量子保密,尚不能叫量子密码.另外,目前的量子数字签名和认证方面还存在一些困难.

对于DNA密码,目前虽然已经提出了DNA传统密码和DNA公钥密码的概念和方案,但是理论和技术都还不成熟[9-10].

对于基于量子计算不擅长计算的那些数学问题所构建的密码,现有的密码方案也有许多不足.如,Merkle树签名可以签名,不能加密;基于纠错码的密码可以加密,签名不理想;NTRU密码可以加密,签名不理想;MQ密码可以签名,加密不理想.这说明目前尚没有形成的理想的密码体制.而且这些密码的安全性还缺少严格的理论分析.

总之,目前尚未形成理想的抗量子密码.

4 我们的研究工作

我们的研究小组从2007年开始研究抗量子计算密码.目前获得了国家自然科学基金等项目的支持,并取得了以下2个阶段性研究成果.

4.1 利用多变量问题,设计了一种新的Hash函数

Hash 函数在数字签名、完整性校验等信息安全技术中被广泛应用.目前 Hash 函数的设计主要有3类方法:①直接构造法.它采用大量的逻辑运算来确保Hash函数的安全性. MD系列和SHA系列的Hash函数均是采用这种方法设计的.②基于分组密码的Hash 函数,其安全性依赖于分组密码的安全性.③基于难解性问题的构造法.利用一些难解性问题诸如离散对数、因子分解等来构造Hash 函数.在合理的假设下,这种Hash函数是可证明安全的,但一般来讲其效率较低.

我们基于多变量非线性多项式方程组的难解性问题,构造了一种新的Hash 函数[54-55].它的安全性建立在多变量非线性多项式方程组的求解困难性之上.方程组的次数越高就越安全,但是效率就越低.它的效率主要取决多变量方程组的稀疏程度,方程组越稀疏效率就越高,但安全性就越低.我们可以权衡安全性和效率来控制多变量多项式方程组的次数和稠密度,以构造出满足用户需求的多变量Hash 函数.

4.2 对MQ密码进行了扩展,把Hash认证技术引入MQ密码,得到一种新的扩展MQ密码

扩展MQ密码的基本思想是对传统MQ密码的算法空间进行拓展. 如图1所示, 我们通过秘密变换L将传统MQ密码的公钥映G:GF(q)nGF(q)n, 拓展隐藏到更大算法空间中得到新的公钥映射G′:GF(q)n+δGF(q)n+μ, 且G′的输入输出空间是不对称的, 原像空间大于像空间(δ>|μ|), 即具有压缩性, 但却并未改变映射G的可逆性质. 同时, 算法空间的拓展破坏了传统MQ密码的一些特殊代数结构性质, 从攻击者的角度, 由于无法从G′中成功分解出原公钥映射G, 因此必须在拓展空间中求解更大规模的非线性方程组G′, 另外, 新方案中引入Hash认证技术, 攻击者伪造签名时, 伪造的签名不仅要满足公钥方程G′、 还要通过Hash函数认证, 双重安全性保护极大地提升了传统MQ公钥密码系统的安全性. 底层MQ体制及Hash函数可灵活选取, 由此可构造出一类新的抗量子计算公钥密码体制.这种扩展MQ密码的特点是,既可安全签名,又可安全加密[56].

我们提出的基于多变量问题的Hash函数和扩展MQ密码,具有自己的优点,也有自己的缺点.其安全性还需要经过广泛的分析与实践检验才能被实际证明.

5 今后的研究工作

5.1 量子信息论

量子信息建立在量子的物理属性之上,由于量子的物理属性较之电子的物理属性有许多特殊的性质,据此我们估计量子的信息特征也会有一些特殊的性质.这些特殊性质将会使量子信息论对经典信息论有一些新的扩展.但是,具体有哪些扩展,以及这些新扩展的理论体系和应用价值体现在哪里?我们尚不清楚.这是值得我们研究的重要问题.

5.2 量子计算理论

这里主要讨论量子可计算性理论和量子计算复杂性理论.

可计算性理论是研究计算的一般性质的数学理论.它通过建立计算的数学模型,精确区分哪些是可计算的,哪些是不可计算的.如果我们研究清楚量子可计算性理论,将有可能构造出量子计算环境下的绝对安全密码.但是我们目前对量子可计算性理论尚不清楚,迫切需要开展研究.

计算复杂性理论使用数学方法对计算中所需的各种资源的耗费作定量的分析,并研究各类问题之间在计算复杂程度上的相互关系和基本性质.它是密码学的理论基础之一,公钥密码的安全性建立在计算复杂性理论之上.因此,抗量子计算密码应当建立在量子计算复杂性理论之上.为此,应当研究以下问题.

1) 量子计算的问题求解方法和特点.量子计算复杂性建立在量子图灵机模型之上,问题的计算是并行的.但是目前我们对量子图灵机的计算特点及其问题求解方法还不十分清楚,因此必须首先研究量子计算问题求解的方法和特点.

2) 量子计算复杂性与传统计算复杂性之间的关系.与电子计算机环境的P问题、NP问题相对应, 我们记量子计算环境的可解问题为QP问题, 难解问题为QNP问题.目前人们对量子计算复杂性与传统计算复杂性的关系还不够清楚,还有许多问题需要研究.如NP与QNP之间的关系是怎样的? NPC与QP的关系是怎样的?NPC与QNP的关系是怎样的?能否定义QNPC问题?这些问题关系到我们应基于哪些问题构造密码以及所构造的密码是否具有抗量子计算攻击的能力.

3) 典型难计算问题的量子计算复杂度分析.我们需要研究传统计算环境下的一些NP难问题和NPC问题,是属于QP还是属于QNP问题?

5.3 量子计算环境下的密码安全性理论

在分析一个密码的安全性时,应首先分析它在电子计算环境下的安全性,如果它是安全的,再进一步分析它在量子计算环境下的安全性.如果它在电子计算环境下是不安全的,则可肯定它在量子计算环境下是不安全的.

