生物医学工程的发展历史范文
时间:2023-12-26 18:07:19
导语:如何才能写好一篇生物医学工程的发展历史,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
0.前言
一旦提及医学,让人第一时间想到的就是疾病,医院,健康,病人等等。现代生物医学工程也不例外,作为一个多学科交叉的综合性学科,现代生物医学工程也在为人类的健康事业默默地奉献着。
随着社会水平的极大提高,人们把视角从生存转移到生活上来,进而就是思考如何更好的生活。不言而喻,一个健康的身体是一切生活活动的前提和保证。如何健康的生活,如何准确及时地检查出病人的疾病,如何将现有的医疗设备改进,如何开发出更具使用价值的医疗器械等等,都成为生物医学工程所要考虑的问题。
生物医学工程学是综合生物学、医学和工程学的理论和方法而发展起来的边缘性学科,其基本任务是运用工程技术手段,研究和解决生物学和医学中的有关问题。生物医学工程学的研究是以应用基础性研究为主,其领域十分广泛,并在不断扩展之中。就现阶段而言,生物医学工程学的研究主要涉及生物力学、生物材料学、人工器官、生物系统的建模与控制、物理因子的生物效应、生物系统的质量和能量传递、生物医学信号的检测与传感器原理、生物医学信号处理方法、医学成像和图像处理方法、治疗与康复的工程方法等。
1.国内发展现状
1.1发展还不完善
中国的现代生物医学工程学科发展较晚,相对于国外一些发展较早的国家来说,我们对它的认识还很浅显,跟国外一些技术先进国家的距离还很远,很多人包括一些从事其研究的人对它都有或多或少负面的评价,他们普遍认为现代生物医学工程是一个生物、医学、工程学的交叉学科,但实际的培养计划中生物、医学学的很少,电子学得多些,学科广而不专,就业不好。它尚未形成自己的独立基础理论与知识体系,以融合各交叉学科知识为自己的基础 ,缺乏永恒的研究主题与固有的中心目标,随交叉学科的发展和应用对象的需求而变化。很多学习现代生物医学工程的人对自己的专业抱有消极的态度,对自己的前途感到渺茫,就业形势不是很乐观,这也反映了现代生物医学工程发展不完善,没有形成很好的体系,没有在国内高校中产生普遍影响力。
1.2发展方向不够全面
现代生物医学工程就目前的情况来看,还主要将目光着眼于医疗器械的研发和使用,发展方向比较单一。仅仅着眼于医疗器械而不是全面的发展,就会产生很大的局限性。这也深深影响着在这一领域学习的学生,不能使他们从一开始就形成一种将自己的研究全面化的思想,使学生的学习变得保守,进而失去学习的动力,这样就不利于生物医学工程更好的发展。
1.3包含的学科多杂
我们知道,现代生物医学工程是综合了生命科学和工程技术,理、工、医相结合的新兴交叉学科,是一门多学科交融的边缘学科,其中工程学又包括电子学,计算机科学,力学,材料科学,机械制造学等。生物医学包括生物学,神经科学,内科学,外科学,矫形科学等。现代生物医学工程学习的重点是生物医学,但是在解决一些生物医学问题的时候往往要借助于工程学的知识,掌握工程学的知识对于更好的掌握生物医学又起着至关重要的指导意义。
1.4发展前景广阔
正因为现代生物医学工程在我国起步较晚,发展还不完善,他本身就有很多空白领域可以开拓。
21世纪是生命科学大发展的时代,工程技术与生命科学进一步地互相渗透结合,必将推动医学跨入一个崭新的时代。大家都知道看病治病离不开医疗器械,现在是,将来也是,但如何将未来的诊疗仪器实现智能化,检查结果,治疗程序均可实行人机对话都是我们所要研究的问题。另外中国目前大部分医院设备陈旧,而且高端医疗设备更是几乎全部进口,所以说市场是庞大的。更好地提高国内在生物医学工程方面的研究水平和深度,增强人们尤其是大学生对生物医学工程的了解程度,培养出一批在这方面的专业人才,具体来说就是能够研发制造出属于我们自己的高科技医疗器械也是有待发展的。
由于现代生物医学工程是一门多学科交叉的学科,我们就很容易理解,各个学科的发展都将影响到生物医学工程的发展。因此生物医学工程并不是一个学科在发展,其他学科,其他领域的发展,产生得一些成果都可以为生物医学工程服务。这就好比各个学科,各个分支都在无形中为生物医学工程的发展默默贡献力量。由此可见,生物医学工程汇集了各个领域的尖端技术,这也就为生物医学工程更好更快的发展奠定了良好的基础。
现代生物医学工程在生物医学研究、知识产生、转化研究和卫生保健中扮演了许多重要角色,对提高医学水平,促进医学科学的现代化发挥着关键性的作用我们期待着我国能够培养出一批生物医学工程方面的人才,为我国的生物医学工程事业贡献力量,也期待着我国生物医学工程的快速发展,在不久的将来展现出崭新的面貌。■
篇2
论文摘要:生物医学工程(biomedical engineering,bme)是一门生物、医学和工程多学科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新仪器设备 ,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。
本文就其目前发展情况进行分析讨论。
生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇航技术的进步、人类实现了登月计划以来,生物医学工程有了快速的发展。在我国,生物医学工程做为一个专门学科起步于20世纪70年代,中国医学科学院、中国协和医科大学原院校长、我国着名的医学家黄家驷院士是我国生物医学工程学科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中国生物医学工程学会的成立,有力地推进了我国生物医学工程的发展。目前,我国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研 教学工作,在我国生物医学工程科学事业的发展中发挥着重要作用。
一、显微镜的发明
“解剖”一词由希腊语“anatomia”转译而来,其意思是用刀剖割,肉眼观察研究人体结构。17世纪lee wenhock发明了光学显微镜,推动了解剖学向微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进一步观察研究其细胞 形态结构的变化。随着光学显微镜的出现,医学领域相继诞生了细胞学、组织学、细胞病理 学,从而将医学研究提高到细胞形态学水平。
普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞的超微细结构、核结构、dna等大分子结构。而20世纪60年代出现的电子显微镜,使人们能观察到纳米(nm)级的微小个体,研究细胞的超微结构。光学显微镜和电子显微镜的发明都是医学工程研究的成果,它们对推动医学的发展起了重要作用。
二、影像学诊断飞跃进步
影像学诊断是20世纪医学诊断最重要发展最快的领域之一。
50年代x光透视和摄片是临床最常用的影像学诊断方法,而今天由于x线ct技术的出现和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水平。即计算机体断层 摄影(computed tomography ct),即是利用计算机技术处理人体组织器官的切面显像。x线ct片提供给医生的信息量,远远大于普通x线照片观察所得的信息。目前,螺旋ct(spiral ct 或helicalet ct)已经问世,能快速扫描和重建图像,在临床应用中取代了多数传统的ct,提高了诊断准确率。
医学工程研究利用生物组织中氢、磷等原子的核磁共振原理。研制成功了核磁共振计算机断层成像系统(mri),它不仅 可分辨病理解剖结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾病在早期价段的改变,有利于临床早期诊断。可以认为mri工程的进步,促进了医学诊断学向功能与形态相结合的方向发展,向超快速成像、准实时动态mri、mra、fmri、mrs发展。根据核医学示踪,利用正电子发射核素(18f,11c,13n)的原理,创造 的正电子发射体层摄影(pet),是目前最先进的影像诊断技术。美国新闻媒体把pet列为十大医学生物技术的榜首。pet问世不过30年历史,但它已显示出对肿瘤学、心脏病学、神经病学、器官移植,新药开发等研究领域的重要价值。影像学诊断水平的不断提高,与20世纪生物医学工程技术的发展密切相关。
三、介入医学问世
介入医学是一种微创伤的诊疗技术。dotter和judkin(1964 年)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行扩张治疗取得成功。1967年margulis首先使用过介入放射学,这是医学文献出现“介入”一词的最早记载。1977年 gruenzing成功地进行了首例冠状动脉球囊扩张术获得成功以后,介入性诊疗技术由于其创伤小、患者痛苦少,安全有效而倍受临床欢迎。20世纪80年代随着生物医学工程的发展,高精度计算机化影像诊查仪器、数字减影血管造 影(dsa)、射频消融技术以及高分子(high-polymer)新材料制成的介入技术用的各种导管相继问世,使介入性诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、非血管管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高,患者可减免许多大手术之苦。有人把介入诊疗技术视为与药物诊疗、手术诊疗并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世纪发展起来的临床医学新领域--介入医学。
四、人工器官的应用
当人体器官因病伤已不能用常规方法救治时,现代临床医疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们称这种装置为人工器官(artificial organ)。如20世纪50年代以前,风湿性心脏瓣膜病的治疗,除了应用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难修复改善,不少患者因心功能衰竭死亡。而今天可以应用人工心肺机体外循环技术,在心脏停跳状态下切开心脏,进行更换人工瓣膜或进行房、室间隔缺损的修补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科之所以能达到今天这样的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工血管等新材料、新技术的结果。
肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病晚期患者的生命,肾病治疗学也因此有了很大进步。
现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关节、人工心脏起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千万万的患者恢复了健康。可以说,人体各种器官除大脑不能用人工器官代替外,其余各器官都存在用人工器官替代的可能性。
此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程医疗技术等先进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上可见,20世纪生物医学工程的发展,显着提高了医学诊断和治疗水平,有力地推动着医学科学的进步。
五、生物医学工程展望
