生物信息学的方法范文

时间:2023-12-26 18:08:15

导语:如何才能写好一篇生物信息学的方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

生物信息学的方法

篇1

【关键词】组合数学 教学方法 生物医学 生物信息学

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2015)09-0132-02

伴随着信息时代的来临,特别是生物医学科学研究的迅猛发展,尤其是生物信息学这门科学的出现使得原来的生物医学研究向低通量的临床数据转向高通量分子生物学数据。组合数学作为一门应用性较强的数学分支,在生物医学中的应用广泛,面对多因素高通量的生物医学问题,增加高等学校,特别是生物信息学专业学生的组合数学知识,培养他们运用组合数学方法分析和解决生物医药科学问题的能力已经成为必要。如何在教学过程中提高学生学习组合数学的兴趣,建立组合数学的逻辑思维用于解决医学问题是我们教育工作者需要思考的问题。

一、高等学校组合数学的特点及教学现状

组合数学是一门研究离散对象的科学,在计算机科学、信息科学中具有重要的地位,是理科及工科院校的一门必修课,随着现代生物医学的日益发展,组合数学的重要性也日渐凸显。组合数学对于生物医学专业基础课有着直接的衍射作用。目前,部分开设组合数学课程的生物高等学校的主要面向生物信息学、统计学等等专业开设,讲授学时30到60学时。在大部分生物高等学校并没有该类课程的设置,也是导致高等学校组合数学教师队伍的匮乏的主要原因。而且目前组合数学授课考核形式也比较单一。组合数学主要是以理论授课形式为主的教学方式,考试成绩是考核学生的唯一标准,忽视了学生在学习过程中的考核。信息时代学科的交叉发展体现在组合数学在各个学科中不可替代的作用,因此提高生物高等学校学生的组合数学学习兴趣,培养他们运用组合数学的能力是目前迫切需要解决的问题。

二、改进组合数学教学措施,提高学生兴趣

(一)更新教学内容,改进教学方法

目前的组合数学内容主要有: 鸽巢原理、排列与组合、容斥原理、递推关系、生成函数等基本的组合数学知识及其在数学中的应用。为了让学生在有限的学时内学完必要的知识,更新和精选教学内容显得尤为必要,将以组合数学内容为主导的教学模式改进成以生物医学问题为导向的教学模式。由于面向医学专业的特殊性,从内容上应着重选择与医学知识联系紧密的内容,采取精讲和略讲相结合的方式。根据不同专业背景更新组合数学的教学内容往往能够起到事半功倍的效果。以下是我们在讲解排列与组合一章时的一个教学实例:“生物遗传信息是由DNA分子中4个碱基核苷酸就像电报密码似的以不同的排列顺序记录下来,它载着人类的全部基因或全部遗传信息,人的DNA约有30亿(3×109) 碱基对,按照排列的思想可知人类基因组可能的排列方式有N=4■=(4■)■≈(1.52)■种,然而人类仅从这无穷多的方式中选了一种作为全人类共同的遗传密码,可见我们的基因组是祖先们留给人类的最宝贵的财富!”。这样的实例教学不仅可以让学生熟悉课堂知识,还能让学生对所学的知识进行综合的运用,更重要的与生物医学问题的结合提高了学生的学习兴趣。通过兴趣小组讨论学习提高学生自主学习的主动性,变被动学习为主动学习,充分调动学生学习组合数学的兴趣,从而充分发挥学生学习的主观能动性。

(二)加强多媒体辅助教学,提高学生学习兴趣

组合数学传统的授课方式是在黑板上将定义、定理的内容进行逐步严密的推导证明,这在一定程度上让学生紧跟授课教师的思维和建立学生的逻辑思考能力。然而随着多媒体技术的不断进步,利用多媒体和板书相结合的策略成为下一阶段组合数学教学模式的主要教学手段。对于繁琐的定理公式例如容斥原理避免推导证明,结合多媒体的几何图形使学生更加直观的理解和应用。以我们在教授容斥原理时的一个实例,容斥原理的根本思想是将难的问题分解成若干简单问题,通过间接计数来解决直接计数不容易解决的问题,我们用多媒体幻灯片分别展示两集合和三集合的容斥原理(图1A和B),并按照容斥原理的逻辑顺序利用多媒体动画技术控制每一部分的出现顺序,不仅避免了大量繁重枯燥的板书推导,最重要的是图形式教学可以帮助学生对容斥原理建立更直观的理解。可见在组合数学的教学过程多媒体的充分利用可以起到事半功倍的效果。

图1 多媒体在组合数学教学中的应用――容斥原理实例

(三)增设组合数学实验课,培养学生创新性思维

组合数学除了基本理论课之外还应该开设适当的实验课,在实验课上让学生自己动手解决一些与生物医学有关的实际问题。通过让学生自己编程实现排列组合的算法,不仅可以增进学生对排列与组合的深入认识,也能够培养学生利用排列组合思想解决实际问题的能力。以下是我们的一个实验教学实例:“任选一种排列生成算法,编程实现自动生成n个(如n=6)不同元素中取r个元素的排列,并输出指定任意n和r的所有排列。”,不仅让学生掌握了课堂上讲解的排列原理,还锻炼了编程能力,初步体验了科研的乐趣,由消极的被动学习升级为积极的主动学习。可见通过组合数学实验课更能培养学生自己动手自己学习的能力,进一步激发学生的创新性思维。

(四)精挑细选课后练习,培养学生独立解决问题的能力

组合数学作为一门应用性较强的数学课,需要学生掌握其在生物医学领域的应用,这就必须加强组合数学课堂后练习。因此习题是组合数学课程重要的教学环节,也是理论教学必不可少的补充。然而习题课并不意味着单纯地大量做题,教师应根据课堂内容,精挑细选出质量比较高的少量题目,供学生课余时间认真研究,要在习题中体现组合数学的知识点,激发学生独立给出解决问题的新观点和新方法。设置习题时,应以问题为导向,即给定一个实际的有兴趣的问题,让学生利用所学的组合数学理论进行解决,进一步加强学生对知识细节的理解和掌握,并让学生举一反三熟练掌握所学内容,使学生的理解更加深刻。如我们在教学过程中的一个课后习题实例:“一位国际象棋大师有11周的时间备战一场锦标赛,他决定每天至少下一盘棋,但是为了使自己不过分疲劳他还决定在每周不能下棋超过12盘。证明存在连续若干天,期间这位大师恰好下了21盘棋。”,该实例引起了学生在课余时间学习组合数学的一个热潮。

总之,面对高等学校生物信息学学生的专业特点,传统的单一的纯理论的组合数学教学方法已经不再适用。应该考虑改进教学内容和方法,发挥学生学习的主观能动性,使学生在快乐进取的氛围里学习组合数学,具体的教学内容和教学方法的改进仍有待教学工作者进一步探讨和研究。

参考文献:

[1]卢开澄,卢华明.组合数学[M].北京:清华大学出版社,2002.

[2]苏建忠,张岩,刘洪波,王芳,崔颖.组合数学在生物信息学教学中的应用[J]. 科技创新导报,2012,6,142-143.

作者简介:

刘洪波(1983-),男,汉族,山东德州人,博士,讲师,主要研究方向:生物信息学,计算表观遗传学。

王芳(1982-),女,汉族,吉林松原人,博士,副教授,主要研究方向:生物信息学,计算表观遗传学。

篇2

【关键词】新课改 高中生物教学 方法

0.引言

随着新课程改革的不断深化,教育观念也得到更新,给教育界带来了很大的影响。最近几年来,高中生物课程的理念不断更新且在高中生物课堂教学中发挥着重要的作用,但高中生物课堂教学仍然存在着较多的问题导致高中生物课堂教学的效率较低,无法适应新课改的需求。因此,如何提升高中生物课堂教学效率已成为当前广大生物教育者值得思考的重要课题,也是笔者将要探讨的课题。

1.新课改下高中生物教学中存在的问题

1.1 课程资源不够丰富

高中生物教学的课程资源不够丰富,导致其教学效率低下。根据目前高中生物教学过程中的具体情况看来,高中生物课程资源还无法很好地满足现实教学的需要,没有把新课改的理念与现实的改革相结合,试题和习题的拟定也脱离教学实际,教学实践缺乏先进的理念指导。有部分教师还无法发挥多媒体手段的作用进行教学,只是单纯地把生物课程的知识点用多媒体展示出来,课程教学资源不够丰富,教学效率也就不尽人意。

1.2 课堂教学方式不具多样性

在课堂教学方式上,高中生物教学仍然沿用过去陈旧单一的方式,致使高中生物教学效率低下。如今,在新课程改革的背景下,高中生物教学还是没有采用先进的教学方法进行教学,教学方法也比较单一,无法满足形势下高中生物教学的要求。归而言之,在高中生物教学过程中,只有教师发挥了主体地位,而学生的主体地位缺失,这样的课程教学很大程度地影响了高中生物教学效率。