1) 现有量子计算攻击算法的攻击能力分析.我们现在需要研究的是Shor算法除了攻击广义离散傅里叶变换以及HSP问题外,还能攻击哪些其它问题?如果能攻击,攻击复杂度是多大?

2) 寻找新的量子计算攻击算法.因为密码的安全性依赖于新攻击算法的发现.为了确保我们所构造的密码在相对长时间内是安全的,必须寻找新的量子计算攻击算法.

3) 密码在量子计算环境下的安全性分析.目前普遍认为, 基于格问题、MQ问题、纠错码的译码问题设计的公钥密码是抗量子计算的.但是,这种认识尚未经过量子计算复杂性理论的严格的论证.这些密码所依赖的困难问题是否真正属于QNP问题?这些密码在量子计算环境下的实际安全性如何?只有经过了严格的安全性分析,我们才能相信这些密码.

5.4 抗量子计算密码的构造理论与关键技术

通过量子计算复杂性理论和密码在量子计算环境下的安全性分析的研究,为设计抗量子计算密码奠定了理论基础,并得到了一些可构造抗量子计算的实际困难问题.但要实际设计出安全的密码,还要研究抗量子计算密码的构造理论与关键技术.

1) 量子计算环境下的单向陷门设计理论与方法.理论上,公钥密码的理论模型是单向陷门函数.要构造一个抗量子计算公钥密码首先就要设计一个量子计算环境下的单向陷门函数.单向陷门函数的概念是简单的,但是单向陷门函数的设计是困难的.在传统计算复杂性下单向陷门函数的设计已经十分困难,我们估计在量子计算复杂性下单向陷门函数的设计将更加困难.

2) 抗量子计算密码的算法设计与实现技术.有了单向陷门函数,还要进一步设计出密码算法.有了密码算法,还要有高效的实现技术.这些都是十分重要的问题.都需要认真研究才能做好.

6 结语

量子计算时代我们使用什么密码,是摆在我们面前的重大战略问题.研究并建立我国独立自主的抗量子计算密码是我们的唯一正确的选择.本文主要讨论了基于量子计算机不擅长计算的数学问题所构建的一类抗量子计算的密码,介绍了其发展现状,并给出了进一步研究的建议.

参考文献:

[1]张镇九,张昭理,李爱民.量子计算与通信保密[M].武汉:华中师范大学出版社,2002.

[2]管海明. 国外量子计算机进展、对信息安全的挑战与对策[J].计算机安全,2009(4):1-5.

[3]GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing. New York: ACM Press, 1996.

[4]SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM J Computer, 1997(26) :1484-1509.

[5]HANKERSON D, MENEZES A, VANSTONE S. 椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.

[6]曾贵华. 量子密码学[M].北京:科学出版社,2006.

[7]来学嘉, 卢明欣, 秦磊, 等. 基于DNA 技术的非对称加密与签名方法[J]. 中国科学E辑:信息科学, 2010, 40(2): 240-248.

[8]卢明欣,来学嘉,肖国镇,等. 基于DNA技术的对称加密方法[J]. 中国科学E辑:信息科学, 2007(2): 175-182.

[9]BERNSTEIN D J, BUCHMANN J A, DAHMEN E. Post-quantum cryptography [M]. Berlin:Springer, 2009.

[10]MERKLE R C. A certified digital signature[C]//Advances in Cryptology-CRYPTO 1989 Proceedings, LNCS. Berlin:Springer, 1989,435:218-238.

[11]NIST. Plan for new cryptographic hash functions[EB/OL]. [2010-12-30]..

[49]DING J, HU L, NIE X Y, et al. High order linearization equation (HOLE) attack on multivariate public key cryptosystems[C]//Proceedings of PKC 2007. Berlin: Springer-Verlag, 2007: 233-248.

[50]管海明.有理分式公钥密码体制[C]//第五届中国信息与通信安全学术会议(CCICS’2007)论文集.科学出版社,2007:135-141.

[51]胡磊,聂旭云.多变量公钥密码的研究进展[C]//中国密码学发展报告.北京:电子工业出版社, 2007: 235-254.

[52]王后珍,张焕国.多变量Hash函数的构造理论与方法[J].中国科学:信息科学版,2010,40(10):1299-1311.

[53]WANG H Z, ZHANG H G. Design theory and method of multivariate hash function[J].SCIENCE CHINA:Information Sciences, 2010, 53(10):1 917-2 158.

[54]王后珍, 张焕国.一种新的轻量数字签名方法[J].通信学报,2010(11):25-29.

收稿日期:2011-04-20.

篇6

关键词:量子密码;量子加密;测不准原理;EPR关联;量子纠缠

中图分类号:TP393文献标识码:A 文章编号:1009-3044(2007)03-10732-02

1 引言

传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。

近年来,由于量子力学和密码学的结合,诞生了量子密码学,它可完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决量子特性不可忽视,测量动作是量子力学的一个组成部分。在这些规律中,对量子密码学起关键作用的是Heisenberg测不准原理,即测量量子系统时通常会对该系统产生干扰,并产生出关于该系统测量前状态的不完整信息,因此任何对于量子信道进行监测的努力都会以某种检测的方式干扰在此信道中传输的信息。

本文内容安排如下:第二部分回顾经典的密码术,第三部分说明基于EPR纠缠对的量子加密原理和技术,第四部分介绍量子密码术,最后给出结论。

2 经典密码术

一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。经典保密通信原理如图1所示:

图1经典保密通信原理图

密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性.它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’ 不同。整个通信系统得安全性寓于密钥之中。

