数学建模处理数据的方法范文
时间:2023-12-25 17:45:23
导语:如何才能写好一篇数学建模处理数据的方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
1.数学建模概述
数学模型是反应客观世界的一个假设对象,通过系统分析客观事物的发生规律、变化规律,测算出客观事物的变化范围和发展方向,找出客观事物发生演变的内在规律。因为任何事物都可以通过数学建模进行研究,所以数学建模在人们生产和生活的各个领域应用非常广泛。通常情况下,在对事物进行数学建模之前,应提出一个建模假设,这个假设构想是建立数学模型的重要依据,研究人员应深入研究建模对象的分析、测算、控制、选择的各参数变量,将参数变量引入数学模型中,可以通过测算精准的计算出客观事物发展的规律性参数,翻译这些参数,可以让研究者知道客观事物发生变化的具体规律。
2.在教学中应用数学建模的重要性
随着计算机网络技术的发展和改革,数学建模技术的发展速度飞快,在教学中引入数学建模思想,不仅可以提升学生的解题思维能力,还能有效地增加学生的辩证思维能力。据相关数据统计,2012年我国各高校开展的数学建模研讨会多达135场,学生通过数学建模思想的学习,将数学建模思想和所学的专业知识有机的结合在一起,深化数学建模理论在实际应用中的能力。由此可见,数学建模理论不仅对教学具有重要发展意义,还能够提升我国各领域产业的发展效果。因为数学建模理论涉及到辩证思维和数学计算,所以要想让数学建模理论在实际应用中更好的实施,必须完善其数学建模理论,制定合理的数学建模步骤,改善数学建模算法,这种才能充分体现出数学建模理论的综合应用性能。
二、数学建模方法
通过对数学建模理论进行系统分析可知,常用的数学建模种类有很多,其应用性能也存在很大的差异性,具体分类情况如下。
1.初等教学法
初等教学法是最基础的数学建模方法,这种建模方法构建出的数学模型的等级结构很简单,一般为静态、线性、确定性的数学模型结构,这种数学模型的测算方法相对简单,其测量值的范围也很小,一般应用在学生成绩比较、材料质量对比等单一比较的模型中。
2.数据分析法
对数据信息庞大的数据进行测算时,经常会应用到数据分析法,这种数学模型建立在统计学的基础上,通过对数据进行测算分析和对比,可以精准地计算出数据的变化规律和变化特征,常用的测算方法有时序和回归分析法。
3.仿真模拟法
在数学建模中引用计算机网络技术,不仅可以提高数学模型的准确度和合理性,还能通过计算机模拟技术更直观、更客观地体现出数学模型的实验方法。统计估计法和等效抽样法是仿真模拟数学模型最常应用的测算方法,通过连续和离散系统的虚拟模型,制定出合理的试验步骤,并测算出试验结果。
4.层次分析法
层次分析法可以对整体事物进行层级分离,并逐一层级的对数学模型结构进行测算,这种分析方法可以体现数学模型的公平性、理论性和分级性,所以被广泛地应用在经济计划和企业管理、能源分配领域。
三、数学建模算法的改进意见
1.数学建模算法
目前常用的数学建模算法主要有6类,其具体算法如下:①模拟算法,通过计算机仿真模拟技术,将数据引入模型构架,并通过虚拟模型的测算结果来验证数学模型的准确性和合理性;②数据处理算法,数据是数学建模算法的重要测算依据,通过数据拟合、参数变量测算、参数插值计算等,可以增强数据的规律性和规范性,Matlab工具是进行数据处理的主要应用软件;③规划算法,规划不仅可以优化数学模型结构,还能增加数学建模结构的规范性,常用的规划方法有线性、整数、多元、二次规划,通过数学规划测算方法可以精准的描述出数学模型的结构变化特征;⑤图论算法,图论可以直观的反映出数学模型的结构构架,包括短路算法、网络工程算法、二分图算法;⑥分治算法,分治算法应用在层级分析数学模型中,通过数据分析对模型的动态变化进行系统的规划,对模型的原始状态进行还原处理,对模型各层级数据进行分治处理。
2.数学建模算法的改进意见
通过上文对数学模型算法进行系统分析可知,数学建模算法的计算准确度虽然很高,但其算法对工作人员的专业计算要求很高,同时由于不同类型的模型算法不同,在对数学模型进行测算时经常会出现“混合测算”现象,这种测算方法在一定程度上会大大降低数学模型测算结果的准确度,本文针对数学建模算法出现的问题,提出以下几点合理性改进意见:①建立“共通性”的测算方法,使不同类型的数学模型的测算方法大同小异;②深化数学建模的系统化、规范化、统一化,在数学建模之初,严格按照建模规范设计数学模型,这样不仅可以提高数学模型的规范性,还能提高数学模型的测算效率;③大力推进计算机网络工程技术在数学建模中的应用,因为计算机网络应用程度具有很好的测算性能,计算机软件工程人员可以针对固定数学模型,建立测算系统,通过计算机应用软件,就可以精准的计算出数学模型的测算值。
四、结论
通过上文对数学模型的算法改进和分类进行深入研究分析可知,数学建模理论虽然可以在一定程度上优化客观事物的模型系统,但是其测算理论依据和测算方法仍存在很多问题没有解决,要想实现数学模型的综合应用性能,提高测算效率,必须建立完善的数学建模算法理论,合理应用相关测算方法。
参考文献:
\[1\]韦程东,钟兴智,陈志强.改进数学建模教学方法促进大学生创新能力形成\[J\].教育与职业,2010,14(12):101-113.
\[2\]袁媛.独立学院数学建模类课程教学的探索与研究\[J\].中国现代药物应用,2013,15(04):101-142.
\[3\]王春.专家呼吁:将数学建模思想融入数学类主干课程\[R\].科技日报,2011,15(09):108-113.