1.3 教师自身素质有待提高

大部分高中生物教师教学无法与时俱进,自身素质有待提高,很难满足新课改下的教学要求,极大地影响了高中生物教学效率[1]。在教学过程中,一部分教师还没有从根本上认识到新课改的重要性,对其具体内涵的理解更是模凌两可,无法用先进的教学理念来指导高中生物教学实践。随着现代生物技术走进课堂教学,高中生物教师自身素质也须得到提升,然而在现有的教师团队中,大部分教师无法熟练掌握现代生物技术的运用,很难把生物科学方法以及思想融入到生物教学中。

1.4 学生缺乏学生兴趣

在新课程改革的背景下,学生的学习兴趣不够浓厚,一定程度上影响了高中生物教学效率的提高。大部分的高中生物教师都还未完全摆脱传统教学观念的禁锢,一味地把知识技能

灌输给学生,不注重培养学生的学习兴趣,导致学生缺乏学习生物课程的兴趣,自然而然,教学效率也就较为低下。

2.提升高中生物教学效率的方法

2.1 灵活运用现代的教学手段

在教学过程中,教师要发挥现代教学手段的作用,借助多媒体的优势来进行教学。这样就可以让教学更具体形象,便于学生掌握和理解。例如,在学习细胞分裂这一节时,就可以相应的计算机软件进行展示,由于细胞分裂包括减速分裂和有丝分裂,分裂过程较为复杂,学生一时之间很难掌握和理解,这就要借助flas来直观地展示其分裂过程,既有良好的听觉效果,又具良好的视觉效果,能够加深学生对所学知识的印象,从而更好地掌握和理解所学知识。通过这种方法,就可以使教学环境得到较好的改善,培养学生的学习主观能动性和兴趣。从教学角度来讲,多媒体的使用对教学是大有裨益的,有效的提高教学效率,丰富了高中生物教学中的课程资源。

2.2 开展探究式教学

探究式教学是新课改下提升高中生物教学效率的重要方法。在新形势下以探究式的方法来进行学习是非常有必要的,通过此方法,学生能够积极主动地参与到活动中去,产生强烈的学习欲望。因此,高中生物教师在教学过程中要大力开展探究式教学,尽量选择学生感兴趣的问题来进行探究,培养学生自主探索、自主学习的能力[2]。例如,在学习《伴性遗传》这一节时,教师可以提出相关问题,如“什么叫常染色体?什么叫性染色体?性别由哪类染色体决定的”或“尔根的果蝇实验发现果蝇的眼色遗传与性别有关,这说明了什么”等问题,通过对这些问题的回答,学生对伴性遗传知识就有了一定的了解,然后教师让学生明白,红绿色盲的发病率是男性高于女性,再增设一些问题让学生进行自主探索、自主学习,最后让学生把探究结果陈述出来,教师要对探究结果进行评价,这样一来就能培养学生的自主学习和探索未知知识的能力,从而提高教学效率。

2.3 提升教师自身素质

新课程改革对高中生物教师提出了较高的要求,它要求教师具备较高的专业素质。只有生物教师能够具备较高的专业素质,才能对新课程改革的具体内涵有一个更加深刻的认识,朝着新课程改革的方向进行教学,用先进的教学理念来指导教学实践,从而提升高中生物教学的效率。

2.4 培养学生的学习兴趣

在生物教学的过程中,教师要注重培养学生的学习兴趣。一旦学生对生物课程的学习有了浓厚的兴趣,他们对相关信息的印象就会加深。因此,教师在课堂教学过程中要举出一些与课堂知识相关的生活实例,培养学生的学习兴趣。例如,在讲授呼吸作用的知识时,教师可以用日常生活中制作酸奶和酸菜以及酿酒的过程来引出相关的理论概念,通过这种方法就可以培养学生的学习兴趣,产生强烈的学习欲望,从而提高高中生物教学的效率。

3.结语

综上所述,在我国新课程改革的背景下,高中生物教学中还存在着较多的问题,这些问题都在一定程度上影响了高中生物教学效率的提升。因此,高中生物教师要采取行之有效的方法来提升高中生物教学的效率,从而促进我国教育事业的健康发展。

参考文献

篇3

关键词:中职;自主预习

从每年的中考和高考的成绩来看,物理科的得分总是较低,这说明普通中学的学生对学好物理的难度较大,对于基础水平相对较差的职业中学的学生,要学好物理更是困难重重。要克服这个困难必须激发学生的学习兴趣,调动学生的自主学习的积极性和主动性,授给学生科学的自主学习的方法,提高学生的自学、观察、分析、判断和应用理论知识解决实际问题的能力,使学生在学习中形成自觉的自主学习的态度和习惯,提高学生的学习效率。笔者认为,物理(电工)课前的自主预习是学生进行自主学习、学好物理(电工)的重要一环。

一、自主预习的重要意义

学生掌握一个新概念、新知识的思维活动过程大概要经过五个阶段:引进——形成——理解——运用——深化。第一个阶段“引进”的思维活动主要通过两种形式进行:一是教师在教学过程中帮助引进,二是学生自己在自主预习中引进。相对来说,学生自己引进对形成新概念、理解新知识、掌握新理论、新规律,并运用新概念、新知识来分析解决实际问题,从而认识新规律、掌握新规律、培养创新精神更有意义。

二、自主预习是知识的复习、巩固和引新

学生通过教师的指导进行自主预习,可达到复习、巩固旧知识,并引出新知识,正如前人所说的“温故而知新”。教师怎样引导学生进行自主预习,学生怎样进行自主预习,是广大师生值得共同探讨的课题。

1. 自主预习具有目的性、针对性、关联性。

自主预习新的内容之前,总要复习与其相关的旧知识,学生自主预习时,目的要明确,针对性要强,联系要紧,有的放矢。例如在预习“牛顿运动定律”之前,应复习与其有联系的物体运动知识。

2. 自主预习要有系统性。

除了要有针对性地复习有关知识以外,还要有系统地复习熟练地掌握旧知识,为以后新知识的学习打下良好的基础。

3. 自主预习要具有延伸引新性。

复习时要把旧知识根据新内容作出适当地延伸,作一些想像,一些假设,看一看是否有新体会、有新发展,有新发现,从而发现新知识。

三、自主预习要采用切实可行的方法

教师在一节课基本结束时,用几分钟时间根据新课程的不同内容,采用不的方法,简单提及一些与新课程有关的新、旧知识,对学生的自主学习、对激发学生的求知欲望非常有好处,为下一节的双边教学,可起到事半功倍的作用。在这里简单谈谈三种学生自觉进行自主学习、自立预习的方法:常规法、比较法和实验法。

1. 常规法。

常规法就是学生进行预习时,用笔“圈、点、勾、画”重点词语、关键语句、疑难语句、单位、公式、常量等,有目的有针对性带着问题在上课中听老师怎样讲授知识、怎样抓住重点、怎样突破难点、怎样运用理论知识解决实际问题,从而掌握物理(电工)概念、物理(电工)规律,提高学习效率。

2. 比较法。

学生用比较的方法进行预习时,主要是用函数国象、表格和实物实验等方法来完成。

(1)函数图象比较。

用函数图象把新知识与旧知识进行比较,从而掌握新知识。例如:学生预习“匀变速直线运动的速度”这一节时,学生先复习题“匀速直线运动的图象”,并画出速度图象:

通过预习,学生自己画出匀变速直线运动的速度函数图象进行比较:

从而理解、掌握课本中的结论:匀变速直线运动的速度图像是一条倾斜的直线,而匀速直线运动的速度图像是一条水平线。

(2)表格比较。

表格比较是通过表格列出若干个项目填写,学生对两个事物进行比较,找出两者间的联系与区别,从而掌握新知识、新规律。

例:学生预习“探究形变与弹力的关系”这节内容时,可先复习“重力”,制定下表,并进行有针对性的比较:

弹力的项目由学生自己在预习时填写,这样学生较容易掌握理解新知识。

(3)实物实验比较。

学生自主预习新课时,用实物实验比较的方法也可直观地掌握以后所要学习的新知识、新规律,激发学习兴趣和积极性,提高效率。

例如,电学中有这样两个结论:

串联电路中电流处处相等,并联电路中总电流等于各支路电流之和。学生在学校实验室中准备如下实物:四个量程相同的电流表、三个电阻、两个干电池、一个开关、导线若干,并按图所示连接起来进行电流测量,就可理解、掌握该结论。

3. 实践法。

自主预习时,学生亲自动手做实验,可收到更好的效果。

例如:在预习“力的等效和替代”一节中,“力的替代”有“一个力的作用效果与另外几个力的共同作用效果相同”这样一句。学生放学后亲自去体验一下:一桶水,一个人可以提起来,两个人也可以提起来,效果一样。这样通过自主预习,然后亲自动手,联系实际,在教师讲课时就可以轻松地理解掌握这个结论。

篇4

人类基因组计划的实施为分子生物学家提供了大量的生物组学数据,分析和处理这些数据以探索其中隐藏的生物学奥秘需要综合利用数学、信息科学与物理学等知识,生物信息学由此应运而生[1]。它是分子生物学与上述学科交叉结合的产物,其研究已经渗透到生命科学的各个领域并极大促进了生命科学及相关学科的发展,已成为生命科学研究者强有力的辅助工具之一。国内很多医学院校已开办生物信息学课程,多种专业选择其作为必修课或选修课。该课程旨在培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理和分析的能力,但该课程的教学研究仍处于起步阶段,缺乏完善的教学模式和有效的教学方法,如何在医学院校开展生物信息学教学还有待进一步探索。