纵观医学新技术诞生和发展的 历史,从伦琴发现x线到今天x射线诊疗技术的发展,从朗兹万发现超声波到今天b超诊断的广泛应用,从布洛赫和伯塞尔发现核磁共振到今天mri的问世,从赫斯费尔德发明ct到今天ct成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的医学新技术。
(一)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信息网络化,诊疗用机器人将被广泛应用。
(二)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技术,纳米技术和植入型超微机器人将在医疗各领域里发挥重要作用。
(三)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着pet的问世和应用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂型心血管、脑血管影像诊查系统将在21世纪问世。
(四)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将有新突破,人工器官将在临床医疗中广泛应用。
(五)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效缓释材料,药物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育材料、生物止血材料将有新突破。
篇3
关键词:生物医学工程专业;理工院校;解剖生理学
作者简介:李小慧(1980-),女,黑龙江铁力人,南京邮电大学地理与生物信息学院,副研究员;吴建盛(1979-),男,江西抚州人,南京邮电大学地理与生物信息学院,讲师。(江苏 南京 210003)
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)10-0161-02
生物医学工程(Biology Medical Engineering,简称BMI)是综合生物学、医学和工程学的理论与方法而发展起来的新兴交叉学科,其主要是运用工程技术手段,在多层次上研究生物体特别是人体的结构、功能和其他生命现象,研究用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置和系统的工程原理的学科。[1]自20世纪70年代末以来,国内许多综合或理工科大学、医学院校及相关科研机构都设立了生物医学工程专业,涵盖了生物信息、医疗仪器、生物材料、生物工程等多个专业方向,课程设置主要包括工程类课程和医学类课程,旨在培养具有各方面能力的复合型人才。[2]
生物医学工程专业作为一门为生物学和医学服务的交叉学科,生物学和医学知识的学习就具有非常重要的作用。现在大多数院校的生物医学工程专业都开设了解剖学、生理学、生物化学、分子生物学、基础生物学等必修基础生物学或医学课程,旨在让学生了解生物体的基本构造及生命现象的本质,掌握一定的医疗常识,为学习如何把工程技术应用于医学领域打下基础。
人体解剖生理学是研究人体各部分正常形态、结构及人体生命活动的规律或生理功能的科学。[3]作为生物医学工程专业的一门重要专业基础课,它包含了解剖学和生理学两门学科的内容,并且涉及到组织学、胚胎学、细胞学和分子生物学等多个学科的知识,内容广泛并且复杂抽象,对于缺乏生物学相关知识基础的生物医学工程专业的学生来说,是一个难题。南京邮电大学是以工科为主,信息科学为特色的理工科院校,生物和医学知识的教学相对薄弱。如何扬长避短,使解剖生理学知识与学生工程类的专业知识有机融合,是摆在教师面前的一项重要任务,也是教学过程中需要不断思考和努力解决的问题。
一、教学现状及存在问题
1.教学基础薄弱
南京邮电大学是以理工科为主的高校,生物医学工程专业在南京邮电大学起步较晚,工程类课程依托南京邮电大学理工教学和科研的工作积累,具有良好的基础。然而,生物和医学类课程基础较为薄弱,教学基础和实验条件与医学或者综合院校相比都有很大差距。
2.课时有限
生物医学工程专业属于前沿的交叉学科,专业囊括的知识面广,专业所学课程较多,数学、电学、计算机科学相关课程占了很大比例的学时,给生物和医学理论知识分配的学时有限,例如人体解剖生理学课程只有48个学时,但这门课程包含了解剖和生理两门学科,教学内容丰富,学时相对不足。学生的生物和医学类知识薄弱,也给教学带来了一定困难。
3.学生兴趣缺乏
信息科学是南京邮电大学的特色和优势,生物医学工程专业正是依托于南京邮电大学通信与信息工程学院的教学和科研基础而创建的,学校通信、电子和计算机等信息领域的学习与研究氛围浓厚,加之上述专业找工作容易,在这种环境下,学生会自觉将兴趣转移到通信、电子和计算机等方向,无法建立对人体解剖生理学的学习兴趣。另外,人体解剖生理学知识多、复杂抽象的学科特点,也容易让学生产生畏难和厌学的情绪。
二、教学体会和思考
在学时有限和学生兴趣缺乏的情况下,如何利用有限的课堂讲授时间,使学生更好地掌握解剖生理学知识,是摆在授课教师面前的突出问题。笔者针对在人体解剖生理学教学中遇到的实际问题,结合南京邮电大学生物医学工程专业的培养目标,根据教学过程中的体会,提出以下几点思考。
1.引导和培养学生兴趣
解剖生理学是专讲正常人体形态、结构和功能的课程,向学生强化学习解剖生理学就是认识自己、了解自己的观念。但是如果单纯讲解课本上解剖和生理学的知识,学生仍然是被动接受,缺乏兴趣。因为解剖生理学的一些知识与学生日常生活密切相关,在课堂教学中可以穿插讲授一些卫生保健的知识或者一些学生感兴趣的问题,让学生知道课堂知识能够在日常生活中学以致用,自然而然会产生兴趣,主动去学习。例如,在讲到呼吸系统时,就结合生活现状,介绍吸烟的危害、雾霾天气呼吸系统疾病的预防等;在讲到循环系统时,可以介绍如何预防心血管疾病。对于女生感兴趣的减肥和护肤的话题,在讲授消化系统和皮肤章节时,适时介绍节食减肥的危害和正确保养皮肤的方法。此外,身体是解剖生理学最好、最直接的“教具”,在课堂教学中,可以增加互动,让学生参与进来,这样不仅可以加深学生的直观印象,还可以活跃课堂氛围,从而激发学生的兴趣。例如,在讲授解剖学知识和常用方位术语时,可以请学生到讲台上来做示范,使学生轻松掌握这些知识。
2.课程教学与专业结合
生物医学工程专业的目的是运用工程技术手段解决医学中的有关问题,保障人类的健康,为疾病的预防、诊断、治疗和康复服务。在讲解解剖生理学知识的同时,一定要将生物医学工程专业的目标和意义贯穿其中,不仅能加深学生对专业的认可度,而且有助于对解剖生理学知识的巩固。例如,在讲解运动系统的关节内容时,介绍完关节结构和功能后,可以向学生系统介绍人工关节的相关知识,包括人工关节的发展历史、使用的材料及应用疾病等。在讲解呼吸系统和循环系统时,可以介绍人工心肺装置的构造以及在外科手术中的重要意义。总之,在解剖学教学中,应结合知识点介绍相应的器官是如何人工制备,如何实现相应的解剖和生理功能等内容。通过将解剖学知识与工程学知识有机结合,不仅可以拓展学生的知识面,还可以促进学生对专业方向的理解,培养学生发现问题和解决问题的能力。
3.简化课程内容
解剖生理学课程存在学时少、实验少、内容多等问题,在课时的安排上要符合生物医学工程专业的需求。基于上述考虑,将课程重点放在解剖学上,有选择地介绍生理学内容,对于未介绍的知识,建议学生自学。对于解剖学部分,对运动系统、内脏学和心血管系统重点讲授,对神经系统、感觉系统和内分泌腺部分有所删减,目的是为了加深学生对人体结构的掌握和了解。此外,我们精心钻研教材并设计教学大纲,了解课程的教学重点、难点,在课前对学生较难理解的部分设计好教学方法和模式,力争用简练、易懂的语言讲解课程内容,消除学生畏难、厌学的情绪。
4.充分发挥多媒体教学的优势
解剖生理学教学需要向学生展示很多人体结构,涉及名词非常多,很多学生反映较难记忆。制作集合声音、文字、图片、动画、视频等多种媒体信息的课件来辅助教学,可将人体结构直观化,人体功能原理图像化和动态化。从视听的角度强化学生的理解和记忆,提高学生课堂的学习效率。另外,使用多媒体课件也能弥补理工科院校实验条件的缺乏和教学标本的不足。但在使用多媒体教学方法的时候,教师不能脱离传统的教学方式,因为多媒体教学资料虽然直观易于理解,但知识零散且容量大,会影响学生的系统理解和记忆。教师应适时进行必要的讲解, 对于重点、难点应在课堂上充分讨论,并征求学生意见,控制好教学的节奏。
参考文献:
[1]邓玉林,李勤.生物医学工程学[M].北京:科学出版社,2007.
篇4
关键词: 《医学超声仪器》原理 生物医学工程 教学内容 教学方法
超声在医学上的应用始于20世纪20―30年代苏联科学家Sokolov的超声热疗工作。经过几十年的发展,目前已形成了一门年轻并蓬勃发展着的交叉学科――医学超声学。该学科以研究超声波在生物组织内的传播特性与规律、设计制造用于医学诊断和治疗的超声设备为目的,涉及物理学、生物学、材料学、电子技术、图像处理、计算机等多个领域,是生物医学工程学科的重要分支之一[1]。而医学超声仪器则是医学超声学发展的载体及最终成果的体现。
温州医学院从2009年起对生物医学工程专业医学影像设备与技术方向的本科生开设《医学超声仪器原理》,旨在使分流到该方向的学生熟悉并掌握现代医学超声仪器的基本原理、结构、技术方法和设计思路,具有初步的仪器设计理念及开发新一代产品的综合能力,为学生踏上工作岗位奠定良好的理论与实践基础。
1.教学内容的优化设计
目前,国内高校大多将医学超声作为《医学电子仪器》或者《医学影像物理学》的一部分进行授课。独立开设医学超声仪器相关课程的仅西安交通大学、南方医科大学、上海交通大学等少数几个高校。此外,上述高校由于办学优势不同,对学生的培养目标不同,对教学内容的选择没有统一标准。而且,目前国内医学超声仪器相关的本科生教材非常少见,且出版时间大多较早,内容较为陈旧,对学科前沿知识介绍较少。因此,如何根据我校的实际情况,合理安排教学内容,做到既难易适中又能体现学科前沿发展,就成了该课程开设初期碰到的一大难题。
1.1教材与课程教学内容
我校生物医学工程专业分流后,课程增多,课时减少。《医学超声仪器原理》按教学计划,理论36学时,实验3学时,课时非常有限。讲授内容需突出重点,去粗取精,点面结合。其次,生物医学工程专业的主要目标是培养医学仪器的操作人员、维护人员、销售人员、设备管理人员和研发人员,授课过程中要既重基础又结合实际。综合各方面因素考虑,我们选择西安交通大学万明习教授主编的《生物医学超声学》作为教材。该书是目前国内对医学超声学的基础理论、关键技术及超声新技术发展介绍最为全面的一本专著,但内容较多且难,并不完全适用于3时的本科教学。因此,在教学过程中,我根据实际需要对其内容进行了相应筛选调整,并结合具体超声仪器实例进行授课,真正做到既重基础又结合应用实际。
具体课程内容归结为如下8个章节[1]。(1)绪论:介绍医学超声仪器的分类,发展历史、现状及趋势。(2)医学超声的物理基础:介绍描述超声波的重要物理参数,超声波的传播特性、波动方程、多普勒效应,超声波的生物特性及安全剂量。(3)医用超声换能器:介绍压电效应及压电材料特性,医用超声换能器的种类与结构、声场的形成与分布。(4)超声成像基本原理及性能指标:介绍脉冲回波法成像原理,A、B、M型超声诊断仪及其异同点,超声信号形式及其特征,超声诊断仪的基本结构及主要指标。(5)超声波束的发射、聚焦与控制:以B型超声诊断仪为基础,介绍多阵元超声换能器的组合发射方式,超声波束的聚焦、扫描方法及控制手段。(6)超声波束的接收、预处理与DSC数字扫描变换器:介绍B型超声诊断仪超声回波信号的前置放大、接收多路转换、可变孔径技术、相位调整技术、增益控制与动态滤波、对数放大、检波与勾边技术,以及DSC数字扫描变换器。(7)超声多普勒血流测量与成像:介绍多普勒血流测量的基本原理,所需提取的主要参数,血流速度大小及方向的检测方法,多种多普勒血流仪系统和各自距离选通的原理,彩色多普勒血流成像的基本方法和原理。(8)其他医学超声技术及发展:介绍超声治疗技术、超声显微技术、超声CT,以及医学超声研究的新进展。