篇2
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。
工具/原料
调查收集的原始数据资料
Word公式编辑器
步骤/方法
数学建模建模理念为:
一、应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
二、数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。
三、创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。
当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。建模论文主要包括以下几个部分:
一、摘要800字,简明扼要(要求用一两字左右,简明扼要(字左右句话说明题目中解决的问题是什么、用什句话说明题目中解决的问题是什么、么模型解决的、求解方法是什么、么模型解决的、求解方法是什么、结果如何、有无改进和推广)。有无改进和推广)。
二、问题的重述简要叙述问题,对原题高度压缩,切记不要把原题重述一遍。
三、假设1.合理性:每一条假设,要符合实际情况,要合理;2.全面性:应有的假设必须要有,否则对解决问题不利,可有可无的假设可不要,有些假设完全是多余的,不要写上去。
四、建模与求解(60~70分)1.应有建模过程的分析,如线性规划、非线模型中目标函数的推导过程,每一个约束条件的推导过程,切记不要一开始就抬出模型,显得很突然。2.数学符号的定义要确切,集中放在显要位置,以便查找。3.模型要正确、注意完整性。4.模型的先进性,创造性。5.叙述清楚求解的步骤。6.自编程序主要部分放在附录中(所用数学自编程序主要部分放在附录中。7.结果应放在显要的位置,不要让评卷人到处查找。
五、稳定性分析、误差分析、1、微分方程模型稳定性讨论很重要。2、统计模型的误差分析、灵敏度分析很重要。
六、优缺点的讨论1.优点要充分的表现出来,不要谦虚,有多少写多少2.对于缺点适当分析,注意写作技巧,要避重就轻。大事化小,小事化了。
七、推广和改进这是得高奖很重要的一环,如有创新思想即使不能完全完成也不要放弃,要保留下来。
八、文字叙述要简明扼要、条理清楚、步骤完整,语言表达能力要强。
九、对题目中的数据进行处理问题对题目中数据不要任意改动,因问题求解需要可以进行处理。如何处理,应注意合理性。1.先按题给条件作一次。2.发表自己见解,合理修改题目。
注意事项
篇3
【关键词】 计算机 数学建模 应用
前言
数学的研究是对模式的研究,而数学建模即是通过数学方法对现实规律进行抽象概括从而求解的过程。在自然科学领域,数学建模利用逻辑严密、体系完整的数学语言求解出了更为精确的方案。
而近年来,交叉学科的发展使得数学建模技术逐渐运用到了金融、经济、环境等多个领域,重要性日益凸显。而计算机本身强大的计算能力使得复杂的数学建模成为了可能,逐渐成为建模过程中必不可少的重要工具。
一、数学建模的主要特点
数学建模的分析流程包括:通^调查分析了解现实对象,做出研究假设,用数学语言构建约束条件,得出实际问题的解决方案。而数学建模与数学研究相比,有着自身的显著特点。
1.数学建模与数学研究不同,更侧重于解决实际问题。以2016年全国大学生数学建模竞赛为例,四道题目分别为:系泊系统的设计、小区开放对道路通行的影响、电池剩余放电时间预测、风电场运行状况分析及优化。可以看出,数学建模主要研究工业与公共事业规划等应用问题,比纯粹数学研究更为实际,更讲究可操作性。
2.数学建模中的模型设定具有主观性,合理修缮模型能够得出更为精确的解决方案。对于同一现实问题,不同的模型设定者的思路、角度、约束条件等参数都有所不同,因而数学建模中的模型设定是具有主观性的。在实际运用中,完美的模型很难建立,模型的多次修改与完善才能够更好地达到预期的效果。
3.数学建模涉及的学科领域更为宽泛,一般需要运用海量数据和复杂计算。数学建模的运用领域涉及到工业规划、环境保护、经济管理等交叉学科,数据的种类与数量往往十分庞大,运算过程较为复杂,一般需要重复引用并多次计算。以全国大学生数学建模竞赛2015年B题“互联网+时代出租车资源配置”为例,涉及学科包括交通规划、公共服务、人口学等领域,在建模求解中很可能将处理出行周转量、出租车数量、人口数等大量数据。
二、计算机技术在数学建模运用中的主要功能
1.计算机为数学建模提供了海量计算与存储的强大支持。自1946年2月世界上第一台电子数字计算机ENIAC诞生开始,计算机的存储与计算能力迎来了飞速发展。超级计算机的出现,更是使计算机的运行能力达到了新的量级。现如今,计算机的大容量智能存储与超高速的计算能力,使得气象分析、航空航天与国防军工等尖端研究课题的数学建模成为了可能。
2.计算机为数学建模提供了更为直观全面的多媒体显示。目前,以计算机为载体的文字、图像、图形、动画、音频、视频等数字化的存储与显示方式被大量运用,使得交互式的信息交流和传播变得更加顺畅。在数学建模中,多学科的涉及使得建模过程中的显示、推断与监测变得尤为重要,而计算机的出现大幅提高了信息传递、显示、交互的效率。
3.计算机自动化、智能化的属性与数学建模相辅相成,互相促进。在计算机的辅助下,程序能够智能化地进行模型建立、模型漏洞的修缮,避免了低效率的计算过程。例如,某个关键数据或参数的修改,对于整个模型是“牵一发而动全身”的,计算机不仅能够保存多个版本的计算结果,它的智能引用还能够使得各项计算自动引用修改后的新数据,从而使整个模型时刻保持统一。