1 课程开设的重要性

生物信息学跨越了整个生命科学领域,是一门实用性很强的学科,也是未来生物医学的重要研究工具。生物技术、计算机和互联网的飞速发展引领了一个生物医学大数据时代,生物信息学在生命科学领域的地位也愈发重要。利用生物信息学的知识和方法能够深入挖掘和剖析海量生物学数据,进而探索隐藏在数据背后的生物学奥秘。无论是从分子生物学的角度阐述疾病病因,还是对疾病的预防、诊断、防治与药物设计,生物信息学均发挥了十分重要的作用,掌握该课程的基本知识和理论无论对以后的科学研究还是从事一线医务工作都具有比较深远的意义。因此,在医学院校部分专业(如:生物统计、药学等)开设生物信息学课程具有重要意义。

2 生物信息学教学存在的问题

2.1 课程内容与教学课时不成比例

生物信息学是一门综合性学科,理解和掌握该课程需要具有一定的计算机、数学和分子生物学等的背景知识。医学院校学生普遍存在理科知识比较薄弱,因此,讲解透彻该门课程需要教师在课堂上花费一定的时间普及相关背景知识。然而由于医学院校学生课程门类众多,客观条件决定无法为生物信息学安排足够多的课时。较之生物信息学繁多的内容而言,课时分配明显不足。在课时相对较少的情况下,无法深入讲解将每个章节的内容。

2.2 教学师资力量薄弱

生物信息学作为一门交叉学科,要求任课教师精通生物学、计算机和统计学等相关知识。由于国内生物信息学兴起时间较短,培养人才数量有限,且有限的人才都流向了一流的学校,普通高校无法招到专业对口的教师。因此,能够胜任生物信息学教学任务的老师十分匮乏。以该校为例,生物信息学课程没有固定的任课教师,基本由生物学、医学统计学教师完成,这些老师中大多数无法完全胜任生物信息学的教学任务。最终致使生物信息学教学质量不高。

2.3 教学模式落后

虽然多媒体已被广泛应用于生物信息学的教学中,但由于该课程涉及内容多且有大量的数据库和软件知识,导致多媒体课件的容量非常大,教师在课堂上基本是照本宣科的读完课件完成教学任务而已,忽略了学生的接受能力。这种教学模式虽然运用了先进的教学工具,但实质上采用的还是传统的“灌输式”教学,学生仍然是被动地学习。

2.4 实践教学流于形式

生物信息学是一门实践性很强的学科,实践课程非常重要。然而在教学过程中,由于各种原因实践课往往流于形式,原因主要包括:(1)教学设备及手段落后。虽然有些学校有计算机室,但计算机配置较低且未提供连网服务,生物信息学很多知识的学习需要借助互联网,例如:各种数据库、在线软件等,导致学生无法亲自操作而降低实践课学习效果;(2)课时少、内容多。生物信息学的章节往往涉及到很多软件和平台,甚至有些软件需要编写程序。在实践课时少的情况下,无法在短时间内让学校亲自操作每一种软件。

3 教学改革

3.1 针对不同专业精选教学内容

针对生物信息学内容繁多的事实,应针对不同专业特点精心挑选课授课内容,在有限的课时中让学生学到最基本且重要的生物信息学理论知识。另外,要善于挖掘课外时间,组建课外兴趣小组,设置研究课题作为课外作业,巩固和加深学生对生物信息学的理解。

3.2 培养和引进专业人才

教师知识的渊博程度和教学水平的高低对教学效果的影响十分明显。因此,在教师队伍建设上应采取“走出去,引进来”的措施,一方面挖掘该校教师的潜能,支持和鼓励该校年轻教师到国内外知名高校访学和进修,着力提高该校教师自身的知识素养与技能;另一方面提供丰厚条件引进国内外生物信息学高层人才,为生物信息学教学队伍增添新鲜血液。此外,还可通过定期或不定期举办讲座等方式创造机会加强该校教师及与兄弟院校的交流合作,加强学科建设,提高生物信息学教师的综合素养。

3.3 推进“教、学、研”一体化创新教学模式

针对生物信息学课程的特点,一方面根据课程内容设计小型科研课题激发学生的科研兴趣;另一方面鼓励并指导学生申报学校、省级或国家级大学生科研项目,并鼓励学生参与教师的科研项目,积极开展“教、学、研”一体化的创新教学模式,即融教师的“教”和学生的“学”,以及教师和学生共同参与到“研”的过程于一体[2]。通过这种教学模式能够极大激发学生对生物信息学课程的兴趣和创造力,促使学生快速高效地掌握生物信息学理论和实践知识,有利于学生变被动的学习为主动探究式学习。与此同时,也能够让学生尽早地融入到生物学科学研究的大环境中来,学会合作、学会创造,真正地做到学以致用。

3.4 加强实验课教学

生物信息学实验课教学离不开计算机和网络,加强实验课教学需要在现有设备的基础上,升级计算机配置,并为每台计算机提供上网功能,保障实验课教学顺利进行。积极鼓励学生自带计算机,方便课后继续学习。此外,充分利用发达的互联网技术,创建网上教学平台并将教学内容,最新分析软件等传递给学生,通过教学平台加强与学生的交流互动,及时解决学生学习过程中遇到的问题。在教学内容上,要精简实验课内容,选择有代表性的软件和数据库进行深入讲解,将其它的软件、数据库等相关知识设计成小型研究课题作为作业布置给学生,提高学生自主探索的学习能力。

篇5

关键词:生物信息学 教学模式 创新

中图分类号:G420 文献标识码:A 文章编号:1009-5349(2017)08-0009-02

近些年,随着人类基因组测序完成,有关核酸、蛋白质等的分子生物学数据迅速增长。同时,计算机技术的发展也为生物数据的处理提供了有力支持[1],促进了生物信息学的产生及发展。许多高校相继开设了生物信息学课程。生物信息学课程对培养创新型人才具有重要意义。[2]生物信息学是多领域融合的学科,对理论知识及实践的要求较高,因此如何提高生物信息学的教学质量及完善教学模式尤为重要。本文根据生物信息学的特点及目前发展现状,提出“教学-科研-创业”一体化的教学模式。并在实施过程中不断优化,为完善生物信息学的教学模式提供依据。

一、生物信息学课程的概述

生物信息学作为近些年新发展的学科。具有以下特征:第一,多学科融合。它将数学、计算机科学与生物学有机地结合在一起。[3]第二,数据的复杂性。目前国际上著名的数据库有GenBank、DDBJ和PIR等。[4]这些资源具有开放性,大部分数据库可免费下载。第三,学科知识的前沿性,生物信息学的发展和更新较其他学科更为迅速。[5]教师在教学过程中要不断地吸取新的知识以补充教材中的不足。[6]生物信息学的价值不仅体现在科学研究领域,同时对经济的发展也有影响。[6]所以,各高校设置生物信息学课程是必要的。

二、生物信息学教学现状

无论国外或国内对生物信息学的发展都是高度重视的。笔者在针对生物信息学本科教学过程进行调查中发现,生物信息学教学过程存在以下不足:

(一)专业型人才稀少

生物信息学所涉及的领域较广,它将数学、计算机科学和生物学相结合。[7]这一特点,要求从事生物信息学教学的教师自身知识背景要深厚,同时兼备生物学及信息技术的专业知识。由于各专业之间的交叉联系较少,导致相关生物信息学的专业人才稀少。这对于生物信息学教学是不利的。

(二)教学理念陈旧

生物信息学是将信息技术和生物课程有机结合。目前,在国内,生物信息学教学思想还比较落后,大部分还处于对构建完善的教学模式初步探索阶段。[8]由于不能将信息技术的优势极大地发挥,以至于生物信息学教学过程中存在一定的弊端。在教学设计中还沿用传统的教授法,使得学生对于学习生物信息学的兴趣减少,同时,忽略信息技术的应用对于培养和拓展学生思维方式的作用。

(三)实践教学存在不足

实践教学是生物信息学教学过程中必要的部分。生物信息学实践环节方面较为薄弱。一方面,课时安排不合理。大部分时间分配于理论课,而实践课的时间相对较少。另一方面,在硬件设施上,也不能满足实际需求。在很多高校中并没有独立的计算机机房以保障学生能够进行具体的操作。并且,在国内,虽然生物信息学的研究发展迅速,但所涉及的资源并不能共享,交流较少。

(三)“教-学-研”模式的构建

针对生物信息学课程自身特点及在教学过程中发现的问题,提出“教学-科研-创业”一体化教学模式。

1.教学理念的改革

从上述的分析中,针对教学理念落后问题,需要从生物信息学的教学要求与特点出发,改变常规的教学模式,采用“自主式、探究式”学习的思想,通过小组合作的学习方式,让学生主动学习。[9]根据生物信息学的课程内容可将其分为几个模块。例如:数据库介绍及应用、常用统计学方法、基因组学、蛋白质组学等。学生以小组为单位,对每一个模块进行探讨研究。学生可以通过上网查找资料,与老师进行交流及在课堂上展示成果并且小组间进行探讨等方式对该模块所涉及的相关知识进行学习。这样使得学生能够按照自己的要求扩展和交流生物信息学知识,丰富生物信息学的学习途径,并且师生之间建立平等和谐的关系。

