数学建模的分析方法范文

时间:2023-12-27 17:42:49

导语:如何才能写好一篇数学建模的分析方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数学建模的分析方法

篇1

【关键词】建模思想 中学数学 教学方法

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)08-0110-01

中学阶段的学生对于数学的学习存在的一个普遍的现象就是,对于数学的实际应用以及深层化理解能力不足,这就需要充分的应用到建模教学方法,学生的这种建模能力形成可以显著的提高学习效率,是其他各项知识理论学习的参考。要把建模思想贯彻到学生的学习意识中,就要做好基础性工作,正确把握应用分寸,使其应用的条件和空间十分充足,这样就可以有效的改善中学数学的教学模式,提高教学的效率。

1.中学数学建模思想的综述

在当前的中学数学教学中,数学建模是一种特定的思考方法,它是针对于一个特定的对象基于一个特定的目标,并依据于特有的内在规律,作出一些必须的简化假设,再适当的运用一些基本的数学工具,结合常见的数学公式、表格等,使其更加的实际化。从理论上来讲,它属于在数学语言和方法基础上,利用抽象和简化建立可以近似刻划并解决实际问题的一种有力的数学手段。

2.中学数学教学中采用建模思想的作用

2.1可以提高学生处理问题的整体性和创造性

中学数学中的建模思想就是从实际问题出发,充分的利用数学工具,在解决问题时还需要采用综合性的数学知识点,把所涉及到的数学知识理论进行融合,这一融合过程就需要学生具备很强的综合素质以及整体性的解决问题的能力。中学数学问题实质就属于一种创新解决的过程,如果继续按照固定的思维模式进行解决,最后所起到的作用很小的,而数学建模是一种创造性活动,可以对数学的创新发展起到推动作用。

2.2帮助学生正确的评价自己

从实质上来说,中学数学建模看重的是一个体验数学知识的过程,一般不会过多的关注学生的成绩,数学知识是一个系统的理论体系,对于成绩效果如何没有太大的关系,学习成绩好或者不好都是可以进行创新运用的,就像很多的应用性和创新性较高的数学问题,成绩不突出的学生可能比学习优秀的同学更具有适应性,这也就说明了数学建模的教学方法应用,可以正确的评价出学生的真实学习水平。

3.如何提高数学建模在中学数学教学中的应用效果

随着我国教育体制改革的不断深入,数学建模教学思想逐渐在中学数学教学中形成了一种应用趋势,并且已经在部分区域取得了显著的应用效果。运用建模思想,积极开展建模活动,以此来促进学生分析和解决实际数学问题能力提高的重要手段,这是其融入到中学数学教学中的最终目的,如何有效的提高应用效果,可以从以下几个方面分析:

3.1在数学教材中的重要部分引入数学建模

中学阶段,对于学生的教育是理论和实际相结合的方式,对于很多的实际问题解决都需要应用到数学建模思想,如果只是单单的考虑理论解决,势必会有很大的难度。中学数学教材中的很多内容大都是从实际问题入手,再引出数学知识点,而后建立数学模型,这对于重要章节的教学更具有实效性和针对性。例如对于一些较为抽象且贴近实际的数学案例解决,就可以充分的采用这种教学思想,将其转化为相关的模型进行解决,典型的数学问题就是通过指数函数来解决具有对应关系的数学问题。

3.2改编数学问题,转枯燥为生活化、趣味化

数学知识的学习是有一定枯燥性的,这在中学数学教学中有充分体现。很多的中学数学问题的取材是直接的来源于现实生活的,生活中的很多问题都是可以利用建模来解决的,经过数字化后的应用问题对于学生来说是有着学习的枯燥性的,解决起来较为抽象化,那么如果把这些枯燥性的问题进行适当的改编,使之更贴近于学生实际,更具有生活气息,这样可以提高学生的学习积极性,可以更好的为建模学习做铺垫。例如对于两点间的距离比以及存在的动点相关问题的解决,就可以将其套入到实际的生活现象中,这样可以对问题的解决起到很好的推动作用。

3.3合理性的把教材内容进行延伸,为数学建模作基础

中学数学教学中,基本上一个显著的特点就是它的应用性较强,虽然难易程度不一,但是它为建模提供了一个良好的素材和条件,通过建模可以切实的让学生体会到数学理论知识,更好的理解学习,形成深刻的印象,进而可以积累很多固定的解决套路,像函数模式、几何模式等,这可以培养学生的建模能力。

4.总结

我国教育体制改革的不断深入,在中学教学体系中,更多的具有时代性特点的教学学习方法得到了广泛的普及和应用,建模思想作为一种解决数学实际问题的一种有效手段,它在中学数学的教学学习中具有重要的实际意义和效果,可以帮助学生更好的学习数学知识,有深刻的理解,最终促进学习效果的提高。

参考文献:

篇2

随着科技的快速发展,社会对应用型人才的需求日趋增加,高校教育必须加强对学生创新能力和解决实践问题能力的培养[1]。数学建模正是衔接创造性思维与实际应用的纽带,通过数学建模课程学习及实践训练,学生不仅能了解数学的应用价值,也能锻炼创新实践能力。由于数学建模课程的内容涉及的领域多,案例式授课,实际应用性强,与所学的高等数学、工程数学课程不同,不能形成连贯的系统性知识点,学生很难接受这门课程的学习方式。为了让学生更好地学习数学建模,教师要改进教学模式,根据教学规律的要求,探索数学建模教学方法,将有助于学生掌握数学建模技能,从而提高解决实际问题的能力[2—4]。

二、数学建模的认知

大学开设基础数学课程能让学生体会到数学的严密逻辑体系及高度抽象的思维方法,但对数学的实际应用介绍的甚少,很难将数学与工程技术、经济管理、生物信息等其他领域联系起来。数学建模是用数学语言来描述实际问题,将它变成一个数学问题,再利用现有的数学工具或发展新的数学工具来加以解决的整个过程。通过数学建模学习与实践,学生在体验建模过程的同时提高了思维能力和创造能力。数学建模课程的学习,可以重新认识数学的作用。课程重点就是介绍数学应用到实际领域中的方法,结合案例,应用初等数学、高等数学等数学知识来解决不同领域问题。在现实中许多现象及问题都可以用到数学来解释,如,我们看到一个四条腿椅子经过简单的移动就可以找到合适的位置放稳现象,用高等数学中的“零点存在定理”很容易解释这个问题;若知道某珍稀动物各年龄段数量信息,来推测未来种群是否会灭绝,可以用线性代数中的“矩阵”预测未来动物数量分布。书报供应商订购多少数量的商品才能得到最大收益呢?用概率中的“数学期望”建立报童卖报优化数学模型可解决这类问题。数学建模竞赛实践能更好地培养和提高学生应用数学知识分析问题、解决问题的能力。几年来,数学建模竞赛赛题背景知识广泛,要想取得好成绩,不仅要掌握扎实的数学基础,较好的计算软件使用方法,还需要较强的自学能力,广泛涉猎诸如物理、生物、信息等知识。例如,2012年美国大学生数学建模竞赛A题“树与树叶”,需要了解植物树叶生长特点,涉及到生物学知识;2014年全国大学生数学建模赛题A题“嫦娥三号软着陆轨道设计与控制策略”涉及到万有引力定律知识。数学建模是以数学为基础,综合自然科学和社会科学的实践活动。学生们可以通过多种途径了解数学建模,如,与数学建模课程教师咨询、与参加数学建模系列教学活动的同学交流,浏览数学建模网上的数学建模课程介绍及阅读数学建模书籍等,以获得更多的数学建模知识与信息。