1.2实验设置
由于条件限制,目前本课程仅设置3个学时实验,目的是指导学生熟悉B型超声诊断仪的操作。在教学实践的第一学年,我们采取的是以学生为检测对象,指导学生完成对颈部主动脉、肝、肾的纵向和横向扫查,并对图像进行分析,但是教学效果不很理想。原因有两个:一是虽然学生有一些解剖学基础,但是实验中让其独立准确找到解剖学位置仍有一定难度;二是教学资源有限,男女生同组,实验过程中进行腹部检测时难免尴尬,学生积极性难以调动。因此在第二学年,我们借鉴了其他高校的经验[2],将检测对象由人换成熟鸡蛋,不仅可以形象地显示超声波在不同介质中的传播特性,而且很容易探测到熟鸡蛋的蛋白与蛋黄的切面图,避免了上述两个问题的存在。同时还可引导学生向鸡蛋内注入色拉油等物质,模拟组织内部发生病变的状况,极大地提高了学生的学习兴趣,教学效果鲜明、生动、直观。
2.多种教学方法与手段的有机结合
多媒体为主、板书为辅的教学方式的运用。随着计算机应用的普及,具有方便、快捷、高效特点的多媒体教学方式已成为高校教学的主要模式,并为高等教育改革带来了新的契机。多媒体教学方式综合利用了文字、图片、动画、视频等资源,因此在讲授一些抽象难懂的知识点时能更形象、直观,在活跃学生思维、激发学生学习兴趣上作用显著[3]。但是也存在一定的弊端,比如信息量大、节奏快,学生难免跟不上进度,只能被动接受,缺乏必要的思考过程,容易疲劳甚至产生抵触情绪。在多媒体教学的基础上,辅以传统的板书,则可以有效解决这些问题。特别是在讲授知识重点难点的时候,学生可通过教师板书的间隙思考或者记笔记,加深对知识的理解。
针对教学内容,灵活应用多种教学方法。例如,采用启发式教学,在每一章节授课前先根据教学内容针对性地设置几个问题,让学生带着问题听课,在课堂中寻求答案,变“填鸭式”的被动学习为主动学习。再例如,在第5―6章讲授B型超声诊断仪时采用案例教学法,引入阿洛卡SSD-256型的B超仪为例子,每当讲授完基本原理后即以该机型为例引导学生对其相应部分的电路进行分析,提高学生理论联系实际的能力。同时,为了培养学生的学习兴趣,可利用介绍本学科的发展动态,国内外重大研究成果、新方法、新应用等内容来激励学生,让他们充分认识到这门课程的实用性和重要性。
构建网络教学平台,积极加强师生交流。将课程教学大纲、进度表、课件、课后练习、课程通知等教学资源及时在网页,方便学生课后浏览下载;设置课后互动模块,方便学生提问交流;设置超声百科模块,方便学生了解学科前沿发展动态。网络教学平台的使用,提高了教学的灵活性,增加了师生之间的互动,获得了学生很高的评价。
3.存在的问题及解决思路
经过两个学年的教学实践,我在《医学超声仪器原理》课程的教学中已积累了不少经验,也存在不足之处,其中最突出的是实验教学内容略显单薄。针对这一问题,我已着手解决,将在原3个学时实验的基础上再设置相应的开放性实验,如生物组织超声参数的测量与估计、单阵元圆形超声换能器辐射声场分布特性测试与分析、彩色超声多普勒血流仪的操作及数据分析等[4]。所设计的实验项目将与课程教学内容密切结合,进一步有效地增强教学效果。
4.结语
医学超声仪器原理涉及多个学科,内容较为抽象,且课时量有限,因此教学难度较大。我在教学过程中根据本专业的实际需求,以着重培养学生的实践能力和创新意识为目标,结合教学体会和学生的反馈信息,从教学内容优化、教学手段、教学方法等方面入手,经过两年多时间的实践,取得了较好的教学效果。
参考文献:
[1]万明习.生物医学超声学[M].北京:科学出版社,2010.
[2]陈艳霞,孙媛,柴英,王桂莲.医学物理学B超实验的新探索[J].中国科技信息,2009,20:193.
[3]胡晓燕.浅析多媒体教学的利与弊[J].中国医学创新,2011,8(5):146-147.
篇5
关键词 一体化;医学仪器;技能实验平台;辅助管理系统
中图分类号 G648.2 文献标识码 A 文章编号 1008-3219(2016)14-0045-03
随着计算机技术和网络技术在医学领域中的广泛应用,新的医学教学模式已经形成[1]。伴随医学院校相关专业教育职业化过程,高校一体化医学仪器技能实验平台构建日益紧迫[2][3]。在高校一体化医学仪器技能实验平台建设的同时,加强平台辅助管理系统建设是非常必要的[4]。然而,目前还没有与之相配套的辅助管理体系直接对接使用,课题组根据高校一体化医学仪器技能实验平台管理要求,对相配套的辅助管理体系建设问题进行研究。
一、高校一体化医学仪器技能实验平台建设框架
随着医疗改革进程的深入和医疗服务水准的提升,对医疗器械行业从业人员的自身素质提出了更高要求。与此相适应,医学生在校学习期间就应该对医疗器械行业政策、法规有比较全面的了解与认知;不断完善所学专业知识体系,通过系统培训获得从业资格认证,逐步提升医学生的基本职业技能[5]。据此,将高校一体化医学仪器技能实验平台主体框架设定为:实验室体系构建、理论教学体系构建、辅助教学体系构建、辅助管理体系构建和技能量化评价体系构建等五大部分。其中,实验室体系构建为主体,其涵盖通识课程、基础课程、专业课程、限定选修及其他课程中所有实验室建设设计工作;辅助管理体系构建涵盖学生成绩评价与考核、毕业设计、开发环境建设、实验室管理、产学研协同、社会化服务等设计工作。
二、高校一体化医学仪器技能实验平台建设内容
(一)通识课程实验室建设
通识课程中,以计算机应用基础课程为例,提出通识实验室环境建设问题。计算机技术在生物医学中应用标准提高、使用范围扩大,是现代医学仪器诊疗技术水平提升的标志。因此,计算机应用领域技术的学习与开发,是医学生掌握医学仪器技能多的关键。由此,通识实验室的构建则举足轻重。
(二)基础课程实验室建设
基础课程包括高等数学、普通物理学、机械制图、C语言程序设计、概率论与数理统计、电路分析、线性代数、模拟电子技术、复变函数与积分变换、电工学、脉冲数字电子技术、系统解剖学、生理学、工程力学等。基础课程中,以电路分析课程的实验环节为例,学生需要了解和熟悉模块电路的工作原理和主要技术指标,掌握电路分析、测试方法,了解电路装配、调试过程和模拟信号的处理方法[6],因此标准基础实验室的构建必不可少。
(三)专业课程实验室建设
专业课程包括数据库程序设计、软件技术基础、自动控制原理、微机原理与接口技术、机械设计基础、单片机技术与应用、生物医学电子学、数字信号处理、医用仪器原理、检验分析仪器、医用影像设备学等。专业课程中,以生物医学电子学课程实验环节为例,学生需要了解和掌握医学仪器设计的基本原理与测试技术,各种医用电子技术、电路分析的基本特点,生物信号与电信号之间的转换,医疗仪器典型电路的设计调试,及医学仪器电气安全性测试,熟练掌握信号发生器、示波器、电气安全性能分析仪等测量仪器的使用方法[7],因此精密专业实验室的构建为重中之重。
(四)限定选修课程实验室建设
限定选修课程包括数学实验、文献检索、科研设计、医学图像处理、金工实习、医学仪器实验、医用仪器管理与维护、软件综合设计、单片机综合设计。在限定选修课程中,以单片机综合设计为例,在实验环节中,单片机实验系统可以开设单片机软、硬件系列实验,提供教学资源便捷性,让学生了解、掌握微机原理的同时,能够熟练地应用,如单片机技术在生物医学中的应用等[8]。
(五)其他课程实验室建设
必要选修课程的开设有助于学生更好地理解理论教学中的知识漏洞与困惑,是极好的能量补充;宽泛的兴趣、爱好,可涉猎更多先进的医学应用技术。非限定选修课程中,在医学仪器设备中医用传感器的应用起到至关重要的作用,其便于学生了解呼吸波、脉搏波、心电和生物电极传感器等基本原理,便于相应技术的学习。
(六)“双创教育”实验室建设
“双创教育”即创新、创业教育,在实践教育环节中要有与之相配套的、以“双创教育”实验功能为主体的培育环境构建设计,其中建立小微、可移动型实验平台就显得尤为重要,为医学生自主研发、设计、维护和使用测试医学仪器与设备等提供必要硬件支持,有利于激发医学生在医学仪器功能研究方面的创新、创业激情。
三、高校一体化医学仪器技能实验平台辅助管理体系构建
作为高校一体化医学仪器技能实验平台建设的后续工作,健全实验平台相应配套的辅助管理体系,对保证教学、科研活动的正常、有序进行至关重要。平台辅助管理体系设计应体现出生物医学工程专业职业化教育的特色。
(一)学生成绩评价与考核
依托实验平台,实现学生成绩评价与考核改革。基于多年专业实验技能管理经验的积累,总结高校医学类学生实验室管理的行为规范,调研广大学生的日常实验技能学习、社会应用实践活动等信息,从而形成评价体系观测点,最终建立一套能够为国内各医学高校所接受的“学生专业实验技能管理”量化评价体系。
(二)毕业设计
依托实验平台,提升学生毕业设计质量。毕业设计工作是实现生物医学工程专业本科人才培养目标的重要教学环节,是理论与实践相结合,教学与科研、生产相结合的过程,也是前期各个教学环节的继续、深化、补充和检验。设备拆解与组装、课题设计与应用、故障诊断与修复,在整个毕业设计过程中培养学生自学能力,激发学生主动探索的兴趣,同时也可提升专业教师的指导水准;毕业设计环节成功实施,对课程、专业、学科建设发展会起到支撑作用,对学生综合能力培养与学校未来定位发展影响深远。
(三)开发环境建设
依托实验平台,优化开发环境建设。研究产品设计、实用新型设计、平台开发系统等,有利于实验平台的广泛应用。如电工电子学实验室、软件仿真学实验室、CPLD开发实验室、单片机系统开发实验室、医学信号采集与医学图像处理实验室等建设问题,有了实验场所或实验平台,才能营造出产品设计开发环境。以嵌入式医学仪器实验箱为例,开发设计性实验、临床应用技能实验等,嵌入式系统开发,不同的硬件平台和操作系统带来了许多附加的开发复杂性[9],同时也给使用者营造出更为广泛的开发环境。
(四)实验室管理
依托实验平台,完善管理制度。建立健全实验室各项规章制度,使仪器设备的各项管理工作制度化、规范化,提高了管理成效。
人员管理:实验室专人管理,利于保持仪器的完好率和维护保养,提高管理人员的技术水平以及对仪器功能的开发拓展;建立完备的档案资料有助于准确掌握仪器设备的运行情况,还可作为仪器设备检修维护的重要参考;开放性管理,让学生参与实验教学管理,大三学生带动大二学生分别管理重要、次要实验室;以学生为主体,开展自我学习区域管理。
物品管理:设备更新替换,设备使用与维护管理;其他主控服务区、移动演示区、设备存储区、管理者专区、空调安装区、监控设备区、衣帽更换区、书包等物品存放区等区域管理。
(五)产、学、研融合
依托实验平台,提高产学研成果转化率。产、学、研相互支撑,利用教学与科研成果可以开发小型医学仪器产品,进而开发市场,形成规模化生产等;对产品进行宣传,以便打开销售市场,让消费群体有所认知,如产品系统构成及原理,包括电路、机械、其他材料构成情况;仪器设备与电子器件识别系统的历史发展认识,如硬件发展历史阶段、产品展示设计;可以通过演示文稿、视频、照片、实物等方式宣传。
(六)社会化服务
依托实验平台,增强社会化服务能力。产品研究与技术水平,直接影响市场占有率等,在带来经济效益的同时,研究成果要更多服务于社会。如实验平台实现网上查询、网上预约等功能;设备信息模块便于用户查找符合条件的仪器,实现仪器设备使用的动态管理;服务信息模块可方便用户全面掌握仪器设备的服务领域等信息;预约模块可由管理人员统筹安排仪器的使用时间;服务反馈模块可接受用户对服务过程做出的评价等。
参 考 文 献
[1]黄晓鹂, 李树民.基于数字医学平台的大型仪器设备的共享与管理[J].中国现代教育装备,2012(13):18-20.