2.理论联系实践,锻炼学生科研能力

教学是科研的前提条件,科研使教学内容多样化。[10]因此,在教学过程中,根据课程的特色,可将教学与科研彼此联系起来。首先,组建跨学科的教师团队。生物信息学是多学科交叉的课程,该领域的专业型人才稀少。解决这一问题是保障学生在科研过程中随时了解相关知识的关键。我们可以在教学过程中组建跨学科的教学团队。教师间可彼此沟通交流,针对学生们在科研过程中遇到的问题,能够提供专业性的建议,为科研提供强有力的理论基础。其次,教师积极鼓励学生参加科研项目。教师可根据教学内容与当下生物信息学领域中的研究热点方向,提出研究问题,使学生积极参加其中。在科研过程中,培养学生独立思考及动手操作能力,同时,增强团队合作意识。对生物信息学有进一步了解。最后,为了创造一个良好的科研条件,学校应提供一些硬件设施。例如:多媒体网络教室、与生物信息学相关的软件等。将教学与科研联系在一起,可有效地提高生物信息学教学质量。

3.教学与创业相结合,培养学生创新精神及创业能力

创业教育是一种实践,以学生为主体,将“教、学、做”三者合一。[11]所以在“教学-科研-创业”一体化教学模式中,创业与教学、科研相互联系,科研成果具体化,提高学生的创新创业能力。以吉林师范大学为例。教师在授n过程中,与学生一起对表观遗传学药物进行分析,并以此为研究课题,参加“第二届吉林省‘互联网+’大学生创新创业大赛”。项目中拟建一家有限责任公司,它将通过差异化的运营模式,以互联网为媒介,运用现代生物科技和计算机技术实现对表观遗传学药物信息的整合及数据的分析,并对药物靶点进行更深层次的挖掘。为特定的顾客提供个性化的服务,并以此获取利润。实例表明,在项目进行过程中,培养了学生科学严谨的思维方式及团结协作的精神。创业与教学、科研的有效结合,极大地调动了学生学习的积极性,并充分发挥了理论知识与实践结合的优势。

四、结语

总之,生物信息学教学应适当地将理论与实践结合。通过“教-研-创”一体化教学模式的尝试,不仅激发了学生学习的积极性,同时锻炼学生发现问题并且能够及时解决问题的能力。因此,该模式在生物信息W教学过程中具有一定的可操作性。随着生物信息学的发展,该模式将进一步完善,以期培养出综合型、创新型人才。

参考文献:

[1]朱杰.生物信息学的研究现状及其发展问题的探讨[J].生物信息学,2005,3(4):185-188.

[2]倪青山,金晓琳,胡福泉.生物信息学教学中学生创新能力培养探讨[J].基础医学教育,2012,14(11):816-818.

[3]赵屹,谷瑞升,杜生明.生物信息学研究现状及发展趋势[J].医学信息学杂志,2012(5):2-6.

[4]何懿菡,孙坤.生物信息学研究进展[J].青海师范大学学报,2011,27(3):69-72.

[5]虢毅,胡德华,邓昊.生物信息学课程“开放式、研究性”教学模式的探讨[J].生物信息学,2009,7(3):227-228.

[6]戴凌燕,姜述君,高亚梅.《生物信息学》课程教学方法探索与实践[J].生物信息学,2009,7(4):311-313.

[7]钱叶雄,朱国萍,聂刘旺.生物信息学课程“教、学、研”一体化创新教学模式探讨[J].安徽农业科学,2013,41(6):2812-2813.

[8]刘宏生,郑方亮,艾海新.强化生物信息学实践教学的探索与成果[J].生物信息学,2010,8(4):368-370.

[9]高亚梅,韩毅强.《生物信息学》本科教学初探[J].生物信息学,2007,5(1):46-48.

[10]庄智象,戚亚军.教学与科研互动关系的价值重构及其对外语教师专业自主发展的启示[J].外语教学理论与实践,2015(3):31-35.

[11]熊华军,岳芩.斯坦福大学创业教育的内涵及启示[J].比较教育研究,2011(11):67-71.

篇6

[关键词]生物信息学 课程教学改革 创新能力培养

[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2013)16-0061-02

当前生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地理解为“将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科”。生物信息学的发展,对人们分子水平上认识生命活动的规律起着关键性的作用。生物信息学是一门理论性和实践性都很强的课程,理论与实践的结合十分紧密。生物信息学课程的授课内容分为理论基础和上机操作部分,主要特点是传授理论知识和培养实践能力并举。在生物信息学的课堂教学中,既要强调基本理论、基本知识的传授,同时也要加强学生的实践能力和创新能力的培养,以实际应用为主要侧重点,着重培养学生的创新能力。根据生物信息学的课程特点,我们在理论教学、上机实践操作及考试方式等方面进行了改革和探索,获得了较好的教学效果。

一、激发学习兴趣

生物信息学课程涉及的新技术较多,接触的因特网也多为英文页面,多数学生因而存在畏难情绪。对于分子生物学基础及英文较差的学生,我们采用循序渐进的方式,鼓励他们由浅入深地学习生物信息学的分析方法,由少到多地浏览英文网站,理解并掌握常用的生物信息学英文词汇,从而增强了学习生物信息学的兴趣和信心。学生通过对英文网站的不断浏览,英文阅读能力得到了很大提高;同时也开阔了视野,拓宽了知识面。随着学生生物信息学分析能力及专业英语水平的提高,教师在理论课讲解过程中,由少到多地逐步加大了英文教学的比例。总之,通过激发学生的学习兴趣,帮助学生逐步建立起学习的兴趣和自信心,为学好生物信息学这门课程打下了坚实的基础。

二、重视双基训练

本课程首先结合人类基因组计划介绍生物信息学的历史发展和概况,然后顺序介绍生物数据库分类、序列相似性比较、数据库搜索、分子系统发育树分析、基因组学与基因预测、蛋白质结构预测等基本知识,以介绍基本理论和基本知识为主,启发学生拓宽知识面,了解学科前沿和最新进展,培养学生解决生物信息学分析实际问题的能力,从而为今后进行生命科学研究奠定基础。

生物信息学涉及的算法多数都较为枯燥,在授课过程中侧重于分析方法的讲解和应用。如在讲授双序列比对动态规划算法Needleman-Wunsch全局比对和Smith-Waterman局部比对及分子系统发育树构建UPGMA(Unweighted pair group method with arithmetic mean,非加权算术平均组队法)等算法时,在多媒体教学的基础上,结合板书演算实例、互动式“提问”等方法帮助学生理解算法的基本原理及分析方法;同时布置课后计算题作业,要求学生独立完成后上交,并作为平时成绩考核的主要依据之一,从而促进学生巩固基本理论和基本知识。

三、双语多媒体教学

为了适应生物信息学知识全球化的特点,使学生能够更好地接受最新的生物信息学知识,我们制订了生物信息学课程双语教学计划,并在教学过程中分阶段逐步实施。在第一阶段,以汉语讲授为主,英语渗透,中文教材为主,相关英文文献为辅;在此基础上,逐步向第二阶段过渡,即汉英整合,不分主次,PPT课件和Flas采用英文版本;最终的目标是第3阶段,即选用英文教材,制作英文版本的PPT教学课件,采用全英文授课方式。整个过程循序渐进,逐步淘汰传统的中文教学。

在讲解数据库查询和BLAST(Basic local alignment search tools)分析、Bankit在线序列提交和Sequin离线序列提交及DNASTAR、DNAMAN、MEGA等软件包使用方法时,改变以往静态演示的旧有模式,应用屏幕录像专家软件制作多媒体动画文件,将操作步骤和鼠标的移动轨迹、点击抓取下来,以便让学生直观地观看课件。通过现场操作核酸序列的查询、蛋白质三维空间结构的显示、限制性酶切图谱绘制、PCR引物设计、序列组装重叠群(contig)构建、分子系统进化树构建等分析,应用多媒体设备将整个操作过程动态地逐一展示,直至最终完成整个过程,使学生得到了直观体验,加深了印象,从而更加容易掌握这些实践操作。

四、加强上机操作

实践教学相对于理论教学具有直观性、验证性、综合性、启发性和创新性的特点。为了提高学生的实践操作能力,我们安排了多个验证性、设计性上机实践操作。《NCBI数据库的检索与使用》让学生熟悉GenBank核酸序列的格式、主要字段的含义、序列下载的方法,并掌握Entrez检索工具的使用方法;《BLAST数据库搜索》让学生掌握BLAST数据库搜索的分析方法;《核酸和蛋白质序列的进化分析》让学生掌握MEGA(Molecular evolutionary genetic analysis)和Clastalx等软件构建分子系统进化树的方法和步骤;《DNAMAN软件的使用》让学生掌握DNA序列的限制性酶切位点分析及PCR引物设计等基本操作方法;最后一次实践上机课安排《核酸、蛋白序列的综合分析》设计性实验,让同学们随机组成两人一组的研究小组,自选感兴趣的基因并从GenBank数据库中下载该基因的20条核酸序列及蛋白序列,分析其中1条核酸序列的碱基组成比例,反向互补序列、编码的RNA序列及蛋白序列,分析其中1条蛋白序列的氨基酸组成比例、分子量、疏水性、等电点、亚细胞定位等物理、化学特性;同时基于DNA序列和蛋白质序列构建分子系统发育树。