4.计算机模拟能在不确定的条件下模拟现实生活中难以重复的试验,大幅降低了实验成本,缩短了辅助决策的时间。由于在实际问题中,我们所需参数的值通常是不确定的,无法用数学分析的方法分析和建立数学模型,且通过大量实验来确定参数的过程从时间、人力、物力等因素都要付出昂贵的代价,甚至从客观上无法进行。而计算机通过历史数据或者特定函数或概率关系能够建立预测模型,得到目标值的概率分布从而辅助决策过程。
下面我们以经济管理中的项目决策为例,简要分析计算机模拟的强大功能。
假设我们要启动某大型商场的建造,目标是利润最大化,但项目成本与项目收益都是不确定的,我们便可以建立数学模型,辅助我们的投资决策过程。
(1)模型建立
建立基本的函数关系,构建目标变量。在本案例中,收入减去支出等于利润为最基本的关系,而利润最大化即为目标。
(2)具体参数输入
分析每项变量的影响因素,收集相关数据。在收入中,决定因素包括了消费人数和人均消费额,这两项参数又可由商圈人流量、地理位置、居民的人均收入、商场的档次定位几项参数决定。在成本中,商品成本、以广告费用为主的销售费用、管理费用、财务费用和非经常性项目构成了主要成本。值得注意的是,有些指标之间是具有相关性的,例如商圈地理位置将影响到租金,商场的定位将影响所售商品的成本,而销售费用除了直接影响支出以外,在一般情况下也与收入成正相关关系。这些复杂相关关系的运算量很大,使用计算机能够高效地实现计算和模拟。
(3)具体参数预测
分析每项细分参数的概率分布,控制输入。可以通过静态模拟和动态模拟进行预测。例如人流量、人均收入等都是不可控变量,可通过不断的实时数据输入进行预测,而销售费用等变量可通过内部管理进行调控,可以使用特定比例等方式直接进行静态预测。
(4)结果分析
根据各项变量的概率分布,我们可以根据不同变量的特定值进行组合,从而得到特定组合下的利润值,最终得到利润在其值域上的概率分布,从而辅助我们的决策过程。例如,在利润为负(即亏损)的概率超过某个百分比时不启动项目,在利润超过某个值的概率超过某个百分比时启动项目。
笔者认为,计算机模拟集合了海量存储与计算、仿真与模拟等功能,是数学建模中最为强大的运用,大幅提高了决策过程的效率。现如今,计算机模拟已经在经济管理决策、自然预测等方面起到了重要作用。
三、计算机技术在数学建模中的主要运用工具
3.1数学软件
MATLAB和Mathematica、Maple并称为三大数学软件,是数值分析计算、数据可视化等领域的高级计算语言,不仅能够对微积分、代数、概率统计等领域进行常规求解,还在符号、矩阵计算方面各有特长。这些软件是数学建模中运用最为广泛的工具。
3.2图像处理
(1)Photoshop:著名的图像处理软件,主要运用于平面O计与图像的后期修饰。
(2)CAD:可视化的图像处理软件,能够实现三维绘图,广泛运用于工程设计领域。图像处理软件能够满足部分建模问题中精确构图显示的要求,例如工程设计等问题,CAD的三维建模能够有效协助决策分析。
3.3统计软件
(1)R语言:免费开源的统计软件,程序包可以实现强大的统计分析功能。
(2)SPSS:入门级统计软件,能够完成描述性统计、相关分析、回归分析等基础的统计功能。
(3)SAS:专业的数据存储与分析软件,具备强大的数据库管理功能,广泛运用于工业界。统计软件能够满足数学建模中对于海量数据存储与分析的要求,是建模分析中最为重要的工具。
3.4专业编程软件
(1)C++:严谨、精确的程序设计语言,因其通用性与全面性被广泛运用。
(2)Lingo语言:“交互式的线性和通用优化求解器”,是一种求解线性与非线性规划问题的强大工具。专业的编程语言能够结合、辅助其他类软件进行程序编写,完成特定情况下的建模、规划等问题。例如Lingo语言,便能实现在规划类问题中优化分析、模型求解等强大功能。
四、结束语
数学作为研究数量关系和空间形式的基础科学,已经成为了解决众多实际问题的重要指导思想之一。而计算机作为规模化、智能化、自动化的计算工具,将进一步扩展数学思想在众多领域的基础实践。可以预见的是,广泛运用计算机技术的数学建模理论,将不断运用到社会发展各个方面,协助人类攻坚克难,在追求真理的道路上坚定前行、永不止步。
参 考 文 献
[1]高瑾,林园. 浅谈计算机技术在数学建模中的重要应用[J]. 深圳信息职业技术学院学报,2016,(03):54-57.
篇4
一、构建函数模型的思路及步骤
二次函数作为最基本的初等函数,它既简单又具有丰富的内涵和外延,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可以建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它的平面曲线,讨论相互之间的联系。这些纵横联系,使得围绕二次函数可以编出层出不穷、灵活多变的数学问题。同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校的重要知识基础。
案例1:某垄断厂商销售一种产品,每件售价m元,销售价受销售量的影响,要想多售出1件,销售价应下调的百分数为n,生产这种产品的成本单价为b元,每多生产1件这种商品,成本的增加率为a.生产这批产品厂商投入的固定资金为c元,国家应如何确定对该厂商单位产品的税金,才能使这项税收额最高?