三、数学建模学习过程

在学习过程中不仅要掌握数学建模的基本方法、数学建模思维模式,同时还要能以团队形式自主完成一整套数学建模训练题目,才能体会数学建模的真正内涵。目前,最行之有效的途径就是参加一次数学建模竞赛。可将数学建模过程分解为三个阶段:数学建模课程学习,数学建模综合培训,数学建模竞赛及课外科技活动。

1.数学建模课程学习

(1)掌握数学建模的基本方法。数学建模基本方法介绍是从案例分析开始,首先了解问题的背景、要解决的问题,分析用什么数学方法描述问题符合的规律,建立数学模型,并对模型求解,解释结果合理性。可以紧跟教师思路,积极展开思考,比较自己的解题思路与教师所讲有哪些不同,从简单的初等数学建模方法入手,了解数学建模的全过程。例如,鱼的重量估计问题,在没有称重的条件下如何根据鱼的长度估计鱼的重量呢?在合理的假设下,利用初等比例方法建立鱼重量与长度数学模型,利用鱼的长度能估计出鱼的重量,经验证结果是有效的。然后,要结合所学的数学知识逐步学习一些基本的建模方法,例如,微分方程建立传染病模型可以预测流感流行趋势问题;概率统计方法建立的报童模型可以预测出订购多少报能获得最佳受益。最后,要学会模仿案例建模过程完成作业,掌握建模的基本方法和技巧。数学建模过程不是解应用题,虽然没有唯一途径,但也有一定规律可循,在学习中要善于思考,慢慢形成建模思维方式,有助于建模能力的提高。

(2)养成良好的自学习惯。数学建模课时有限,许多数学建模方法及案例不能在课堂上介绍,在课余时间同学们可以选读一些教材中的案例和在期刊公开发表的建模论文,细致研读案例的建模思想,学会举一反三,重点是学会分析问题,了解更多领域的数学建模的方法、新颖的建模思想,提高用数学方法解决问题的能力。还可以丰富建模信息量,提高建模能力。同时,还可看到同一问题,可以选用不同的数学方法、从不同角度加以解决,这也是数学建模的魅力所在。例如,锁具装箱问题,可以用排列组合方法,也可用图论方法,都能给出减少锁具互开的装箱方案。

2.数学建模综合培训

(1)数学建模方法再学习和建模能力强化训练。随着数学建模解决问题多元化发展,基本的数学建模方法及计算能力远远满足不了实际问题的需求。因此还应学习一些现代数学方法,如,图论,模糊数学,多元统计分析等。学会熟练运用计算机软件技能,如,数学软件MATLAB,EXCEL数据处理,求解数学规划软件及统计软件。

(2)阅读建模论文。通过仔细阅读刊登在杂志或数学建模网站上的数学建模论文,学习论文的整体层次结构,写作技巧,对问题的分析、假设、模型建立和求解过程。寻找论文的优缺点,并比对论文作者对论文的评价。要善于总结所读的论文中解决问题的适用类型,如,优化类,预测类等,对于不同问题采用什么方法更合适,以备后继数学建模中使用。还可以提出自己的一些想法,改进别人做过的模型,或完成其中运算过程。数学建模是一项没有标准答案的数学应用,模型的研究结果大致符合实际就好。

(3)数学建模模拟训练。选作历年数学建模竞赛题目或实际问题中提炼出来的数学建模题目,学习查阅资料、分析问题、建立数学模型、使用软件求解、论文写作来模拟数学建模全过程。请教师对论文的摘要、结构、模型的准确性、论文语言表述、格式规范等方面提出建议,再经过多轮修改,直至满意为止。

3.参加数学建模实践活动

(1)数学建模竞赛。参加数学建模竞赛是培养综合应用数学知识解决实际问题的最有效途径之一,参加一次数学建模竞赛才能体会数学的真正魅力。目前开展的数学建模竞赛可以分为四个层面,一是美国大学生数学建模竞赛(MCM/ICM),是由美国数学及其应用联合会(CO-MAP)主办,并得到了SIAM,NSA,INFORMS等多个组织的赞助,是一项具有世界影响的国际级竞赛,为现今各类数学建模竞赛的鼻祖。二是全国大学生数学建模竞赛(CUMCM),是由教育部高等教育司、中国工业与应用数学学会联合主办,并得到了高等教育出版社、美国COMAP公司的支持与赞助,是一项全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。三是地区级、省级、专业类别赛事,如,东三省数学建模联赛是由黑、吉、辽三省高校联合发起的科技赛事;电工杯数学建模竞赛是由中国电机工程学会电工数学专业委员会主办的科技活动;数学中国数学建模国际赛(小美赛)是由数学学会与数学中国(www.madio.net)和第五维信息技术有限公司协办的全国性数学建模活动。四是由校级开展的数学建模竞赛活动。在竞赛中,调整好心态、应用好文献资源、积极思考、发挥每个队员的长处、合理分工是取得成绩的必要条件。

(2)数学建模实践。要善于发现学习和生活中的诸多问题,要学会用数学的眼光看待问题,要用数学建模的方法来解决。例如,在课程设计、毕业设计中,在校园生活中,可能面临着方方面面的问题。要学会观察实际现象,提炼出要解决的问题。要真正做到学会发现问题、解决问题,这需要一定的练习过程,也是学好数学建模的必要环节,可以提升自身的综合素质和创新能力。

四、数学建模提高学生的综合能力

一次参赛,终身受益。数学建模最能激发人的潜能,数学建模思维方式会影响学生今后的学习和工作方法。数学建模教学内容及教学方法对培养学生的综合能力尤为突出。主要体现在:

(1)培养学生的想象力、洞察力和创新能力。不论是数学建模课程学习还是实践,都是针对实际问题,需要学生主动查阅文献资料和学习新知识,主动探索,提出解决方案,这种学习方式促进了创新能力的形成,也培养了学生从事科研工作的初步能力;同时增强了运用数学知识和计算机技术解决实际问题的能力和团队协作能力。

篇3

关键词:运筹学;数学建模;教学;案例

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)08-0106-03

运筹学应用分析、试验、量化的方法,对经济管理系统中人、财、物等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。该课程主要培养学生在掌握数学优化理论的基础上,具备建立数学模型和优化计算的能力。本文提出一种新的教学改革思路,将运筹学和数学建模两门课程合并为一门课程,即开设大容量交叉课程《运筹学与数学建模》来取代《运筹学》和《数学建模》两门课程,采用案例教学和传统教学相结合的教学方法,数学建模和优化算法理论并重的教学模式。这样既可以避免出现极端教学和随意选取教学内容的现象,又可以将新颖的教学方法与传统方法相结合,按照分析问题、数学建模、优化算法理论分析及其方案制定、实施等解决实际问题步骤展开教学。下面就该课程开设的必要性、意义、可行性、注意事项及其存在问题等方面进行分析。

一、开设《运筹学与数学建模》课程的必要性

1.一般院校的运筹学课程的教学课时大约为64或56(包含试验教学),所以教学中不能囊括运筹学的各个分支。一方面,由于课时量不足,教师选取教学内容时容易出现随意性和盲目性;另一方面,教学中为强化运筹学的应用,消弱理论教学,从而导致学生对知识的理解不透彻,在实际应用中心有余而力不足。

2.运筹学解决实际问题的步骤是:(1)提出和形成问题;(2)建立数学模型;(3)模型求解;(4)解的检验;(5)解的控制;(6)解的实施。大部分教学只涉及步骤(3),即建立简单数学模型,详细介绍运筹学的算法理论,与利用运筹学解决实际问题的相差甚远。因此,学生仍然不会应用运筹学解决实际问题,从而导致学生认为运筹学无用。