[2]王保华.生物医学测量与仪器(第2版)[M].上海: 复旦大学出版社,2009.
[3]陈浩,李本富.用MSP430 实现腕式心电检测仪的研制[J].第四军医大学学报,2004(5):427-429.
[4]陈洪斌.高校一体化医学仪器技能实验平台建设探析[J].职业技术教育,2014(32):53-54.
[5]郝冬梅,吴水才.具有行业职业资格的生物医学工程人才培养探索[J].中国电力教育,2011(32):25-26.
[6][7][8]吴效明,张莉莉,劳永华,等.加强实验实践教学体系建设培养理工科综合型人才[J].医疗卫生装备,2010(2):115-117.
[9]陈露晨.基于嵌入式系统的医学仪器的设计[J].医疗卫生装备,2005(9):64-65.
Abstract The design for the construction of integrative medical instrument skills experimental platform should embody the characteristics of professional education, pay attention to the cultivation of individual practical skills and abilities of students and regard the lab subject function construction as the main design concept. While constructing the platform, it is necessary to strengthen the construction of auxiliary management system that is consisted of the evaluation and assessment for student performance, graduation design, development environment construction, laboratory management, production-learning-research integration, social service, so as to create integrative medical instrument skills laboratory.
篇6
本刊讯(特约记者 张 鹏)“我能取得今天的成绩,都是党和军队教育培养的结果,是病人和同事支持帮助的结果。所以,我要为我们的军队和人民一直工作下去!”5月底,在组织“坚定信念,铸牢军魂”主题教育授课时,92岁的第二医大东方肝胆外科医院院长吴孟超院士对全院人员如是说。在主题教育活动中,东方肝胆外科医院注重利用身边典型引导,取得良好效果。
第二医大东方肝胆外科医院从上世纪50年代成立的“肝脏外科三人研究小组”发展成为今天学术地位和医疗水平均居世界领先的肝胆外科专科医院,吴孟超院士是探路者和带头人。而在此过程中形成的“勇闯、勇于创新、永不满足、永远争先”的“吴孟超精神”自然就成了医院建院育人的“接力棒”和“传家宝”,引领和激励一茬茬东方肝胆人敬业爱岗、济世救人。他们编辑出版了吴孟超院士的传记、画册、故事集,拍摄了记录吴孟超院士成长的宣传片、纪录片、电视片,开展“阅读传记明心、观看影片励志”活动,举办“吴孟超杯”系列文体比赛,不断强化大家对“吴孟超精神”的认识理解,使之成为凝聚力量、推动发展的强大动力。肝外一科医生黄亮深有感触地说:“上学时吴老是我们心中的偶像,现在吴老是我们身边的榜样,他以实际行动教我们怎样爱党爱国爱民,如何敬业勤业精业。”
正是在吴孟超院士的影响下,中国工程院院士王红阳,国家杰出青年基金获得者钱其军、程树群,上海市“领军人才”和“优秀学科带头人”沈锋、高春芳等一大批中青年专家脱颖而出。《综合疗法治疗巨块型肝癌》等一大批科研成果应用于临床,肝胆肿瘤患者手术成功率、术后存活率等指标不断刷新。国家肝癌科学中心、肝炎与肝癌防治协同研究创新中心等单位相继落户医院。东方肝胆外科医院连续两年被评为“总后先进党委”和“先进师旅团级单位”,连续4年在上海市病人满意度万人问卷调查中名列前茅,医院门诊量、手术量、医疗收入等屡创历史新高。
第二军医大学长海医院 髋臼骨折治疗处于世界先进水平
本刊讯(特约记者 白 进)一年一度的高考已经结束,17岁的小沈如愿地考上了大学,和同学们一起庆祝来之不易的幸福,欢呼雀跃。几乎没有人知道,8年前一次严重车祸导致他的髋臼骨折,险些让他终身残疾。创造这个医学奇迹的是第二军医大学长海医院骨科许硕贵教授和张春才教授,他们创新的髋臼骨折治疗方法解决了9个世界难题,使我国髋臼骨折治疗处于世界先进水平。
目前,髋臼骨折国内外的治疗方案无非是髋关节融合术,或者待成年后二期行关节置换手术治疗。对一个年仅11岁的孩子来说,这样的手术可能使他终生残疾。跑遍上海各大医院的小沈父母抱着一线希望来到长海医院,找到了该院骨科许硕贵教授和张春才教授。此时小沈已受伤503天了。许硕贵、张春才利用他们在髋臼骨折治疗方面的创新性成果,为其实施了髋臼、股骨头、韧带重建术。小沈术后恢复良好,半年后弃拐下地行走。术后6年,个子已经长到1.8,和同龄人没什么两样,活动自如。
据介绍,许硕贵、张春才教授使用的是他们经过15年努力与探索,在总结我国1000多例患者的基础上,提出的髋臼骨折的三柱理论与ABC损伤变数定位系统。他们设计研发了“髋臼三维记忆内固定系统”并应用到全国两千余家医院,从而解决了30多年来在髋臼骨折治疗方面的9个世界难题,使髋臼骨折的解剖复位率达到92.7%,功能优良率达到92.69%。这一原创性成果使我国髋臼骨折治疗处于世界先进水平。
第四军医大学 成功研发的纯度超99.5%的制氧机成为野战生命支持系统“新贵”
本刊讯(通讯员 赵 贽 张 静)第四军医大学成功研发的纯度超99.5%的制氧机装备是世界首创、我国唯一符合新国标和药典要求的医用制氧机,有效地解决了部队医用及航空呼吸用氧这一军事医学难题,填补了我军野战环境下生命救治快速制氧的空白。
第四军医大学生物医学工程系栗文彬主任向记者介绍:“近几年,我系紧紧围绕部队战时卫勤保障、平时作战训练和完成多样化军事任务的现实需求,坚持原始创新、自主创新,大力开展军事医学技术创新研究和成果转化应用,我们最新研发的这台制氧机,就可在野战环境下手术救治时快速制氧,完全不需要后方输送。目前,这项成果已成功装配于我军第一艘舰船,为舰载机提供全海况、全航程、全天候的航氧保障。”
“这台医用制氧机,可是我们野战生命支持系统里的‘新贵’!”承担这台装备研发的第四军医大学生物医学工程系教授罗二平给记者介绍说,这台医用制氧机最大的特点是不需要添加任何化学制剂,可以直接从空气中净化分离出纯度超过99.5%以上的医用氧气,成为我国唯一符合新国标和药典要求的医用制氧机。
部队的难题,就是攻关的课题。近年来,他们着眼国家和军队重大战略任务,紧贴部队平战时卫勤保障需求,坚持为军而研、为战而研、为赢而研的科研方向,以研发军队急需卫勤装备为牵引,一大批紧贴部队需求的关键技术和卫勤装备在这里诞生,有的已应用部队和临床,部分关键技术处于世界领先水平。在制氧增氧技术研究方面,先后研制成功了单兵高原增氧器、单兵高原氧气机、车载氧气机、“营房帐篷弥散富氧装置、野战制氧车等系列装备,其中,单兵高原增氧器被总部列为战略物资,并被军事博物馆作为国防和军队建设成就标志性成果永久收藏。这一系列制增氧设备有效解决了部队急进高原中抗缺氧难题,为保障部队能打仗、打胜仗提供强有力的技术支持。
近年来,第四军医大学生物医学工程系获得包括国家科技重大专项、国家自然科学基金重点、科技支撑和军队重大重点等各类课题120多项,获国家科技进步奖2项,军队科技进步奖3项,申报国家发明专利近150余项,以医用膜分离制氧机为代表的系列卫生装备,填补了我军高原抗缺氧及医疗用氧装备的空白,已成为原创性军队卫生装备的研发基地和复合型军事人才培训基地。
边防军医“挂职”深圳学医术
本刊讯(通讯员 江 峰 钟 勤 张宾宇) “非常高兴来到全国边防最大、最好的医院挂职学习,我们一定会珍惜机遇、学习技能、锻炼作风,把特区先进的医疗技术和服务理念带回边防和雪域高原……”来自边防总队医院的医生陈佳在参观广东边防总队医院PET/CT科室时,这样激动地说道。
此次边防的3名医生分别来自边防总队医院、阿里霍尔边防派出所和拉萨边防检查站,挂职锻炼为期6个月,他们将被分配到广东边防医院内科、外科、急诊科、特检科、泌尿科等多个科室进行跟班作业,进修学习。
篇7
在历史发展中,山东大学形成了自己的学科优势和特色。特别是经过20世纪30年代和50年代在青岛办学时期的辉煌与积累,不仅奠定了“文史见长”的学术特色,出现了一批在国内外享誉甚高的人文学者,以及像《文史哲》这样备受关注的学术阵地,而且在自然科学领域也打下了良好基础,使山东大学跻身于中国著名学府的行列。上世纪末三校合并以来,新发展的金融数学、晶体材料、凝聚态物理、胶体界面化学、微生物、机械、材料学、心脑血管功能修复、新药制造、中国古典哲学等学科均达到国内一流水平,有些方向和领域已达到世界水平。
下面我们具体来看看山东大学的三大招生特色:
特色一:大类招生
所谓“大类招生”,指的是将相同或相近学科门类,通常是同院系的专业合并,按一个专业大类招生。按大类招生,可以使学生在选择专业(类)时更关注自身的志趣、爱好,体现以考生为本的原则;可以免去学生因不了解大学的专业设置而选择专业的烦恼,避免了学生在高考时一次性选择专业的盲目性;可以激发学生的学习积极性,有利于培养宽口径、厚基础、重创新的人才。