公钥加密体系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。举例而言,RSA (Rivest, Shamir, Adleman ) 即是具有代表性的公开密钥算法,其保密性建立在分解有大素数因子的合数的基础上。公钥体系由于其简单方便的特性在最近20年得以普及,现代电子商务保密信息量的95%依赖于RSA算法。但其存在以下主要缺陷。首先,人们尚无法从理论上证明算法的不可破性,尽管对于己知的算法,计算所需的时间随输入的比特数呈指数增加,我们只要增加密钥的长度即可提高加密体系的安全性,但没人能够肯定是否存在更为先进的快速算法。其次,随着量子计算机技术的迅速发展,以往经典计算机难以求解的问题,量子计算机可以迎刃而解。例如应用肖氏(Shor's )量子分解因式算法可以在多项式时间内轻易破解加密算法。

另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。

现代密码学认为,任何加密体系的加密解密算法都是可以公开的,其安全性在于密钥的保密性。实际上,由于存在被动窃听的可能性,如果通信双方完全通过在经典信道上传输经典信息,则在双方之间建立保密的密钥是不可能的。然而,量子物理学的介入彻底改变了这一状况。

3 量子加密的原理和技术

量子加密是目前科学界公认唯一能实现绝对安全的通信方式。它依赖于两点:一是基本量子力学效应(如测不准原理,Bell 原理量子不可克隆定理);二是量子密钥分配协议量子密码系统能够保证:(1)合法的通信双方可觉察潜在的窃听者并采取相应的措施;(2)使窃听者无法破解量子密码,无论破译者有多么强大的计算能力。同时,量子密码通信不是用来传送密文或明文,而是用来建立和传送密码本,这个密码本是绝对安全的。到目前为止,实现量子加密的方案主要有如下几种:

(1)基于两组共扼正交基的四状态方案,其代表为BB84协议;

(2)基于两个非正交态的二状态方案,其代表为B92协议;

(3)基于EPR纠缠对的方案,其代表为E91协议;

(4)基于BB84协议与B92协议的4+2协议。

在这里我们主要介绍一下基于EPR纠缠对的方案,Ekert 于1991年提出的基于EPR的量子密钥分配协议(E91)充分利用了量子系统的纠缠特性,通过纠缠量子系统的非定域性来传递量子信息,取代了BB84 协议中用来传递量子位的量子信道,因而可以更加灵活地实现密钥分配。此外,与BB84 不同的是,E91协议借助于Bell 不等式来验证是否存在窃听者,而在BB84 和B92 中,都是通过随机校验来实现窃听验证。

虽然量子密钥分配协议的安全性与Bell不等式之间的确切关系尚不清楚,但是利用Bell不等式的确可以保证量子密钥分配是无条件安全的。也就是说无论Eve采取多么高明的窃听策略,采用多么精密的窃听设备,她的窃听行为必然影响纠缠态,进而使Bell不等式成立。

其中任意角度均表示光子的偏振方向。量子位的信息编码规则为:

相应的测量算子为:

根据上述设置,E91密钥分配的操作按如下步骤实施:

(1)Alice等概率的从{│ω0>,│ω1>,│ω2>}中随机选取一个纠缠态│ωj> ,保留第一个量子位,并把第二个量子位发送给Bob. Alice没有必要记住│ωj>究竟处于什么态, 只要保证三种纠缠态被等概率的选取。该过程可以在密钥分配前任何方便的时候进行,而且还可以有Bob或者可靠的第三方执行。

(2)Alice和Bob各自独立地测量自己的量子位,测量算子等概率地从{M0,M1,M2}中随机选取。

(3)Alice直接记录测量结果对应的编码信息比特,Bob则记录编码信息比特的反码。

(4)Alice和Bob在公开的经典信道公布自己所选取的测量算子。当然,Alice和Bob 都不透露自己的测量结果。

(5)Alice和Bob保留相同的测量算子所对应的信息比特作为原始密钥(raw key)。其余的信息比特记为排异位(rejected bits),与BB84和B92不同,排异位不再被丢弃,而是被公布以用来验证Bell不等式是否成立,并以此判断是否存在窃听者。

然而根据量子力学,对于上述纠缠纯态,应有β= -0.5,Alice和Bob可以利用公布的排异位分别计算β ,若Bell不等式成立,即β≥0 ,则表明纠缠态已经被破坏,原始密钥是不可靠的; Bell不等式不成立,即 β

最后,Alice和Bob利用经典纠错码对密钥进行纠错,最后施行保密增强生成最终密钥。

4 量子密码术

考虑到环境噪声和窃听者的作用,以防止窃听者获得尽可能多信息从而实现高效的量子密码传输通信。因此在实际通信系统中,所有量子密钥分发协议都要完成以下四个过程:

4.1 量子传输

不同量子密码协议有不同的量子传输方式,但它们有一个共同点:都是利用量子力学原理(如海森堡测不准原理)。在实际的通信系统中,在量子信道中Alice随机选取单光子脉冲的光子极化态和基矢,将其发送给Bob, Bob再随机选择基矢进行测量,测到的比特串记为密码本。但由于噪声和Eve的存在而使接受信息受到影响,特别是Eve可能使用各种方法对Bob进行干扰和监听,如量子拷贝,截取转发等,根据测不准原理,外界的干扰必将导致量子信道中光子极化态的改变并影响Bob的测量结果,由此可以对窃听者的行为进行检测和判定。这也是量子密码区别于其它密码体制的重要特点。

4.2 筛选数据

在量子传输中由于噪声,特别是Eve 的存在,将使光子态序列中光子的偏振态发生变化。另外,实际系统中,Bob 的检测仪也不可能百分之百正确地记录测量结果,所以,A1ice 和Bob 比较测量基后会放弃所有那些在传送过程中没有收到或测量失误,或由于各种因素的影响而不合要求的测量基,然后,他们可以公开随机的选择一些数据进行比较,再丢弃,计算出错误率,若错误率超过一定的阈值,应考虑窃听者的存在。A1ice和Bob放弃所有的数据并重新传光子序列,若是可以接收的结果,则A1ice和Bob将剩下的数据保存下来,所获得数据称为筛选数据。假设量子传输中A1ice传给Bob的量子比特(Qubit)为m bit,筛选掉m-n bit,则得到的原数据为n bit。在这个过程中可以检测出明显的Eve的存在。