3.数学建模课程包含大量的运筹学模型;运筹学在解决实际问题的环节中包含建立数学模型步骤。目前两门课程分开教学,部分内容重复教学,浪费教学课时。

二、开设《运筹学与数学建模》课程的意义

1.激发学生的学习动机,培养学习兴趣。该课程包含数学建模和运筹学两门课程的内容,内容容量大,教学课时丰富,教学过程中能够以生产生活中的实际问题为案例,分析并完整解决这些问题,创造实际价值,使学生认识到该课程不但对未来的工作很重要,而且还有可以利用运筹学知识为企业或个人创造价值,改变运筹学“无用论”的观念。从而激发学生的学习动机,产生浓厚的学习兴趣。

2.合理处理教学内容。运筹学与数学建模的课时量相对充足,能够安排更多的内容,能够系统、完整地介绍相关知识,在一定程度上避免了运筹学内容安排的随意性和盲目性。

3.促进教学方法改革。运筹学与数学建模的教学不再是简单的数学建模和理论证明,教学内容丰富、信息量大,传统的一支笔一本教案一块黑板的模式不再适用,需寻找新的教学方法,促进了多种教学方法的融合。

4.培养学生综合能力。实际案例源于社会、经济或生产领域,需要用到多方面的知识,但学生不可能掌握很多专业知识。因而,在解决实际案例的过程中,需要查阅大量的相关文献资料,并针对性阅读和消化。而且,实际案例数据量大,需要运用计算机编程实现。因此,通过该课程的学习,可以提高学生多学科知识的综合运用能力和运用计算机解决实际问题的能力。

5.改变教学考核方式。教学改革后,教学内容已延伸到运用优化知识解决实际案例的整个过程。教学过程中既有对实际案例分析、建模,又有算法介绍、求结果的检验及其最终方案的实施。因而,传统的单一闭卷考试改为笔试和课后论文相结合的方式。

三、开设该课程的可行性

1.运筹学和数学建模互补性、递进性使得开设该课程在理论上可行。数学建模是利用数学思想去分析实际问题,建立数学模型;运筹学是利用定量方法解决实际问题,为决策者提供决策依据。由此可见,建立数学模型为运用运筹学解决实际问题的重要步骤。所以,运筹学可以认为是数学建模的进一步学习。同时,运筹学模型为数学建模课程介绍的模型中的一部分,并且运筹学处理实际问题的方法为数学建模提供了专业工具。因此,运筹学与数学建模在内容上是互补的。由此可知,开设该课程在理论上是可行的。

2.计算机的发展使得开设该课程在操作上可行。随着计算机的发展,能很快完成大数据量的计算,实际案例的数据分析、数学建模及其求解能快速实现,从而使得该课程的教学工作能顺利开展。

3.大学生的知识储备使得开设该课程在基础上可行。学习该课程的学生是高年级学生,通过公共基础课和专业基础课的系统学习,分析问题、解决问题的能力得到进一步提高。同时,运筹学和数学建模所需基础知识类似,学习该课程所需的线性代数、概率论与数理统计、高等数学及微分方程等课程也已经学习,运用运筹学与数学建模知识解决实际案例所需的基础知识已经具备。因此,开设该课程是可行的。

篇4

关键词:数学建模策略;教学原则;

作者简介:李明振(1965-)男,河南延津县人,副教授,主要从事数学建模的认知与教学研究.

自20世纪70年代起,英、美等国的许多大学相继开设了数学建模课程。迄今为止,我国绝大多数高校也已相继将数学建模作为理科专业的必修课程之一。经过多年的实践探索,数学建模教学取得了一定成效,但效果并不尽人意[1-3]。究其重要原因之一在于,缺乏科学有效的数学建模教学理论指导。亟需深入开展数学建模课程的教学研究,建立科学有效的数学建模教学理论,以有效指导数学建模教学实践。

所谓数学建模策略是指在数学建模过程中选择解决方法、采取解决步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。它们在数学建模过程中发挥着重要作用,以有效的数学建模策略为指导,将有助于减少数学建模过程中试误的任意性和盲目性,节约数学建模所需时间,提高数学建模的效率和成功概率。数学建模策略一旦被学生真正理解、熟练掌握、自觉运用和广泛迁移,即转化为思维能力。研究表明,优秀学生与一般学生在数学建模的表征策略、假设策略、模型构建策略、调整策略等方面均存在差异。优秀学生在数学建模策略的掌握与运用方面具有较高水平,而一般学生的数学建模策略运用水平较低[4]。数学建模策略差异是优生与一般生数学建模水平差异的主要原因。掌握一些有效的数学建模策略,既是数学建模教学的重要目标,也是提升学生数学建模能力的重要步骤,实施数学建模策略的教学能有效培养学生的数学建模能力,应将数学建模策略的教学放在重要位置。开展数学建模策略的教学研究,不仅能拓展和丰富数学建模教学理论,而且对数学建模教学实践具有重要指导意义。然而,迄今未见关于数学建模策略教学问题的研究。鉴于此,基于数学建模的认知与教学研究[5-7]和多年从事高校数学建模教学的实践,笔者认为,数学建模策略的教学应遵循如下四个原则。

一、基于数学建模案例

策略性的知识是具有抽象性、概括性的知识,这种知识的学习必须和具体的经验结合起来,才能真正领悟与掌握。否则,只会是死记策略性知识的字词,而难以真正理解与熟练运用。因此,数学建模策略的教学应基于对数学建模案例的解析与探索,使学生在多种新的现实问题情境中“练习”利用所要习得的数学建模策略,实现数学建模策略的经验化。为此,在数学建模教学中,一方面,针对每种数学建模策略的案例练习均应涵盖丰富的现实问题,应在多个现实问题的应用中向学生揭示数学建模策略的不同方面。由于不同的问题蕴涵不同的情境,运用同一数学建模策略的不同问题,会反映出数学建模策略的不同侧面与特性。因此,对某种数学建模策略应拟定多个可运用的不同情境的现实问题案例,从而为该数学建模策略提供丰富的情境支持;另一方面,应注重审视与解析每个现实问题的解决过程所涉及的多种数学建模策略,通过对同一现实问题的多种数学建模策略运用的审视与解析,厘清各种数学建模策略之间的关系。一个数学建模问题案例实质上意味着多种数学建模策略在此特定的情境中发生特定的联系,解析一个数学建模问题的过程就是将多种数学建模策略迁移至此情境的过程,关注每个现实问题所包含的多种数学建模策略的应用,有助于理解和掌握多种数学建模策略在解决同一情境问题时的有效协同。实施同一数学建模策略的多个现实问题建模案例应用和同一现实问题建模案例的多种数学建模策略分析相交叉的教学,能够有效加强记忆的语言表征与情节表征之间的联系,不仅可使学生形成对数学建模策略的多维度理解,将数学建模策略与具体应用情境紧密联系起来,形成背景性经验,而且有利于针对现实问题情境构建用于引导解决现实问题的数学建模策略的应用模式。将抽象的数学建模策略与鲜活的现实问题情境相联系,加强了理性与感性认知的有机联系,有助于促进数学建模策略学习的条件化。即知晓数学建模策略在何种条件下使用,一旦遇到适合的条件就能自觉使用,从而有助于增强数学建模策略的灵活运用和广泛迁移。