在大一下学期,除部分特殊招生类别的考生外,允许学习成绩在本学院(专业)排名前10%的学生在一定范围内免试申请调整专业(类);其余学生只要第一学期公共必修课考试合格,可以通过参加考核重选专业(类)。学校还鼓励学有余力的同学参加双学位(专业)、主辅修等复合人才培养模式的学习。
特色二:人才培养实验班
山东大学是国家基础学科拔尖人才培养试点高校,有众多人才培养试验班,例如:
设有泰山学堂,每年招收数学、物理、化学、生物学、计算机科学专业取向学生各15人左右;
学校设有卓越工程师、卓越医生、卓越法律人才等人才培养实验班。同时设有中文(闻一多班)、数学(潘承洞班)、物理(王淦昌班)、化学(邓从豪班)、生物(童第周班)、生命科学与技术(曾呈奎班)六个国家人才培养基地,以及尼山学堂、金融数学与金融工程(彭实戈班)、文史哲、材料科学与工程、生物医学工程等校级人才培养基地。
学校为基地班学生制定个性化的培养方案,实行导师制,引进国际化课程、国际化教师和国际化教材,营造国际化氛围,提供比例较高的推荐免试研究生名额,为培养基础扎实、创新能力强的精英人才创造条件。
篇8
【关键词】 脉搏波 模型 理论 脉诊客观化 中西医结合
Abstract: Pulse wave, a research focus in both traditional Chinese medicine and Western medicine, which contains a wealth of human physiological and pathological information, has always been the concern of medical practitioners. On the basis of the review on the development of the pulse wave theory and its applications, the existing problems in this field are discussed in this paper. On the basis of the status quo of pulse wave information extraction methods and the utilization of pulse wave in traditional Chinese and Western medicine, a more indepth study on pulse wave is proposed to make it a bridge connecting traditional Chinese medicine with Western medicine.
Keywords: pulse wave; models, theoretical; objectifying pulsetaking; integrative traditional Chinese and Western medicine
当心脏周期性地收缩和舒张时,左心室射入主动脉的血流冲击主动脉瓣和血管壁,产生的振动将以波的形式自主动脉根部发出,沿动脉树向外周动脉传播,此波称为向前波。当向前波受到动脉分支和外周动脉等因素的作用时,产生与之方向相反的反射波。反射波沿动脉树向心脏方向传播,与向前波叠加后形成具有不同波形特征的脉搏波。脉搏波的传播过程不仅受到心脏本身的影响,还受到沿途动脉和周围组织器官状况的影响,使脉搏波蕴藏着丰富的人体生理和病理信息。另外,由于脉搏波的检测不需要复杂而昂贵的仪器,操作简便,而且无创,因此关于脉搏波深入细致的研究,历来都受到中外医学界的重视。
1 脉搏波理论发展
对脉搏波的理论研究,国外学者做了大量的工作,从18世纪初开始至今,其研究历史已长达几个世纪。而国内学者对脉搏波理论研究则始于解放后。脉搏波理论研究大致经历了从理论描述到模型分析以及线性化理论到非线性化理论的发展过程[14]。见表1。表1 脉搏波理论发展历程
发展阶段分析模型及理论研究者理论描述首次发现和认识到血液循环现象Harvey W (17世纪初)首先论证了动脉弹性腔的意义Newton I (1700年)线性化理论提出Windkessel模型(弹性腔模型)Hale S (1733年)发表了理想流体的弹性管内波传播速度公式Young T (1808年)提出血管阻力模型,解释了动脉中平均血压下降的原因Poiseuille JLM (1840年)发现主动脉和外周动脉压力波波形的差异Mahomed F (1872年)发表计算脉搏波传播速度的杨莫恩斯公式Moens AI和Korteweg DJ (1878年)建立了相当于动脉系集中参数模型的风箱理论(弹性腔模型)Frank O (1899年)提出第一个血流脉搏波传播的分析模型Morgan GW和Kiely JP (1954年)[5]提出线性分布参数模型(Womersley理论)Womersley JR (1957年)[6]提出双弹性腔模型Goldwyn R和Watt T (1967年)[7]提出一个完整的线性化脉搏波模型Atabek HB (1968年)[8]对心血管弹性腔理论作了较为深入的研究柳兆荣(1980年)[9]非线性理论提出非线性分布参数模型,阐明动脉脉搏波传播的非线性特性Euler L (1755年)提出多项式血管壁应力应变表达式Vaishnav RN等 (1972年)[10]提出一个包含血管和外周组织运动的非线性脉搏波传播理论伍时桂等(1986年)[11]提出大血管中非线性压力波满足的孤波方程Sigeo Y (1987年)[12]首次在心脏和血管动态耦合的基础上,研究了人体动脉中压力和流量脉搏波的传播王英晓等(1998年)[13]建立了非线性血流脉搏波在动脉内传播的理论模型谢官模等(2001年)[14]
2 脉搏波分析方法与应用
目前,对脉搏波的分析主要是比较正常和病理状态下,脉搏波波形和传播速度的不同,或者是提取时域或频域特征参数来加以分析研究。主要分析方法包括时域分析法、频域分析法、时频联合分析法、数学建模分析法和脉搏波传播速度分析法等。
2.1 时域分析法 时域分析法是指在时域脉搏波图上分析波动信号的动态特征,通过对主波、重搏前波和重搏波的高度、比值、时值、夹角和面积值等进行参量分析,找出某些特征与人体生理病理变化的内在联系。时域分析法是目前最常用的脉搏波分析方法[15],主要包括直观形态法和波图面积法等。
直观形态法是直接通过脉搏波波图的形态分析,在时域波图中提取特征信息,如波图的波、峡的高度、特征点、相应时值等参量,从而分析脉搏波蕴含的生理病理信息。如Millasseau等[16]用主波高度与延迟时间(主波与重搏波之间的时间间隔)的比值作为大动脉硬化指数,研究了随年龄增长引起的大动脉硬化。
脉图面积法是以脉搏波波图面积的变化为基础的脉搏波形特征量K值提取的一种方法[17],能较好地反映人体心血管系统中血管外周阻力、血管壁弹性和血液黏度等生理因素。后来,又将K分解成K1和K2,综合K、K1和K2三个参数,结合血压和心率能够较准确地得到心输出量。同时,也解决了由不同生理状况却得到同一K值的问题,使脉图面积法在临床上有了更好的应用[18]。
2.2 频域分析法 频域分析法是近代物理学、工程力学中常用的一种对周期性波动信息做数值分析的方法。此法通过离散快速傅里叶变换,将时域的脉搏波信号变换到频域,从脉搏波频谱中提取与人体生理病理相应的信息,主要观察振幅、相位随频率的变化,找出信号在时域中不太明显而在频域中比较明显的特征。具体方法包括功率谱分析和倒谱分析等。
功率谱分析是指利用广义平稳随机过程的N个样本数据估计该过程的功率谱密度,也称为谱分析。对脉搏波信号进行功率谱分析的算法通常采用经典的快速傅立叶变换(fast Fourier transform, FFT),主要是把时域的脉搏波信号用FFT转换成频谱图,再通过比较频谱图上不同频率的特征峰来分析脉搏波。此法在脉搏波信号分析中使用较早[19,20],在当前的许多研究中也经常使用[21]。
倒谱分析是对频谱取对数后,进行傅立叶变换。它将频域内的周期成分转化为倒谱上单根线谱及其倒谱波,测得脉搏周期较为准确。如宋建勤等[22]运用倒谱理论讨论了正常心律和非正常心律受检者的脉搏信号在倒谱域中的特征表现,并通过对286例脉搏信号的倒谱分析,发现病理与正常心律脉搏信号的倒谱特征差异有统计学意义。
2.3 时频联合分析法 时频联合分析法是把一维信号或系统表示成一个时间和频率的二维函数,时频平面能描述出各个时刻的谱成分。常用的时频表示方法有短时傅立叶变换和小波变换等。
短时傅立叶变换法是将信号划分成许多小的时间间隔,用傅立叶变换分析每一个时间间隔,以便确定在此时间间隔存在的频率,这些频谱的总体表示频谱在时间上如何变化[23]。它依赖于被分析信号的线性特性,即信号的频谱与在数据中提供正弦成分的幅度成线性比例。其最主要的优点是容易实现,计算简洁有效。
利用小波变换可在信号的不同部位得到最佳时域分辨率和频域分辨率,具有可变的时间和频率分辨率,把傅立叶变换中的正弦基函数修改成整个时频平面的基函数,最终达到高频处时间细分和平低频处频率细分,自动适应时频信号分析的要求,从而可聚焦到信号的任意细节。小波变换这种独特的能力使它成为分析脉搏波这种非平稳信号的有利工具,可以实现对脉搏波信号同时进行时域、频域特征值的提取和分析[24]。
2.4 数学建模分析法 数学建模分析法是指利用模拟电路、流体力学和生物力学等方法,结合脉搏波传播的理论特征和脉搏波与心血管系统的联系,建立相应的脉搏波分析数学模型,从而在计算机上仿真脉搏波,系统地分析其特征参数和生理病理信息。具体方法包括力学建模法、电路模拟建模法和系统仿真建模法等。