分析:这个问题应从两个方面考虑:(1)厂商想获取最大利润,从而根据国家公布的单位产品的税金决定产量。(2)国家在保证厂商利益的前提下希望该项税收额最高。设国家确定的这种产品的税金为t元,厂商生产这种产品的产量为x件,则总税金为tx元,厂商的利润为y=(m-nx)x-[(b+ax)x+c]-tx=-(n+a)x2+(m-b-t)x-c.这是一个二次函数,因此问题就转化为求二次函数的最大值问题。
通过以上分析,可以看出构建函数的具体步骤为:
第一步:阅读理解,认真审题。
第二步:引进数学符号,建立函数模型。
第三步:利用数学的方法将得到的函数模型予以解答,求出结果。
第四步:再转译成具体问题作出解答。
其中根据收集的数据去体现解决问题的一般过程如下:
(1)收集数据。
(2)根据收集的数据在平面直角标系内作出散点图。
(3)根据点的分布特征,选择一个能刻画出散点图特征的函数模型。
(4)选择其中的几组数据求出函数模型。
(5)将已知数据代入所求的函数模型进行检验,看其是否符合实际,若不符合实际,则重复(3)(4)(5),若符合实际,则进入下一步。
(6)用求出的函数模型解释实际问题。
二、培养建模意识的教学策略
建模意识的培养,在某种程度上表现为学生对力所能及的实际问题的数学化能力,这就要求我们结合适当的实际问题,注意发展学生的数学建模能力,让学生在弄清楚实际问题,分析处理资料的过程中确定问题的主要特征,进行数学抽象概括,提出假设,应用数学的工具建立各种量之间的关系,进行推理和求解,提出数学的结果,并返回到实际问题中去解释、回答实际问题。数学建模过程中,能将学生所学的数学知识、数学思想方法内化为数学意识,能使学生的多项数学能力得到运用和综合发展。
1. 结合教材,精心选择一些简单的实例。这一阶段主要是提高学生运用数学知识解决实际问题的兴趣,体会到数学的价值,享受到学习数学的乐趣,增强学好数学建模的信心。中学生刚开始接触这一新的思想方法 ,所学的知识不多,所以选取的例子要贴近教材内容,贴近学生的认知水平,涉及的专业知识不要太多,且要易于理解,此时的重点是培养学生将实际问题转化为数学问题的能力。
篇5
“概率统计”是一门具有实践性与理论性的重要学科,在不断发展的过程中已经成为数学科目不可或缺的组成部分,并且对此起到重要的作用。在根据课程的相关特点中,利用现代科学进行审视与组织,从而使数学概率统计中融入新鲜元素,在教学内容上引入有趣的应用题目,并且要对科学方法以及相关技术、概率统计知识进行联系。学生在运用“概率统计”知识的基础上们能够建立数学模式,对“概率统计”的知识也会产生兴趣爱好。除此之外,还能促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模的思想积极融入到数学概率统计之中,能够在不打破传统知识的同时,应用案例进行解决。通常情况下,学习通过对案例的学习,能够亲自体验在使用概率统计知识进行数学建模的整个过程,从而加深对概率统计知识的认知与理解,促进学生的学习兴趣与学习习惯。从另一个角度而言,学生在努力学习数学概率知识的同时,能够真正做到“学以致用”,由于数学概率统计是一门重要且复杂的课程,在不影响到教学大纲的情况下利用多种手段进行教学,可以增强学生数学建模的基本能力,从根本上体现数学建模的思想。
二、教学方法得以改进,促进开放式学习方式的形成
(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。
(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。
三、改善教材中的理论学习,加强实践学习
在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。
四、结语
篇6
中央关于全面推进素质教育的决定中指出:“智育工作要重视培养学生收集处理信息的能力、获取新知识的能力、分析和解决问题的能力、语言文字表达能力以及团结协作和社会活动的能力。”而传统的数学纯理论化学习的内容偏多,教学内容脱离实际生活。数学知识的应用和数学建模活动,可以加强数学与实际生活的联系,使学生从实际生活中抽取信息,提炼成数学模型,用数学方法结合其他学科的一些知识解决实际问题。
教育与社会实践相结合是我校长期以来积淀的办学特色。在数学的教学活动中,引入数学知识的应用和数学建模,有利于更好地发挥学校优势,激发学生学习兴趣,培养学生敢于动手、积极探索和综合运用所学的各学科知识解决实际问题的能力,从而提高其数学素养。
问题的研究
我校申请科研课题,组织数学组教师结合密云二中学情,编写校本教材《数学知识应用与数学建模》。
我们从以下角度梳理校本教材的内容:
在结合现行教材的基础上,按章节、单元适当切入数学知识应用及建模的素材。
为方便开展中学数学知识应用和建模竞赛等相关活动,补充相关知识。
搜集对中学生数学建模启发较大的典型问题(论文素材),并进行分析,启发学生初步掌握数学建模的方法。
搜集本校学生数学知识应用竞赛的优秀论文,并作适当点评。
将整理的内容按每节课1课时编写教学目标和实施过程设计。
课程组教师采用行动研究法,通过从网上搜索信息,翻阅图书,并结合教学实践,撰写校本教材,以数学选修课为载体,反复实践修改。
课题研究成果
通过不断地探索、研究,我校教师逐步完善了校本教材《数学知识应用和数学建模》,共计30讲,分为30课时进行教学。书中涉及数学的作用、分段函数在实际问题中的应用、工程管理问题、线性规划、数据拟合、研究性学习中数据的收集分析处理方法,科研报告和论文的撰写方法,典型数学建模论文赏析等内容,为数学教师开展数学知识应用和数学建模活动提供了很好的素材,为数学教师开展选修课提供了很好的载体。在十五国家课题《素质教育实施中的普通高中校本课程研究》中,校本教材《数学知识应用和数学建模》被课题组评为二等奖。