二、寓于数学建模方法

所谓数学建模方法是指为解决现实问题而构造刻划现实问题这一客观原型的数学模型的方法。数学建模方法在数学建模中具有重要作用。数学建模策略与数学建模方法之间存在密切的关系。一方面,数学建模方法从层次上低于数学建模策略,是数学建模策略对数学建模过程发生作用的媒介和作用点,离开数学建模方法,数学建模策略将难以发挥作用;另一方面,数学建模策略是对数学建模问题解决途径的概括性认识和通用性思考方法,是数学建模方法对数学建模过程发生作用的指导性方针,引导主体在何时何种情况下如何运用数学建模方法。如果缺乏数学建模策略的有效指导,数学建模方法的运用就会陷于盲目,势必导致无从下手或误入歧途。数学建模教学中,如果仅关注于数学建模方法而忽视数学建模策略,那么,所习得的数学建模方法就很难迁移运用于新的数学建模问题情境;如果仅关注数学建模策略而忽视数学建模方法,那么所获得的数学建模策略难免限于表面化和形式化,从而难以发挥其对数学建模方法和数学建模过程的指导作用。因此,在数学建模策略教学中,应寓数学建模策略于数学建模方法教学之中,应有意识加强数学建模策略与数学建模方法之间的联系。为此,应基于具体的数学建模案例,尽力挖掘所用数学建模策略与所用数学建模方法之间的内在联系与对应规律。一种数学建模策略可能会对应多种数学建模方法,同样,一种数学建模方法也可能对应多种数学建模策略。应在数学建模策略与其所对应的数学建模方法之间对可能的匹配关系进行审视与解析,以揭示所运用的数学建模策略之间、数学建模方法之间以及二者之间的内在协同规律。

三、揭示一般思维策略

一般思维策略是指适用于任何问题解决活动的思维策略。它包括:(1)解题时,先准确理解题意,而非匆忙解答;(2)从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;(3)在理解问题整体意义的基础上判断解题的思路方向;(4)充分利用已知条件信息;(5)注意运用双向推理;(6)克服思维定势,进行扩散性思维;(7)解题后总结解题思路,举一反三等等。此外,模式识别、媒介过渡、进退互用、正反相辅、分合并用、动静转换等也属于一般思维策略范畴。通过深度访谈发现,相当一部分学生希望老师在数学建模教学时教给他们一些一般思维策略,但数学建模教学实践中,往往忽视一般思维策略的教学。一般思维策略在层次上高于数学建模策略,在数学建模过程中,它通过数学建模策略影响数学建模思维活动过程。而数学建模策略是沟通一般思维策略与数学建模过程的纽带与桥梁,受一般思维策略的指导,是一般思维策略指导数学建模过程的作用点。离开一般思维策略的指导,数学建模策略的作用将受到很大限制。因此,在数学建模策略教学过程中,应向学生明确揭示数学建模活动过程所蕴含和所运用的一般思维策略,并鼓励学生在数学建模实践活动中有意识地使用,使学生充分领悟一般思维策略对数学建模策略运用的重要指导作用,增强数学建模策略运用的灵活性,实现数学建模策略的迁移,提升数学建模能力。

篇5

关键词:数学建模 数学建模竞赛 大学综合素质

中图分类号: G642文献标识码:A 文章编号:1007-3973(2010)06-157-02

自从1995年我校首次组织学生参加全国大学生数学建模竞赛工作以来,不知不觉我在数学建模教学与竞赛工作已有16年。在校、教务处、理学院的领导下, 通过全体教练在教学上不断探索和共同努力, 取得了优异的成绩, 共获全国一等奖26项,全国二等奖49项,浙江省奖项多项,2006年至今共获美国特等奖1项,一等奖9项,二等奖16项。取得了省参赛高校与全国同类高校中的优异成绩。通过十几年来的教学与竞赛活动, 我感触很多, 现有如下一点认识与体会。

1数学建模教学及意义

数学建模是就是应用建立数学模型来解决各种实际问题的方法,即就是通过对实际问题的抽象、简化,确定变量和参数,应用某些“规律”建立起变量、参数间的确定的数学模型,并对数学模型求解,解释、验证所得到的结论,从而确定能否用于实际问题的多次验证、循环并不断深化的过程。它作为联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学理论知识和应用能力共同提高的最佳结合点,在培养学生过程中,数学建模教学起到了启迪学生的创新意识和创新思维、培养综合素质和实践动手能力的作用,是培养创新型人才的一条重要途径。

2数学建模教学内容和方法

数学建模教学的根本宗旨是学生能力的培养和综合素质的提高, 而能力和素质的培养应以知识及教学活动为载体, 同时须辅之以相应的教学内容和方法。由于数学建模课程教学不同与其它数学类课程,其主要特点:(1)数学建模的主要“载体”是一个个的具体问题, 这些具体问题大多是各领域的实际问题或是它们的抽象和简化。(2)数学建模的问题涉及各个领域, 且均有一定的深度和广度, 并非单靠数学知识和某些专业知识就能完成, 但如果不具备数学知识和相关的专业知识是根本无法建立数学模型的; 而且即使已建立起的模型, 单靠某一学科的知识往往不可能得到满意的模型解。总而言之, 数学建模常常需要跨学科跨专业的多学科多专业知识的综合施用。因此,我们必须处理好书本知识与实际问题的关系,数学知识与其它相关知识的关系。

我校自1995年开设数学建模课程以来,根据实际需要,课程设置不断得到改革,目前课程组面向全校开设了多种不同课时不同程度要求的数学建模系列课程,包括数学实验以及课程设计等实践性环节。课程设置满足了不同专业学生的多样化需求和大量学生学习数学建模的大众化需求。根据我校特点,我们将数学建模课程的目标定位为“学习数学建模的常用基础知识和基本方法,培养学生综合素质、团队精神和实践能力,努力提高学生研究性学习和创新性应用能力”。 根据这样一个目标定位,在教学安排上注意基础知识的宽泛性,建模训练的应用性,教学方法的研究性。课程教学内容分为四大模块。(1)常用的数学方法讲解,如运筹学中的规划论、图论、组合优化、排队论等,概率统计与马尔可夫过程、层次分析,常微分方程,还有计算方法等等。当然我们不可能把这些内容面面俱到地细讲,只是择其要义,把最基本最有用的一些思想与方法展示给学生,让学生知道一些基本思想,同时知道何处可以找到何种方法用于解决何种问题。余下的问题则由学生自己去解决。本模块教学时数在各个不同层次分别为20到40学时;(2)建模分析,这一块除了历年竞赛模型外,还从教师自身的科研课题以及大量的科技杂志上精选加工了为数不少的建模案例,让学生初步明白用数学方法解决实际问题的一些基本方法。这里有的是老师讲解分析,有的则是让学生先读后讲,即让学生先去尝试着对所给问题建模并给以解决,然后向大家介绍他所用的方法,并让大家讨论,最后老师作简要总结或补充。这种教学方式是完全区别于传统的教学方式的,也是数学建模课程最具特色的内容之一(时)。(3)数学软件的使用以及计算机编程能力的培养,这一模块可以穿插在前两块的过程之中,也可以数学实验课的形式得以体现。若以实验课形式出现,则根据各个层次的不同,学时为17学时(课程配套的课内实验)到33学时(独立开设的数学实验选修课)。以上三块内容互相补充,互为依托,彼此间也没有一个明确界限,每一块内容,也没有明确的范围限制,尤其是第二大块,我们几年下来,可以说每年的教学内容都有较大的更新。而数学建模也正因为此而使得它对于师生两方面都是极具挑战性。(4)在前面三块的基础上,再配以实践性教学环节的设计,该环节中学生分成3人一组,要求学生根据教师提出的实际问题进行充分讨论,广泛查阅有关资料,提出各自的观点及模型雏形,写出对应的论文梗概,然后在班上进行讨论。