力学建模法是指根据生物力学和血液动力学原理建立脉搏波在动脉管中传播的线性和非线性模型,可以在一定意义上反映脉搏波的传播规律。力学建模主要针对理论研究,而且大部分都是心血管系统的局部建模,因此在脉搏波理论的发展过程中具有重要的意义(见表1),而很难应用于临床研究。
电路模拟建模法是为了便于计算和分析力学方程,利用力电之间的等效关系将力学模型在一定的条件下化为“电路模型”来求解和分析动脉系统。具体把血流比拟为电流,血压比拟为电压,血容量比拟为电量,血流黏滞阻力比拟为电阻,血管顺应性比拟为电容,血液流动惯性比拟为电感等,可建立心脏模拟电路模型等心血管系统模型[25]。具体根据研究目的不同,建立的不同形式的模型,其结构也可以差别很大。
系统仿真建模法是利用系统分析和数字信号处理研究生理系统的一种新方法, 主要是通过系统各部分的分析整合,建立系统整体的仿真模型。清华大学白净教授[26]在美国德勒克塞尔大学Jaron教授建立的仿真模型基础上,增加了左心房和肺循环等部分,并扩充和建立了人体上肢模型,其仿真实验结果与临床试验结果基本吻合。
除上述建模方法外,国内还有学者用高斯函数来仿真脉搏波。一个高斯函数可以构建一个钟形波,因此,一个周期的桡动脉脉搏波可以用3个高斯函数来合成,分别对应主波、重搏波和重搏前波[27]。通过这种方法建立的仿真模型可以提取若干脉搏波特征参数,用于区别正常和病理状况下的脉搏波。
2.5 脉搏波传播速度分析法 脉搏波传播速度(pulse wave velocity, PWV)是指脉搏波由动脉的一特定位置沿管壁传播至另一特定位置的速率。动脉血管在年龄和各种致病因素等的作用下导致动脉僵硬度增加,从而增加沿动脉树传播的PWV。PWV是通过测量两个记录部位的距离和脉搏波传播时间求得,目前临床上通常采用记录的部位有颈动脉股动脉、颈动脉肱动脉、颈动脉桡动脉以及肱动脉踝动脉等。PWV已被认为是表征血管硬化程度的金标准,可作为预测心血管疾病发生率和死亡率的重要依据[28]。近些年来,国外对脉搏波的临床应用研究大部分都集中在PWV上,主要用来预测和判断高血压[29]、糖尿病[30]和晚期肾衰竭[31]等疾病患者的心血管状况。
3 脉搏波与中医脉诊
对脉搏波的研究最早可追溯到中国古代的中医脉诊。在中国传统医学中,脉诊具有十分重要的地位,自古就有“切之以九脏之动,惟妙在脉,不可不察”之说,其价值已被2 600多年的中医临床实践所证实。
3.1 脉诊理论 现有有关脉诊的最早记载是公元前3世纪前后出现的《内经》;到公元3世纪晋代的王叔和,著有《脉经》十卷,成为当时脉学研究的集大成者,他提出“独取寸口”的诊脉方法,对脉学的发展起了重要的作用;明代李时珍著有《濒湖脉学》一书,以歌诀的形式来描述脉法,使脉学得到普及和发展。脉诊理论经历代医学家的反复临床实践与研究,已经发展成为一门独具特色的诊断科学——“中医脉诊学”。它是中医“整体观念”和“辨证论治”基本思想的体现和应用,也是中医理论体系中不可缺少的重要组成部分。
3.2 脉诊客观化研究 脉诊理论有着悠久的历史,对中华民族的世代繁衍和发展做出了巨大的贡献,其内容之博大精深已为世人所公认。但由于中医脉诊具有极大的个人主观臆断性,所谓“脉理精微,其体难辨”;“在心易了,指下难明”。脉象的概念模糊、笼统,难以掌握,长期影响着脉诊的现代化发展。因此,自解放后国内学者就掀起了脉诊客观化研究的热潮,主要是针对脉象形成机制、典型脉图的识别分类和脉图的客观描记(脉诊信息采集装置的研制)等研究。
对脉象的研究除借鉴上述几种脉搏波分析方法外,还有学者提出多因素脉图识脉法[32]、脉象速率法[33]、句法模式识别法[34]、模糊聚类方法[35]、希尔伯特黄变换(HilbertHuang transform, HHT)法[36]、盲解卷法[37]和人工神经网络法[38]等。随着大量现代工程和信号分析方法的引入,脉诊客观化研究正向着多元化的方向发展。但目前大部分的研究都集中在典型脉图的解析上,仅有关此方面的研究专著就不下十几部。
传感器是脉诊信息采集装置研制的最关键部分,主要可分为压力式和光电式等接触性传感器,以及传声器和超声多普勒技术等非接触式传感器。由于非接触性传感器不符合中医指压切脉的特点,目前主要还是以接触式传感器开发为主。脉诊信息采集传感器的研制经过了从单探头到双探头,再到三探头的发展历程,逐渐模仿中医同步取三部脉象的特征。为了把脉象图和指压指感趋势图结合起来,车新生等[39]开发了三维脉象图采集模块,并用VB应用程序构建了三维坐标系作为显示平台,从而得到了立体化的脉象图,使脉象特征表达更明显,与脉诊理论中的脉象描述更为贴切。由于脉诊信息的采集是后期信号分析的关键前提,很多学者都在探讨性能更加优良的传感器,随之而开发出的脉象仪和脉诊仪等智能化脉象分析设备也是品种繁多,功能各异,为脉诊客观化研究提供了良好的硬件基础。
4 问题讨论与前景展望
脉搏波的现代研究作为中医和西医共同的研究热点,吸引了国内外越来越多学者的参与。其理论研究经历了从线性化理论到非线性化理论,局部分析到整体分析的发展过程。而应用研究也经历了从经验传授到客观描述,简单波图分析到复杂频谱分析和系统建模研究的过程。以生物医学为基础,结合物理学、工程学、数学和计算机科学的技术和方法,大量的信号处理算法被应用到脉搏波的分析和研究中来,使脉搏波研究成为一个多学科交融的领域。
但是从研究现状来看,脉搏波研究主要存在以下几点不足:只重视纯理论研究的深入而无法应用于临床,或是发现临床应用价值而不重视从理论上进行验证,使脉搏波的理论与应用研究脱节;分析使用的算法虽然很多,但每种算法都有局限性,脉搏波研究缺乏一种通用的算法或系统的研究体系;多数研究方法都是提取脉搏波的特征参数作为分析的依据,有限几个特征参数并不能完整地反映脉搏波的全部信息,而且缺乏对特征参数之间联系的研究,难以得出很有价值的研究结果;时域分析等方法只重视单个周期的波图研究,虽然操作简单、直观,容易为临床医生所接受,但误差较大,也无法体现脉搏波的动态变化特征;单从数学角度建立的模型,在应用上比较方便灵活,但缺乏医学上的说服力;而从生理学和力学角度建立的模型能够很好地反映脉搏波的生理病理特征,但过于庞大和复杂,限制了模型的应用。
这些不足很大程度上制约了脉搏波在临床中的应用,PWV研究却是个例外。PWV只是脉搏波复杂信息中的一部分,但PWV研究是众多脉搏波研究工作中最成功的例子,通过比较成熟的理论研究和临床试验验证,PWV已经成为心血管系统疾病研究中的一个重要标准。所以,脉搏波研究最重要的一点就是,将广泛的临床应用研究与深入的理论研究紧密结合。
相比较而言,西医更重视脉搏波的理论研究,西方对脉搏波产生和传播机制的研究已经长达几个世纪,研究手段已经比较成熟,理论分析也比较深入。但是,西医不像中医这样有独特的脉诊理论作指导,脉搏波的临床应用只限于心血管系统疾病的诊断和分析,研究对象大多集中在脉搏波传播速度分析及其测量和分析手段的优化,对脉搏波信息的利用有很大的局限性。而中医比较重视脉搏波的临床应用研究,但由于缺乏系统深入的理论研究,中医无法客观地解释脉诊的科学内涵。
因此,如果能将西医的理论研究和中医的应用研究很好地结合起来,取长补短,那么脉搏波作为中医和西医都很关注的研究热点,很有希望成为沟通二者的桥梁。而且一些学者已经认识到,脉搏波技术是一个“省钱”的生物医学工程,可以提供一个简单、快捷、安全、有效和省钱的心血管无创诊断方法[3]。特别是近些年来,为了发展无创伤诊断技术和降低医疗费用,美、英、日、韩和加拿大等国的学者对人体脉搏信息和中医脉诊理论的研究也发生了浓厚的兴趣,这已成为发展无创伤诊断技术的前沿课题之一。随着脉搏波理论研究的不断深入,以及现代生物医学、电子与信息学、工程学和计算机学等应用科学的迅猛发展,脉搏波研究必将在中西医结合领域中发挥越来越重要的作用。
【参考文献】
1 Li JK, Melbin J, Riffle RA, et al. Pulse wave propagation. Circ Res. 1981; 49(2): 442452.
2 Wang BH, Xiang JL. The progress in research for human pulse system modeling and pulse condition information analysis. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2002; 19(2): 329333. Chinese with abstract in English.
王炳和, 相敬林. 脉搏系统建模与脉象信息分析的研究进展. 生物医学工程学杂志. 2002; 19(2): 329333.
3 Luo ZC, Zhang S, Yang YM. Engineering analysis of pulse wave and its application in clinical practice. Beijing: Science Press. 2006: 34, 183185. Chinese.
罗志昌, 张松, 杨益民. 脉搏波的工程分析与应用. 北京: 科学出版社. 2006: 34, 183185.
4 Liu ZR, Li XX. Principles and methods of hemodynamics. Shanghai: Fudan Press. 1997: 47. Chinese.
柳兆荣, 李惜惜. 血液动力学原理与方法. 上海: 复旦大学出版社. 1997: 47.
5 Morgan GW, Kiely JP. Wave propagation in a viscous liquid contained in a flexible tube. J Acoust Soc Am. 1954; 26(3): 323328.