4.3 数据纠错

所得到的n bit的筛选数据并不能保证A1ice和Bob各自保存完全的一致性,通信双方仍不能保证各自保存的全部数据没被窃听。因此要对原数据进行纠错。人们提出了几种方法,经研究后提出以下方法:

(1)A1ice和Bob约定好随机的变换他们bit 串的位置来打乱错误的位置;

(2)将bit 串分成大小为K 的区,K的选取应使每一个区的错误尽可能的小;

(3)对于每一个区,A1ice和Bob计算并公开宣布了奇偶校验结果;

(4)若相同,A1ice和Bob约定放弃该区的最后一个比持;

(5)若不同,用log(K)反复查找来定位和纠正区中的错误;

(6)由于奇偶校验只能发现奇数个同时出现的错误,所以仍会有小部分错误存在,为了解决这种情况,反复以上步骤,不断地增加区的大小。

4.4 保密增强

保密加强是为了进一步提高所得密钥的安全性,它是一种非量子方法,其具体实现为假设Alice 发给Bob 一个随机变量W , 如一个随机的n bit 串,在随机变量V 中,窃听者Eve 获得一个正确的随机变量V, 设对应的比特为t

4.5 身份认证

经过以上的过程,获得了一个对窃听者Eve完全安全的密钥,但他假定朋Alice和Bob都是合法的,并没有对A1ice和Bob的身份认证。可能会出现A1ice或M是假冒的情况,因此我们在原BM4协议中加人身份认证这一过程:我们可以从量子密钥中获取认证密钥而实现。将以上过程所得到的密钥称为原密钥(Raw Key)rK,将其分成三个部分:rK=Ka+Kb+K,其中Ka,Kb用于身份确认。具体过程如下:A1ice秘密地从rK中选取Ka,并发送给Bob,同时Bob秘密地从rK中选取Kb并发送给A1ice,然后A1ice和Bob分别以Kb,Ka利用单向哈希函数获得各自的秘密密钥Ka',Kb'。最后A1ice和Bob利用双钥认证体制实现身份确认。

5 结论

量子密码术是量子物理学和密码学相结合的一门新兴科学,它成功地解决了传统密码学中单靠数学无法解决的问题并引起国际上高度重视,是主要应用于量子信息领域的一个重要课题。近年来,许多国内外研究机构对量子密码通信的研究非常活跃,这种新的密码通信不同于经典的密码通信,有着绝对安全的优点。

总之,随着单光子探测等技术的不断发展,量子密码通信技术在全光网络和卫星通信等领域的应用潜力会不断挖掘并成为现实,当量子计算机成为现实时经典密码体制将无安全可言,量子密码术将成为保护数据安全的最佳选择之一。因此,对量子保密通信技术以及为合法通信者间的安全通信的进一步研究将是一项非常有意义的工作。

参考文献:

[1]Nicolas Gisin, Gre′ goire Ribordy, Wolfgang Tittel, and Hugo Zbinden,Quantum cryptography[J], REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002.

[2]DAVID S. PEARSON, CHIP ELLIOTT, ON THE OPTIMAL MEAN PHOTON NUMBER FOR QUANTUM CRYPTOGRAPHY[J], Quantum Information and Computation, Vol. 0, No. 0 (2003) 000C000.

[3]Chip Elliott,Dr. David Pearson,Dr. Gregory Troxel,Quantum Cryptography in Practice[J], PREPRINT C May 1, 2003

[4]Daniel Collins, Nicolas Gisin and Hugues de Riedmatten,Quantum Relays for Long Distance Quantum Cryptography[R],14 November 2003.

[5]Norbert Lu¨tkenhaus,Security against individual attacks for realistic quantum key distribution[J],PHYSICAL REVIEW A, VOLUME 61, 052304.

篇7

关键词:量子遗传算法;多目标分配;最优化

中图分类号:TP18 文献标识码:A 文章编号:1674-7712 (2012) 12-0176-01

一、引言

遗传算法不同于传统寻优算法的特点在于:遗传算法在寻优过程中,仅需要得到适应度函数的值作为寻优的依据;同时使用概率性的变换规则,而不是确定性的变换规则;遗传算法适应度函数的计算相对于寻优过程是独立的;算法面对的是参数的编码集合,而并非参数集合本身,通用性强。它尤其适用于处理传统优化算法难于解决的复杂和非线性问题。[1]

目前,GA已经在很多领域得到成功应用,但随着问题规模的不断扩大和搜索空间的更加复杂,GA在求解很多具体问题时往往并不能表现出其优越性。于是,近年来便出现了遗传算法与其它理论相结合的实践,其中遗传算法与量子理论的结合是一个崭新的、极富前景和创意的尝试。

量子遗传算法QGA是量子计算特性与遗传算法相结合的产物。基于量子比特的叠加性和相干性,在遗传算法中借鉴量子比特的概念,引入了量子比特染色体。由于量子比特染色体能够表征叠加态,比传统GA具有更好的种群多样性,同时QGA也会具有更好的收敛性,因此在求解优化问题时,QGA在收敛速度、寻优能力方面比GA都将有较大的提高。QGA的出现结合了量子计算和遗传算法各自的优势,具有很高的理论价值和发展潜力。

本论文提出用量子遗传算法处理和解决多目标分配问题,为多目标问题的解决提供一种新的思路。

二、量子遗传算法

在传统计算机中,信息存储是以二进制来表示,不是“0”就是“1”态,但是在量子计算机中,充当信息存储单元的物质是一个双态量子系统,称为量子比特(qubit),量子比特与比特不同之就在于它可以同时处在两个量子态的叠加态,量子进化算法建立在量子的态矢量表述基础上,将量子比几率幅表示应用于染色体的编码,使得一条染色体可以表示个态的叠加,并利用量子旋转门更新染色体,从而使个体进达到优化目标的目的。