通过学习要让学生学会数学建模的思想,即在理解问题的基础上,将具体问题总结归纳提炼为一个数学问题,并设计出一整套求解方法来加以求解。难点是能够使用的数学方法涉及面太多太广,作为一个本科学生,尤其是我校这样地方性普通学校的学生难以在短期内接受。针对这个难题,我们采用基础知识和案例教学相结合,理论教学和上机实践相结合,教师讲课和学生自主练习相结合,教师引导和学生收集资料,探索讨论相结合,学生报告加教师点评相结合的方法,较好地解决了这个难题。十余年的教学实践证明,经过我们以这样一个模式培养的学生已经初步具备了从实际问题,到数学方法,到计算机编程实现并最终解决问题的基本能力,这一点不仅从我们的学生在历年的竞赛中均取得良好的成绩中可以得到验证,而且从毕业设计,指导“新苗人才计划”、“创新杯”等科研活动,学生就业,及研究生学习中充分体现。

3数学建模教学与竞赛关系

从我校数学建模活动实践说明,数学建模竞赛推进了数学建模教学课程化,数学建模课程教学为竞赛活动开展打下了基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。我校最初开设选修课是因为参加数学建模竞赛的需要,选修的学生数较少,而且必须是往年成绩较优的学生才允许选修。经过几年探索,我们通过以竞赛为平台, 加强引导与指导, 充分激发学生的学习兴趣和热情。而且通过数学建模竞赛,促进了我校教学内容、教学方法、教学手段的创新,参加过训练和竞赛的学生们普遍感到,以往学多门课程的知识不如参加一次竞赛集训学得全面和扎实。因为数学建模竞赛需要全面掌握本领域相关知识, 在深入理解、领会前人智能精髓的基础上, 敢于提出自己的想法和观点。只有善于进行创造性地学习和运用知识, 善于对已知知识进行融会贯通, 注意知识积累的同时更注重对知识的处理和运用, 才能取得成功。随着数学建模竞赛在我校影响的增加,同时参加竞赛过的学生能力的提高,要求选修数学建模课程的学生逐年增加,使得开设数学建模必修课有了一定的群众基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。目前,已在自动化、信息管理、统计、电子信息科学与技术、计算机、软件、通信等专业的学生开设不同层次的数学建模必修课与限选课,同时仍然在全校开设不同层次的数学建模选修课。对于不同层次,理论教学学时分别为34、50、66学时,并辅以上机实践训练,每年从当初几十名学生到目前每年近2000名学生修读此课。参加校数学建模竞赛学生近600人。数学建模教学已经形成了多个品种、多种层次、多种方式的教学格局。

4数学建模教学团队重要性

课程教学实施与建设离不开教学团队建设,这一点数学建模教学团队建设更显得重要。因为一切科学研究都需要建模,而建模会用到多方面的知识与技能,例如,通过数据处理分析,找出统计规律的能力、运用数学知识建立数学模型的能力、运用最优化方法与技术改进模型并设计出算法的能力等等。这些能力的培养单靠一门课程的努力是不够的。因此数学建模教学与竞赛离不开集体的力量,教学内容涉及面广、方法多、工作量大,必须组建一支知识面宽、业务素质高、解决实际问题能力强、热爱学生、具有团结协作和乐于奉献精神的新型教师队伍。我校课程小组利用这些年新进教师比较多的实际情况,每年动员吸收适量新教师加入到数学建模教师队伍。通过以老带新,请专家来我校讲学或让有一定潜力的教师外出观摩或参加相关交流活动等形式逐步提高青年教师的数学建模教学水平。通过努力,已经建设成功一支规模适当、水平较高、结构合理、相对稳定的数学建模师资队伍,教师队伍从最初的5名教师扩展为现在的15位教师。课程教师队伍在年龄结构、学历结构、知识结构各个方面得到了很大的改善。原先5位教师中仅有2名副教授和3名讲师,现有教师中有5位教授,7位副教授,博士学位获得者有8名,超过50%。课程组教师的教学科研水平较高。这为我校数学建模活动很好开展作了保障。

5数学建模教学促进了数学课程教学的改革

数学建模教学促进了我校数学课程教学的改革工作,这种促进既有内容上的也有教学方法上的。比如早在上世纪末,我们与电子分院部分教师一道组织讨论,在高等数学、线性代数以及概率统计教学中,找一些结合学生专业方向工程背景的实际问题,融入到课堂教学中,加强应用所学方法解决实际问题的例子,一方面可以使学生学到数学在本专业用处与数学建模知识,另一方面也可以使学生加深对数学思想本质的理解。这与以后将数学建模思想融入到本科公共课程数学中思想是一致的。另外,在第二学期,开设高等数学实验试验。并且在数学建模教学方法上探索得到经验,有目的应用到其他数学教学方法上,在教学中注意强调讨论式教学以及学生的自主学习尝试。激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。

6数学建模教学活动对学生能力培养影响

通过数学建模教学、组织大学生数学建模竞赛,学生在数学应用能力、分析处理问题综合素质方面得到极大的提高,表现出很好的继续培养潜力。培养锻炼提高了教师的教学、科研能力;活跃了本科生的科技活动和学习氛围。正像我校参加过数学建模活动学生代表王教团感言那样,数学建模,它魅力无穷,能够很好地锻炼和考查一个人的综合素质,是培养创新能力的一个极好载体。它能充分体现参与者的洞察力、创造力、数学语言翻译能力、文字表达能力、综合应用分析能力、想象力、使用当代科技最新成果的能力等等;它能塑造参与者同舟共济的团队精神、自律精神和协调组织能力,提高自主学习的能力和主动寻求问题、思考问题、解决问题的能力。 正是这些能力的培养和锻炼,使我在后续的一些学习和研究工作中能够游刃有余。在大三大四阶段,我和团队的其余4位成员承担完成了07年省新苗人才计划项目,并最终顺利通过验收,撰写了一份调查报告以及发表了2篇学术论文。这让我第一次接触到了真实的研究型项目,通过这个项目,使我迅速成长起来。但是归根结底,没有数学建模期间积累的经验,我们是没法独立承担一个项目的。 在目前研究生阶段中,我同样非常得益于数学建模期间培养的能力。能让我在研究的过程中快速获取信息、接受新知识,充分发挥团队合作精神等等。我为我选择数学建模感到无比的荣幸,没有它,或许我还在布满荆棘的道路上摸索着。数学建模是一盏永不泯灭的明灯,指引着我找寻正确的方向,并为之不懈奋斗下去。 “一份耕耘,一份收获”、“天行健,君子以自强不息”成为我也是所有数模人共同的心得写照。

最后,数学建模教学活动开展除提高大学生的综合素质和实践能力以及推进大学数学课程内容与方法改革外,我感触最深的是开展数学建模教学与竞赛活动,推广了数学认知。这点好,而且非常重要。通过数学建模教学及校竞赛,让我校学生有机会知道将所学的数学知识运用到解决实际问题中,同时通过全国竞赛,扩展了影响,消除用人单位一些认识上的误区,让大家更加深刻地体会到数学的魅力,亲近数学。

参考文献:

[1]李大潜. 中国大学生数学建模竞赛[M]. 北京:高等教育出版社,2008.

[2]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003.