五、网络教学资源

生物信息学对于网络工具高度依赖,由于受学时限制,课堂教学的内容非常有限。为了给学生创造一个良好的自学环境,我们应用屏幕录像软件开发了上机实践操作演示等教学资源;提供了课件供学生在网络上下载使用,该课件覆盖了生物信息学课程的全部教学内容,包括相关的动画演示等信息;另外还提供了DNASTAR、DNAMAN、MEGA、BIOEDIT等软件安装程序及使用手册,相关英文参考文献等,从而有效地扩大了学生的自学空间。

六、科研教学相长

本课程由具有生物信息学或分子生物学博士学位的教师承担,每位授课教师的科研课题均涉及生物信息学分析。在生物信息学的教学过程中,授课教师积极融合个人的科研工作经验和成果,丰富了教学内容。如在讲授Bankit在线序列提交及Sequin离线提交序列时,我们以提交至国际核酸序列数据库GenBank的芒草(Miscanthus sinensis)肉桂醇脱氢酶(JQ598683)、过氧化氢酶(JQ598684)、咖啡酰辅酶A-O-甲基转移酶(JQ598685)、肉桂酸-4-羟化酶(JQ598686)为例;在讲授基因外显子和内含子结构预测时,以牡丹(Paeonia suffruticosa)ACC氧化酶(FJ855434)和ACC合成酶(FJ769773)为例。通过把科研思路带入教学中,有效培养了学生的科研能力及创新能力。此外,教学实践也有利于教师全面了解生物信息学和相关学科的最新进展,不断为科研提供新思路。

七、考试方式改革

生物信息学课程的目的是提高学生利用信息技术解决生物学问题的能力,因此主要考查学生综合利用所学知识分析问题和解决问题的能力。在课程考核中结合平时书面作业、递交上机操作练习和考试三方面情况,综合评定。平时布置3次思考题目,以书面形式上交,占考核成绩的20%;上机实践操作的习题以电子版发送到教师的E-mail邮箱中,占考核成绩的30%;课程结束后给学生1周的时间复习,而后在计算机上答题,包括基础知识部分和上机操作部分,占考核成绩的50%。经过综合评定,能够比较客观地反映一个学生对该课程的实际掌握情况。采用这种考试方式后,一方面,促使学生在学习过程中,不必花大量工夫去死记硬背,而把重点放在了基本理论、基本知识的巩固及实践操作技能的提高上,有效地提高了学生的实践操作能力和创新能力;另一方面,也促使教师在教学过程中,注重从能力培养的角度进行教学课堂设计,提升教学质量和水平。

在教学过程中,通过激发学生的学习兴趣,采用双语多媒体教学方式,在重视基本理论和基本知识讲授的同时,加强上机实践操作,充分利用网络教学资源,将科研成果结合于教学过程中,结合考试方式改革与探索,大大提高了“生物信息学”课程的教学质量水平及教学效果。

[ 参 考 文 献 ]

[1] 葛威,鲍大鹏,董战峰,等.Visual BASIC编程在核酸序列分析中的应用研究初探[J].生物信息学,2004,(4):43-46.

篇7

生物信息学教学模式探索任务引领生物信息学是用数理和信息科学的观点、理论和方法研究生命现象、组织和分析呈现指数增长的生物医学数据的一门学科,它是生物医学、数学、信息科学以及计算机科学等诸多学科的崭新交叉学科。生物信息学几乎是今后所有生物(医药)研究开发所必需的工具。

21世纪是生物科学的世纪。近年,我国生物技术公司对生物信息学人员的相关需求也迅速增加,浙江理工大学生命科学学院生物技术专业在进行了行业调研并进行专业课程体系构建研究后,于2006年定位和开设了生物信息学课程。该门课程经过8年多的建设后,对教学团队的建设、课程目标的设定、教学内容及教学教法的选择等方面进行了卓有成效的探索,这些探索所形成的结论,可为即将开设或正在进行该课程教学改革的学校提供可借鉴的经验。

一、生物信息学的课程特点

诺贝尔奖获得者W.Gilbert1991年提出了这样一个观点:传统生物学解决问题的方式是实验的,而现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的,是一个科学家先从理论推测出发设定研究目标,然后再回到实验中去追踪或验证这些理论假设。而生物信息学研究正是从英特网上源源不断地采集数据,进行分析、归类与重组,发现新线索、新现象和新规律,用以指导实验工作设计,是一条既快又省的研究路线。它对于找寻一个研究项目的突破口是非常重要的,选定合适的研究出发点,可避免许多不必要的重复,最大程度节约研究资源,使研究成果最大化。鉴于该门技术对生物科学的理论、实践要求以及对信息技术掌握的要求,生物信息学课程与其他课程的教学有很大不同。

1.在课程目标定位中,提高学生对相关网络资源的使用能力是该门课程的重要目标之一。学生必需使用强大的搜索功能实现数据储存、检索和分析,学校在教学资源配置上必需向此倾斜。

2.该门课程学科交叉性强,所涉及的生物及计算机等学科的相关知识更新都很快,导致其理论和实践内容不断推陈出新,这使得在教学内容选择上要紧跟这些更新,不断进行调整。

3.课程教学实践性强,同时涉及生物技术专业实践和计算机应用技术的实践,这需要教师在授课过程中根据学生的学习规律合理安排实践项目,发挥好这两种技术的协同作用。

二、生物信息学课程教学模式探索

1.教学目标与其所培养学生的核心技能

合理的课程目标与定位是决定课程建设成败和教学效果的基础,其主要依据是人才培养需求与授课对象的实际情况。经过对该门课程教学对象的研究发现,在生物专业课程体系下培养的本科生,其前导课程主要集中在生物领域,通常没有系统的学习过计算机、信息技术、编程等知识。对信息检索、模型建立、软件的识别及应用的能力相当薄弱。因此,本门课程将提高学生的信息技术能力也作为一个重要的课程目标。学生在本门课程中将学习与生物技术相关的各种数据库和软件的使用。当然,对学生信息技术能力的要求也定位在能使用、会使用就行,不需要将学生掌握生物数据库构建和软件开发作为课程教学的目标。

在课程目标的设定过程中,应牢记高校对文化的传承的功能,要使学生了解生物信息学发展的历程。在生物信息学学科发展过程中所涌现出来的著名学者,众所周知的震撼人心、启迪心灵的奇闻秩事,能使学生对这门课程产生浓厚的兴趣,甚至更深刻地领会这门课程的含义。

熟练掌握生物数据库的检索和使用是生物信息学课程教学的首要目标。到目前为止,生物学数据库总数已达500个以上,在DNA序列方面有GenBank、EMBL和DDBJ等;在蛋白质一级结构方面有UniProt、SWISS-PROT、PIR和MIPS等;在蛋白质和其他生物大分子的结构方面有PDB等;在蛋白质结构分类方面有SCOP和CATH等。各数据库均通过Internet提供多种形式的数据检索服务。例如,NCBI-GenBank数据库就提供Retrieve(Email),Entrez(Web集成信息检索)及Query(Email集成检索)等多种方式的检索服务。这类检索服务是生物数据库所能提供的多种服务中最基本的信息共享和应用服务,也是生物专业学生和科研工作者经常使用的。在教学过程中需通过设计检索任务来完成对这些数据库使用方法的学习,如通过生物数据库检索家蚕profilin基因的相关信息。

增强学生使用生物信息处理软件的能力,是生物信息学课程教学的重要目标。在世界各地,科学家每天都要通过序列比对软件进行成千上万次的序列比对。学生需要通过课程的学习熟练掌握各种生物信息处理软件,有时还有必要进行一些简单程序的设计,进而掌握发现新线索、查找新规律的工具。例如,目前,借助于生物信息手段的蛋白质预测是提供蛋白质结构及功能信息的重要方法,对这种预测方法的学习将使学生更多更快地了解蛋白质的信息,加深对生物技术科学的理解和运用。除了生物数据库和生物软件使用学习外,还要着重体现生物学文献调研和阅读、论文撰写等基本能力的训练,如EndNote文献管理软件的使用。

2.教学内容选择和教学顺序的组织

生物信息学的课程教学内容的选择,要紧随生物信息学的发展方向,涵盖最前沿知识和最先进技术领域。与此同时,教学内容的选择还应充分考虑学生基础和对该门课程的需求。生物信息学选课学生通常有两类,一类是具有较为扎实的生物学基础的学生,他们学习目的非常明确,其学习重点在于提高对生物信息实验所得结果的分析解释和验证能力。另一类是生物学基础相对较弱的学生,这些学生主要是为了了解生物信息学发展前沿、掌握检索能力以及初步的分析技能,对分析、处理、预测结果的验证涉及不多。无论哪种学生,都比较欠缺信息技术方面的知识,因此,这类知识在前面部分介绍。而后面部分则随学生的类型有所改变,我们根据授课学生的分类选择不同的授课内容和授课重点,尝试据此来划分教学组织的各个阶段,在每个教学节点精心设置任务(如表1所示)。