一个 位的量子位染色体就是一个量子位串,其表示如下:

其中 。在多目标优化中,一个量子染色体代表一个决策向量,在量子态中一个 位的量子染色体可以表达 个态,采用这种编码方式使得一个染色体可以同时表达多个态的叠加,使得量子进化算法比传统遗传算法拥有更好的多样性特征。

为了实现个体的进化,经典进化算法中通过染色体的交叉、变异操作推进种群的演化,而对量子进化算法而言,量子染色体的调整主要是通过量子旋转门实现的,算法流程如下:

(1)进化代数初始化: ;

(2)初始化种群 ,生成并评价 ;

(3)保存 中的最优解 ;

(4) ;

(5)由 生成 ;

(6)个体交叉、变异等操作,生成新的 (此步可省评价);

(7)评价 ,得到当前代的最优解 ;

(8)比较 与 得到量子概率门 ,保存最优解于 ;

(9)停机条件 当满足停机条件时,输出当前最优个体,算法结束,否则继续;

(10)以 更新 ,转到4)。

三、基于量子遗传算法的多目标分配应用

如今为了满足市场的需要,很多工厂的生产种类多、生产量大,从而设置了不同的生产车间,根据产品的性质分配生产车间合理与否直接影响工厂的经济收益,这同样可采用遗传算法的目标分配方法进行分配。

模型构建:设工厂有i个生产车间。 为在第i个车间生产第j种产品的收益, 为第j种产品的需求量;如果第j种产品被选中,则 为在第i个车间生产该产品的总收益。由题意知为求解 最大问题。

仿真实例:设有10个生产车间,要生产15种产品,用Matlab程序编程,设定40个粒子,迭代200次,代沟0.9。运行结果如下:

此图表明经200次迭代后的目标分配方案为:第1种产品由第3个车间生产,以此类推,车间5生产第2种产品,车间8生产第3种产品,……。次方案对应的车间总收益值为2.7030e+003,成功进行了多目标分配问题的解决。

四、结论

基于量子遗传算法的多目标分配,为多目标分配突破传统寻优模式找到了一个可行的解决方法。根据这种方法实验,仿真结果可以看出,基本符合要求,并且能够在一定的时间内得到最优的分配方案,因此,本文在探索多目标分配问题上找到了一种新的解决思路。

参考文献:

[1]吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73

[2]肖晓伟,肖迪.多目标优化问题的研究概述[J].计算机应用研究,2011,3,28(3):805-808

[3]原银忠,韩传久.用遗传算法实现防空导弹体系的目标分配[J].火力与指挥控制,2008,3,33(3):80-83

篇8

【关键词】:量子通信技术;电力信息;保密传输;应用

1、技术原理

1.1量子通信原理

量子通信技术以量子密钥分配技术为基础,该技术利用单光子不可分割、量子态不可复制的特性实现通信、双方的安全密钥分配,结合“一次一密”实现不可破译的无条件安全加密通信。光在沿着传播方向前进的同时,也在垂直的方向上振动,该振动是一种量子状态。不同于传统数字光通信,量子通信能够将信息编码并加载到单光子的振动方向上,根据单光子不可分割、量子态不可复制的特性,量子状态是无法被精确复制的。在量子加密的传输过程中,任何的窃听行为都会对量子状态造成扰动,实现了通信双方对数据传输的状态监视,能够察觉到数据被窃听并进行规避。因此,通过量子状态的传输,双方可根据量子状态协商将其转化为二进制数,形成完全随机的加密密钥,以实现对原数据“一次一密”的加密保护。即使密文在传输过程被窃取,窃取者也无法计算出完全随机的密钥并对其破解,由此最大限度地保障了数据的安全性。

1.2量子加密系统

量子保密通信系统在实际应用中的基本模型如图1所示。该系统需要两种信道,一种是业务数据原来传输所用的经典信道,一种是量子密钥传输所用的单独信道,目前该信道必须为裸纤直连。双方密钥生成器通过对发送单光子量子态的判断,将量子态按协商的规律转为二进制码,因为单光子的状态发送是完全随机的,且在传输过程中不可能被窃取,因此双方最终能够生成相同的完全随机的二进制密钥。通过量子加密机,将原数据与密钥进行“一次一密”,加密后经发送机在原来的经典信道上进行传输。对方用相同的密钥解密即可。、 图1量子加密系统基本模型

2、量子通信技术的应用

2.1应用场景

将量子通信技术应用于电力信息系统中,可实现对电力生产业务和管理信息业务的信息数据传输保护。首先,针对电力行业中的电网生产业务进行数据加密传输,实现对电网生产的安全保护。如涉及电网生产的保护、安控、调度电话、调度自动化等,这些数据网是电力安全生产的重要基础,承载着电网生产运行的实时状态与控制指令,对电网的安全运行具有重要意义。采用量子通信方式保护电力调度数据网、配网自动化等,可实现电力生产信息的安全传输。其次,电力系统企业管理信息,如企业人力资源、办公系统、邮件系统、电视电话系统、营销系统等,承载着重要敏感数据,对电网的稳定运行也起着重要支撑作用,这些数据的泄露会导致电网系统的危险。因此在该场景下,利用量子加密技术M行数据传输保护同样具备可行性。最后,电力数据的信息灾备是保障电网安全的最后一道防线,当出现自然原因或人为因素导致电力系统数据瘫痪时,异地的信息数据灾备就起了重要作用,及时的数据恢复能够保证电力系统的正常运行。所以对于电力系统异地或同城的数据灾备,仍然也需要高可靠的加密方式实现数据的安全保护。同样量子保密通信系统可应用于该场景中。