篇6

【关键词】数学建模;创新能力;主成分分析法

一、上海工程技术大学对学生创新能力的培养

数学建模是通过对实际问题进行合理假设,用数学语言、数学方法抽象出与实际问题近似的数学模型,通过对数学模型求解,解决实际生产、生活问题。数学建模对使用的方法、利用的工具都不加以限制,由于其创造性、趣味性、可参与性吸引了很多大学生参加,从建立模型到得出结果,学生分析问题的能力、创新能力、动手实践能力都得到了提高,数学的思维也在无形中加深。院校对数学教育非常重视,数理与统计学院践行了“数学建模为载体的数学应用能力‘六点一线’培养模式”,从而提高学生的数学应用能力和创新能力。以《高等数学》等课程的教学平台为起步,利用第二课堂进行普及,通过校级数学建模竞赛选拔人才,以集中培训为平台提高学生数学建模能力,参加国内外数学建模竞赛展示学生数学建模水平。以大学生创新实验和科研作为拓展平台,培养学生数学应用与创新能力。通过对学生数学建模能力的培养提高他们的数学应用能力和创新能力。

二、数学建模对大学生创新能力影响的理论分析

创新能力是指在创新意识的基础上提升分析问题、解决问题的能力。从各个角度去看问题,全面地看问题抓住其关键,能够用自己的观点对问题进行解释,运用各种方法解决问题,从中选取最优解决方法。对于创新能力测评的方法有很多,如:主成分分析法、层次分析法、变异系数加权法、因子分子法等。层次分析法是根据各因素间的关系,通过各层特征向量构造上层与下层的权重矩阵;变异系数加权法是计算各因素的变异系数且根据其相对大小确定指标权重;主成分分析法是将多个相关变量转化为少数几个综合指标,将这些综合指标作为主成分,每个主成分都能反映问题的部分信息。本文采用主成分分析法对创新能力指标进行量化分析。

三、模型变量选取

通过对参加数学建模的师生进行深度访谈以及查阅资料分析后得出,影响创新能力的因素主要为智力因素和非智力因素,其中以智力因素为主。智力因素指认知活动的操作系统,智力因素中对创新能力产生的主要影响是注意能力、逻辑思维能力、形象思维能力;非智力因素主要是个性心理因素和思想因素。在此基础上选定原因变量为:观察能力、注意能力、想象能力、记忆能力、逻辑思维能力、形象思维能力、灵感、直觉、顿悟思维能力、个性心理因素和思想因素,以变量的提升程度作为指标,结果变量则选择为创新能力的提升程度。数学建模的实际问题中往往存在一些小细节,观察能力决定了这些小细节是否能被找到;注意力集中才能专心于数学建模,不被外界打扰,这在数学建模竞赛中尤为重要;合理的想象才能创造有价值的新思想;记忆能力指数学建模时在理解中提高记忆力;逻辑思维能力指利用概念、判断、推理等思维形式通过一定的方式得出事物的本质和规律,这无论在分析题目还是建模、编程中都非常重要;利用形象思维能力能把理论的题目结合自己的感观通过语言、图像等形式进行描述;灵感、直觉、顿悟思维能力代表了创造性的突发思维和突如其来的领悟;而个性心理因素指人的求知欲、好奇心、兴趣爱好等;思想道德能力则是指人的世界观、人生观、价值观。

四、模型的建立与求解

为了得到学生创新能力提升的情况,对参加过数学建模的学生进行调查问卷,问卷题目为参加数学建模活动和竞赛后各个能力的提升程度,选项为提升很大、略有提升、没什么变化和退步,将选项转化为数据,分别为1、0.66、0.33、0。回收有效调查问卷共285份,对调查问卷利用SPSS22.0进行分析,利用主成分法,得到主成分的系数矩阵,系数代表了原因变量的线性方程中不同成分的权重,数值越大,对这个指标的影响越大。通过表1可以看出,第一个主成分反映的是思想能力、形象思维能力和逻辑思维能力,这个主成分的方差占总方差的比例最大,所以在数学建模影响创新能力的因素中思想能力、形象思维能力和逻辑思维能力是影响最大的,严谨的逻辑思维、良好的形象思维以及正面向上的观念对于创新能力是不可或缺的。第二个主成分反映的是个性心理能力,分析其方差占总方差的比例得出,个性心理能力对创新能力影响较大,兴趣爱好、好奇心等心理因素的培养对创新能力的提高能起到一定的作用。第三个主成分体现了想象力,由于第三个主成分所占比例较小,所以得出想象力对创新能力有一定影响,但是影响较小,合情合理的天马行空能带来不一样的创新。通过分析问卷中创新能力提升程度的数据,15.3%的学生觉得通过数学建模创新能力得到了较大的提升,而65.9%的学生觉得通过数学建模创新能力略有提升,18.8%的学生则认为数学建模后创新能力没有变化甚至略有退步。可见,只有少数学生认为通过数学建模能够大幅度提升自己的创新能力,而大部分的学生都是认为略有提高。数学建模对院校学生创新能力的确起到了一定的促进作用。

五、结语

在调查问卷中发现,大学数学主干课程和第二课堂对于数学建模和创新能力的培养还不够深入,而校级选拔平台要求较低以及创新实验和科研未能普及都导致了数学建模对创新能力的促进较小。集中培训和建模竞赛的参与人数较多及其应用能力更强导致了更能提升学生的创新能力。因此,可以提出一些改进措施,大学数学主干课程和第二课堂对于创新能力的培养应该更深入一些,这样可以在潜移默化中给学生带来积极的影响。而校级选拔平台则可以增添一定的趣味性或挑战性以此吸引学生进行挑战。创新实验和科研平台则可以增加其普及率来吸引学生,培养更多的创新型人才。

【参考文献】

[1]张清华,杨春德,沈世云.以数学建模竞赛为契机,加强对学生创新能力的培养[J].重庆邮电大学学报(自然科学版),2008,20(1):121~123

[2]刘冬梅.大学生数学建模竞赛与教学策略研究[D].山东师范大学,2008

[3]许先云,杨永清.突出数学建模思想,培养学生创新能力[J].大学数学,2007,4:137~140

篇7

一、数学建模的基本内涵

将所考察的实际问题,化为数学问题,构造出相应数学模型,通过对数学模型的研究和解答,使原来的实际问题得以解决,这种解决问题的方法叫做数学模型方法,也就是数学建模。[1]研究别人做成的数学模型是一种被动的活动,我们平常的教学活动大部分都属于这种情形, 关心的是如何从已知的模型中导出问题的答案, 如学习和完成教科书、复习参考书中的例题、练习题和复习题等。而数学建模重在“建”, 即如何使用数学知识对实际问题中看起来杂乱无章的现象中抽象出恰当的数学关系.数学经常暗含在被描述的实践活动中,实践活动伴随着数学而进行并不是显而易见的。因此想要在看似“非数学的”实践活动和数学之间建立联系通常是困难的。

二、数学建模融入课堂教学的意义

“数学发展所依赖的思想在本质上有三个;抽象、推理、模型。通过抽象,在现实生活中得到数学的概念和运算法则,通过推理得到数学的发展,然后通过模型建立与外部世界的联系。” [2]建模本身就是一种对数学知识的应用过程,其内容取材于生活实际问题,其方法来源于已掌握的数学理论和方法。开展数学建模教学和建模活动能够培养学生多方面的综合能力:

(1)开展数学建模教学和建模活动能培养学生学习数学的兴趣和严谨求实的治学态度

数学建模讨论的是问题和过程,强调的是问题,强调的是过程,强调的是不同的人都可以用不同的方式入手,因此有可能成为吸引学生的一个重要途径。同时,由于数学建模重视对建模过程的评价,每个步骤形成的结论环环相扣,学生必须严谨认真的进行建模实践,有助于养成学生严谨求实的治学态度。