出版了1本全部由学生撰写、教师指导的论文集《密云二中学生数学知识应用与数学建模论文精选》。
篇7
关键词: 高中数学 建模思维 构建途径
对于大部分高中学生来说,数学都是一块难啃的硬骨头,很多在初中数学成绩偏上的学生到了高中甚至连中等水平都达不到,而另一部分学生到了高中后,数学成绩却直线上升。究其原因,学生的建模思维极大地影响着学生数学水平的发展,本文主要探索数学建模思维对学生高中数学学习的影响。
一、数学建模思维的含义
要了解数学建模思维,首先要清楚什么是数学模型、什么是数学建模。简单来说,数学模型是人们在理解现实问题后,再灵活利用各类数学式子、符号、图形等程序对问题本质的提炼和刻画。数学建模就是运用数学语言描述实际问题的过程。而数学建模思维则是拥有利用数学建模解决问题的思维。
二、高中数学建模教学现状
数学在实际生活中应用广泛,然而在应试教育的大环境下,老师为了完成繁重的教学任务,让学生以最高的分数出现,不得不以一切以提高分数为目的,以致出现诸如“三短一长选最长”“三长一短选最短”的荒谬言论。在高中数学教学中,老师更多的是注重培养学生的运算能力,让学生在死记住各种冗杂的数学公式下进行机械做题。学生成了考试机器,根本不能将所学知识运用到实际问题中,更别提数学建模思维的培养了。
三、在教学中构建数学建模思维的基本途径
(一)提高教师数学建模意识。
在高考的指挥棒下,很多教师为了提高学生的成绩,盲目地让学生重复做相同的练习题,在遇到数学问题时,老师自己也忘记了还有数学建模的方法。他们总是希望用最简单便捷的方式让学生获得最高的分数,实际上,正是这样让学生死记硬背的思维,让学生对数学更是望而却步,觉得数学越学越难。因此,只有老师自身加强数学建模意识,在课堂上向学生教授一些数学建模的方法,才能让学生在不自觉中构建良好的数学建模思维。这就意味着,教师不仅要吃透教材内容,更要在此基础上结合新式的教学方法,更新陈旧的教学理念和教学模式。除此之外,高中数学教师还需要不断学习一些新的数学建模理论,才能更好地引导学生进行有效学习。
(二)将教材与实际相结合,激发学生兴趣。
爱因斯坦曾说:“兴趣是最好的老师。”可见,要想学生热爱数学,培养学生构建数学建模思维,就必须想方设法让学生爱上数学。笔者通过调查发现,现在学生懒于学数学的一大原因是认为数学无用,只需要会做简单运算就行。他们认为像函数、几何之类的学之无用,只是为了应付考试。因此,教师就要联系实际生活,让学生知道,生活中处处有数学,生活处处需要数学。例如,笔者让学生预测第三个月某种米价格的变化趋势。这道题目看起来似乎很为难学生,但是实际不然。在班上,笔者将学生按五人一组分为八个小组,让他们抽取周末的时间调查接下来两个月的米价,然后让学生在搞清其价格变化函数后,合作作出其价格变化曲线,便可以预测米价在近期的变化趋势。这是大多数人都会忽略的事情,却是数学教师运用数学建模进行教学的良好机会。同样的,教师还可以引入如:掷实心球的角度与距离关系;农夫“筑篱笆”问题;全班同学手拉手围成矩形圈,怎样才能使围成的面积最大等一系列实际问题。
(三)充分发挥学生的主体作用。
现在早已不是“一人一书一粉笔”的传统课堂教学,要将课堂的主人翁地位还给学生,教师仅仅是课堂的引导者,而不是主导者。对于数学学科,教师可以采取任务式的教学方法,发挥学生主体作用。例如交水费问题,笔者引用某单位的用水实际情况,让学生计算应该交多少钱。题目如下:“我市制定的用水标准为每户每月用水未超过7立方米的,每立方米收1.0元,并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收取1.5元,并加收0.4元的城市污水处理费。如果某单位有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月没超过7立方米的用户最多有可能是多少户?”学生对数据进行整理后得到以下表格:
通过对表中数据的分析,我们发现收集的数据分两种情形:7立方米以下和7立方米以上,它们的收费方式有所不同,即:
用水量≤7m3时,收费为:用水量×(1.0+0.2);
用水量>7m3时,收费为:7×(1.0+0.2)+(用水量-7)×(1.5+0.4).
这样,我们即可解决问题:
设每户的用水量为x立方米,应交水费y元,那么函数关系是:
(1)当x≤7时,y=1.2x;当x>7时,y=1.9x-4.9.
(2)设这个月未超过7立方米的用户最多为x户,则50×7×(1+0.2)+(50-x)(10-7)×1.9=541.6,解得:x≈29.
其实,对于高中学生来说,问题很简单,但是积极讨论解决问题的过程很让他们享受,激发他们的数学学习兴趣,解决问题后,教师也很容易引入高中新的函数课程的学习。
(四)引导学生大胆想象,不断创新。
数学建模过程是一个创新的过程,在思考和思维方式上与传统数学不同。因此要向构建学生良好的数学建模思维,就必须注意培养学生的创造性思维。即使是最简单的问题,也需要学生通过思考想出新的解决方案。在这一点上,需从教和学两个方面进行开展。首先是教,从老师出发,教师自身在教授过程中必须具备一定的创新意识,注意数学课堂提问的艺术性,培养学生独立思维的习惯,同时,当学生做出一定成绩时,教师必须及时给予鼓励,保护学生思考的积极性,即使回答错误,也应正确引导,不能一口否决。其次是学,学生课堂学习多少带有考试目的,所以很多时候他们更愿意坐等答案,而不愿多加思考。因此教师要引导学生改变他们的学习方式及思维方式,经常讲述一些数学创新案例和引导学生创造性地完成已知例题培养学生的创新思维。
综上所述,学生高中数学建模思维的培养任重道远,不是一朝一夕可以达成的,因此,教师应当结合教学现状,提高自身素养,结合生活实际,逐步培养学生的数学建模思维。
参考文献:
[1]李义渝,著.数学建模思维方法论[J].吉林:大学数学,2007.