2.2物理架构部署

对于目前的量子保密通信系统,除经典信道传输密文外,还需要一条专门用于传输量子密钥的光纤信道。由于技术发展的局限性,该信道的限制条件比较严格。首先,量子密钥信道必须是裸纤传输,即两点间传输的光纤不能经过光放大器、光交换、路由器等设备,只能通过物理方式进行跳接,且不能与其他承载业务共用光纤。所以若在电力行业应用量子通信技术,必须提前考虑量子信道是否具有纤芯资源。其次,单站点之间的光纤距离在50km左右、总损耗在13dB内,如果距离远大于此,就会使得量子密钥在传输中因过大损耗产生精确度的缺失。为实现远距离的量子通信,就必须建立中继站实现量子密钥的中转,保证发端与接收端最终能够生成相同的加密/解密密钥。

2.3电力系统量子通信网规划

第一,利用量子科学实验卫星,建立远距离、跨大区,甚至跨大洲的国际量子通信互联网。根据目前国家已部署的量子卫星地面接收站情况,可考虑将新疆南山接收站与河北兴隆地面接收站作为跨省互联试点,实现东西部的电力信息传输,并作为东西部其他城域网接入的集合点。同时,利用国家建立的京沪干线,实现电力系统在京沪主干线的接入,完成南北部互通,并在京沪沿线将经过的各网省以量子通信方式接入,实现从干线到各点的扩散和延长。

第二,前期可在重要城市建立城域内的量子通信网,对电力重要业务的保护进行验证和应用,为后续量子通信在电力行业的广泛应用提供试点基础。利用国家建立的城市量子通信实验网资源并考虑政治、经济重要地区,可选取北京、济南、合肥、上海等地自主建立区域量子通信网络。

结语

量子通信技术作为信息通信领域重要的发展方向,探索其在电力信息系统中的应用是非常有意义和前瞻性的工作。本文通过对量子通信技术原理和应用现状进行分析,并结合电力行业中对重要数据的安全传输需求性,提出将量子通信技术应用于电力信息系统的数据传输过程。借助量子通信的高可靠性和不可破译性,为电力信息系统的数据安全提供了一种可适用的解决方案。通过对电力行业的现状分析,提出了量子通信在电力行业的适用场景,为后续的实际建设和验证提供了指导方向。同时针对目前存在的问题给出了后续的建议和量子通信网的建设规划。

【参考文献】:

[1]周正威,陈巍,孙方稳,等.量子信息技术纵览[J].科学通报,2012(12):10-12.

篇9

本书将从物理、技术和设备操作方面对使用硅及相关合金制备的光子器件进行概述,包括以下内容:1硅光子学概述,从介绍VLSI的发展过程以及存在的问题出发引出本书将要讲述的内容;2硅的基本性能,介绍了硅能带结构、状态密度函数和杂质,并讲述了硅基异质结和异质结构的性质;3量子结构,对量子阱、量子线和点、超晶格、Si基量子结构进行了讲述;4光学过程,主要讲述了半导体中相关光学过程基本理论,包括光学常数、基本概念以及光吸收、发射等理论;5量子结构中的光学过程,主要讲述量子井、量子线和量子点这些纳米结构中的光学过程的基本原理;6硅光发射器,主要讲述了半导体发光基本原理,以及具体半导体光发射器,并对激发光发射进行展望;7硅光调制器,主要讲述了光调制相关的一些基本物理效应以及硅的电折射效应和热光效应,介绍了光调制器一些特性以及相关的光、电结构,最后讲述了高带宽光调制器;8硅光电检测器,介绍了光电检测器原理以及重要性质,讲述了一些具体的光电检测器;9拉曼激光,主要讲述了拉曼激光的概念、简化理论、硅的拉曼效应,并对拉曼系数进行了介绍,最后具体讲述了一种连续波拉曼激光;10导光波导言,介绍了光导的射线光理论以及反射系数,讲述了集中具体的波导:平面波导模型、光导波理论、3D光波导,最后讲述了波导损耗、波导与光器件的耦合;11平面波导器件原理,讲述了平面波导耦合模型、直接耦合器、分布式布拉格反射镜,并具体讲述了一些平面波导器件;12用于密集波分复用系统的波导,主要讲述了阵列波导光栅的结构、工作原理和特性,介绍了提高阵列波导光栅性能的方法,列举了具体应用;13制备工艺及材料系统,主要讲述了光电子器件制备的主要工艺及材料处理方法。

本书描绘了硅光子学器件的基本工作原理和结构,并深入讲述了硅光子学现在发展以及展望了硅光子学未来,可以作为高等院校高年级本科生和研究生的教材和参考书,也可作为半导体光子学、光电集成、光电子器件、信息网络系统、计算机光互连及相关技术领域的科研人员、工程技术人员的参考书。

作者M. Jamal Deen是加拿大McMaster大学的教授, IEEE Transactions on Electron Devices的编辑,Fluctuations and Noise Letters的执行编辑,加拿大皇家学会会士,加拿大工程院院士, IEEE院士, 美国物理学会会士。他目前的研究领域是:微米纳米电子学、光电子学及其在生命和环境科学中的应用。

篇10

关键词:布朗运动 量子力学 物质场 波动函数

引子:这篇论文是洗衣服时出现的一些现象,让我很好奇,所以我开始了对布朗运动的研究。

布朗运动:悬浮微粒永不停息地做无规则运动的现象(说明一下:永不停息是不存在的,长时间或较长时间,人们是可以接受的),很对不起大家,刚开始就要括号说明,只是现在的定义,真是永不停息。布朗运动的例子特别多,大家很容易见到,如把一把泥土扔到水里搅合搅合,或在无风的情况下对着阳光观察空气中的尘粒等等,现在这些类似运动都称为布朗运动。

1827年,植物学家R·布朗首先提出发现这种运动。在他之后的很长时间,人们对布朗运动进行了大量的实验、观察。最后古伊在1888-1895期间对布朗运动提出自己的认识:

布朗运动并不是分子运动,而是从分子运动导出的一些结果能向我们提供直接和可见的证据,说明对热本质假设的正确性。按照这样的观点,这一现象的研究承担了对分子物理学的重要作用。