(2)开展数学建模教学和建模活动能促进学生创新意识的培养

数学建模的目的并不在于找出完美的、唯一的解决问题的方案,更重要的是要求学生能够根据不同的实际问题建立相应的、合适的数学模型,并给出符合问题要求的结果和解决问题的具体方案,就要求学生充分发挥自己的的创造性。同时,数学建模也要求学生具有丰富的想象力和洞察力,才能从一些看似无关的表面问题中挖掘它的实质、发现它与数学知识建千丝万缕的联系。学生亲身经历一个完整的数学建模过程,也是一个学生自身的综合能力得到培养和锻炼、提高的过程。

(3)开展数学建模教学和建模活动能培养中学生运用数学和自主学习的能力

数学建模的对象常常是一些非数学领域的实际问题,通过对这些实际问题的解决,培养学生使用数学知识解决实际问题的能力,同时在日常生活中遇到相关的问题时,会考虑到可以用数学方法将问题解决,久而久之,养成学生用数学的习惯。同时数学建模涉及的问题通常是多学科多领域的,解决这些问题需要的很多知识是很多学生在这之前没有系统学过或者从未接触过的,学生要解决问题,必须具备相关的知识储备,促使学生自己去搜索相关的知识进行学习,这对于培养学生的自学能力和文献检索能力将发挥不可替代的作用。自学能力和文献检索能力对于学生日后的学习、工作和科研是非常有用的。

三、开展数学课堂建模对教师的要求

能否成功将数学建模融入课堂教学,教师是关键。对数学教师来说,将问题转换成数学模型的过程就是培养学生创新思维能力的过程,对于学生运用数学知识解决实际问题具有重要的意义。为了使学生能更有效地进行数学建模活动,教师需要做许多准备工作。这些对于教师来说是一个挑战。

首先,教师自己应该是一个好的数学建模者,要明白数学建模的真正含义。数学建模与我们通常所说的数学问题解决有一定的联系,但是也有一定的区别.数学建模可以看成是问题解决的一部分,数学建模作用的对象更侧重于来自日常生活、经济、理、化、生、医等学科中的应用数学问题。而问题解决中的一部分问题包括已经完成数学抽象和加工的实际问题。此外,数学建模作为问题解决的一种模式,它更加强调原始问题的分析、假设、抽象的数学加工过程、数学工具、方法和模型的选择、分析过程、模型的求解、验证、再分析、修改假设、再求解的迭代过程,它更完整地表现了学数学和用数学的关系,给学生再现了一种微型的科研过程。

其次,教师应该是一个好问题的设计者。数学建模中呈现在学生面前的问题是非常规的数学问题,即不是已知求解的模式,是实际生活中需要用数学知识解决的问题。反映现实特征的问题情境,同时它也可以包含一定的数学概念、方法和结果。这类问题非常重视情境应用,即给出的问题往往不是纯数学化的“已知”、“求证”模式,而是给出一种情境、一种实际需求、以克服一种现实困难为标志的数学问题。数学课堂中数学建模好问题应该是具有一定的现实意义.要与学生的实际生活紧密联系,能使学生容易理解的问题:应该具有一定的探索性,引起学生的探究欲望;应该使学生能够用已有的数学知识,在与同伴和老师的交流合作中解决的问题。

再次,教师要有意识地培养学生的数学建模能力。如数学阅读能力、设置假设和简化实际问题的能力、分析处理大量信息的能力、元认知能力和合作交流能力等等,从而提高学生数学建模的有效性。

四、将数学建模融入课堂教学的具体举措

在新课程标准的要求下,数学教师有责任对数学教材加以挖掘整理,进行相关的教学研究,从全新的角度重新组织数学课堂教学体系。在数学课堂教学实践中,可以尝试从以下几个途径来融入建模思想方法。

(1)数学建模教学应与现行教材结合起来

数学教材中,每章都有内容涉及到数学的应用。虽然这些问题大多比较简单,但它们为将实际问题“数学化”提供了丰富的材料和最基本的实例,通过对这些问题的探讨,使学生体味到其中所用的数学知识、方法和思想,使学生在头脑中储存一定数量的“基本数学模式”。如函数模式、数列模式与几何模式等,这是培养学生数学建模能力的基础。[3]只有经常渗透建模意识,不断强化“基本数学模式”才能提高学生运用数学知识进行建模的能力。

(2)将枯燥的数学题目改编成体现实际生活的应用题目

日常生活是应用问题的源泉之一,现实生活中有许多问题可通过建立中学数学模型加以解决,如果教师能善于利用实际生活中的事情作背景编制应用题,必然会大大提高学生用数学的意识,以及学习数学的兴趣。[4]

(3)在教学中还要结合专题讨论来研究数学建模方法

我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究.熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习。

(4)注意与其它相关学科的联系

篇8

关键词: 数学建模 大学数学教学 教学意识和方法 素质教育

新时期的今天,伴随着科技的发展和生活的日益数字化,数学建模意识和方法的应用也日益广泛。当前,根据数学建模应用的作用,并针对大学数学教学中的现存问题,强调数学建模意识和方法的培养对推动大学数学教学的改革和我国素质教育发展意义十分巨大。文章对此展开论述及分析,并提出了一些相应的有效途径及对策。

一、数学建模的实质涵义

数学建模是指建立数学模型的过程。人们通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验等。所以,数学建模整体而言是一个系统而多面的过程,需要多种技能、方法、知识及分析的辅助和运用。

数学建模是一种意识,也是一种方法。它要求运用数学的语言及方法,通过系列活动,形成一种数学手段,解决实际生活和工作中的具体的或者抽象的问题与对象。数学建模理念可以说是巧妙地将数学学科领域与其他学科领域结合起来孕育而生,以适应新时展的需要,也是对素质人才发展方向的适应。

二、大学数学教学存在的问题及培养数学建模意识的必要性

1.大学数学教学存在的问题。

我国数学教学长期的历史传统等因素造成了授课中重理论知识及数学分析方法,轻视了对于实践生活的结合,重视逻辑严密地学术知识的灌输、片面强调分析过程,轻视了学生认知能力和水平的实际限制、结果的精确性等,造成了理论与实践的脱节。同时,在教学中多以教师传授为主,轻视学生学习及认识能力自主性的培养,缺乏对学生良性思维思考能力的引导,对于素质教育的发展及素质人才的培养明显不利。

2.培养数学建模意识的必要性。

培养数学建模意识和方法是大学数学教学改革及素质教育发展的需要。数学建模是指通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验。可见,数学建模的过程是在融入了包括数学在内的多种学科领域的知识信息、方法及技能的过程,是把数学知识技能同应用实践能力相结合的过程,是可以拓展创新思维意识及能力、培养高素质人才的过程。

总之,将数学建模意识和方法融入到大学数学教学中,有利于促进数学与其他相关学科的融会,提高数学在社会领域中的应用价值,实现教学改革和素质教育发展的需求。

三、培养大学数学教学中数学建模意识和方法的途径

1.遵循数学教学及学生的认知规律,循序渐进,树立数学建模理念。

在大学数学教学中,教师要树立数学建模理念,注意将其融入到教学之中。针对目前大学数学教学存在的问题,教学工作应尽量避免晦涩难懂、专业逻辑性极强的理论语言的运用和附加,强化对现实实践问题的解决和联系。尽量通过通俗语言、结合时代现实,循序渐进的演绎分析及引入理论的学习,并渐渐引导学生对数学用语严谨性的认可与学习。如此,才能加强理论与实践、时代的结合,强化数学与其他相关学科领域的联系,激发学生学习的乐趣及对数学融入这个时代现实的认可与理解力。

2.回归自然、强化与生活的联系,激发学生认识、解决实际问题的兴趣。

在大学数学教学中,教师应精而少地选择数学例题,引导学生对数学建模意识的培养,鼓励学生通过数学理论知识认识及解决实际生活问题。同时,我们应较少对理论知识、经典例题、技巧方法的片面倚重,着重强化实际应用及与其他学科领域的联系,拓宽学生的视野,以“授之以渔”的教学方式,提高他们对数学学习的研究乐趣,拓展他们的思维理解和思维方法,激发他们认识与思考世界问题的兴趣及能力。

通过对我国大学数学教学中现存的问题及教学中融入数学建模思维和方式必要性的分析,了解到应时展需要,我们需要将数学建模思维和方式融入到大学数学教学中。相信,如此,有利于促进学生树立正确的认识观与价值观,也必将实现学生知识、能力及素质的全面提升,真正适应新时期大学数学教学改革与素质人才教育的需要。

参考文献:

[1]朱世华,李学全.工科数学教学中数学建模技术的嵌入式教学法[J].数学理论与应用,2008,(4).