篇8
关键词:西部少数民族地区;医学院校;医用数学实验课程
一、医学院校开设医用数学实验课程的必要性
医用数学课程在医学院校中广泛开设,是高等医学教育课程体系中不可或缺的重要组成部分,主要包括高等数学、数理统计、线性代数、运筹学、模糊数学等内容。数学课程开设的目的主要是为了医学生掌握必要的数学知识和计算方法为相关的医学课程打下基础,同时为医学生在医学实验、毕业设计、科学研究中存在的问题提供解决的方法和途径。传统的医用数学课程教学主要集中在理论讲授,过分追求数学理论的推导,数学知识严谨的证明,没有很好地实现数学和医学的完美结合,还不能充分体现数学在医学教育中的实用性。医学生学习了数学系列课程,在面对医学实际问题时仍然束手无策,而医用数学实验可以很好地帮助医学生淡化数学理论推导,直接利用软件强大的数值计算、符号演算、图形处理等功能轻松实现医学问题中涉及的解方程、假设检验、回归分析、数据处理等问题。医用数学实验课程的开设,势必能在提高学生数学学习兴趣和培养学生数学建模、数据计算及处理的能力方面起到重要作用,更好地促进学生由被动学习数学知识到主动应用数学知识解决医学实际问题的转变,促进医学生数学应用能力的极大提升。
二、西部少数民族地区医学院校开设医用数学实验课程的现状
近年来,医学院校开始意识到医用数学实验课程对高等医学教育的重要性,部分高校开始引入医用数学实验课程,而西部少数民族地区医学院校由于教学条件相对落后、师资力量较为单薄,开设该课程的院校较少。在已经开设该课程的西部少数民族地区医学院校中,由于数学课程总课时大量压缩、数学实验开设课时较少,开设情况和取得的效果并不理想,存在诸多问题。首先,缺乏科学的医用数学实验课程设计。科学、完备的医用数学实验课程设计是实现医用数学实验教学目的的重要保证。通过分析高等医学教育中与数学课程教学紧密相关的现代医学问题,设计医用数学实验课程内容。现代医学教育中的问题大多是基于庞大的数据处理、数据计算、图形分析、多学科综合,因此在设计医用数学实验课程时应尽可能打破传统的以课程为基础的设计思路,逐步转变为以解决问题为导向的课程设计。其次,缺乏开设医用数学实验课程的专用教学环境。数学学科在医学院校属于非主流学科的现状在西部少数民族地区广泛存在,绝大多数院校的数学学科发展较为缓慢。数学学科拥有的专用数学实验室数量较少,严重影响了高质量的医用数学实验课程的开设。最后,缺乏调动学生学习的有效途径。医用数学实验开设过程中,大部分教学模式是由教师根据实验内容进行讲解,学生完成相应实验内容,教师进行督查三部分构成。学生无法提炼医学教育中遇到的实际问题,不能在医用数学实验课程中进行讨论、分析处理,学生建模能力和数据处理能力、创新能力没有得到较好地挖掘。
篇9
数学建模可以为数学理论和金融问题搭建一座桥梁。数学模型在金融领域已经有广泛的应用,如证券投资组合模型、期权定价模型等。数学建模教育在金融人才培养中的作用是其他学科无法替代的,可以归结以下几方面:
1.提高学生的应用
数学素质以及学习兴趣数学建模教学是案例教学,以实际问题为背景,利用数学思想方法解决实际问题,可以很好地将数学理论与金融实际问题紧密结合。如在量化投资中,可以基于智能算法建立套利模型;利用最优化方法研究资产组合模型等。数学建模教学可以避免抽象理论知识的讲授,让学生认识到数学在金融中的重要应用价值。同时,激发了学生学习数学的兴趣,发现了数学的无穷魅力,提高对数学的认可度,体会到数学是一种重要工具。数学建模课程中讲授了大量的数学建模思想方法,如时间序列分析、最优化方法、微分方程、智能算法等。常言道:授人以鱼,不如授人以渔。通过数学建模的学习与训练,可以拓宽学生的知识面,提高学生应用数学解决实际问题的能力。
2.培养学生的科研创新能力
数学建模是一个不断探索的创造性过程。从不同的角度理解,同一个问题会得到不同的数学模型以及求解方法,没有统一的标准答案,这为学生留出自由发挥的广阔空间。在建立数学模型之前,必须查阅大量的资料,获得自己所需要的信息。数学建模最终解释实际问题必须以论文的形式呈现。经过数学建模训练之后,学生的创新能力有了显著的提升。例如我校获得国家二等奖的小组,被选中参与量化投资大赛,最后也获得了全国二等奖。因此,数学建模教育有助于提高学生的文献查找能力以及论文撰写水平、培养学生探索、研究能力、创造性地运用综合知识解决实际问题的能力。
3.增强学生的综合
素质数学建模教育除了培养学生应用数学的能力之外,还有一个目的就是为参加数学建模竞赛做准备。数学建模竞赛是以小组为单位开展工作,3个人分工明确,但又不可独立开来。面对复杂的赛题,3个人只有共同思考、互相启发、各司其职、、攻坚克难才能在规定的时间内完成。这种竞赛模式培养了学生团队合作精神以及攻坚克难的毅力,为今后能更好地适应工作中的挑战奠定基础。除以上之外,在数学建模过程中还培养了学生想象能力、抽象思维能力、发散思维能力、开拓创新能力、学以致用能力、综合判断能力、计算机编程能力等。而这些能力恰恰是21世纪金融人才应该具备的素质。可以说一次参与,终身受益。数学建模为培养应用型创新型复合型金融人才提供了有效手段。
二、地方金融类院校开展数学建模教育措施
1.重视数学基础知识
在金融中的应用高等数学中,我们可以用泰勒级数去近似一个抽象函数。教师在讲授这节内容时,可以将其用于研究债券价格的变化以及波动性。在概率论中,概率分布研究不确定事件发生的可能性。二项分布在金融中最常见的应用是关于债券价格的变化。概率分布可以用于预测资产价格或资产收益率的未来分布。如果在高等数学、线性代数、概率论与数理统计等公共基础课上适当引入以金融知识为背景的例子,学生将更加深入体会到所学的抽象内容在现代金融的有用武之地,有助于提升学生学习数学的兴趣。然而,要在数学基础课堂上将数学知识与金融专业知识相结合又是不容易的。数学基础课程大多数为公共基础部承担,大部分教师没有金融背景。因此,在招聘数学教师时应该适当考虑有金融背景的数学教师。
2.将数学建模思想方法与现代金融相结合