6 Womersley JR. Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol. 1957; 2(2): 178187.
7 Goldwyn R, Watt T. Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans Biomed Eng. 1967; 14(1): 1117.
8 Atabek HB. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube. Biophys J. 1968; 8(5): 626649.
9 Liu ZR. Theory of elastic tube and its application in detecting cardiovascular parameters. Shanghai Yi Xue. 1980; 3(7): 4446. Chinese.
柳兆荣. 弹性腔理论及其在心血管参数检测中的应用. 上海医学. 1980; 3(7): 4446.
10 Vaishnav RN, Young JT, Janicki JS, et al. Nonlinear anisotropic elastic properties of the canine aorta. Biophys J. 1972; 12(8): 10081027.
11 Wu SG, Li ZZ. A theoretical model of nonlinear pulse wave propagation in artery with peripheral organizations. Beijing Gong Ye Da Xue Xue Bao. 1986; 12(3): 110. Chinese with abstract in English.
伍时桂, 李兆治. 非线性脉搏波在具有外周组织的动脉内传播的理论模型. 北京工业大学学报. 1986; 12(3): 110.
12 Sigeo Y. Solitary wave in large blood vessels. J Phys Soc Jpn. 1987; 56(2): 506520.
13 Wang YX, Wu WY, Wen GB. The influence of cardiovascular dynamic coupling on the blood pulse wave propagation in human body. Ying Yong Shu Xue He Li Xue. 1998; 19(7): 565576. Chinese with abstract in English.
王英晓, 吴望一, 温功碧. 心脏和血管系统动态耦合对人体体动脉搏波传播的影响. 应用数学和力学. 1998; 19(7): 565576.
14 Xie GM, Zhang GH, Chang XN. A theoretical model of nonlinear pulse wave propagation in arteries. Wuhan Li Gong Da Xue Xue Bao. 2001; 23(7): 7779. Chinese with abstract in English.
谢官模, 张光辉, 常晓年. 非线性血流脉搏波在动脉内传播的理论模型. 武汉理工大学学报. 2001; 23(7): 7779.
15 O'Rourke MF, Pauca A, Jiang XJ. Pulse wave analysis. Br J Clin Pharmacol. 2001; 51(6): 507522.
16 Millasseau SC, Kelly RP, Ritter JM, et al. Determination of agerelated increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond). 2002; 103(4): 371377.
17 Luo ZC, Yang ZB. A study on the information of pulse wave characteristics. Beijing Gong Ye Da Xue Xue Bao. 1996; 22(1): 7179. Chinese with abstract in English.
罗志昌, 杨子彬. 脉搏波波形特征信息的研究. 北京工业大学学报. 1996; 22(1): 7179.
18 Li J, Yang L, Zhang S, et al. Computation of cardiac output by pulse wave contour. ICBBE 2007. 2007; 6(8): 10881090.
19 Hao JY, Zhang YD, Tao ZL, et al. Spectrum analysis of pulse wave. Li Xue Yu Shi Jian. 1980; 2(2): 6466. Chinese.
郝敬尧, 张玉东, 陶祖莱, 等. 脉搏波的频谱分析. 力学与实践. 1980; 2(2): 6466.
20 Lee CT, Wei LY. Spectrum analysis of human pulse. IEEE Trans Biomed Eng. 1983; 30(6): 348352.
21 Nie GQ, Fang ZX. Measurement and analysis of human pulse. Shanghai Sheng Wu Yi Xue Gong Cheng. 2006; 27(2): 7476. Chinese with abstract in English.
乜国荃, 方祖祥. 人体脉搏的测量与分析. 上海生物医学工程. 2006; 27(2): 7476.
22 Song JQ, Dong YW, Wu SJ. Application of cepstral techniques to analysing pulse signals. Shannxi Shi Fan Da Xue Xue Bao. 1997; 25(2): 3943. Chinese with abstract in English.
宋建勤, 董彦武, 吴胜举. 倒谱技术在人体脉搏信号分析中的应用. 陕西师范大学学报. 1997; 25(2): 3943.
23 Zhou D, Cai KB. The pulse signals pattern identification method based on shorttime Fourier transform. Chongqing Ke Ji Xue Yuan Xue Bao Zi Ran Ke Xue Ban. 2007; 9(3): 4952. Chinese with abstract in English.
周丹, 蔡坤宝. 基于短时傅立叶变换的脉象信号的模式识别方法. 重庆科技学院学报 (自然科学版). 2007; 9(3): 4952.
24 Diao Y, Wu SC, Liu YJ, et al. An algorithm for automatically detecting the pulse waveform of radial artery. Beijing Sheng Wu Yi Xue Gong Cheng. 2006; 25(1): 5962. Chinese with abstract in English.
刁越, 吴水才, 刘有军, 等. 一种桡动脉脉搏波信号的自动检测波算法. 北京生物医学工程. 2006; 25(1): 5962.
25 Jaron D, Moore TW, Bai J. Cardiovascular responses to acceleration stress: a computer simulation. IEEE ITC Proceedings. 1988; 76(6): 700707.
26 Bai J, Wu DS. A simulation model of pulse wave in radial artery. Hang Tian Yi Xue Yu Yi Xue Gong Cheng. 1995; 8(2): 9498. Chinese with abstract in English.
白净, 吴冬生. 桡动脉脉搏波的仿真模型. 航天医学与医学工程. 1995; 8(2): 9498.
27 Qian WL, Xu LY, Cheng FY, et al. Acquiring characteristics of pulse wave by Gauss function separation. Zhongguo Sheng Wu Yi Xue Gong Cheng Xue Bao. 1994; 13(1): 17, 15. Chinese with abstract in English.
钱伟立, 徐兰义, 陈富裕, 等. 高斯函数分解法提取脉搏波特征. 中国生物医学工程学报. 1994; 13(1): 17, 15.
28 Hansen T, Jeppesen J, Rasmussen S, et al. Pulse wave velocity and cardiovascular disease in a general population. Am J Hypertens. 2005; 18(5): A14.
29 Meaume S, Benetos A, Henry OF, et al. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001; 21(12): 20462050.
30 Cruickshank K, Riste L, Anderson SG, et al. Aortic pulsewave velocity and its relationship to mortality in diabetes and glucose intolerance. Circulation. 2002; 106(16): 20852090.
31 Blacher J, Guerin AP, Pannier B, et al. Impact of aortic stiffness on survival in endstage renal disease. Circulation. 1999; 99(18): 24342439.
32 Wei R. Multifactor identification of pulse: a new attempt for objective of pulse diagnosis. Zhongguo Yi Liao Qi Xie Za Zhi. 1981; 5(2): 17. Chinese.
魏韧. 多因素脉图识脉法——脉诊客观化的一种新尝试. 中国医疗器械杂志. 1981; 5(2): 17.
33 Xue H, Fung YC. Persistence of asymmetry in nonaxisymmetric entry flow in a circular cylindrical tube and its relevance to arterial pulse wave diagnosis. J Biomech Eng. 1989; 111(1): 3741.
34 Huang XJ, Xing W, Li F. Application of syntactic pattern recognition in research on pulse wave's characteristic information. Zhongguo Yi Liao Qi Xie Za Zhi. 2005; 29(5): 325327. Chinese with abstract in English.
黄祥钧, 邢武, 李锋. 基于句法模式识别的脉搏波特征信息研究. 中国医疗器械杂志. 2005; 29(5): 325327.
35 Wang BH, Xiang JL. Puzzy clustering of human body pulse signals based on AR model. Ying Yong Sheng Xue. 2001; 20(5): 2125. Chinese with abstract in English.
王炳和, 相敬林. 基于AR模型的人体脉象信号模糊聚类研究. 应用声学. 2001; 20(5): 2125.
36 Sun R, Shen HD, Lu CJ, et al. Application of the HHT method to the wristpulsesignal analysis. Yi Yong Sheng Wu Li Xue. 2006; 21(2): 8793. Chinese with abstract in English.
孙仁, 沈海东, 鲁传敬, 等. HHT方法在脉搏波信号分析中的应用. 医用生物力学. 2006; 21(2): 8793.
37 Qi H, Zhang YL, Chen ZS. Signal analysis of human pulse wave based on blind deconvolution. Sheng Wu Yi Xue Gong Cheng Yan Jiu. 2003; 22(4): 3436. Chinese with abstract in English.
亓慧, 张艳丽, 陈振生. 基于盲解卷问题的脉搏波的信号分析. 生物医学工程研究. 2003; 22(4): 3436.
38 Xu FW, Cai KB. Application of neural networks to the detection of pulse signals. Chongqing Da Xue Xue Bao Zi Ran Ke Xue Ban. 2004; 27(8): 3539. Chinese with abstract in English.
徐方维, 蔡坤宝. 人工神经网络在中医脉象信号检测中的应用. 重庆大学学报 (自然科学版). 2004; 27(8): 3539.