与其他课程的教学一样,生物信息学课程的教学需遵守学生对知识的掌握规律,其内容的选择与安排应按照循序渐进的原则。从第一阶段到第二阶段,教学内容“由易到难”。随着教学过程的深入,课程内容更侧重于对生物信息学某一专业领域的引导,此时授课教师的指导更加重要,这类领域往往与开课院系专业的优势研究领域和导师研究方向相结合。

3.课程教学方法的改革

生物信息学是一门涉及知识面深刻而广泛,学生独立自学的难度很大的交叉科学。依据建构主义教学理论的特点,这类难度大、技术性和实践性强的课程要特别重视以学生为教学主体的教学方法,应尝试从任务引领入手,将生物信息学的一些重要学习内容逐步展现出来。

在生物信息学教学中,教学内容侧重于任务引领,设定与学生生活相贴近的、接合学科发展前沿的引领任务。例如,可以从高水平杂志(Nature、Science)上根据任务引领的关键词搜索综述,根据综述总结出该任务发展脉络,提炼教学任务,将较为抽象的计算机算法、生物学基础知识融于任务中,使学生有积极参与的意愿。及时将任务相关工具提供给学生,或是提前引导学生自己查询工具,使学生有完成任务的基础。

学生在每个节点都非常清晰地知道下个节点的主题,并在完成教师的任务过程中,构建局部知识框架,形成自己的见解。教师需在课堂上和课堂以外及时掌握学生对各个节点知识的掌握情况,找到学生的最近发展区,针对重点、难点解惑,提高教学效果。这样可以使选择的教学任务吸引学生、引领学科前沿,还能在教学过程与学生的互动中有效地实现教学相长。

4.重视切合课程设计的教材编写

生物信息学不同于其他学科,其很多内容和知识节点更新很快,很多最新成果必须教师根据生物信息学发展前沿及时整理和总结,其教学内容设置着重于保证教学内容的先进性和前沿性。教材的更新和修订周期较短,几乎每学期均需要重新修订。

2001年,教育部在[2001]4号文件中明确要求直属高校的“本科教育要创造条件使用英语等外语进行公共课和专业课教学”,在信息技术、生物科学、管理、金融、法律等专业力争在3年内使外语讲授的课程达到所开课程的5%~10%,尤其强调了生物科学更要先行一步。现实情况也使英文自编教材的编写刻不容缓,现在,绝大部分前沿生物数据信息(最主要的核酸和蛋白质)数据库均为全英文操作界面,操作者只有熟练掌握生物信息学英文术语才能自如地使用该系统,才能更有效的进行生物信息学的学习和研究工作。在英文自编教材编写时,理论部分的参考书我们精心应选定了具有非常严谨理论体系和反应了最前沿生物信息技术的《BIOINFORMATICS:Databases,Tools, and Algorithms》。编写时需要特别注意应依据教学设计来设定来序化任务,突出不同教学阶段的教学重点,使学生学习过程是个循序渐进的过程。我校采用的自编教材根据教学阶段共设置五个引领任务:

(1)Pubmed检索profilin基因研究进展;

(2)家蚕profilin基因结构分析与PCR扩增引物的设计;

(3)家蚕profilin基因同源序列的获取与进化树的构建;

(4)家蚕profilin蛋白二级和三级结构的模拟;

(5)家蚕profilin蛋白理化性质和功能位点的分析.

5.合理配置网络资源和多媒体教学资源

首先,学会利用互联网、计算机、数据库和应用软件进行生物信息分析的基本方法和技能本身就是生物信息学教学重点。以往普通的多媒体教室已难以提供一个交互式的网络化、信息化的教学环境,如果想上好生物信息学这门课程,网络资源和多媒体教学资源的应用,将贯穿于整个生物信息学课程(从任务下发及申领、任务控制及执行、任务完成结果检验与反馈)的整个教与学的过程。而我们通过极域电子教室和学校4A网络教学平台结合,较好的实现了生物信息学交互式的网络化、信息化的教学环境。

课前,教师通过网络平台将任务教学内容、任务序列、工具等传递给学生,学生通过登陆互联网络,利用网络资源和软件尝试完成预习任务。此处可以设置学情反馈点,教师通过网络论坛等形式掌握学生预习情况。授课过程中,教师利用教师机客户端的文件分发系统将任务教学内容、任务序列、工具等发送到学生桌面,再通过广播教学多媒体技术为学生形象的讲解任务内容以及完成方法。每位学生在教师的监督下在互联网上执行任务。教师在监控学生完成任务过程中,不断的得到学生任务进程的反馈,对于任务中学生出现共性问题,利用网络、广播教学或演示等形式及时解决。课下,学生同样可通过学校4A网络教学平台将任务报告、作业、问题和意见等反馈给教师,教师在平台上批改任务报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况,师生还可以通过平台中的网络论坛进行问题讨论等。网络环境下的生物信息学任务引领式教学,不仅能提高学生的学习兴趣,还能创造更为有效的师生互动信息教学环境。

三、结束语

经过多年的生物信息学教学实践发现,如果想建设好生物信息学课程,我们需要设定非常清晰的教学目标,理清课程需要培养学生的核心技能;结合行业发展的技术前沿精心选择教学内容,合理序化教学顺序;要依据建构教学理论,重视以学生为教学主体的教学方法,尝试从任务引领入手引领学生学习,提高学生的学习兴趣;要重视切合课程设计的教材编写,理论部分引自精选英文参考书,设计教材结构应切合任务引领的教学方法;合理配置网络资源和多媒体教学资源,加强学生互动,为成功地实现“反转课堂”提供保障。

参考文献:

[1]张林,柴惠.现代教学手段在生物信息学教学中的应用[J].新课程研究,2011,219(4):156-158.

[2]柴惠,赵虹,张婷.高等院校生物信息学双语教学课程建设之我见[J].中国高等医学教育,2010,(4):83-84.

[3]Gilbert,W.Towards a paradigm shift in biology[J].Nature,1991,(349):99.

[4]刘伟,张纪阳.“生物信息学”课程中研讨式教学实践[J].中国电力教育,2012,(23):60-61.

[5]范丙友,贾小平,胥华伟.生物信息学课程教学改革与探索[J].大学教育,2013,(16):61-62.

篇8

 

关键词: 生物信息学 农业研究领域 应用

“生物信息学”是英文单词“bioinformatics”的中文译名,其概念是1956年在美国田纳西州gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家collins f博士在华盛顿隆重宣布人类基因组计划(human genome project,hgp)的所有目标全部实现[3]。这标志着后基因组时代(post genome era,pge)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。

1.生物信息学在农业模式植物研究领域中的应用

1997年5月美国启动国家植物基因组计划(npgi),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(hgp)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(ta)集合数据库tigr、植物核酸序列数据库plantgdb、研究玉米遗传学和基因组学的mazegdb数据库、研究草类和水稻的gramene数据库、研究马铃薯的pomamo数据库,等等。

2.生物信息学在种质资源保存研究领域中的应用

种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至dna片段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、aflp、ssap、rbip和snp等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。

3.生物信息学在农药设计开发研究领域中的应用

传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-neu5ac2en和4-胍基-neu5ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。tang sy等学者研制出新一代抗aids药物saquinavir[12]。pungpo等已经设计出几种新型高效的抗hiv-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。

现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。

4.生物学信息学在作物遗传育种研究领域中的应用

随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息

学的方法,先从模式生物中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。

5.生物信息学在生态环境平衡研究领域中的应用

在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 dna,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。

美国农业研究中心(ars) 的农药特性信息数据库(ppd) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(toyohashi university of technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(iris) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。

6.生物信息学在食品安全研究领域中的应用

食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用pcr法[19]、rt-pcr法、荧光rt-pcr法、多重pcr[20]和多重荧光定量pcr等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、elisa法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。

转基因食品检测是通过设计特异性的引物对食品样品的dna提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。

生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。

参考文献:

[1]yockey hp,platzman rp,quastler h.symposium on information.theory in biology.pergamon press,new york,london,1958.

[2]郑国清,张瑞玲.生物信息学的形成与发展[j].河南农业科学,2002,(11):4-7.

[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.

[4]曹学军.基因研究的又一壮举——美国国家植物基因组计划[j].国外科技动态,2001,1:24-25.

[5]michael b.genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[j].philostransr soc lond b bio sci,2002,357(1422):731-736.

[6]卢新雄.植物种质资源库的设计与建设要求[j].植物学通报,2006,23,(1):119-125.

[7]guy d

,noel e,mike a.using bioinformatics to analyse germplasm collections [j].springer netherlands,2004:39-54.

[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.

[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.

[10]austen m,dohrmann c.phenotype—first screening for the identification of novel drug targets.drug discov today,2005,10,(4):275-282.