现代数学包含各门学科知识和数学方法。数学建模课堂上,教师讲授大量的数学建模思想方法,如优化理论、多元统计分析、预测方法、回归分析、现代优化算法、综合评价法等。而数学建模教学采用的是案例教学法,如果能将其与现代金融相结合,有助于提升利用数学知识的能力,同时可以加深理解专业知识。以量化投资中多因子选股模型为例,在选股的时候,人们经常使用的方法是基于基本面或技术面。新兴的量化投资也慢慢发展起来,相比传统方法,量化投资更加客观、理性。多因子选股模型是采用一系列因子作为选股标准,建立过程主要为候选因子的选取、有效性检验、冗余因子剔除、综合评分模型的建立和模型的评价与改进。这一建模过程为数学建模思想方法与现代金融相结合提供了很好的范例。
3.开设金融建模与编程或数学实验选修课
大数据时代对金融人才提出了更高的要求。互联网金融、大数据金融要求金融人才必须具备一定处理数据、分析数据、计算数据的能力。目前,一些金融行业要求求职者必须具备一定编程能力,特别是熟练使用Matlab以及C语言。通过开设金融建模与编程或数学实验选修课可以培养学生的编程能力以及计算能力,为今后就职奠定基础,增加就业筹码。对于一个金融问题,通过问题假设、分析、建立模型,之后,还得借助计算机求解。比如金融分析中的优化问题、回归分析方法等。事实上,这些方法都有现成的函数可以调用。各种数学软件都有各自的优势所在,而对于金融模型,笔者更青睐于使用Matlab软件。Mtalab的编程语言和规则简单,较容易入门。在金融领域有以下几种工具箱:金融数据工具箱、计量经济学工具箱、金融衍生品工具箱、优化工具箱、统计工具箱。使用这些工具箱可以进行投资组合优化和分析、预测和模拟等。比如我们可以基于Matlab平台,采用蒙卡洛模拟方法模拟新股申购中签过程。
4.以竞赛或立项为载体,提升建模能力
目前,数学建模活动在我校开展两年以来,先后组织学生参与全国数学建模竞赛、“华东杯”数学建模竞赛等,取得了一项国家二等奖以及多项省赛区一等奖。我校数学建模课程为全校公共选修课,学生参与数学建模活动热情还有待进一步提升。事实上,金融院校的学生学习了统计学、多元统计分析、运筹学、计量经济学、时间序列分析等。学完这些知识再经过适当培训完全可以胜任数学建模比赛。为了更好地发挥数学建模对金融人才的积极作用,我们必须通过各种形式宣传、引导学生了解数学建模比赛,同时学校应该给予更多的政策支持,组织、鼓励学生参与数学建模竞赛、统计建模竞赛、创新创业训练项目。以竞赛或立项为载体,项目为驱动,利用数学知识解决实际问题,特别是将数学知识与金融专业知识相融合,为应用型创新型金融人才的培养提供新途径。
三、结语
篇10
随着社会经济和科学技术的飞速发展,特别是计算机技术普及,使得数学知识广泛应用于各个领域的实际问题之中。数学模型主要是使用数学知识来解决实际问题,因此,数学是人们掌握和使用数学模型这个工具的必要条件和重要的基础。没有广博的数学力学知识,严格的数学力学思维训练,是很难使用数学力学模型来解决实际问题的。因此,数学模型是连接实际问题和数学理论的中间桥梁。
数学模型是一种具有创新性的科学方法,它通过抽象和简化,使用数学语言对现实问题进行简化,以便人们更加深刻地认识所研究的对象。数学模型不是对于现实系统的简单模拟,它是人们用以认识显示系统和解决实际问题的工具,数学模型是对现实对象信息进行提炼、分析、归纳、翻译的结果,它使用数学语言精确地表达了对象的内在特性,然后采用恰当的数学方法求解,通过数学上的演绎推理和分析求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题之目的。应用数学知识解决实际问题的第一步必须要面对实际问题中看起来杂乱无章的现象,从中抽象出恰当的数学关系,用数学符号和语言把这个数学关系描述为数学公式,这个过程就是数学建模。数学建模活动的开展不但增强了大学生的创新意识、协作意识、竞争意识和奉献意识,更培养了他们的创造能力、分析问题和解决问题的能力。
在我国,创办于1992年的全国大学生数学建模竞赛,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2013年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加本项竞赛。在这样的大环境下,传统的数学教学已经阻碍了高等教育的发展,因此数学建模教学课程的创设也就成为高等学校改革的突破口。通过何种手段实施数学建模思想,采取何种数学建模教育来切实提高学生的数学素质,也就成为高校教师教学中的一个重大课题,培养学生应用数学建模的意识和能力已经成为教学的一个重要方面。
一、数学模型的分类
数学模型的分类繁多,但是按人们对事物发展过程的了解程度可以分为:
白箱模型,指那些内部规律比较清楚的模型。如:力学、热学、电学以及相关的工程技术问题。
灰箱模型,指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如:气象学、生态学、经济学等领域的模型。
黑箱模型,指一些其内部规律还很少为人们所知的现象。如:生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。
二、数学建模的过程
一般说来,建立一个能够反映现实问题的数学模型必须经历几个过程(图1):
第一,建立模型的准备,在建模前首先通过搜集相关资料来了解问题的实际背景知识。根据题目的要求,明确其实际意义,有目的地收集相关的信息和数据,尽量弄清研究对象的特点,用数学思路贯穿问题的全过程,初步确定用何种数学工具建立哪一类数学模型;
第二,模型假设,这是建模的关键一步。根据研究对象的特点和研究目的,抓住问题的主要方面以及本质,忽略次要因素。对研究问题做出必要的、合理的假设,从中将实际问题抽象并简化出一个简单化的数学问题;
第三,模型构成,分析处理已有的数据和资料等,在已做假设的基础上,综合运用适当的数学方法,选用合理的数学语言、符号、图形并分析其内在的逻辑关系来描述研究对象。所采用的数学工具要尽量简单,其模型也一定可行,能够方便地用数学工具求解;