篇9
关键词: MIT 发展战略 办学特色
麻省理工学院(Massachusetts Institute of Technology,简称MIT)在众多大学排名里,均位列世界前五位。2013―2014年最新排名中QS世界大学排名:世界及全美第一;其世界声誉排名自2011年首次以来,都一直将其列作世界及全美第2(仅次于哈佛大学及斯坦福大学)。研究MIT的办学特色对我国理工大学的建设有很好的借鉴意义[1]。
一、学校简介
MIT是美国一所研究型私立大学,位于马萨诸塞州(麻省)的剑桥市,查尔斯河(Charles River)将其与波士顿的后湾区(Back Bay)隔开。至2009年,先后有78位诺贝尔奖得主曾在麻省理工学院学习或工作。MIT的自然及工程科学在世界上享有极佳盛誉,其管理学、经济学、哲学、政治学、语言学也同样优秀。
二、发展战略
在对未来社会、科学和大学自身研究的基础上,MIT制定了新的发展战略。第一,吸引最优秀的学生和教师,给他们提供有刺激性的和有效的生活与学习环境。第二,致力于研究基础科学,但应在把研究、学习和行动整合成一体的新模式中处于领先地位。第三,开拓新的财政来源,增进公民、联邦政府和商业界对科学、技术、研究和高等教育的理解与支持,吸引私人投资。第四,麻省理工更加注重全球化的发展,进一步加强其在国际上的产学研合作。
三、办学特色
(一)“小而精”的发展战略――院系和学科门类少
根据专业的分类,MIT被分成了如下六个学院:建筑及城市规划学院(School of Architecture and Planning):建筑学、媒体艺术与科学、城市研究与计划;工程学院(School of Engineering):航空太空工程、生物医学工程、化学工程、土木工程、环境工程、电机工程、计算机科学与工程、资讯科学、核子工程、机械工程、材料科学与工程、交通物流研究所;人文及社会科学学院(School of Humanities, Arts,and Social Sciences):人类学、比较媒体研究、经济学、文学、历史学、语言学、哲学、音乐与戏剧艺术、政治学、女性研究、写作计划组;阿尔佛雷德・P・斯隆管理学院(Alfred P. Sloan School of Management):金融博士、会计博士、MBA和金融学硕士;理学院(School of Science):数学、物理学、化学、生物学、脑与认知科学、地球科学;维泰克健康科学技术学院(Whitaker College of Health Sciences and Technology)。
(二)注重加强国际合作
2007年,MIT与阿拉伯联合酋长国达成协议,共同建设马斯达尔科学技术研究院――世界上第一所专注研究另类和可持续能源、培养研究生的高等院校。2009年与浙江大学、新加坡达成协议,共同建设新加坡技术与设计大学,2011年开始招收第一届本科生。2011年与俄罗斯斯科尔科沃基金会达成协议,共同建设斯科尔科沃技术大学,2013年投入运行。2003年与西班牙阿拉贡政府、萨拉戈萨大学,在欧洲最大的物流中心萨拉戈萨市成立MIT-萨拉戈萨物流研究院(ZLC)[2]。2011年,马来西亚政府和麻省理工达成协议,共同创建了MIT-马来西亚供应链创新学院(MISI)并招收MIT-马来西亚供应链管理硕士研究生(MSCM)。
(三)重视理工科学生人文社科通识课程教育
MIT向来重视对理工科学生进行通识课程教育,注重教学与科研、应用的有机结合,培养学生运用知识解决实际问题的能力。MIT主要通过合理的课程设置有效地对学生进行通识类课程的教育。数学、科学与技术共9门,人文艺术与社会科学必修课8门,交流必修课4门,体育必修课4门,专业课16门左右。从课程设置可以看出MIT不仅培养学生对艺术的交流形势及敏感度,而且重视体育教育及交流课程的教学。有利于学生在学习科学文化课程时有强健的体魄,也能培养学生的艺术修养及口头表达能力及写作水平;有利于学生形成完整全面的知识结构;有利于创新人才的培养,使学生有更强的社会责任感,能够更好地适应社会及企业要求。我国要不断引进MIT的先进的通识教育理念,明确通识教育的目的,完善通识教育的课程体系,建立通识教育的组织机构,推进我国建设世界一流理工院校通识教育的进程。
参考文献:
[1]曹艳红.我国“985工程”高校定位问题研究[D].天津大学,2011(05).
篇10
关键词:高中生物教学;人文学科教育;自然科学教育;思想品德教育
中图分类号:G63 文献标识码:A 文章编号:1005-5312(2012)30-0227-02
目前,我国高中阶段课堂教学大多仍以分科教学为主,任课老师在各自学科体系和知识架构内进行教学,学科之间缺少综合、类比和交流。这种教学模式各自为政、互不干涉,能适应学生认知分析的需要,在发展学生认知综合能力方面就显得不足,其后果往往造成学生认知世界和解决问题时的片面、目光狭窄,割裂了事物之间的种种联系,而学生所接触的事物和现象大都是以综合的形式存在着。所以,过分强调分科教学,不利于学生把所学知识与现实生活相联系。
生物科学是一门包罗万象的综合性学科,从萌芽开始就一直和其他学科的产生和发展联系在一起,并一直在不断汲取其他学科发展成果的基础上向前发展,且不断产生新的分支学科。生物学与数学结合产生了生物数学和数学生物学,与计算科学结合产生了计算生物学,与计算机科学结合又产生了生物信息学;生物学与物理学结合产生了生物物理学,与化学结合产生了生物化学,与二者同时结合又产生了生物物理化学;生物学与地理学等结合首先产生了生态学,后边又有生物地理学,与地质学结合产生了古生物学;生物学与历史结合产生了生命科学史和历史生物学;生物学与政治产生了生物哲学;生物学与医学结合产生了生物医学,与工程技术结合产生了生物工程,与二者同时结合产生了生物医学工程;等等。从1943年物理学家薛定谔提出“遗传密码”的概念到1969年64种遗传密码的含义全部译出,就综合了物理、化学、生物各学科的研究方法和研究成果的精华。
本论文以人教版高中生物课程为例,通过大量教学实践,寻找到这些学科交叉渗透点,进而达到学科交叉渗透的教育目标。笔者首次将这些学科交叉渗透点进行系统归类,分别就高中生物与人文科学、自然科学和思想品德教育三个方面的联系进行了详细阐述。
一、高中生物与人文学科教育的联系
在高中阶段,人文学科教育主要包括语文、历史、政治、英语和地理等。下面笔者举高中生物与语文的联系的例子。
“独立寒秋,湘江北去,橘子洲头。 看万山红遍,层林尽染; 漫江碧透,百舸争流。”是高中语文第一册中的诗词《沁园春.长沙》中的诗句。万山红遍,层林尽染,与唐代诗人杜牧的诗句“停车坐爱枫林晚,霜叶红于二月花”异曲同工,都是描写秋天的景象。这种动人的自然秋景是秋天气温渐渐降低、紫外线照射强烈等外界因素造成的。在低温的作用下,叶绿素逐渐分解,同时叶脉的运输能力逐渐减弱,叶子白天通过光合作用制造的糖分不能完全运出叶子,导致叶子里的糖分越积越多,可溶性原糖多了,就形成了较多的花青素,同时细胞内 pH 值改变,呈现酸性,使花青素表现出红色,秋天红叶的种类如枫叶黄栌、槭树、柿树等均为此种情况。秋天,也有些植物叶肉细胞衰老,叶绿素的合成速度低于分解速度,叶绿素含量相对减少,而类胡萝卜素分子比较稳定,不容易破坏,所以叶片逐渐呈现类胡萝卜素的颜色-黄色,故而会出现“黄叶地”的景色。如银杏树,每到秋天淡黄色的小扇子型的叶片落在地上,令人不忍踩踏。
二、高中生物与自然学科教育的联系
在高中阶段,自然学科教育包括数学、化学、物理等。下面笔者选取高中生物与数学之间的联系作为例证。
生物学中许多重要的变化虽然目前我们还不能完全用精确的数学语言来进行描述,但生物学领域中的诸多现象却可以运用数学模型来进行圆满地解释,如生态环境、人口、资源、流行病等,无一不与数学密切相关。例如英国数学家哈代和德国医生温伯格通过各自的研究,分别发表的有关基因频率和基因型频率的基因平衡定律,该定律至今仍是群体遗传学的一个基本法则,也是杂交育种的理论基础。马尔萨斯利用数学推理,发现人口有几何增长的趋势,而食物供应只有算术增长的趋势,从而提出了著名的“人口论”。
三、高中生物与思想品德教育之间的联系
在高中阶段,思想品德教育包括伦理道德教育、环境道德教育和美育道德教育。下面,笔者以高中生物与伦理道德教育之间的联系为例,进行论证说明。
在生物教学中,对学生进行生命伦理教育,从狭义上讲是关注学生的身心健康,广义上说,是关注一切与人类生命需求、生命活动相关的领域,尤其是在非人类的生命与人类的关系上所存在的伦理问题,是学科德育教育的重点。
生命伦理学指称生命科学中的广袤的道德问题领域,如医学、生物学、环境科学、人口和社会科学等。生命伦理学最先产生在美国,而由于现代生物技术和现代生物医学技术迅猛发展,从而产生了生育控制和生殖技术的伦理问题、器官移植的伦理问题、克隆动物的伦理问题、人类基因组研究的伦理问题(如基因隐私和基因歧视等)、转基因生物带来的伦理问题等全球性的问题,这些方面都是对学生开展思想教育的讲台。
就学生本身的身体发育而言,通过生物学的学习学生可以了解自己身体发育过程中的秘密,从而做到心中不慌,应付自如;熟悉个体发育过程中需要不同的营养,合理饮食,健康成长。
在多年高中生物教学实践的基础上,笔者认为高中生物教学中学科交叉渗透的途径主要有五条。
1、教师自身要加强学习,提高对学科交叉渗透的理论认识;
2、加强学科教师间的交流,拓宽知识面,打好学科间交叉渗透的基础;
我们常常用“要给学生一杯水,自己必须有一桶水”来说明教师拓展知识面的重要性。教师要加强本学科同其它学科交叉的教学,那么自己必须具备宽广的知识面,否则不可能将学科联系渗透贯穿到自己的教学过程当中去。多数生物学老师刚参加工作时知识面狭窄,特别有些老师在学校期间不注意拓宽自己的知识面,不仅人文方面的知识缺乏(因为大学中生物属于理科),而且数学、化学、物理等自然科学知识也掌握得有限,这就要求教师应积极地学习与生物学有关的其它学科的知识,以填补自己知识的空白点。教师对生物学教材和与教材有关的其它学科知识不仅要广泛涉猎,而且要深入研究,不仅要“深进去”知其所以然,而且也能“跳出来”知其所以然,这样才能把握同其它学科知识的内在联系和必然规律,在教学中才会应付自如、游刃有余。更为重要的是,生物教师要经常与其它学科教师交流思想和教学经验,以开阔自己的视野和知识面,这往往可以激发出新的教学思想火花,而且有可能的话,能够多参加一些学科研讨会,同各方面的有关专家多交流并建立联系,多参加、组织一些实践活动,不断提高自己,注意总结,注意升华。
3、深化教学内容和教学方法改革,不断提高学科交叉渗透的实践能力;
4、学科课程之外学校有目的、有计划地组织多种活动,提高学生综合能力;
第二课堂是指在教学计划之外与第一课堂教学相平行的教学组织形式,是在学科课程之外由学校有目的、有计划、有组织地通过多种活动,综合运用所学知识,开设以实践性、自主性、趣味性、创造性以及非学科性为主要内容特征的课程体系,是在学校和教师的引导下,学生根据自己的爱好、兴趣和特长,自主组织和参与的一种教育和学习活动。全面开辟第二课堂,有利于开拓学生视野,提高创造力,推动学生整体化知识的吸收,激活学生的创新思维,促进创新精神和实践能力的提高,促进非智力因素的发展,并对学生的思想品德和人格情操起着潜移默化的影响作用。
5、组织学生参加有关竞赛活动,全面提高学生素质;
- 上一篇:通货膨胀的解决方案
- 下一篇:农业机械化的意义和价值