古伊的文献产生过重要的影响,后来贝兰(我们第一个实验测量原子大小的人)把布朗运动正确解释的来源归于古伊。实话实说,古伊的文献太重要了,在我看来:一语中的。太对了,古伊是归纳总结的天才,也是真正从实验的角度来解释布朗运动的第一人。

古伊的话有三个重点:

一、布朗运动不是分子运动。

二、说明热本质假设的正确性(下面会专门论述热的本质问题)。

三、利用分子布朗运动的结果来承担对分子物理学的研究。

1905年爱因斯坦根据分子运动论的原理提出布朗运动理论,同时期的斯莫罗霍夫斯基作出同样的成果。

爱因斯坦在论文中指出:按照热的分子运动论,由于热的分子运动大小可以用显微镜看见的物体悬浮在液体中,必定会发生大小可以用显微镜观测到的运动,可能这里所讨论的运动就是布朗运动,观测这种运动和预期的规律性,就可能精确测量原子的大小,反之证明热分子运动的预言就不正确。这些是爱因斯坦的研究成果。

现在人们认为这是对布朗运动的根源及其规律性的最终解释,我认为不是。这是爱因斯坦成功的利用布朗运动的原则创造性提出热分子运动论,利用这一理论可以测量分子原子的大小,把布朗运动近似为热分子运动论。或许是天意,爱因斯坦的论文我怎么看都有绝对论的意思。“有大小可以用显微镜看见的物体悬浮在液体,必定会发生大小可以用显微镜观测到的运动”。运动的绝对性,不过这里他说的是发生相对于物质本身的运动,可能这是相对论的名称来源吧。我的评价:初级的绝对论。在绝对论中只要有物质存在就有物质运动,运动是绝对的。爱因斯坦的热分子运动论:舍本取末,换句话说他把布朗运动等同于分子运动了,认为热分子运动引起了的不规则运动,就是观察到的布朗运动。既然相对论是初级的绝对论,我今天提出绝对论,那么所有爱因斯坦做过的事情,我可能都要去做一遍。布朗运动不是热分子运动,但是可以引起热分子运动,爱因斯坦的成果只是利用了布朗运动引起的热分子运动,他没有分析布朗运动的根源:物质为什么会存在布朗运动。当显微镜越来越清晰的时候,爱因斯坦的扩散统计方程就不能适用了。

现在随着科学的不断进步,量子理论对真空涨落的认识不断加深,量子理论也对布朗运动的根源给出自己的看法,同样今天绝对论也给出自己对布朗运动的认识:

一、布朗运动不是分子运动,或者说不是单个粒子间的运动。

二、布朗运动是一个由点到面,再由面到点的运动形式。

三、布朗运动是与波动函数有关的物质运动的一个特性。

布朗运动不是分子的运动或者说不是单个粒子之间的运动,为什么这么说呢:一滴水融入大海永不干涸(永字应为长时间,不过人们习惯认识,所以没有改为长时间)大海汹涌澎湃,一盘水很容易平静。相比之下,为什么有如此巨大反差:物质场运动的叠加效应,滴水穿石的道理也是如此。

简单的一滴水为什么能够融入大海呢?正像洗衣服为什么能把衣服洗干净,洗不干净会在衣服干后留下许多渍迹一样。液体的形态对物质运动产生了如何的影响呢?这是我们应该思考的问题,这里我引入二个概念:物质场与波动函数。

说一下自己的看法:一滴水的运动比如一个粒子的运动,大海是一个物质场,一盆水也是一个物质场,同样一滴水也可是一个物质场,那么一个电子也可是一个物质场,也就是说一个量子可以看作是一个物质场,量子的运动可以当成物质场在运动。

其实为了研究布朗运动,引入物质场这个概念,把物质现实中的存在状态看成是一个物质场的存在,相信大家能够理解。把物质形态存在的状态不去看它把当成一个独立的物质场存在,比如一块铁、一块钢、一块砖,我们都把它当成一个独立的物质场存在,那么这个物质场中的电子、原子、质子等粒子都是这物质场的一部分,那么这物质场中的一切物质都应是这物质场的一部分。

一个统一的物质场。对于运动而言,物质场有整体的运动,也有物质场的内部运动:质子、电子、中子等微粒之间的运动,比如我用力去拿一件东西,我的全部身体都在运动,手的运动和身体内部的运动时截然不同的,但作为一个整体,我把东西拿了起来,而东西作为一个完整的物质场表现是被我拿了起来,整个的分子、原子、电子构成的物质场共同被我拿了起来。

诸如这些运动是整体的完整的物质场,对另一个完整的物质场的作用,牛顿力学已经很好的应用到多个方面,宏观物理研究的物体很明确,运动也很明显,都可以准确测量计算。为什么这里一定要强调完整的物质场呢?一滴水进入了大海之后,这一滴水的完整物质场依然存在,而变成大海的物质场一部分,这一滴水所有的运动,所有的信息都变成了大海物质场的一部分,大海的每一滴水都是一个完整的物质场,但都是大海物质场的一部分,大海有每一滴水的信息 ,但当空气蒸发水蒸气时,大海不会单独让哪一个完整的小水滴去蒸发,而是大海整个的一个物质场在做蒸发这件事,与个体的物质场的状态关系不大。

可能从小水滴到大海大家觉得不直观,在量子力学把电子看成小水滴,把一个物质粒子看成大海,或者几公斤的金属板看成大海,相信这样我们的科学人士都能够理解。

光电效应的原理:把光子看成一个物质场,把金属板看成一个物质场,光照到金属板上,放出电子(当然需要一个极限频率)是一个物质场对另一个物质场的反应,那么释放的电子是物质场的整体行为,不是单个电子吸收能量而释放出来。极限频率,用水吸收80卡的热量才能变成水蒸气来说明吧,80米的水位永远流不出100米的大坝。每个物质场都有自己的固有频率,超过这个频率的东西来破坏它,这个物质场就发生变化用大锤去打东西,物质会反应不同的。

另一个问题:固体微粒之间结合很好,但是一个个的原子又是相互隔开,可是这一个个原子又构成统一的物体。为什么?:波动函数,物质的特性是一个个小的原子共同表现出的特性,两块铁融化后能够形成一块铁,人类有无数的合金材料以及其它合成物质,为什么这些材料表现出了原来不同的特性呢,物质场的特性为什么变化呢?