第四,模型求解,所建立的模型必须是可行的,根据不同的数学模型要用到相应的数学方法来求解其结果,即能够使用数学工具(Fortran,Matlab,C++等),对模型进行求解(解析解或近似解);
第五,模型分析,对模型求解的结果进行数学上的分析(误差分析,统计分析,灵敏度分析和稳定性分析等),分析模型中各个参数之间的相互关系,同时还需要根据所得结果给出数学式的预测和最优决策、控制等,指出结果的实际意义和模型的适用范围等;
第六,模型验证,将模型分析的结果运用懂时间问题的解决中并和实际情况比较,用时间的现象和数据来验证模型的合理性、实用性、可靠性和准确性等。如果求解结果为数值解,还要同时考虑所得到的误差应该在实际问题允许的误差范围之内。若比较相互吻合,说明模型是合理正确的。反之,则说明模型是失败的,问题可能出在假设上,此时应根据检验的情况对假设进行不断的修改并完善数学模型,重新求解进行分析,知道分析结果和实际情况符合,并且可以满足精度要求,则认为模型可行,便可以进行模型的应用和推广。另外,一个正确的模型不但可以解释已知现象,而且还可以预测一些未知情况;
第七,模型应用,将验证正确的数学模型进一步推广到一些实际领域内,用以解决实际问题,在应用中不断改进和完善,从而对实际工作进行指导,最终产生经济效益。
■
图1
可见,完整的数学建模是一个互动的过程。在建模过程中,就要把本质的东西及其关系反映进去,要真实地、系统地、完整地、形象地反映客观现象,若结果不理想,还得修改模型,重复上述过程,以期达到理想的结果。要想获得一个比较正确的数学模型,就必须熟悉并掌握一些建模的方法。
三、数学建模教学的改革
数学建模教学在高等学校实现素质教育及人才培养方面具有不可替代的作用,它是对加强学生知识,技能、能力、创新和综合素质培养这一中心工作不可缺少的重要组成部分。因此,国外的一些院校对数学建模教学的环节非常重视。然而,我国的数学建模却没有得到足够的重视,以我校的数学建模教学为例,主要存在两个方面的问题:第一,教学方式单一,往往是教师一个人在讲台上先把板书写好,然后按照固定的模式一步一步操作下去,台下学生快速地记笔记,课后按部就班地完成作业。这样就导致有的学生虽然可以完成作业,但是不能够真正地理解数学建模的原理,不会将实际问题转换为数学问题,从而难于发现问题和解决问 题。第二,教学内容陈旧,始终处于停滞状态,局限于书本上的例题,这些例题往往和时展相脱节,教学内容已经不能适应相应的社会发展要求。第三,数学建模课程缺乏时代性,学校没有形成对应的管理机制去监督数学建模教学的改革,现有的教学缺乏针对性,没有达到与时俱进。甚至,有的高校教学内容沿用了几年甚至十几年一成不变的教学大纲,以至于学生后来工作后无法将课堂上学到的知识灵活地运用到实际工作中从而满足自己的工作需要,实现个人价值和社会价值的统一。
针对以上数学建模教学中存在的问题,可以采取以下措施进行改革创新:
(一)传授模式的改变
数学建模是一个老师和学生互动的过程,为了改变传统的教学模式,可以改变教师一人讲授的传统方式,也可以采用多媒体教学。学生既是被动接受知识的载体,又是整个过程的主要参与者。期间老师可以将该讲授内容以录像、动画和视频的形式表现出来,也可以通过讲授并且启发提问的方式,便于学生思考、提问和讨论、从而调动了学生的主动性。建模过程是一个复杂的过程,往往没有现成的解决方案,此时老师和学生必须进行实际背景调查,每个学生都应该参与其中,充分发挥各自的主观能动性,以便培养学生在课堂上独立思考问题的能力。另外,在课堂上还要培养学生发散思维的能力,没有一个数学模型可以完全解决实际问题。反之,同样的一个问题也可以有几种不同的解决方案,基于假设的不同就会有这样那样的数学模型,教师和学生应该紧密结合,充分发挥学生的想象力和创造力,力争有一个满意的解答。
(二)传授内容的改革
数学模型教学内容的选取上,优先关注那些教学插件的典型性和案例背景的实用性、前沿性和数学方法的综合性的例题。内容上,应该尽力精选一些实际应用的例题进行建模教学示范,所选的数学模型不但要密切联系生活,更要和本专业课程紧密结合。通过展示这些例题的建模过程,不但使学生进一步加深对于数学建模原理的理解,还应该使学生明白如何将本专业所遇到的实际问题转换为理论问题,帮助学生理论联系实际,提高学生解决本专业实际问题的能力。
(三)引入数学软件, 开设数学实验
随着计算机技术的空前发展,对于数学模型的求解完全可以借助于一些数学软件来快速实现。这就要求在大学课堂中除了要求学生掌握建模原理之外,更应该要求学生了解和掌握利用数学工具(C语言,Matlab,Maple,Mathematica,Gauss,Xmath等)来计算和解决比较复杂的科学问题。因此,必须开设相对应的课程以普及和介绍数学软件的各种运算和图形处理功能,同时还根据专业情况利用各个软件现有的工具箱来简化建模过程和扩充符合计算功能和仿真功能。在此基础之上,把数学工具软件应用到现有的数学建模教学中,可以提高数学建模的效率和质量,丰富了数学建模的方法和手段。
四、结语
目前,欧美国家的一些学校和教师早已经把数学建模实验课运用到实际中,切实发挥学生的动手能力和思考问题能力,培养了一大批能为社会作贡献的科学家。作为发展中的国家,我们更应该重视数学建模教学质量的提高,切实实现面向未来、面向世界的教育模式。然而,数学建模教学的改革是一个循序渐进的过程,在这个过程中就要扬长避短,抛弃陈旧观念,为高等学校的改革创造一个良好的环境。
[参考文献]
[1] 李晓莉.数学建模的教学与实践[J].铁道师院学报,2002,(2).
[2] 陈国华,黄勇,江惠民.数学建模与素质教育[J].数学的实践与认识,2003,(33):110-112.
[3] 冯永明,张启凡,刘凤文.中学数学建模的教学构想与实践[J].数学通讯,2000,(7):56-57.
- 上一篇:建筑工程安全生产汇报材料
- 下一篇:高层建筑勘察标准