[11]arun agrawal,ashwini chhatre.state involvement and forest cogovernance:evidence from the indianhmi alayas.stcomp international developmen.t sep 2007:67-86.

[12]tang sy.institutionsand collective action:self-governance in irrigation [m].san francisco,ca:icspress,1999.

[13]pungpo p,saparpakorn p,wolschann p,et a.l computer-aided moleculardesign of highly potenthiv-1 rt inhibitors:3d qsar and moleculardocking studies of efavirenz derivatives[j].sar qsar environres,2006,17,(4):353-370.

[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[j].计算机与应用化学,1999,16,(5):400.

[15]vassilev d,leunissen j,atanassov a.application of bioinformatics in plant breeding[j].biotechnology & biotechnological equipment,2005,3:139-152.

[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[j].微生物学杂志,2008,28,(4):93-97.

[17]程树培,严峻,郝春博等.环境生物技术信息学进展[j].环境污染治理技术与设备,2002,3,(11):92-94.

[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[j].微生物学杂志,2009,29,(6):61-64.

[19]赵玉玲,张天生,张巧艳.pcr 法快速检测肉食品污染沙门菌的实验研究[j].微生物学杂志,2010,30,(3):103-105.

[20]徐义刚,崔丽春,李苏龙等.多重pcr方法快速检测4种主要致腹泻性大肠埃希菌[j].微生物学杂志,2010,30,(3) :25-29.

[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[j].微生物学杂志,2010,30,(6):71-75

[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[j].重庆医学,2010,(22):3128-3131.

[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[j].微生物学杂志,2009,29,(4):79-83.

[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[j].微生物学杂志,2009,29,(5):67-72.

篇9

关键词:医学检验;生物信息学;课程教学

近年来,生物信息学在各医药院校越来越受到重视,多所院校相继在研究生教学中开设了生物信息学课程[1]。而对于医学本科层次是否需要开设生物信息学课程这一问题,虽然目前各方面的观点不一,但是已经有一些院校开始进行尝试。目前医学检验专业(五年制,毕业时授予医学学士学位)已调整为医学检验技术专业(四年制,毕业时授予理学学士学位),而生物信息学作为一门新课程,在医学检验(技术)专业学生培养中的作用正日益受到关注,逐步被某些院校选择作为必修课或者选修课。

一、开设课程的必要性

空前繁荣的生物医学大数据的产出,及其蕴含的重大生命奥秘的揭示,将决定现代生命科技和医药产业研发的高度,决定人们对疾病的认识和掌控能力,也将对主导生物医学大数据存储、管理、注释、分析全过程,解决生命密码的关键手段———现代生物信息学技术的发展带来前所未有的机遇和挑战[2]。对于医学专业学生而言,通过学习生物信息学,从而掌握利用各种网络信息资源来检索和获取生物信息数据,并选择和使用各种生物信息学软件来分析数据。在当今大数据时代,这方面的知识和技能的培养对于医学生今后从事医学科研工作是非常重要的。因此,在医学专业学生中开设生物信息学课程非常必要。我校从2010年开始将生物信息学设置为研究生教学的必修课;从2013年开始在医学检验专业中开设生物信息学选修课,自2015年开始转为医学检验技术专业。在医学检验技术专业中开设生物信息学课程,能够为该专业学生的临床和科研方面的素质积累提供必要的支持,更重要的是增强了在医学和信息科学交叉领域解决问题的技能,其意义几乎等同于在研究生教学中的设课意义。

二、教学内容的安排

医学检验技术专业的教学任务非常紧张,几乎将原来医学检验专业前八个学期(最后两个学期为实习阶段)课程压缩到六个学期来完成,学生学习压力可想而知。我校为了减轻学生负担,各课程的课时数都比医学检验专业有所减少。但生物信息学并未改变,仍然为16学时。为了在较短的学时内实现教学效果的最大化,我们结合该专业学生的特点和需求,将授课内容分为理论课和实践课两部分,实践课不占学时。理论课主要介绍基本的生物信息学理论、资源和数据的获取、分析方法和工具的使用;实践课则通过布置作业,课后上机操作来解决问题。理论课主要内容包括:生物信息学导论、DNA测序技术、序列的获取、双序列比对、多序列比对、蛋白质结构分析和预测共计六个专题。实践课主要内容包括:cDNA及基因组参考序列的获取;常见序列格式的释义与转换;双序列比对(局部比对);多序列比对(全局比对);蛋白质综合信息查询;蛋白质基本性质、疏水区、亚细胞定位、信号肽、跨膜区、模体及结构域分析与二级结构预测;蛋白质三级结构预测。在理论课实施过程中,注重将与生物信息学相关的生命科学和医学前沿的一些最新进展和最新成果引入理论知识讲授中,让学生在有限学时内能够进一步认识生物信息学的内涵和课程的价值,追踪前沿学科的动态,开拓视野。

三、教学方法的设计

生物信息学涉及多个学科领域,交叉性强,在较短的学时内学好这门课程的难度很大。学生的学习兴趣与教学内容和手段关系密切,除了精心选择教学内容外,教学方法上也有很多需要革新乃至创新的地方。在教学过程中,我们形成了颇具特色的教学经验,由授课教师独创的授课———实践———演示(Teaching-Practicing-Showing,TPS)教学模式已应用于教学。TPS教学模式着力于以实际问题为引线,将理论授课与上机实践有机地融为一体,逐步介绍生物数据分析的各项技能,并指导学生将其融会贯通以真正掌握相关的基本方法与常用工具。首先,在教学内容上引入具体实例来进行教学,比如讲解生物信息数据库(Gene、Nucleotide、UniProt、PDB等)时,通过给出检索某个人类疾病基因数据的例子来学习数据库的使用方法。课堂上教学实例的设计需要任课教师在备课时投入大量精力来完成,还需要教师具备多学科交叉的知识。教学实践表明,与医学相关的生物信息学分析实例可以让学生更好地认识该课程的作用,大幅度提高学生的学习兴趣和学习的主动性。此外,课堂教学手段也应该丰富多彩,多媒体教学中可以充分使用图片、动画等元素。其次,举例分析时可以进行一定的现场演示,比如讲解检索Unigene数据库时可以一边上网演示一边解释说明。

四、考核方式的变革

生物信息学作为选修课,既要遵循学校相关的考试制度,也要通过对考试方式的变革来提高考试效果。我们将理论考核与学生的实践能力考核联系起来,结合学生课外实践任务的完成情况和开卷考试成绩进行综合评定。在课程中安排一次课外实践任务,要求每位学生独立完成相关分析并提交书面分析报告,该部分占考核成绩的20%。具体内容为自行选择一个人类细胞外功能蛋白:1.利用ClustalX对各物种参考蛋白序列进行多序列比对(输出PS格式结果);2.分析分子量、等电点、分子式、稳定性、亲疏水性及亚细胞定位;3.预测二级结构并模拟三维结构。课程结束后进行开卷考试,内容包括基础知识和综合分析,尽量采取灵活的出题方式,并控制题量,该部分占考核成绩的80%。近年来的教学实践表明,这种综合评定的方式能够反映学生对该课程的掌握程度,体现学生利用生物信息学知识解决问题的能力。

五、展望

实践表明,生物信息学课程教学能够给学生提供所需要的生物信息学知识和技能,但是在教学内容安排、教学方法设计、教学手段使用和教学效果评价等诸多环节都需要进一步探讨。在这个过程中,我们既需要吸收传统教学模式中的优点和精髓,做到严谨和切合实际,又需要更新教学理念,突出医学特色,大胆尝试新的教学方法和手段,最终形成本课程别具一格的教学特色。

作者:伦永志 单位:大连大学

参考文献

篇10

关键词:生物信息学;教学模式;探索

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)20-0214-02

生物信息学是一门由生命科学、数学和计算机科学相互渗透形成的新型交叉学科,它利用各种计算机软件、生物学工具及互联网技术对生命科学研究中产生的各种生物数据进行存储、加工及分析,从而达到理解数据中的生物学含义的目标[1-3]。当前,生物信息学已经成为生物、医学、农学、遗传学、细胞学等生命领域各学科发展的强大推动力量,已成为生命科学研究者强有力的辅助工具。近年来,随着分子生物学在动物植物育种、遗传资源创新、品种改良、病虫害防治等农业方面的应用,生物信息学作为一种实用、高效的手段被充分利用。《生物信息学》课程也相应地被列入各农业院校大学生教学计划。新疆农业大学根据学校专业发展现状及学生培养需求于2010年将《生物信息学》课程作为生物技术专业的必修专业课,通过三年来的教学实践,针对课程教学中存在的无合适教材、网络资料繁杂、教学内容陈旧、教学手段单一、考核模式简单等问题[4-5],笔者在课程的教学内容、教学方法、考核办法等方面进行了初步探索,本文现就该课程教学模式作一论述。