物质的特性变化了,那么每一个小的物质场的特性也会变化。一般情况下原子不可能变,合金状态的原子也未变,那么什么变化了呢?量子的运动方式变化了,也就是电子和质子以及其它的微粒运动形式变化了,整个的物质场的量子波动函数变化了。

波动函数是为了形象说明布郎运动的本质引入的一个物质特征,一个物质场的波动函数体现物质作布郎运动的能力,也体现了物质场内部物质运动能力。波动函数是物质场与物质场之间结合(叠加)能力的一种体现。一个物质场中会有很多不同的波动函数如:分子之间,原子之间,电子之间,质子之间,原子于分子之间,电子与原子核之间,质子与中子之间等等许许多多的量子之间。波动函数是物质运动的一种能力的体现。

当然这个概念也很符合量子力学的波动方程的需要,那就是所有的物质场都有自己的波动函数,而且不止一个。当波动函数达到一定数值,物质场之间既可融合。这样虽然原子之间的距离是分开的,但是电子之间的物质场却可以是融合在一起的(当然还有比电子更小物质,那它们的物质场更会融在一起)

波动函数越高,物质融合的越快,反之越慢,诸如扩散现象,渗透等等,固体之间的波动函数低,所以最好融化或锻打成液态式的结合,需要外部的力量加大它的波动函数。波动函数是物质作布郎运动的一种能力,我更愿意认为波动函数是物质运动的一种能力(在绝对论中运动是物质的生命)。与物质本身的温度有关,与外界的干涉有关。例如:加热气体,溶液或用力搅拌溶液等等会增波动函数值。(下面我们还要专门研究热的本质问题)

用一个方程式来表达吧。

H值=H℃温度+Hoi外部干涉,H:波动函数。其实我的波动函数和量子力学中的的物质波不是完全相同。

波动函数是物质场的特性,是物质生命能力的一种体现。表现在粒子上,粒子就具有波动性,同时物质运动一定需要能量的,也一定出现物质的波动。所以不是粒子具有波粒二象性,而是物质场具有波动函数。就象一整铁的内部具有轻微的布郎运动,也就是说这块铁的所有原子、分子、电子等等一切粒子都在做一定的布郎运动。所有的粒子都具有这块铁的物质特性。也就是所有的粒子都有自己相应的波动函数。这与这块铁的运动和外界条件都有关系。就比如大海是所有的水滴和水中的悬浮物体构成一个统一的物质场,是所有的物质场的叠加效应,如果你取出一滴水,那么这一滴水就不属于大海了,它和大海就毫不相干了,完全是不同的物质场了。

说到这些,大家可能会乐了,我也很乐的:这就是我们量子力学上著名的不确定原理和测不准原理,因为你要对这一个量子测量,那你就要破坏这个粒子在物质场的状态,你永远不能无法精确测量一个量子系统。因为你测量一滴水的结果就会脱离大海这个物质场。这一滴水在大海里就和大海一样大,除非有测大海一样大的仪器,否则无法测量这一滴水在大海中运行状态。但是我们可以运用统计学对整个的物质场的运动进行统计。我们可以计算大海每天蒸发了多少吨的水,但不可以说是那一吨水。

其实量子力学碰到的最大问题,不是实验不能证明。而是无法说明粒子为什么不可测,而且无法确定位置,因为任何一个物质场都是一个面,一个量子只是一个点,而运动和变化是物质场与物质场之间发生的,与单个的粒子运动关系不大。当然也不能说一点没有,就象人与人打架一样,是两个物质场在运动,打在手上,而全身都难受,手痛得最厉害。是整个物质场在对外界的物质场共同的感受。可不是只是手不舒服,所以我们能够精确地确认各个量子运动叠加之后统计结果(宏观物理),但我们不能很精确一个物质场内部的那一小点起作用。物质是整体运行的,当外部的物质变化时内部的物质也会有相应变化的,量子运行方式会发生一些改变。

量子力学从来没有从一个面去研究物体,只注重了一个点,而经典物理只注意宏观物理现象的规律性,也就是注意面了。

量子力学注重研究了物质场的内部运动:单个粒子的运动(点)。经典物理学:牛顿力学,相对论只注重了物质场与物质场的外部运动(面)。

而布郎运动是把物质场的内部和外部运动结合一起的表现运动,是点到面,再面到点全过程,所以对布郎运动的研究也是一个科学研究物质运动史的一个缩影。

人对事物的认识总是渐近的,按照绝对论的原则,弧立的事情是不存在的,所有的系统都是宇宙整体的一部分,所有的运动都是宇宙生命的一种体现。

现在用量子理论中的概念说明热的本质问题:热量只是能量的一种表现形式。热的来源一般是:化学反应,物理作用(包括核反应),能量转化。等等的这一切源于:量子运行方式的改变。量子运行只会一个场,一个场的变化,也就是说量子运动只可123456 不会连续不断 没有0.1,0.2,0.3,0.4等等。量子的运行方式改变只可这个场直接到那个场,要么吸收一定能量,要么释放一定能量。水分子或者是固态,或是气态,液态,没有中间的状态。能量有许多表现形式,而热量是能量的一种表现形式,所以我们可以测定温度等等现象。量子运行方式改变了,物质的特性也就改变了。烧火做饭,木柴变成灰烬,原子一个不少,电子一个不少,可是它们之间的运行方式改变了,能量或释放了或吸收了,物质也就变化了。