篇9

一、建立教学模型的教学方式

数学建模应结合常用的数学内容进行切入,以教材为载体,以改革教学方法为突破口,通过对数学内容的科学加工处理,达到“在学中用,在用中学”的目的,从而进一步培养学生的数学应用意识及分析和解决实际问题的能力。例如:已知a,b,m∈R■,且a

二、建立数学模型的教学步骤

数学建模课程指导思想是:以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高分析问题和解决问题的能力,提高学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。高中数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为今后的学习打下坚实的基础。在教学时把数学建模中最基本的过程教给学生:利用现行的数学课本,给学生介绍我们常用的、常见的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。还可以通过教材中出现的一些不太复杂的应用问题,与学生一起来完成数学建模,让学生初步体验数学建模的过程。

三、培养学生的建模意识与方法

教师应该利用教材这个有利资源,培养学生的建模解题的思路。教师要有意识地在教学过程中进行建模的渗透,努力寻找知识点与数学模型之间的联系,培养学生用发散思维思考问题的习惯。如在学习数列的相关问题时,把彩票和信用贷款联系起来,让学生了解相关的问题在解答时要参考数列中的数学公式,把数列变成这类问题解答的一个模型。又如学习立体几何的过程中,可以培养学生对于圆柱体和长方体的模型意识,正方体就是长方体的特殊变形。所以,正方体问题的解答也要在长方体模型的范围之中。引导学生在遇到问题时首先想到的就是关于这些解题模型的相关概念,在解题过程中渗透这种模型意识,在应用中领悟这些模型的具体内涵,激发学生的建模兴趣。其次,培养学生建模能力,教师应该结合一些专题化的复习模式来进行。在经过一段时间的学习后,不妨开设以某一问题为讨论对象的探讨课,引导学生总结出这类问题的“模型”。如可以开设“图像解题法”,通过对于一些有着典型性问题的解决,来引导学生建构一个图像式解题模型,并且找到可以用这个模型来解答的具体问题类型。

四、在实践中培养学生建模能力

实践是检验真理的唯一标准。教学中教师要“以人为本”,切实为学生提供“学数学、做数学、用数学”的环境,多创造动脑思考、动手实践的机会。注意对原始问题进行分析、假设、抽象等加工过程,模型的求解、验证、再分析、修改假设、再求解的循环过程。教师应自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身学生使用,贴近学生生活实际的数学建模问题,同时注意问题的开放性与可扩展性,尽可能地创设一些合理、新颖、有趣的问题情境来激发学生的好奇心和求知欲,使学生积极参与到数学建模的实践活动中。通过开展数学实践活动,培养学生的数学应用意识与建模应用能力,利用课外活动时间开展数学实践活动,这是建模教学不可缺少的部分。如:尽可能选择较多的方法学会测量建筑物的高度。测量高度较高建筑物的高度属于开放型的建模题,看起来难度不大,但实际操作很难,通过分析、思考,学生会想出很多方法,教师应该总结这些方法,与学生一起评价他们建立的模型是否切实可行,这样就能提高学生数学建模兴趣,从而提高他们的建模水平。

五、建模要联系相关学科加以运用

篇10

关键词:数学建模;数学模型;建模思想;数学建模方法

一.数学建模在教学中的应用

数学建模能力的培养,让学生体验、理解和应用探究问题的方法。教师在教学中,应根据他们的年龄特征和认知规律设计出适应他们探究的问题,这样才能激发学生对学习的思考和探索,从而达到培养学生数学探究性学习的效果。

例:拆数问题。总长100米的篱笆靠墙围一个矩形羊圈。

(1)当x=20米时,面积S是多少?(2)当x分别为30米,40米,50米,60米呢?

(3)当x为多少时,所围矩形面积最大?

本例中,学生原有知识为:矩形面积=长×宽;总长100米,一边为x,则另一边为100-x。例中的问题(1)(2)简单计算就可得出,但却是问题(3)的辅垫,学生在训练中容易比较发现,当把100分成50米和50米时,所围成的矩形面积最大。

例:函数图像的交点坐标。在一次函数教学时,可设计以下渐进式问题:

(1)直线y=x+3与X轴,Y轴分别交于点A、B,求点A、B的坐标。

(2)直线y=x+3与直线y=-2相交于点P,求点P的坐标。

(3)直线y=x+3与直线Y=3x-5相交于点M,

求点M的坐标。

结合(1)的方法容易解出问题(2),但问题(3)具有一定的挑战性。教学时问题(1)可总结为解方程组的形式,求出与X轴的交点坐标;同理对问题(2)可总结为解方程组的形式,求出点P的坐标。这样学生容易想到问题(3)的解答方法了。

数学建模能力的培养不在于某堂课或某几堂课,而应贯穿于学生的整个学习过程,并激发学生潜能,使他们能在学习数学的过程中自觉地去寻找解决问题的一般方法,真正提高数学能力与学习数学的能力。

二.数学建模教学的基本过程

培养学生运用数学建模解决实际问题的能力,关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断地引导学生用数学思维去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题的目的,使数学建模意识成为学生思考问题的方法和习惯。

三.数学建模教学的重要性

二十一世纪课程改革的一个重要目标就是要加强综合性、应用性内容,重视联系生活实际和社会实践,逐步实现应试教育向素质教育转轨。纵观近几年高考不难推断,数学应用题的数量和分值在高考中将逐步增加,题型也将逐步齐全。而以解决实际问题为目的的数学建模正是数学素质的最好体现。

目前中学数学教学现状令人担忧,相当一部分教师认为数学主要是培养学生运算能力和逻辑推理能力,应用问题得不到应有的重视;至于如何从数学的角度出发,分析和处理学生周围的生活及生产实际问题更是无暇顾及;为应付高考,只在高三阶段对学生进行强化训练,因学生平时很少涉及实际建模问题的解决,其结果是可想而知的,所以在中学加强学生建模教学已刻不容缓。

四.数学建模教学的意义

在学校开展数学建模教学,可激发学生的学习积极性,学会团结协作的工作能力;培养学生的应用意识和解决日常生活中有关数学问题的能力;能使学生加强数学与其它各学科的融合,体会数学的实用价值;通过数学建模思想的渗透和训练,能使学生适应对人才的选拔要求,为深造打下坚实的基础,同时也是素质教育的重要体现。

参考文献:

[1] 数学思想与数学教育[J],数学教育学报.1995

[2] 丁石孙、张祖贵.数学与教育[M],湖南教育出版社.1998

[3] 孙亚玲.现代课程与教学研究新视野文库--课堂教学有效性标准研究、教育科学出版社.2008