一、教学目标及内容

由于生物信息学是一门新兴学科,其理论及相关分析工具发展迅速、不断更新,在课程教学目标和教学内容上也在不断变化。我认为对于当前农业院校生物技术专业的培养目标和要求是让学生理解掌握生物信息学相关的一些基本理论、实验技术及实践操作,以核酸序列及蛋白质序列的实际分析为主要侧重点,着重培养学生的实践能力,使他们能适应今后工作学习的需要。据此,确定了以下的教学内容:教学内容共36学时,分为理论基础和上机实践两部分,理论课中穿插实例示范,共24学时。理论教学内容包括:生物信息学绪论、生物信息学的生物学基础、生物信息数据库及其检索、序列的基本信息分析及比对、分子系统发育分析、蛋白质结构预测及分析、组学技术及信息学分析;上机实践共12学时,内容包括:常用生物数据库的查询与搜索、核酸序列的分析方法实践、多序列比对和系统发育分析、蛋白质序列分析及空间结构预测、DNA序列中基因结构预测分析。在理论授课中介绍与农业相关生物信息数据库及应用,在实例分析中选用本校教师相关研究结果作为数据来源,拉近学生与知识点的距离,提高学习兴趣,使学生认识到学习本课程的意义,通过讲练结合使学生掌握相关实践分析能力。

二、教学材料

1.教材的选择。生物信息学目前仍处速发展时期,尤其是随着各种新技术、新理论及组学的发展,涉及到的学科越来越多。当前生物信息学专著及教材层出不穷,但中文版书籍中影印国外原版教科书和翻译书籍仍占很大比例,这类书籍中,专著专业性过强,而教材又多是针对生物信息学专业的学生或“一本”的学生编写的,难度较大,并且各自侧重点不同,并不适合作为一般的农业院校的生物信息学教材。笔者在教学过程中先后使用了由钟扬等编写、高等教育出版社出版的《简明生物信息学》及由肖浪涛主编、中国农业出版社出版的全国高等农林院校“十一五”规划教材《生物信息学》作为主要的参考教材。但是,在教学实践中笔者感到《简明生物信息学》由于出版时间较早(2001年)已不能满足实际教学工作的需要,书中的很多内容都已更新,很多网站页面也已重组或失效,而近年被广泛使用的一些著名生物信息学软件亦未涉及。而《生物信息学》一书偏重理论知识介绍,实例分析及操作应用偏少。因此,笔者根据本校专业建设需要及学生水平编写了适用于本校学生使用的简明教材。教材中理论部分主要参考上述两本教材,并进行了简化,降低难度,舍去算法、模型等专业性较强的章节;实践部分参考薛庆中等主编、科学出版社出版的DNA和蛋白质序列数据分析工具(第2版,2010年)一书,并附具体实例,最终形成理论部分简明易懂,实践部分易学易用的实用型教材。

2.生物信息学相关数据库及软件的选择。生物信息学发展迅速,相关生物信息数据库及生物信息软件数量不断增加,版本不断更新,这为生命科学相关研究提供了极大便利,但同时也为《生物信息学》课程实践部分的教学带来了挑战与压力。例如要分析一条蛋白质序列的分子量、等电点、氨基酸组成等信息,我们可以使用DNAMAN、Bioedit、DNAStar、Vector NTI等本地软件分析,也可以使用ProtParam、SAPS等网络在线程序分析。在有限的教学时间内,如何选择数据库及高效易用的生物信息学分析软件也是教学中一个重要的问题。通过参考相关生物信息学分析的书籍及近年文献,综合考虑数据库及软件的通用型、易用性及本校学生的英语水平、计算机操作水平,结合教学目标及内容,我们选择常用的核酸序列数据库GenBank、蛋白质数据库PDB等,软件方面选择DNAMAN、Bioedit、Clustal W、MEGA、Primer Premier、RasMol等常见的生物信息学离线分析软件及整合于NCBI、EXPASY、PDB等网站上的在线分析软件开展实践教学,而其他软件在课堂上只做简单介绍,具体操作方法作为辅助资料供学生自学。这样学生在有限的学时内可掌握更多的分析内容,达到“高效”的教学目的。

三、教学方法

1.及时更新完善多媒体教学资料。生物信息学课程理论知识较抽象,实践操作多,与计算机、互联网联系紧密,内容更新快,当代大学生已习惯并乐于使用各种多媒体途径获取信息,这些特点决定了其非常适于进行多媒体教学。为此,我们根据教学内容开发制作了一套多媒体教学资料并及时更新完善。教学多媒体资料包括Power Point课件和Flas,课件注重知识的层次性、联系性,将理论基础、实验技术操作流程等较抽象的生物信息学知识通过大量图片形象地展示给学生,从而提高学生的学习兴趣并加快学生对抽象知识的理解;动画的内容是利用屏幕录像软件将实例分析过程录像并配音,最后转为Flash格式,穿插在理论教学及实践教学过程中使用,从而使学生在自己实践操作前先有一个形象的认识,将理论知识与实践操作有机联系在一起。

2.充分利用网络教学平台辅助教学。生物信息学是一门以互联网为媒介、计算机为工具的学科。在教学中,网络教学平台的使用在提高学生学习兴趣、增强师生互动、强化教学效果等方面起到了很好的辅助作用。利用网络教学平台,教师可将课程课件、动画、分析工具、实践教学内容等共享给学生并及时了解学生学习动态,学生可将实验报告、作业、学习问题及意见反馈给教师,师生可以通过网络教学平台的论坛版块在课余就学习或实践中的问题进行讨论,达到“教学相长”的教学目的。此外,利用网络教学平台还可将课堂中未详细讲述的大量数据库、软件的使用过程及相关电子参考书、文献共享给学生,有利于提高学生学习自主性并拓宽课程外延。

3.边讲边练,理论知识密切联系实践操作。德国心理学家艾宾浩斯研究发现,在学习和记忆过程中,最初阶段遗忘速度最快,随着时间推延,遗忘越来越慢。因此,为了让学生能牢固掌握所学知识及实践技能,我们在教学中采取边讲边练的形式。对于理论知识,我们采取课前提问、课中提问、小测验及实践操作过程中知识点重现等方式,使重要理论知识在整个教学过程中多次出现,增强学生对课程知识体系的系统认知并强化其对理论知识的记忆。对于实践操作,我们采取案例式教学,直接将实例分析穿插在理论授课过程中,并在理论课后及时安排学生在计算机房上机联网操作,如在讲授序列比对理论课时,实例演示使用DNAMAN、Blast等软件进行序列比对的过程,并在理论课后紧跟DNAMAN软件使用、数据库搜索的实践操作,这样既加深学生对理论知识的理解,还有利于学生掌握实践操作能力。

4.布置实践任务,加强综合能力培养。生物信息学教学强调学生的实践能力培养。因此,在教学设计上,我们将学生按4~5人分成小组,通过学生自选或制定的方式布置特定实践任务,要求学生以小组为单位,利用本课程所学知识及技能完成任务并提交任务报告。例如,在课程一开始讲授数据库时,要求学生通过查文献、了解本校相关分子生物学研究内容并结合自己的兴趣选择特定基因,围绕该基因,在后续整个课程的学习过程中利用掌握的各种生物信息学分析方法对其进行序列查询、引物设计、序列比对、编码区分析、蛋白理化性质预测、保守结构域预测、结构预测、分子系统发育分析等操作,过程中学生互相讨论、取长补短,最终协作完成实践任务。这样既使学生较全面地掌握了课程内容,同时又加强了学生分析问题、解决问题的综合能力。

四、考核办法

在课程考核方面,本着生物信息学课程培养实践应用能力的教学原则,为使学生真正掌握生物信息学的基本理论及实践操作,我们改变了过去闭卷考试占主体或写课程论文的简单考核方式,采取了过程考核、实践考核并结合考试考核的方式对学生的学习效果进行综合评价。考勤及口头提问占考核成绩的10%,4次随堂测验占考核成绩的20%,上机操作占考核成绩的20%,实践任务作业占考核成绩的20%,期末闭卷考试占考核成绩的30%。这样考核虽然过程复杂,对学生及教师都带来更大压力,但杜绝了学生平时不学,期末突击,忽视实践的现象,学生必须注重平时的学习及实践操作才能顺利通过课程考核。这样的考核办法能够更客观准确地评价一个学生对课程的实际掌握情况。

随着生物信息学在农业各研究领域的广泛应用,掌握生物信息学知识及分析能力已成为农业院校相关专业毕业生的必备要求,生物信息学课程也必将在农业院校各相关专业建设中占据越来越重要的地位。通过本课程的教学实践探索,学生学习主动性、实践操作能力、最终学习效果均得到提高,笔者也积累了一定经验,取得了一定的教学成效,找到了一些适合农业院校的切入点,但是课程教学中还有很多需要进一步完善改进的地方。生物信息学学科的快速发展,也决定了本课程的教学模式必将是一个动态发展的过程,相信随着对生物信息学学科的深入认识,生物信息学课程教学模式也将不断完善,形成自己的独特体系。

参考文献:

[1]钟扬,张亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001.

[2]肖浪涛.生物信息学[M].北京:中国农业出版社,2006.

[3]王禄山,高培基.生物信息学应用技术[M].北京:化学工业出版社,2008.

[4]胡娜,常军,徐玲.生物信息学教学改革与探索[J].安徽农业科学,2010,38(3):1588-1589.

[5]梁琛,张建海.农科类生物信息学课程教学中存在的问题及对策[J].农业与技术,2010,30(5):136-137.